Electronic Journal of SADIO

http://ww. dc. uba. ar/ sadi o/ ej s

vol. 2, no. 1, pp.8.6(1999

Object-Agent Oriented Programming

Analia Amandi* Ramiro Iturregui® Algandro Zunino

YUniversidad Nadonal de Centro de la Provincia de Buenos Aires

Faaultad de Ciencias Exadas - ISISTAN

Campus Universitario Pargje Arroyo Sea - (7000 Tandil - Buenos Aires - Argentina
email: {amandi , riturr, azuni no} @xa. uni cen. edu. ar

Abstrad

Objed-oriented programming has been used for building
intelligent agents, with the limitation it cannot represent
complex mental attitudes. With logic programming it is
posshle to represent and infer relationships among mental
attitudes auch as intentions, goals and beliefs, with limitations
in the usage of cgpabiliti es of adion.

This paper presents two alternatives for integrating objed-
oriented with logic programming, which enable agent
programming. Java ad Smalltalk have been used for
providing one typed and another non-typed integration with
Prolog.

Keywords. agent-oriented programming, logic programming.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 6

1. Introduction

Agent-oriented programming (AOP) has been presented by Y. Shoham [Shoham, 1993
as a spedalizaion of objed-oriented programming (OOP). In this context, objeds are
considered the base for the design of intelligent agents.

The definition of objeds as base for agent design is gedally supparted by two fads. The
first, agents possess a bounded set of adion abiliti es that can be mapped to a set of
objeds classes methods. The semnd, agents maintain an internal private state known as
mental state, which is equivalent to the internal and private state of the objeds.

Far from Shoham's definition, many languages designed for agent programming (i.e.
AgentSpe& [Weegasooriya, 1995, Daisy [Poggi, 1999, Metatem [Fisher, 199],
CooL [Kalb, 199%]) have been built using concepts from objed-oriented paradigm and
many spedfic agents (such as [Vere, 1997 [Ciancarini, 1997) have been implemented
in objed oriented languages guch as C++, Smalltalk or Java.

These experiences of agent language definitions based on concepts of objed-orientation
and the development of multi-agent systems using objed-oriented languages put in
evidence one limitation in the passhilities for managing mental attitudes. In those
experiences, mental attitudes are manipulated as smple data whose relationships are
fredy interpreted in dedsion algorithms used by agents.

That limitation is impaosed by the complexity of relationships among mental attitudes
such as beliefs, goals, preferences, intentions, commitments and passbhilities. These
relationships among mental attitudes are exposed in severa logic formalisms [Cohen,
1990] [Rao, 1991] [Linder, 1996] [Huang, 1996. In spite of these theoreticd
developments, complex relationships among mental attitudes are not found in multi-
agent developments.

Objed-oriented programming resolves the problem that means the hiding of behavior of
ead type of agents and administration of private knowledge. On the other hand, logic
programming all ows logic dauses being used for representing mental attitudes.

This paper presents two experiences to integrate objed-oriented programming and logic
programming as a base for agent development. The next sedion describes the two besic
lines of integration between objed-oriented programming and logic programming.
Sedion 3 shows the integration between Java and a Prolog interpreter. Sedion 4 exposes
the integration of Smalltalk and Prolog and an example of agent programming. Finally,
at the end o this paper, the mnclusions are presented.

2. Integration of Objectsand L ogic

In the tentative of taking advantages of the modularizaion and reusability provided by
objed-oriented languages and of the inference of knowledge provided by logic
languages, several aternatives has been analyzed. These dternatives of integration can
be dharaderized in two main lines: extension of logic programming with objed-oriented
programming concepts and extension of objed-oriented programming languages with
logic programming concepts.

Amandi et al., Objed-Agent Oriented Programning, EJS, 2(1) 5-16(1999) 7

Extension d logic programning with oljed-oriented programmning concepts

The building of large systems with logic languages presents well-known problems of
performance Furthermore, these systems cannot be reused becaise of their complexity.
For thisreason, gred efforts have been made for modularizing logic programs.

