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Abstract

OPUS is a branch and bound search algorithm that enables efficient admissible search
through spaces for which the order of search operator application is not significant. The
algorithm’s search efficiency is demonstrated with respect to very large machine learning
search spaces. The use of admissible search is of potential value to the machine learning
community as it means that the exact learning biases to be employed for complex learning
tasks can be precisely specified and manipulated. OPUS also has potential for application
in other areas of artificial intelligence, notably, truth maintenance.

1. Introduction

Many artificial intelligence problems involve search. Consequently, the development of
appropriate search algorithms is central to the advancement of the field. Due to the com-
plexity of the search spaces involved, heuristic search is often employed. However, heuristic
algorithms cannot guarantee that they will find the targets they seek. In contrast, an ad-
missible search algorithm is one that is guaranteed to uncover the nominated target, if it
exists (Nilsson, 1971). This greater utility is usually obtained at a significant computational
cost.

This paper describes the OPUS (Optimized Pruning for Unordered Search) family of
search algorithms. These algorithms provide efficient admissible search of search spaces in
which the order of application of search operators is not significant. This search efficiency
is achieved by the use of branch and bound techniques that employ domain specific pruning
rules to provide a tightly focused traversal of the search space.

While these algorithms have wide applicability, both within and beyond the scope of
artificial intelligence, this paper focuses on their application in classification learning. Of
particular significance, it is demonstrated that the algorithms can efficiently process many
common classification learning problems. This contrasts with the seemingly widespread
assumption that the sizes of the search spaces involved in machine learning require the use
of heuristic search.

The use of admissible search is of potential value in machine learning as it enables better
experimental evaluation of alternative learning biases. Search is used in machine learning
in an attempt to uncover classifiers that satisfy a learning bias. When heuristic search is
used it is difficult to determine whether the search technique introduces additional implicit
biases that cannot be properly identified. Such implicit biases may confound experimental
results. In contrast, if admissible search is employed the experimenter can be assured that
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the search technique is not introducing confounding unidentified implicit biases into the
experimental situation.

The use of OPUS for admissible search has already led to developments in machine
learning that may not otherwise have been possible. In particular, Webb (1993) compared
classifiers developed through true optimization of Laplace accuracy estimate with those ob-
tained through heuristic search that sought but failed to optimize this measure. In general,
the latter proved to have higher predictive accuracy than the former. This surprising result,
that could not have been obtained without the use of admissible search, led Quinlan and
Cameron-Jones (1995) to develop a theory of oversearching.

This paper offers two distinct contributions to the fields of computing, artificial intelli-
gence and machine learning. First, it offers a new efficient admissible search algorithm for
unordered search. Second, it demonstrates that admissible search is possible for a range of
machine learning tasks that were previously thought susceptible only to efficient exploration
through non-admissible heuristic search.

2. Unordered Search Spaces

For most search problems, the order in which operators are applied is significant. For
example, when attempting to stack blocks it matters whether the red block is placed on the
blue block before or after the blue block is placed on the green. When attempting to navigate
from point A to point B, it is not possible to move from point C to point B before moving to
point C. However, for some search problems, the order in which operators are applied is not
significant. For example, when searching through a space of logical expressions, the effect
of conjoining expression A with expression B and then conjoining the result with expression
C is identical to the result obtained by conjoining A with C followed by B. Both sequences
of operations result in expressions with equivalent meaning. In general, a search space is
unordered if for any sequence O of operator applications and any state S, all states that can
be reached from S by a permutation of O are identical. It is this type of search problem,
search through unordered search spaces, that is the subject of this investigation.

Special cases of search through unordered search spaces are provided by the subset
selection (Narendra & Fukunaga, 1977) and minimum test-set (Moret & Shapiro, 1985)
search problems. Subset selection involves the selection of a subset of objects that maximizes
an evaluation criterion. The minimum test-set problem involves the selection of a set of
tests that maximizes an evaluation criterion. Such search problems are encountered in many
domains including machine learning, truth maintenance and pattern recognition. Rymon
(1992) has demonstrated that Reiter’s (1987) and de Kleer, Mackworth, and Reiter’s (1990)
approaches to diagnosis can be recast as subset selection problems.

