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Abstract 

Association rules are a class of important regularities in databases. They are found to be very 

useful in practical applications. However, association rule mining algorithms tend to produce 

a huge number of rules, most of which are of no interest to the user. Due to the large number 

of rules, it is very diff icult for the user to analyze them manually in order to identify those 

truly interesting ones. In this paper, we propose a new approach to assist the user in finding 

interesting rules (in particular, unexpected rules) from a set of discovered association rules. 

This technique is characterized by analyzing the discovered association rules using the user’s 

existing knowledge about the domain and then ranking the discovered rules according to 

various interestingness criteria, e.g., conformity and various types of unexpectedness. This 

technique has been implemented and successfully used in a number of applications.   

Keywords: subjective interestingness, association rules, interestingness analysis in data mining.  

1.     Introduction 

The interestingness issue has long been identified as an important problem in data mining. It refers to 

finding rules that are interesting/useful to the user, not just any possible rule [e.g., 1, 11, 12, 21, 23, 

24, 27, 30]. The reason for its importance is that, in practice, it is all too easy for a data mining 

algorithm to discover a glut of rules, and most of these rules are of no interest to the user [11, 12, 21, 

27, 30]. This is particularly true for association rule mining [e.g., 2, 3, 7, 14, 16, 28], which often 

produces a huge number of rules. The huge number of rules makes manual inspection of the rules 

very diff icult. Automated assistance is needed. This paper presents an interestingness analysis system 

(IAS) to help the user identify interesting association rules.  

1.1  Rule interestingness measures 

Past research in data mining has shown that the interestingness of a rule can be measured using 

objective measures and subjective measures [e.g., 27, 11]. Objective measures involve analyzing the 

rule’s structure, predictive performance, and statistical significance [e.g., 27, 21, 17, 14, 2, 3]. In 

association rule mining, such measures include support and confidence [2, 28, 3]. However, it is noted 

in [21] that objective measures are insuff icient for determining the interestingness of a discovered 
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rule. Subjective measures are needed. Subjective interestingenss is the topic of this paper. Two main 

subjective interestingness measures are: unexpectedness [11, 27] and actionabilit y [21, 27].  

• Unexpectedness: Rules are interesting if they are unknown to the user or contradict the user’s 

existing knowledge (or expectations).  

• Actionability: Rules are interesting if the user can do something with them to his/her advantage.   

Although both unexpectedness and actionabilit y are important, actionabilit y is the key concept in 

most applications because actionable rules allow the user to do his/her job better by taking some 

specific actions in response to the discovered knowledge [21, 27]. Actionabilit y is, however, an 

elusive concept because it is not feasible to know the space of all rules and the actions to be attached 

to them [27]. Fortunately, the two measures are not mutually exclusive. Interesting rules can be 

classified into three categories: (1) rules that are both unexpected and actionable; (2) rules that are 

unexpected but not actionable; and (3) rules that are actionable but expected.  

 In this research, we only focus on unexpectedness. Actionabilit y is partiall y handled through 

unexpectedness because actionable rules are either expected or unexpected. Thus, the proposed 

technique aims to find expected and unexpected association rules. Expected rules are also called 

conforming rules as they conform to the user’s existing knowledge or expectations.  

1.2  Generalized association rules 

Before discussing our proposed technique, let us first introduce the concept of association rules, in 

particular, generalized association rules [28]. The generalized association rule model is more general 

than the original association rule model given in [2].  

The (generalized) association rule mining is defined as follows: Let I = { i1, …, iw} be a set of 

items. Let G be a directed acyclic graph on the items. An edge in G represents an is-a relationship. 

Then, G is a set of taxonomies. A taxonomy example is shown in Figure 1. Let T be a set of 

transactions, where each transaction t is a set of items such that t ⊆ I. A (generalized) association rule 

is an implication of the form X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X → Y holds in the 

transaction set T with confidence c if c% of transactions in T that support X also support Y. The rule 

has support s in T if s% of the transactions in T contains X ∪ Y. 

 

 

 

 

For example, an association rule could be: 

 grape → apple   [support = 10%, confidence = 60%], 

which says that 10% of people buy grape and apple together, and 60% of the people who buy grape 

also buy apple. This rule only involves items at the bottom level of the taxonomy. We can also have 

rules that involve items of more than one level. For example,  

 Fooditem 
 

 Fruit  Dairy_product  Meat 
 

grape    pear    apple  milk    cheese    butter  beef    pork    chicken 

Figure 1: An example taxonomy 
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 Fruit → Dairy_product [support = 2%, confidence = 67%] 

Fruit, milk → Meat   [support = 3%, confidence = 65%] 

1.3 Summary of the proposed technique 

The basic idea of our technique is as follows: The system first asks the user to specify his/her existing 

knowledge, e.g., beliefs or concepts, about the domain. It then analyzes the discovered rules to 

identify those potentiall y interesting ones (e.g., unexpected rules). The proposed technique is an 

interactive and iterative post-processing technique (see Section 3). It consists of three components:  

1. A specification language: it allows the user to specify his/her various types of existing knowledge.  

2. An interestngness analysis system: it analyzes the discovered association rules using the user’s 

specifications, and through such analysis, to identifiy: conforming rules, unexpected consequent 

rules, unexpected condition rules and both-side unexpected rules. 