Several objed-oriented languages have been designed to incorporate modularity to logic
languages. Generally, these languages have a Prolog-like syntax. As example, the
languages CPU [Mello, 1987], SPOOL [Fukunaga, 1984, LOO[Marcarella, 1995] and
SCOOP [Vaucher, 198§ can be mentioned. These languages show different alternatives
to incorporate modularity in logic programming from the use of objed-orientation
concepts.

These languages define dases as a set of clauses, where eab clause is a method.
Inheritance is managed in two dfferent ways for these languages. For introducing these
two alternatives, let two classes A and B (B as subclassof A) compased by the foll owing
methodsin form of clauses:

ClassA:

qudifi cation(Student, 'A’) :- passed(Student, final Test).

pased(Sudent, final Test) :- pased(Sudent, exercisel),
pased(Sudent, exacise?).

ClassB:
passed(Sudent), final Test) :- passed(Student, execised).

Inheritance is viewed from two pdnts of view. The first considers that clauses in a
subclass with the same head that those dauses in the superclass not redefines those
methods. In this case, objeds B use the dauses defined in A more the dasses defined in
B. This conjunction of clauses for representing inheritance not accept the redefiniti on of
methods.

In the example, an objed of classB has all the dauses defined in A and B available. In
the example, an objed B has two ways of considering satisfadory student's final test:
when the student passes the exercise 1 and 2, and when he passes the exercise 4.

The semnd inheritance view is when a dause in a subclass with the same name that
those dauses in the superclass redefines those inhered methods. This combination of
clauses is one that rewrites clauses with the same name, all owing thus the redefiniti on of
clauses.

In the example, an objea of classB has all the dauses defined in B more the dauses of A
with head dfferent of the dl clause of B are available. In the example, an objed B has
one way of considering satisfadory student's fina test: when the student passes the
exercise 4.

In the first alternative, a subclass can add new clauses with the same name, but it can not
redefine dauses; in the seoond, it is considered the dternative in which the subclass
redefine dauses with the same name, but it can not add clauses with the same name.

The examples above show two passhiliti es of combining logicd modules by means of

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 8

inheritance: the first alternative was adopted by SPOOL [Fukunaga, 1986 and the
second by SCOOP [Vaucher, 1989. Both combinations of logicd formulae ae useful in
the programming of objed-oriented appli cations.

Extension of object oriented programming with concepts of logic programming

The objed-oriented programming hes certain advantages over other paradigms. These
advantages are information hiding, inheritance axd modularity. However, in some
applicaionsis necessary to manipulate knowledge responding to some kind of logic that
logic languages provide. For this reeason, the posshility to add knowledge in a
dedarative form to an objed-oriented program became relevant. Examples of languages
that integrate knowledge in objeds are shown in[lshikawa, 198 and [Amaral, 1993.
These languages alow the aeaion of a knowledge base in each objed and the
management of it through a set of fadliti es.

Both of the extensions presented in this paper are in this last category. The reason is that
agents behave @& objeds from an adion point of view and internally manage logica
relationships for making intelligent dedsions.

3. Javal og: integrating Java and Prolog

Javal og is an integration of Java and Prolog that all ows the resolution of problems using
both languages. This capability of interadion between Prolog and Java enable us to take
advantageous of the fadlities of both paradigms.

This integration has been entirely developed in Java. The development of JavalLog has
been made in two stages. In the first stage, a Prolog interpreter was designed and
implemented in Java. In the second stage, the machinery that supparts the adification of
Java methods in Prolog and the use of Java objedsin Prolog programs was developed.

The next two subsedions present the integration from Java to Prolog and from Prolog to
Java.

3.1. Java using Prolog

The posshility of writing Prolog code inside Java programs allows the production of
natural solutions to problems that requires logic inference These problems are common
in intelligent agents snce the menta attitudes of agents are supparted by particular
logics.

By means of a preprocessor is posshle to embed Prolog into a Java program. Javal.og
marks between the strings”{%" and “%}” the Prolog code included in Java methods.
For example, the ade below shows a Java method that is part of the implementation of
an intelligent agent. These intelligent agents generate plans to achieve their goals. Here,
the Prolog code between the marks generates an agent plan. A planning algorithm
written in Prolog generates the plan. In the example, the charaders “#’ are used to
include Java variables in the Prolog code.