The OPUS algorithms traverse the search space using a search tree. The root of the
search tree is an initial state. Branches denote the application of search operators and the
nodes that they lead to denote the states that result from the application of those operators.
Different variants of OPUS are suited to each of optimization search and satisficing search.
For optimization search, a goal state is an optimal solution. For satisficing search, a goal
state is an acceptable solution. It is possible that a search space may include multiple goal
states.
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The OPUS algorithms take advantage of the properties of unordered search spaces to
optimize the effect of any pruning of the search tree that may occur. In particular, when
expanding a node n in a search tree, the OPUS algorithms seek to identify search operators
that can be excluded from consideration in the search tree descending from n without
excluding a sole goal node from that search tree. The OPUS algorithms differ from most
previous admissible search algorithms employed in machine learning (Clearwater & Provost,
1990; Murphy & Pazzani, 1994; Rymon, 1992; Segal & Etzioni, 1994; Webb, 1990) in that
when such operators are identified, they are removed from consideration in all branches of
the search tree that descend from the current node. In contrast, the other algorithms only
remove a single branch at a time without altering the operators considered below sibling
branches, thereby pruning fewer nodes from the search space.

If it is not possible to apply an operator more than once on a path through the search
space, search with unordered operators can be considered to be a subset selection problem—
select a subset of operators whose application (in any order) leads to a goal state. If a single
operator may be applied multiple times on a single path through the search space, search
with unordered operators can be considered as a sub-multiset selection problem—select the
multiset of operators whose application leads to the desired result.

A search tree that traverses an unordered search space in which multiple applications of
a single operator are not allowed may be envisioned as in Figure 1. This example includes
four search operators, named a, b, ¢ and d. Each node in the search tree is labeled by the
set of operators by which it is reached. Thus, the initial state is labeled with the empty
set. At depth one are all sets containing a single operator, at depth two all sets containing
two operators and so on, up to depth four. Any two nodes with identical labels represent
equivalent states.

There is considerable duplication of nodes in this search tree (the label {a, b, ¢,d} occurs
24 times). In Figure 1 (and the following figures), the number of unique nodes is listed
below each depth of the search tree. Where this number can be derived from the number
of combinations to be considered, this derivation is also indicated.

It is common during search to prune regions of the search tree on the basis of investi-
gations that determine that a goal state cannot lie within those regions. Figure 2 shows a
search tree with the sub-tree below {c} pruned. Note that, due to the duplication inherent
in such a search tree, the number of unique nodes remaining in the tree is identical to that
in the unpruned tree. However, if it has been deemed that no node descending from {c}
may be a goal, then all nodes elsewhere in the search tree that have identical labels (are
reached via identical sets of operator applications) to any nodes that occur in the pruned
region of the tree could also be pruned. Figure 3 shows the search tree remaining when all
nodes below {c} and all their duplicates have been deleted. It can be seen that the number
of unique nodes in the remaining search tree (the tree at depths 2, 3 and 4) has been pruned
by more than half. Similar results are obtained in the case where multiple applications of
a single operator are allowed and the nodes are consequently labeled with multisets.

The OPUS algorithms do not provide pruning rules—mechanisms for identifying sections
of the search tree that may be pruned. Rather, they take pruning rules as input and seek
to optimize the effect of each pruning action that results from application of those rules.

The OPUS algorithms were designed for use with admissible pruning rules. When
used solely with admissible pruning rules the algorithms are admissible. That is, they are
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Figure 1: Simple unordered operator search tree

guaranteed to find a goal state if one exists in the search space. However, the algorithms
may also be used with non-admissible pruning heuristics to obtain efficient non-admissible
search.

The OPUS algorithms are not only admissible (when used with admissible pruning
rules), they are systematic (Pearl, 1984). That is, in addition to guaranteeing that a goal
will be found if one exists, the algorithms guarantee that no state will be visited more than
once during a search (so long as it is not possible to reach a single node by application of
different sets of operators).