3.  A visualization system: it enables the user to visually detect interesting rules easily.  

The proposed technique has been implemented and successfully applied to a number of applications. 

The system is called IAS. It can be downloaded from: http://www.comp.nus.edu.sg/~dm2. 

The paper is organized as follows: In the next section, we discuss the related work. Section 3 

presents the proposed technique. Section 4 describes the visualization system using an example. 

Section 5 evaluates the proposed technique. Section 6 concludes the paper.  

2 Related Work 

Existing research in rule interestingness focuses on either objective interestingness or subjective 

interestingness. Objective interestingness analyzes rules’ structure, predictive performance, statistical 

significance, etc [e.g., 2, 3, 14, 16, 18, 22, 25, 31, 32]. Objective interestingness will not be discussed 

further, as it is not the focus of this paper. This paper studies subjective interestingness. We assume 

that objective interestingness analysis [14, 3, 32] has been performed to remove those redundant 

and/or insignificant rules.  

Most existing approaches to finding subjectively interesting association rules ask the user to 

explicitl y specify what types of rules are interesting and uninteresting. The system then generates or 

retrieves those matching rules. [10] proposes a template-based approach. In this approach, the user 

specifies interesting and uninteresting association rules using templates. A template describes a set of 

rules in terms of items occurred in the conditional and the consequent parts. The system then retrieves 

the matching rules from the set of discovered rules.   

 [29] proposes an association rule mining algorithm that can take item constraints specified by the 

user in the rule mining process so that only those rules that satisfy the constraints are generated. [20] 

extends this approach further to allow much more sophisticated constraints to be specified by the user. 

It also uses the constraints to optimize the association rule mining process. The idea of using 

constraints in the rule mining process is important as it avoids generating irrelevant rules.  

Along the similar line, there are also a number of works based on data mining queries. For 
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example, M-SQL in [8], DMQL in [7], and Metaqueries in [26]. A data mining query basically 

defines a set of rules of a certain type (or constraints on the rule to be found). To “execute” a query 

means to find all rules that satisfy the query.  

All the above methods view the process of f inding subjectively interesting rules as a query-based 

process, although the queries may be considered during rule generation or after all rules have been 

discovered. Query-based methods have the following problems.  

1. It is hard to find the truly unexpected rules. They can only find those anticipated rules because 

queries can only be derived from the user’s existing knowledge space. Yet, many rules that do not 

satisfy the user’s queries may also be of interest. It is just that the user has never thought of them 

(they are unexpected or novel) or has forgotten about them. 

2. The user often does not know or is unable to specify completely what interest him/her. He/she 

needs to be stimulated or reminded. Query-based approaches do not actively perform this task 

because they only return those rules that satisfy the queries.  

Our proposed technique not only identifies those conforming rules as query-based methods, but also 

provides three types of unexpected rules. Thus, the user is exposed to more possible interesting 

aspects of the discovered rules rather than only focusing on his/her current interests (which he/she 

may not be sure). If the unexpected rules are not truly unexpected, they serve to remind the user what 

he/she has forgotten. IAS’s visualization system also helps the user explore interesting rules easily.  

In [11, 12], we reported two techniques for analyzing the subjective interestingness of 

classification rules. However, those techniques cannot be applied to analyzing association rules. 

Association rules require a different specification language and different ways of analyzing and 

ranking the rules.  

[23, 24] proposes a method of discovering unexpected patterns that takes into consideration a set 

of expectations or beliefs about the problem domain. The method discovers unexpected patterns using 

these expectations to seed the search for patterns in data that contradict the beliefs. However, this 

method is in general not as eff icient and flexible as our post-analysis method unless the user is able to 

specify his/her beliefs or expectations about the domain completely beforehand, which is very 

diff icult, if not impossible [4, 5]. Typically, user interaction with the system is needed in order for 

him/her to provide a more complete set of expectations and to find more interesting rules. Our post-

analysis method facilit ates user-interaction because of its eff iciency. The approach given in [23, 24] 

also does not handle user’s rough or vague feelings, but only precise knowledge (see Section 3.1). 