LinkGraph links = new LinkGraph(50);

Graph constraints = new Graph(50);
links.initialize(PIList.empty());

Amandi et al., Objed-Agent Oriented Programning, EJS, 2(1) 5-16(1999) 9

bodean prologResult;
{% getActions(Domain),
planning(Domain, #li nks#, #constraints#). %}

This integration of objeds and logic requires the eistence of the following variables in
the scope where the embedded Prolog is located:

e A variable named prologResult of type bodean.
* Aninstance of the Prolog interpreter in prolog.
* All Javavariables dedared between “#”.

Another use of Prolog does not preprocessthe ade. It consists of the inclusion of atoms
with the form$i in the Prolog program, where$i denotes the i-th array element
composed of Java objeds. When $i is used in the Prolog program, the i-th array element
istaken and it is converted to a Prolog-compatible objed.

The example below shows a Prolog predicate that returns true if it can successully send
the message size to the objed in the location $0 (an instance of Person clasg and the
predicate stores its result in the Prolog variable X. In this example, the variable X="Ann',
the name of the person that is sent as argument.

Objedt obj[] = { new Person}
prolog.cal(" send($0,ageX))" obj);

3.2. Using Java objects from Prolog clauses

This connedion al ows the use of Java objeds in a Prolog program. A Java objed islike
a Prolog atom, but it can receéve messages. Prolog hes been extended to send messages
to Java objeds embedded in a Prolog program. By means of these extensions it is
possble to overcome the well-known Prolog' s efficiency problems.

There ae two ways to use Java objedsin Prolog:
» Creding new instances of a dassin a dause body in Prolog.

e Pasdng objeds as arguments to the Prolog interpreter, and then uwsing the
objedsin a dause body.

The aedion of new instances of a dassis made by the new predicate. It receves three
arguments: Class, Arguments, Objed; when new(Class Arguments, Objeq) is evaluated,
it generates a new instance of Class using the mnstructor with the same number and type
of arguments as Arguments, finally it stores the new objed in Objed.

For example, the evaluation of new(‘java.util .Vedor',[10] ,VeQ) generates a new instance
of java.util .Vedor using the constructor that recaves an integer (in this case, the number
10) as argument, then it storesthe new vedor in Vec

It isalso passhle to send messages to Java objeds from a dause body using an espedal
Prolog predicae: send. The send predicae dlows the sending of a messge to a Java
objed. The message @an include aguments. It supparts two types of arguments. Prolog
objeds or Java objeds.

The evaluation of send(Objed, Message, Arguments, Result) has the foll owing steps:

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 10

1. It obtains the runtime dassof the objed Object.

2. It obtains the public member methods of the dassof Object and its superclasses. After
that, for ead method m:

(a) If the name of the method m is Message and the number of arguments of m is equal
to the length of Arguments, then, eat element g of Arguments is converted to the same
classof thei-th method's formal parameter type.

(b) If no method matches, the method send fails.
3. The method m isinvoked with Arguments.
4. If m returns an objed, it is converted to a Prolog-compatible form.

When a Java objed sends a message to an objed it knows the dass of the objed, the
message's name and methods formal parameter types. These data ae provided at
compile-time by the Java cmpiler. Prolog does not have dl the information about
clases and methods, because the send predicae is not compiled. For this reason,
Javal_og obtains the information that describes classes and methods at runtime.

There aefour rulesthat describe the compatibili ty between Java and Prolog types. These
rules are gpplied when the send predicae is evaluated, and the aguments of the message
include aProlog dbjed:

1. If the parameter type is consistent with the formal parameter type of the message, no
explicit conversion isdone.

2. If the formal parameter type is consistent with String, the parameter is converted to a
Sring.

3. If the formal parameter type is consistent with int, a @mnversion of the parameter to
Integer is made.

4. If the parameter type is a wrapper of a Java objed, compatibility between the
parameter and a Java objed is verified.

When Javal og evaluates the send predicate it only knows the receptor of the message,
the message name and the aguments. With this information, Javal og obtains the objed
class and its superclass Then, it seaches a method with the desired name and
compatible aguments. Finally, if the method isfound, it isinvoked.