3. Fixed-order Search

A number of recent machine learning algorithms have performed restricted admissible search
(Clearwater & Provost, 1990; Rymon, 1993; Schlimmer, 1993; Segal & Etzioni, 1994; Webb,
1990). All of these algorithms are based on an organization of the search tree, that, when
considering the search problem illustrated in Figures 1 to 3, traverse the search space in the
manner depicted in Figure 4. Such an organization is achieved by arranging the operators
in a predefined order, and then applying at a node all and only operators that have a higher
order than any operator that appears in the path leading to the node. This strategy will be
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Figure 2: Simple unordered operator search tree with pruning beyond application of oper-
ator ¢

called fixed-order search. (Fixed-order search has also been used for non-admissible search,
for example, Buchanan, Feigenbaum, & Lederberg, 1971).

Figure 5 illustrates the effect of pruning the sub-tree descending below operator ¢, under
fixed-order search. As can be seen, this is substantially less effective than the optimized
pruning illustrated in Figure 3. Schlimmer (1993) ensures that the pruning effect illustrated
in Figure 3 is obtained within the efficient search tree organization illustrated in Figure 4, by
maintaining an explicit representation of all nodes that are pruned. The resulting search tree
is depicted in Figure 6. This approach requires the considerable computational overhead of
identifying and marking all pruned states following every pruning action, and the restrictive
storage overhead of maintaining the representation. (One of the search problems tackled
below contains 2'6% states. To represent whether a state is pruned requires a single bit.
Thus, 292 bits would be required to represent the required information for this problem,
a requirement well beyond the capacity of computational machinery into the foreseeable
future.) Further, it is open to debate whether this approach does truly prune all identified
nodes from the search space. Nodes that that have been ‘pruned’ will still need to be
generated when encountered in previously unexplored regions of the search tree in order to
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Figure 6: ‘Optimal’ pruning under fixed-order search

be checked against the list of pruned nodes. Consider, for example, the node labeled {a} in
Figure 5. When expanding this node it will be necessary to generate the node labeled {a,
c}, even if this node has been marked as pruned. Only once it is generated is it possible
to identify it as a node that has been ‘pruned’. This node could in principle be pruned
anyway by application of some variant of the technique that identified it as prunable in
the first place. Viewed in this light, it can be argued that Schlimmer’s (1993) approach
does not reduce the number of nodes that must be generated under fixed-order search.
All that it saves is the computational cost of determining for some nodes whether they
require pruning or not. (This assumes that the optimistic pruning mechanism will be able
to determine for any node n from the search space below a pruned node m that n should
also be pruned, irrespective of where n is encountered in the search tree. If the optimistic
pruning mechanism is deficient in that it cannot do this, then Schlimmer’s (1993) approach
will increase the amount of true pruning performed to the extent that it overcomes this
deficiency.)

4. The Feature Subset Selection Algorithm

Fixed-order search traverses the search space in a naive manner—the topology of the search
tree is determined in advance and takes no account of the efficiency of the resulting search.
In contrast, the Feature Subset Selection (FSS) algorithm (Narendra & Fukunaga, 1977)
performs branch and bound search in unordered search spaces, traversing the search space
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Figure 7: Pruning under FSS-like search

so as to visit each state at most once and dynamically organizing the search tree so as to
maximize the proportion of the search space placed under unpromising operators. It can
be viewed as a form of fixed-order search in which the order is altered at each node of
the search tree so as to manipulate the topology of the search tree for the sake of search
efficiency. Unlike Schlimmer (1993), the pruning mechanism ensures that nodes that are
identified as prunable are not generated.

The power of this measure is illustrated by Figure 7. In this figure, fixed-order search
is performed on the simple example problem illustrated in Figures 1 to 6, with the order
changed so that the operator to be pruned, c, is placed first. As can be seen, this achieves
the amount of pruning achieved by optimal pruning. This effect can be achieved with
negligible computational or storage overhead.