User’s vague feelings are important for identifying interesting rules because in our applications we 

found that the user is more li kely to have such forms of knowledge than precise knowledge. The 

definitions of vague feelings and precise knowledge will be given in Section 3.1. 

The system WizWhy [31] also has a method to produce unexpected rules. Its method, however, is 

based on objective interestingness as its analysis does not depend on individual users. It first 

computes the expected probabilit y of a rule assuming independence of each of its conditions. It then 

compares this expected probabilit y with the rule’s actual probabilit y to compute its unexpectedness.   
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 [27] proposes to use belief systems to describe unexpectedness. A number of formal approaches 

to the belief systems are presented, e.g., Bayesian probabilit y and Dempster-Shafer theory. These 

approaches require the user to provide complex belief information, such as conditional probabiliti es, 

which are diff icult to obtain in practice.   

 There are also existing techniques that work in the contexts of specific domains. For example, 

[21] studies the issue of f inding interesting deviations in a health care application. Its data mining 

system, KEFIR, analyzes health care information to uncover “key findings” . A domain expert system 

is constructed to evaluate the interestingness (in this case, actionabil ity) of the “key findings” . The 

approach is, however, application specific. It also does not deal with association rules. Our method is 

general. It does not make any domain-specific assumptions.  

3. IAS:  Interestingness Analysis System 

We now present IAS. Basically, IAS is an interactive and iterative technique. In each iteration, it first 

asks the user to specify his/her existing knowledge about the domain. It then uses this knowledge to 

analyze the discovered rules according to some interestingness criteria, conformity and various types 

of unexpectedness, and through such analysis to identify those potentiall y interesting rules. The IAS 

system works as follows:  

 Repeat  until the user decides to stop 

 1 the user specifies some existing knowledge or modifies the knowledge specified previously; 

 2 the system analyzes the discovered rules according to their conformity and unexpectedness; 

3 the user inspects the analysis results through the visualization system, saves the interesting 

rules, and removes those unwanted rules.  

3.1. The specification language  

IAS has a simple specification language to enable the user to express his/her existing knowledge. This 

language focuses on representing the user’s existing knowledge about associative relations on items in 

the database. The basic syntax of the language takes the same format as association rules. It is 

intuiti ve and simple, which is important for practical applications.  

The language allows three types of specifications. Each represents knowledge of a different 

degree of preciseness. They are:  

• general impressions,  

• reasonably precise concepts, and  

• precise knowledge.  

The first two types of knowledge represent the user’s vague feelings. The last type represents 

his/her precise knowledge. This division is important because human knowledge has granularities. It 

is common that some aspects of our knowledge about a domain are quite vague, while other aspects 

are very precise. For example, we may have a vague feeling or impression that some Meat items and 

Fruit items should be associated, but have no idea what items are involved and how they are 
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associated. However, we may know precisely from past experiences or a previous data mining session 

that buying bread implies buying milk with a support of around 10% and confidence of around 70%.  

It is crucial to allow different types of knowledge to be specified. This not only determines how 

we can make use of the knowledge, but also whether we can make use of all possible knowledge from 

the user. For example, if a system can only handle precise knowledge, then the user who does not 

have precise knowledge but has only vague impressions cannot use it.  

The proposed specification language also make use of the idea of class hierarchy (or taxonomy), 

which is the same as the one used in generalized association rules [28]. We represent the hierarchy in 

Figure 1 as follows: 

{ grape, pear, apple} ⊂ Fruit ⊂ Fooditem 

{ milk, cheese, butter} ⊂ Dairy_product ⊂ Fooditem 

{ beef, pork, chicken} ⊂ Meat ⊂ Fooditem 

Fruit, Dairy_product, Meat and Fooditems are classes (or class names). grape, pear, apple, milk, 

cheese, beef, pork, chicken, #Fruit, #Dairy_product, #Meat and #Fooditems are items. Note that in 

generalized association rules, class names can also be treated as items, in which case, we append a “#” 

in front of a class name. Note also that in the proposed language, a class hierarchy does not need to be 

constructed beforehand, but can be created on the fly when needed.  

We now discuss the three types of knowledge that the user may input. The next sub-section shows 

how these types of knowledge are used in finding conforming and unexpected rules.  

General Impression (GI): It represents the user’s vague feeling that there should be some 

associations among some classes of items, but he/she is not sure how they are associated. This can 

be expressed with: 

 gi(<S1, …, Sm>)   [support, confidence]  

where (1) Each Si is one of the following: an item, a class, or an expression C+ or C*, where C 

is a class. C+ and C* correspond to one or more, and zero or more instances of the 

class C, respectively.  

(2) A discovered rule: a1, …, an → b1, …, bk, conforms to the GI if <a1,…, an, b1,…, bk> 

can be considered to be an instance of <S1, …, Sm>, otherwise it is unexpected with 

respect to the GI. 