The inclusion of Java objeds in Prolog is made possble by using wrappers. A Java
objed with an associate wrapper acquires the same behavior than a Prolog atom. In this
way, a Java objed within Prolog is like an atom, but it can be used in the send predicae.

The next paragraphs $iow an example of the use of Java objeds inside Prolog clauses:

Thereisan intelligent agent that needs to use aplanning algorithm to generate aplan
to achieve its goals. The planning algorithm has been written in Prolog, using all its
cgpabiliti es in urification and badtradking. The result of the dgorithm is a plan,
that is, a set of partially ordered adions that the agent has to follow. The plan is
represented by adireded graph. The planning algorithm uses another graph to deted
when anewly introduced adion interferes with past dedsions.

In the described situation, a typica representation for a graph using Prolog is a list
containing the edges. Each element of thelist isa pair [a,b]that represents an edge
(a,b) in the graph. The dgorithm needs to known the existence of an edge. This

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 11

action involves a search over al the list of edges. In Java, in contrast, the same
results can be achieved by using an adjacency matrix, in which an edge (a,b)
appears in the matrix as an element in the position i, j. Thus, to know the existence
of an edge in the graph using an adjacency graph it is only necessary to read one
position of the matrix.

By using Javalog it is possible to implement the planning algorithm in Prolog taking
advantages of preconditions matching and backtracking and to use Java for
implementing the action graph taking advantageous of the Java efficiency achieved in
the representation and searching in graphs.

The usage of Java objects in a Prolog program requires a special treatment, since an
object with an associated wrapper does not have the same behavior than standard Prolog
atoms. A Prolog variable can change its state only once; on the other hand, a Java object
can change its state every time that it receives a message. It affects the normal way of
Prolog programs since objects changes their state during the normal recursion. The cause
of thisisthat a Java object with awrapper associated is only areference to a Java object.

The existence of Java objects inside Prolog clauses has one important implication: in a
recursive Prolog clause that uses Java objects the programmer has to consider the
necessity to save/restore Java objects at the beginning and end of a clause respectively.

Two implementations of the POP [Weld, 1994] planning agorithm have been made to
measure the improvements of Javal.og over traditional Prolog. One of the experiences
has been made using only Prolog. The other experience has been implemented using
Javal_og in which Prolog was used for implementing the general planning algorithm and
Java was used to manage the action graph of restrictions.

These two versions of the algorithm have been tested using the Sussman anomaly
problem as input. The implementations were executed using the following resources:
Pentium 233 Mhz, 32 MB of RAM, JDK 1.1.3 on GNUY/Linux 2.0 and Javal og.

After teniterations, the results show the potentiality of the integration offered by
Javal.og:

* Using only Prolog: 20.124 sec.

» Using Javal og: 4.047 sec.

The difference in performance is due to the representation of the directed graph of
restrictions in Java by using an adjacency matrix. In this way, the time O(n) (nis the
number of restrictions) that takes the process of consistency check in the Prolog version
of the algorithm is reduced to O(1) by combining Java and Prolog.

4. OWB: Integrating Smalltalk and Prolog

Object With Brain (OWB) integrates Smalltalk objects and Prolog clauses alowing
objects to define part of its private knowledge with logic clauses and methods
implemented partially or fully in Prolog. The design of this integration is based on the
following points:

1. Meta-objects which manage knowledge in logic format as a part of objects. These
obj ects have no conscience about meta-level that adds this functionality.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 12

2. Logic modues that encgpsulate logic dauses. These modules can be locaed in
instance variables and methods, and they can be combined for usingin queries.

3. The possbility that objeds can becme dauses and that clauses can use objeds as
constant type.

In the following sedion, details of the integration of Smalltalk-Prolog-Smalltalk are
exposed.

4.1. Smalltalk objects using Prolog

Simple objeds, generally, have not the capabili ty to manage knowledge in logic format.
The posshility that old or new objeds manage this type of knowledge will make feasible
that these objeds combine and infer knowledge without using complex agorithms. By
using meta-objeds, this problem has been solved. A meta-objed with knowledge
asciated to a particular objed alows the usage of a protocol defined to manage
knowledge in logic format.