However, FSS is severely limited in its applicability as—

it is restricted to optimization search;

e it is restricted to tasks for which each operator may only be applied once (subset
selection);

e it is restricted to search for a single solution;

e it requires that the values of states in the search space be monotonically decreasing.
That is, the value of a state cannot increase as a result of an operator application;
and

e the only form of pruning that it supports is optimistic pruning.

5. The OPUS Algorithms

The OPUS algorithms generalize the idea of search space reorganization from FSS. Two
variations of OPUS are defined. OPUSS is a variant for satisficing search (search in which
any qualified object is sought). OPUSO is a variant for optimization search (search in which
an object that optimizes an evaluation function is sought). Whereas FSS uses node values
for pruning, OPUS© uses optimistic evaluation of the search space below a node. This
removes the requirement that the values of states in the search space be monotonically
decreasing and opens the possibility of performing other types of pruning in addition to
optimistic pruning.
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In the analysis to follow, where comments apply equally to both variants the name
OPUS will be employed. When a comment applies to only one variant of the algorithm, it
will be distinguished by its respective superscript.

OPUS uses a branch and bound (Lawler & Wood, 1966) search strategy that traverses
the search space in a manner similar to that illustrated in Figure 4 so as to guarantee
that no two equivalent nodes in the search space are both visited. However, it organizes
the search tree so as to optimize the effect of pruning, achieving the effect illustrated in
Figure 6 without any significant computational or storage overhead.

Rather than maintaining an operator order, OPUS maintains at each node, n, the set
of operators n.active that can be applied in the search space below n. When the node is
expanded, the operators in n.active are examined to determine if any can be pruned. Any
operators that can be pruned are removed from n.active. New nodes are then created for
each of the operators remaining in n.active and their sets of active operators are initialized
so as to ensure that every combination of operators will be considered at only one node in
the search tree.

It should be kept in mind that it is possible that many states in a search space may
be goal states. For satisficing search all states that satisfy a given criteria are goal states.
For optimization search, all states that optimize the evaluation criteria are goal states. For
efficiency sake, the OPUS algorithms allow sections of the search space to be pruned even if
they contain a goal state, so long as there remain other goal states in the remaining search
space.

5.1 OPUSS

The OPUSS algorithm is presented in Figure 8. This description of OPUSS follows the
conventions employed in the search algorithm descriptions provided by Pearl (1984).

This definition of OPUSS assumes that a single operator cannot be applied more than
once along a single path through the search space. If an operator may be applied multiple
times, the order of Steps 8a and 8b should be reversed. Unless otherwise specified, the
following discussion of OPUS assumes that each operator may be applied at most once
along a single path.

If it is desired to obtain all solutions that satisfy the search criterion,

e Step 2 should be altered to exit successfully, returning the set of all solutions;

e Step 6b should be altered to not exit, but rather to add the current node to the set
of solutions; and

e The domain specific pruning mechanisms employed at Step 7 should also be modified
so that no goal state may be pruned from the search space.

This form of search could be used in an assumption-based truth maintenance system to find
the set of all maximally general consistent assumptions. This would provide efficient search
without the need to maintain and search an explicit database of inconsistent assumptions
such as the ATMS no-good set (de Kleer et al., 1990). Unless otherwise specified, the
discussion of OPUS below assumes that a single solution is sought.

The algorithm does not specify the order in which nodes should be selected for expansion
at Step 3. Nodes may be selected at random, by a domain specific selection function, or by
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Data structure:
Each node, n, in the search tree has associated with it three items of information:

n.state the state from the search space that is associated with the node;

n.active the set of operators to be explored in the sub-tree descending from the node; and

n.mostRecentOperator the operator that was applied to the parent node’s state to create the cur-

rent node’s state.

Algorithm:

1.

10.

Initialize a list called OPEN of unexpanded nodes as follows,

(a) Set OPEN to contain one node, the start node s.
(b) Set s.active to the set of all operators, {01,02,...0,,}
(c) Set s.state to the start state.

. If OPEN is empty, exit with failure; no goal state exists.