(3) This impression actually represents a disjunctive propositional formula. Each 

disjunct is an implication. For example, “gi(<a, { b, c} +>)” can be expanded into the 

following (note that { b, c} is treated as a constructed class without a name): 

 (a → b) ∨ (a → c) ∨ (b → a) ∨ (c → a) ∨  

 ((a ∧ b) → c) ∨ ((a ∧ c) → b) ∨  ((b ∧ c) → a) ∨  

 (a → (b ∧ c)) ∨ (b → (a ∧ c)) ∨ (c → (a ∧ b)) 

A discovered association rule conforms to the impression if the rule is one of the 

disjuncts. We can see that the formula is much more complex than the GI.   
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(4)  Support and confidence are optional. The user can specify the minimum support and 

the minimum confidence of the rules that he/she wants to see.  

Example: The user believes that there exist some associations among { milk, cheese} , Fruit items, and 

beef (assume we use the class hierarchy in Figure 1). He/she specifies this as:  

  gi(<{ milk, cheese} *, Fruit+, beef>) 

{ milk, cheese} here represents a class constructed on the fly unlike Fruit. The following are 

examples of association rules that conform to the specification:  

  apple → beef 

 grape, pear, beef → milk 

The following two rules are unexpected with respect to this specification:  

(1) milk → beef  

(2) milk, cheese, pear → clothes 

(1) is unexpected because Fruit+ is not satisfied. (2) is unexpected because beef is not present in 

the rule, and clothes is not from any of the elements of the GI specification.  

Reasonably Precise Concept (RPC): It represents the user’s concept that there should be some 

associations among some classes of items, and he/she also knows the direction of the associations. 

This can be expressed with: 

 rpc(<S1, …, Sm → V1, …, Vg>)   [support, confidence] 

where (1) Si or Vj is the same as Si in the GI specification.  

(2) A discovered rule, a1, …, an → b1, …, bk, conforms to the RPC, if the rule can be 

considered to be an instance of the RPC, otherwise it is unexpected with respect to 

the RPC.     

(3) Similar to a GI, an RPC also represents a complex disjunctive propositional formula.  

(4)  Support and confidence are again optional.  

Example 2: Suppose the user believes the following:  

 rpc(<Meat, Meat, #Dairy_product → { grape, apple} +>) 

 Note that #Dairy_product here refers to an item, not a class. The following are examples of 

association rules that conform to the specification: 

 beef, pork, Dairy_product → grape 

 beef, chicken, Dairy_product → grape, apple 

 The following association rules are unexpected with respect to the specification: 

 (1)  pork, Dairy_product → grape 

 (2) beef, pork  → grape 

 (3) beef, pork → milk 

(1) is unexpected because it has only one Meat item, but two Meat items are needed as we have 

two Meat’s in the specification. (2) is unexpected because Dairy_product is not in the conditional 
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part of the rule. (3) is unexpected because Dairy_product is not in the conditional part of the rule, 

and milk is not in the consequent of the RPC specification.  

Precise knowledge (PK): The user believes in a precise association. This is expressed with:  

 pk(<S1, …, Sm → V1, …, Vg>)   [support, confidence] 

where  (1)  Each Si or Vj is an item.  

(2) A discovered rule, a1, …, an → b1, …, bk  [sup, confid], is equal to the PK, if the rule 

part is the same as S1, …, Sm→ V1, …, Vg. Whether it conforms to the PK or is 

unexpected depends on the support and confidence specifications.  

(3)  Support and confidence need to be specified (not optional).  

Example 3: Suppose the user believes the following:  

 pk(<#Meat, milk → apple>) [10%, 30%] 

 The discovered rule below conforms to the PK quite well because the supports and confidences of 

the rule and the PK are quite close.  

 Meat, milk → apple [8%, 33%] 

However, if the discovered rule is the following:  

 Meat, milk → apple [1%, 10%] 

then it is less conforming, but more unexpected, because its support and confidence are quite 

different from those of the PK.  

3.2. Analyzing discovered rules using the user’s existing knowledge 

After the existing knowledge of the user is specified, the system uses it to analyze the discovered 

rules. For GIs and RPCs, we perform syntax-based analysis, i.e., comparing the syntactic structure of 

the discovered rules with GIs and RPCs. It does not make sense to do semantics-based analysis 

because the user does not have any precise associations in mind. Using PKs, we can perform 

semantics-based analysis, i.e., to perform support and confidence comparisons of the user’s 

specifications against the discovered rules that are equal to the specifications. This process is quite 

straightforward and will not be discussed here. See [15] for details.  