On the other hand, in OWB, an objed may have instance variables of any objed class
including objeds of the LogicModule class This class of objeds represents logic
modules defined as sts of clauses expressed in Prolog syntax. A logic module
encgpsulates a set of clauses and it can be cmbined in defined ways. The logic modules
aim the modularization of logic programs.

In thisway, an objed can have private knowledge expressed in logic form, through rules
and fads, which are available only in methods of the own objed class An objed can
have ze&o, one or more instance variables referring clauses, al owing thus the separation
of concepts that the developer wishes to record in different variables. For example, let a
Professor classthat define instance variables in which ead professor can register his
way for evaluating students of a wurse, for accepting requests of new students and for
atering his <hedule.

OWRB alows classes to use logic modules as method parts. This enables classes to record
fads and rules that represent common knowledge for their instances.

The logic modules defined in class methods represent common knowledge of the objeds
of that class Those logic modues that are defined in the instance variables of objeds
represent proper knowledge of ead objed. Figurel shows a distribution of logic
modules.

maoduos [6gicos

médu os 16gicos en dbjetos

en métodas

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 13

Figure 1 —Logic modules.

An important point in the use of variables with logic knowledge is that an objed can
have some instance variables to register different views of the same ancept. These
views can be used separately or can be combined using operators defined for such goal.
For example, the Professor classabove mentioned may have diff erent instance variables
(a, b and c) to register different ways for evaluating changes of his shedule from some
reguest. In this way, a professor, in front of a particular situation, can use one of these
forms (achieved by one of these variables) or one of its combinations.

The following operators have been defined and implemented by combining logic
modules referenced by variables:

* re-write: let the knowledge basesa and b, “areWriteb" define alogic module
that contains all clauses defined inb added to the dauses defined ina whose
head nameis not the same of some dause of b.

* plus: let the knowledge basesa and b, “a plusb" define alogic module which
contains al clauses of a and b.

Figure2 shows how an objed may have multiple instance variables with logic
knowledge and how this objed can be wmbined using the plus operator. The
addKnowledge() message make available the logic modue sent as argument in
knowledge meta-object asciated with the base objed. This knowledge an be queried
from this moment.

ameta-objed pasgStudent, test):- pasqStudent, ex1),
pasgStudent,ex2).
addKnowledge: (ap1 dus: ap2)
) pasqStudent, test):-
variable a1 pasgStudent, ex1), aprobado(Alumno,ex2).

S variable g2 ipasgStudent, test):- pasgStudent, ex4).

an obiedt Jaddk nowledge: (ap1 dus: ap2)

Figure 2 - Combining logic modules.

Furthermore, an objed can have defined in its class methods, which are written in
Smalltalk 80, both methods fully implemented in logic and methods that combine
Smalltalk and Prolog.

This integration al ows the cmbination of Smalltalk and Prolog syntax in a method to
express dedarative knowledge in dedarative form and operational behavior in
procedural form. However, both forms of programming share the same world. For this

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 14

reason, both forms can access to the same information. So, objeds can work with clauses
and clauses can work with objeds.

4.2. Prolog using Smalltalk objects

In the body of Prolog clauses it is possble to send messages to oljeds, to creae new
objeds and to use objeds as atoms.

Furthermore, a logic modue in a method, which is between double braces, can use locd,
global, or classvariables and any method arguments diredly in its clauses. The foll owing
example shows how the student referenced by anStudent variable, which is passed as
parameter of eval method is used in qualification clauses.

eval: anStudent
{{ qudificaion({anStudent}, 'A") :-
final Test({ anStudent, passed).
qualification({ anStudent}, 'B") :-
final Test({ anStudent} , unpas<ed),
exercises({ anStudent} , passed).}}

5. Conclusions

In this paper the basis for the development of software intelligent agents from the
programming point of view has been presented. Two alternatives were presented. The
difference between the presented opions is based on the typed charaderistics of
programming languages used. Smalltalk alows the eay usage of dynamic structures
such meta-objeds. Java in contrast involves code preprocessng and the necessity to
consider types compatibility.