Remove from OPEN a node n, the next node to be expanded.

Initialize to n.active a set containing those operators that have yet to be examined, called
RemainingOperators.

. Initialize to {} a set of nodes, called NewNodes, that will contain the descendants of n that

are not pruned.
Generate the children of n by performing the following steps for every operator o in n.active,

(a) Generate n’, a node for which n’.state is set to the state formed by application of o to
n.state.

(b) If n’.state is a goal state, exit successfully with the goal represented by n’.
(c) Set n'.mostRecentOperator to o.
(d) Add n’ to NewNodes.

While there is a node n’ in NewNodes such that pruning rules determine that no sole re-
maining goal state is accessible from n’ using only operators in RemainingOperators, prune
all nodes in the search tree below n’ from the search tree below n as follows,

(a) Remove n’ from NewNodes.

(b) Remove n’.mostRecentOperator from RemainingOperators.

Allocate the remaining operators to the remaining nodes by processing each node n’ in
NewNodes in turn as follows,

(a) Remove n/.mostRecentOperator from RemainingOperators.

(b) Set n'.active to RemainingOperators.

Add the nodes in NewNodes to OPEN.
Go to Step 2.

Figure 8: The OPUSS Algorithm
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the order in which nodes are placed in OPEN. First-in-first-out node selection results in
breadth-first search while last-in-first-out node selection results in depth-first search.

The order of processing is also unspecified at Steps 7, 8 and 9. Depending upon the
domain, practical advantage may be obtained by specific orderings at these steps.

OPUSS has been used in a machine learning context to search the space of all generaliza-
tions that may be formed through deletion of conjuncts from a highly specific classification
rule. The goal of this search is to uncover the set of all most general rules that cover
identical objects in the training data to those covered by the original rule (Webb, 1994a).

5.2 OPUS°

A number of changes are warranted if OPUS is to be applied to optimization search. The
following definition of OPUSP, a variant of OPUS for optimization search, assumes that
two domain specific functions are available. The first of these functions, value(n), returns
the value of the state for node n, such that the higher the value returned, the higher the
preference for the state!. The second function, optimisticV alue(n, o) returns a value such
that if there exists a node, b, that can be created by application of any combination of
operators in the set of operators o to the state for node n, and b represents a best solution
(maximizes value for the search space), optimisticV alue(n, o) will be no less than value(b).
This is used for pruning sections of the search tree. In general, the lower the values returned
by optimisticV alue, the greater the efficiency of pruning. At any time, it is possible to prune
any node with an optimistic value that is less than or equal to the best value of a node
explored to date.

OPUSO is able to take advantage of the presence of optimistic values to further optimize
the effect of pruning beyond that obtained solely by maximizing the proportion of the
search space placed under nodes that are immediately pruned. Generalizing a heuristic
used in FSS, nodes with lower optimistic values are given more active operators and thus
have greater proportions of the search space placed beneath them than nodes with higher
optimistic values. This is achieved by the order of processing at Step 9. The rationale
for this strategy is that the lower the optimistic value the higher the probability that the
node and its associated search tree will be pruned before it is expanded. Maximizing the
proportion of the search space located below nodes with low optimistic value maximizes the
proportion of the search space to be pruned and thus not explicitly explored.

Figure 9 illustrates this effect with respect to a simple machine learning task—search
for a propositional expression that describes the most target examples and no non-target
examples. The seven search operators each represent conjunction with a specific proposition
male, female, single, married, young, mid and old, respectively. Search starts from the
expression anything. A total of 128 expressions may be formed by conjunction of any
combination of these expressions. Twelve objects are defined:

male, single, young, TARGET
male, single, mid, TARGET
male, single, old, TARGET
male, married, young, NON-TARGET

1. For ease of exposition, it will be assumed that optimization means maximization of a value. It would be
trivial to transform the algorithm and discussion to accommodate other forms of optimization.
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male, married, mid, NON-TARGET
male, married, old, NON-TARGET
female, single, young, NON-TARGET
female, single, mid, NON-TARGET
female, single, old, NON-TARGET
female, married, young, NON-TARGET
female, married, mid, NON-TARGET
female, married, old, NON-TARGET.