Let U be the set of user’s specifications representing his/her knowledge space, A be the set of 

discovered association rules. The proposed technique “matches” and ranks the rules in A in a number 

of ways for finding different types of interesting rules, conforming rules, unexpected consequent 

rules, unexpected condition rules and both-side unexpected rules. Below, we define them intuiti vely 

and explain the purposes they serve. The computation details will follow.  

Conforming rules: A discovered rule Ai ∈ A conforms to a piece of user’s knowledge Uj ∈ U if both 

the conditional and consequent parts of Ai match those of Uj ∈ U well . We use confmij to denote 

the degree of conforming match. 

Purpose: ranking of conforming rules shows us those rules that conform to or are consistent with 

our existing knowledge fully or partiall y.  
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Unexpected consequent rules: A discovered rule Ai ∈ A has unexpected consequents with respect to 

a Uj ∈ U if the conditional part of Ai matches that of Uj well , but not the consequent part. We 

use unexpConseqij to denote the degree of unexpected consequent match. 

Purpose: ranking of unexpected consequent rules shows us those discovered rules that are contrary 

to our existing knowledge (fully or partiall y). These rules are often very interesting. 

Unexpected condition rules: A discovered rule Ai ∈ A has unexpected conditions with respect to a Uj 

∈ U if the consequent part of Ai matches that of Uj well , but not the conditional part. We use 

unexpCondij to denote the degree of unexpected condition match. 

Purpose: ranking of unexpected condition rules shows us that there are other conditions which can 

lead to the consequent of our specified knowledge. We are thus guided to explore the unfamili ar 

territories, i.e., other associations that are related to our existing knowledge.  

Both-side unexpected rules: A discovered rule Ai ∈ A is both-side unexpected with respect to a Uj ∈ 

U if both the conditional and consequent parts of the rule Ai do not match those of Uj well . We 

use bsUnexpij to denote the degree of both-side unexpected match.  

Purpose: ranking of both-side unexpected rules reminds us that there are other rules whose 

conditions and consequents have never been mentioned in our specification(s). It helps us to go 

beyond our existing concept space. 

The values for confmij, unexpConseqij, unexpCondij, and bsUnexpij are between 0 and 1. 1 represents a 

complete match, either a complete conforming or a complete unexpectedness match, and 0 represents 

no match. Let Lij and Rij be the degrees of condition and consequent match of rule Ai against Uj 

respectively. confmij, unexpConseqij, unexpCondij, and bsUnexpij are computed as follows:  

 

 

 

 

 

 

 Note that we use Lij – Rij to compute the unexpected consequent match degree because we wish to 

rank those rules with high Lij but low Rij higher. Similar idea applies to unexpectCondij. The formula 

for bsUnexpij is basically to make sure that those rules with high values in any other three categories 

should have lower values here, and vice versa.  

We now show how to compute Lij and Rij for GI and RPS specifications. Let I = { i1, …, iw} be the 

set of items in the database. Let LNi and RNi be the total numbers of items in the conditional and 

consequent parts of Ai respectively. Let the discovered rule Ai be 

 a1, …, an → b1, …, bk 
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bsUnexpij = 1- max(confmij, unexpConseqij, unexpCondij); 
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1. Uj is a general impression (GI):  

  gi(<S1, …, Sm>) 

Let SNj be the total number of elements in the GI, where a class with a “* ” , i.e., C*, is not 

counted. Let LMij and RMij be the numbers of items in the conditional and consequent parts of Ai 

that match { S1, …, Sm}  respectively. Let SMij be the number of elements in { S1, …, Sm} that have 

been matched by Ai (again, matching with a C* is not counted).   

We define that an item ap ∈ { a1, …, an} matches Sq ∈ { S1, …, Sm} (the same applies to bp 

∈{ b1, …, bk}  and Sq match) as follows: 

(i) if Sq ∈ I and ap = Sq, or  

(ii) if Sq is a class C, and only exactly one ap ∈ C (or exactly one ap is an instance of C), or 

(iii) if  Si is C+ or C*, and ap ∈ C. 

Lij and Rij are computed as follows:  

if 
i

ij

i

ij

RN

RM

LN

LM >  then  

   ),min(
j

ij

i

ij
ij

SN

SM

LN

LM
L = ; 

   ;
i

ij
ij

RN

RM
R =  

  else  ),min(
j

ij

i

ij
ij

SN

SM

RN

RM
R = ;   

   ;
i

ij
ij

LN

LM
L =  

 Note that if SNj = 0 then 1=
j

ij

SN

SM
�  

2. Uj is a reasonably precise concept (RPC):  

  rpc(<S1, …, Sm → V1, …, Vg>). 