On the other hand, the fact of that the Prolog interpreter was implemented in the proper
language dlows extensions to this interpreter. These extensions can suppats the
management of mental attitudes.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 15

6. References

[Amaral, 1993 J. Amara, Um Estudo sobre Comportamento Inteligente, Technicd
Report CPGCC of UFRGS, Porto Alegre, Jan. 199%8.

[Ciancarini, 1997 P. Ciancaini, A. Knoche, D. Rosd, R. Tolksdorf, F. Vitdli,
Coordinating Java Agents for Financial Applicaions on the WWW, Proc. of The
Pradicd Application of Agentsand Multi-Agents Technology, Apr. 1997, pp.179-191

[Cohen, 1990 P. R. Cohen, H. J. Levesgque, Intention is Choice with Commitment,
Artificial Intelligence Vol. 42, No. 2, 1990.

[Fukunaga, 1986] K. Fukunaga, S. Hirose, An Experience with a Prolog-Based Objed-
Oriented Language, Sigplan Notices (Proc. of OOPSLA '86 Conference), Nov. 1986 pp.
224231

[Fisher, 1994 M. Fisher, Representing and Executing Agent-Based Systems, ECAI-94
Workshop an Agent Theories, Architedures, and Languages, Aug. 1994 pp. 307-323.

[Huang, 1999 Z. Huang, M. Masuch, L. Pdlos, Alx, an Action Logic for Agents with
Bounded Rationality, Artificial Intelligence, Vol. 82, No. 1, 1996, pp. 75-127.

[Ishikawa, 1986] Y. Ishikawa, M. Tokoro, A Concurrent Objed-Oriented Knowledge
Representation Language Oriente84/k: It's feaures and implementation, SIGPLAN
Notices, Vol. 21, No. 11, Nov. 1986, pp. 232-241

[Kolb, 1995 M. Kolb, A Cooperation Language, Proc. of the International Conference
of Multi-agent Systems, 1995 pp. 233-238.

[Mello, 1987] P. Mello and A. Natali, Objeds as Communicating Prolog Units. Proc. of
ECOOP'87 European Conference on Objed-Oriented Programming, Jun. 1987, pp. 181-
191

[Marcaella, 1995] P. Marcarella, A. Raffada, and F. Turini, Loo: An Objed-Oriented
Logic Programming Language, Proc. of Italian Conference on Logic Programming
(GULP'95), Sep. 1995.

[Pogay, 1994 A. Poggy, Daisy: an Objed-Oriented System for Distributed Artificial
Intelligence, ECAI-94 Workshop an Agent Theories, Architedures, and Languages,
Aug. 1994 pp. 341-354.

[Rao, 1991] A. Rao, M. Georgeff, Modeling rational agents within a BDI-architedure,
Proc. of knowledge, representation and reasoning (KR '91), pages 473-484, April 1991.

[Shoham, 1993 Y. Shohan, Agent-Oriented Programming. Artificia Intelligence, Vol.
60, No. 1, Mar. 1993, pp. 51-92.

[Vaucher, 1988 J. Vaucher, G. Lapalme, and J. Maenfant, Scoop Structured
Concurrent Objed-Oriented Prolog. In Proc. of ECOOP'88 European Conference on
Objed-Oriented Programming, pages 191-211 Springer-Verlag, August 1988

[Linder, 19969 B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer, Formalising
Motivational Attitudes of Agents. On preferences, goals and commitments. In M.
Wooldrige, J. Muller, and M. Tambe, editors, Intelligent agents Il, pp. 17-31. Springer,
New York, 1996

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 16

[Weld, 1994] Daniel S. Weld, An Introduction to Least commitment Planning, Al
Magazine, Val. 15, No. 4, 1994, pp.27-61.

[Weerasooriya, 1994] D. Weerasooriya, A. Rao, K. Ramamohanarao, Design of a
Concurrent Agent-Oriented Language, ECAI-94 Workshop on Agent Theories,
Architectures, and Languages, Aug. 1994, pp. 386-401.