Let LSNj and RVNj be the total numbers of elements in the conditional and consequent parts of the 

RPC respectively, where a class with a *, e.g., C*, is not counted. Let LMij and RMij be the 

numbers of items in the conditional and consequent parts of Ai that match { S1, …, Sm} and { V1, 

…, Vg} respectively. Let LSMij and RVMij be the numbers of elements in { S1, …, Sm} and { V1, …, 

Vg} that have been matched by the conditional and consequent parts of Ai respectively (matching 

with C* is not counted). 

The meaning of matching is the same as above for the GI, except that here the conditional and 

the consequent parts of Ai are considered separately with respect to { S1, …, Sm} and { V1, …, Vg} .  

Lij and Rij are computed as follows:  

),min(
j

ij

i

ij
ij

LSN

LSM

LN

LM
L = ;  
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  ),min(
j

ij

i

ij
ij

RVN

RVM

RN

RM
R = ;   

 Note that if LSNij = 0 (or RVNij = 0) then 1=
j

ij

LSN

LSM   (or 1=
j

ij

RVN

RVM ).  

After confmij, unexpConseqij, unexpCondij, and bsUnexpij have been computed, we rank the 

discovered rules using these values.  

Ranking the rules with respect to each individual Uj ∈∈ U: For each Uj ∈ U, we simply use the 

confmij, unexpConseqij, unexpCondij and bsUnexpij values to sort the discovered rules in A in a 

descending order to obtain the four rankings. In each ranking, those rules that do not satisfy the 

support and confidence requirements of Uj are removed.  

Ranking the rules with respect to the whole set of specifications U: Formulas for these rankings 

are also designed and implemented. However, in our applications, we find that it is less effective 

to use these rankings because all the conforming rules or unexpected rules with respect to all the 

specifications in U are lumped together, thus making them hard to understand. Ranking with 

respect to individual specification is more effective and easy to understand. However, ranking of 

the discovered rules in A with respect to the whole set U is useful for finding rules whose 

conditional and consequent parts are both unexpected, namely, both-side unexpected rules.  

 Both-side unexpected: Both the conditional and consequent parts of the rule Ai ∈ A are 

unexpected with respect to the set U. The match value BsUnexpi of Ai is computed with:  

   BsUnexpi = 1- max(Cfmi, UCondi, UConseqi),  

 where Cfmi = max(confmi1, confmi2, …, confmi|U|), 

 UConseqi = max(unexpConseqi1, unexpConseqi2,…, unexpConseqi|U|), 

  UCondi = max(unexpCondi1, unexpCondi2, …, unexpCondi|U|). 

Clearly, 0 ≤ BsUnexpi ≤ 1. This formula ensures that those rules that have been ranked high in 

other rankings will not be ranked high here.  

Time complexity: Assume the maximal number of items in a discovered rule is N; the number of 

existing concept specifications is |U|, and the number of discovered rules is |A|. Computing LMij 

and RMij can be done in O(N). Without considering the final ranking which is a sorting process, 

the runtime complexity of the algorithm is O(N|U||A|). Since N is small (at most 6 in our 

applications) and |U| is also small (most of the time we only use each individual specification for 

analysis), the computation is very eff icient.  

4. The Visualization System of IAS 

After the discovered rules have been analyzed, IAS displays different types of potentiall y interesting 

rules to the user. The key here is to show the essential aspects of the rules such that it can take 

advantage of the human visual capabiliti es to enable the user to identify the truly interesting rules 
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easily and quickly. Let us discuss what are the essential aspects: 

1.  Types of potentiall y interesting rules: Different types of interesting rules should be separated 

because they give the user different kinds of interesting knowledge.  

2.  Degrees of interestingness (“match” values): Rules should be grouped according to their degrees 

of interestingness. This enables the user to focus his/her attention on the most unexpected (or 

conforming) rules first and to decide whether to view those rules with lower degrees of 

interestingness.  

3. Interesting items: Showing the interesting items in a rule is more important than the whole rule. 

This is perhaps the most crucial decision that we have made. In our applications, we find that it is 

those unexpected items that are most important to the user because due to 1 above, the user 

already knows what kind of interesting rules he/she is looking. For example, when the user is 

looking at unexpected consequent rules, it is natural that the first thing he/she wants to know is 

what are the unexpected items in the consequent parts. Even if we show the whole set of rules, the 

user still needs to look for the unexpected items in the rules.  

The main screen of the visualization system contains all the above information. Below, we use an 

example to ill ustrate the visualization system. 

4.1.  An example 

Our example uses a RPC specification. The rules in the example are a small subset of rules (857 rules) 

discovered in an exam results database. This application tries to discover the associations between the 

exam results of a set of 7 specialized courses (called GA courses) and the exam results of a set of 7 

basic courses (called GB courses). A course together with an exam result form an item, e.g., GA6-1, 

where GA6 is the course code and “1” represents a poor exam grade (“2” represents an average grade 

and “3” a good grade). The discovered rules and our existing concept specification are li sted below.  

• Discovered association rules: The rules below have only GA course grades on left-hand-side and 

GB course grades on right-hand-side (we omit their support and confidence).  

R1:  GA1-3 → GB2-3  R7: GA4-1 → GB7-2 

R2:  GA4-3 → GB4-3  R8: GA6-2 → GB7-2 

R3:  GA2-3 → GB2-3  R9: GA5-1, GA2-2 → GB2-2 

R4:  GA2-3 → GB5-1 R10: GA5-2, GA1-2 → GB3-2 

R5:  GA6-1 → GB1-3  R11: GA6-1, GA3-3 → GB6-3  

R6: GA4-2 → GB3-3  R12: GA7-2, GA3-3 → GB4-3 

• Our existing concept specification: Assume we have the common belief that students good in 

some GA courses are li kely to be good in some GB courses. This can be expressed as a RPC:   

  Spec1:  rpc(GA-good+ → GB-good)  

 where the classes, GA-good and GB-good, are defined as follows:   

  GA-good ⊃ { GA1-3, GA2-3, GA3-3, GA4-3, GA5-3, GA6-3, GA7-3}  

  GB-good ⊃ { GB1-3, GB2-3, GB3-3, GB4-3, GB5-3, GB6-3, GB7-3}  
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4.2.  Viewing the results 

After running the system with the above RPC specification, we obtain the screen in Figure 2 (the main 

screen). We see “RPC” in the middle. To the bottom of “RPC”, we have the conforming rules 

visualization unit. To the left of “RPC”, we have the unexpected condition rules visualization unit. To 

the right, we have the unexpected consequent rules visualization unit. To the top, we have both-side 

unexpected rules visualization unit. Below, we will discuss these units in turn with the example. 

 
Figure 2. RPC main visualization screen 

Conforming rules visualization unit: Clicking on Conform, we will see the complete conforming rules 

ranking in a pop-up window. 

 Rank 1: 1.00 R1 GA1-3 → GB2-3 

 Rank 1: 1.00 R2 GA4-3 → GB4-3 

 Rank 1: 1.00 R3  GA2-3 → GB2-3  

 Rank 2:  0.50 R11 GA6-1, GA3-3 → GB6-3  

 Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3  

The number (e.g., 1.00 and 0.50) after each rank number is the conforming match value, confmi1. 

The first three rules conform to our belief completely. The last two only conform to our belief 

partiall y since GA6-1 and GA7-2 are unexpected. This li st of rules can be long in an application. 

The following mechanisms help the user focus his/her attention, i.e., enabling him/her to view 

rules with different degrees of interestingness (“match” values) and to view the interesting items.  

• On both sides of Conform we can see 4 pairs of boxes, which represent sets of rules with 

different conforming match values. If a pair of boxes is colored, it means that there are rules 

there, otherwise there is no rule. The line connecting “RPC” and a pair of colored boxes also 
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indicates that there are rules under them. The number of rules is shown on the line. Clicking on 

the box with a value will give all the rules with the corresponding match value and above. For 

example, cli cking on 0.50 shows the rules with 0.50 ≤ confmi1 < 0.75. Below each colored box 

with a value, we have two small windows. The one on the top has all the rules’ condition items 

from our RPC specification, and the one at the bottom has all the consequent items. Clicking on 

each item gives us the rules that use this item as a condition item (or a consequent item).  

• Clicking on the colored box without a value (below the valued box) brings us to a new screen 

(not shown here). From this screen, the user sees all the items in different classes involved, and 

also conforming and unexpected items. 

Unexpected condition rules visualization unit: The boxes here have similar meanings as the ones for 

conforming rules. From Figure 2, we see that there are 4 unexpected condition rules. Two have the 

unexpected match value of 1.00 and two have 0.50. The window (on the far left) connected to the 

box with a match value gives all the unexpected condition items. Clicking on each item reveals the 

relevant rules. Similarly, cli cking on the colored box next to the one with a value shows both the 

unexpected condition items and the items used in the consequent part of the rules. To obtain all the 

rules in the category, we can click Unexpected Condition. 

Rank 1:  1.00 R5 GA6-1 → GB1-3 

Rank 1:  1.00 R6 GA4-2 → GB3-3 

Rank 2:  0.50 R11 GA6-1, GA3-3 → GB6-3  

Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3 

1.00 and 0.50 are the unexpCondi1 values. Here, we see something quite unexpected. For example, 

many students with bad grades in GA6 actually have good grades in GB1. 

Unexpected consequent rules visualization unit: This is also similar to the conforming rules 

visualization unit. From Figure 2, we see that there is only one unexpected consequent rule and the 

unexpected consequent match value is 1.00. Clicking on the colored box with 1.00, we will obtain 

the unexpected consequent rule:  

 Rank 1: 1.00 R4 GA2-3 → GB5-1 

This rule is very interesting because it contradicts our belief. Many students with good grades in 

GA2 actually have bad grades in GB5. 

Both-side unexpected rules visualization unit: We only have two unexpected match value boxes here, 

i.e., 1.00 and 0.50. Due to the formulas in Section 3.2, rules with bsUnexpij < 1.00 can actually all 

be seen from other visualization units. The unexpected items can be obtained by clicking on the 

box above the one with a value. All the ranked rules can be obtained by clicking Both Sides 

Unexpected. 

 Rank 1:  1.00 R7 GA4-1 → GB7-2 

 Rank 1:  1.00 R8  GA6-2 → GB7-2 

 Rank 1: 1.00 R9  GA5-1, GA2-2 → GB2-2  

 Rank 1: 1.00 R10  GA5-2, GA1-2 → GB3-2 
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 Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3  

 Rank 2:  0.50 R12 GA7-2, GA3-3 → GB4-3 

From this ranking, we also see something quite interesting, i.e., average grades lead to average 

grades and bad grades lead to average grades. Some of these rules are common sense, e.g., average 

to average rules (R8 and R10), but we did not specify them as our existing knowledge (if “average 

to average” had been specified as our knowledge earlier, these rules would not have appeared here 

because they would have been removed). This shows the advantage of our technique, i.e., it can 

remind us what we have forgotten if the rules are not truly unexpected.  

The visualization system also allows the user to incrementally save interesting rules and to remove 

unwanted rules. Whenever a rule is removed or saved (also removed from the original set of rules), 

the related pictures and windows are updated.  

5. Evaluation 

The IAS system is implemented in Visual C++. Our association rule mining system is based on the 

generalized association rule mining algorithm in [28]. Those redundant and/or insignificant rules are 

removed using the pruning technique in [14] (objective interestingness analysis). 

Since there is no existing technique that is able to perform our task, we could not carry out a 

comparison. Most existing methods [10, 7, 8, 18, 20, 29] only produce conforming rules but not 

unexpected rules. Although the system described in [23, 24] produces unexpected association rules, it 

is not an interactive post-analysis system, and it does not handle RPC and GI specifications. 

As the proposed technique deals with subjective interestingness, it is diff icult to have an objective 

measure of its performance. We have carried out a number of experiments involving our users (2) and 

students (6) to check whether the rankings do reflect people’s intuitions of subjective interestingness, 

in particular, unexpectedness.  

In the experiments, we used 3 application datasets, and each subject is asked to specify 10 pieces 

of existing knowledge for each dataset and to view the ranking results. In the process, we found that 

some subjects do occasionally disagree with the relative ranking. For example, a subject may believe 

that a particular rule should be ranked above its neighbor. There were 5 such cases. However, this 

(i.e., slightly different relative ranking) is not a problem. We do expect such minor disagreements 

because we are dealing with a subjective issue here. The important thing is that everyone agrees that 

the technique is able to bring those interesting rules to the top of the li st. 

Our system has been successfully used in three real-li fe applications in Singapore, one 

educational application, one insurance application and one medical application. Due to confidentiality 

agreements, we could not give details of these applications. In the applications, the smallest rule set 

has 770 rules. Most of them have one to two thousand rules. When our users first saw a large number 

of rules, they were overwhelmed. Our tool makes it much easier for them to analyze these discovered 

rules. Initiall y, they were only interested in finding a few types of rules to confirm (or verify) their 

hypotheses. However, they ended up finding many interesting rules that they had never thought of 
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before as a result of the various unexpectedness rankings. The rules used in the example of Section 4 

are from one of our applications (the items appeared in the rules were encrypted). 

6. Conclusion and Future Work 

This paper proposes a new approach for helping the user identify interesting association rules, in 

particular, expected and unexpected rules. It consists of an intuiti ve specification language and an 

interestingness analysis system. The specification language allows the user to specify his/her various 

types of existing knowledge about the domain. The interestingness analysis system analyzes the 

discovered association rules using the user’s specifications to identify those potentiall y interesting 

ones for the user. The new method is more general and powerful than the existing methods because 

most existing methods only produce the conforming rules, but not the unexpected rules of various 

types. Unexpected rules are by definition interesting.  

In our future work, we will i nvestigate more sophisticated representation schemes and analysis 

methods such that we not only can perform analysis at individual rule level but also at higher levels, 

e.g., to determine whether a set of rules is interesting as a group to the user, and to infer interesting 

knowledge from the discovered rules.  
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