Of these objects, the first three are distinguished as targets. The value of an expression
is determined by two functions, negCover and posCover. The negCover of an expression
is the number of non-target objects that it matches. The posCover of an expression is the
number of target objects that it matches. The expression anything matches all objects. The
value of an expression is —oo if negCover is not equal to zero. Otherwise the value equals
posCover. This preference function avoids expressions that cover any negative objects and
favors, of those expressions that cover no negative objects, those expressions that cover the
most positive objects. The optimistic value of a node equals the posCover of the node’s
expression.

Figure 9 depicts the nine nodes considered by OPUS® for this search task. For each
node the following are listed:

e the expression;

e the number of target and the number of non target objects matched (cover);
e the value;

e the potential value; and

e the operators placed in the node’s set of active operators and hence included in the
search tree below the node.

The search space is traversed as follows. The first node, anything, is expanded, pro-
ducing its seven children for which values and optimistic values are determined. No node
can be pruned as all have potential values greater than the best value so far encountered.
The active operators are then distributed, maximizing the proportion of the search space
placed below nodes with low optimistic values. Of the two nodes with the highest optimistic
values, male and single, one receives no active operator and the other receives the first as
its sole active operator. One or the other is then expanded. If it is the one with no active
operators, single, no further nodes are generated. Then the other, male, is expanded, gen-
erating a single node, male A single, with a value of 3. Immediately this node is generated,
all remaining open nodes can be pruned as none has an optimistic value greater than this
new maximum value, 3.

Note that no nodes can be pruned until the node for male A single is considered as, up to
that point, no node has been encountered with a lower optimistic value than the best actual
value. Consequently, if the search tree was not distributed in accord with potential value, the
set of active operators for the node male would be { female, single, married, young, mid, old}.
Instead of considering a single node when male was expanded, it would be necessary to
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consider six nodes. If the search space was more complex and continued to depth three
or beyond, there would be a commensurate increase in the proportion of the search space
explored unnecessarily.

Note also that the search in this example does not terminate when the goal node is first
encountered, as the system cannot determine that it is a goal node until all other nodes
that might have higher values have been explored or pruned.

5.2.1 THE OPUS© ALGORITHM

OPUSO, the algorithm for achieving the above effect, can be defined as in Figure 10. Note
that optimistic pruning need not be performed at Step 8 as it is performed at Step 10a,
irrespective.

This definition of OPUS® assumes that a single operator cannot be applied more than
once along a single path through the search space. To allow multiple applications of a single
operator, the order of Steps 9a and 9b should be reversed.

The algorithm could also be modified to identify and return all maximal solutions
through a modification similar to that outlined above to allow OPUSS to return all so-
lutions.

It is possible to further improve the performance of OPUSO if there is a lower limit on
an acceptable solution. Then, the objective of the search is to find a highest valued node
so long as that value is greater than a pre-specified minimum. In this case, all nodes whose
potential value is less than or equal to the minimum may also be pruned at Step 10a.

Like OPUSS, OPUS® does not specify the order in which nodes in OPEN should be
expanded (Step 4). Selection of a node with the highest optimistic value will minimize the
size of the search tree. If there is a single node n that optimizes the optimistic value, the
search cannot terminate until n has been expanded. This is because no node with a lower
optimistic value may yield a solution with a value higher than the optimistic value of n.
However, an expansion of n may yield a solution that has a value higher than other candi-
date’s optimistic values, allowing those other candidates to be discarded without expansion.
Thus, selecting a single node with the highest optimistic value is optimal with respect to the
number of nodes expanded because it maximizes the number of nodes that may be pruned
without expansion. Where multiple nodes all maximize the optimistic value, at least one
of these must be expanded before the search can terminate (and then the search will only
terminate if expansion of that node leads to a node with a value equal to that optimistic
value.)

In many cases it is more important to consider the number of nodes explored by an
algorithm, rather than the number of nodes expanded. A node is explored if it is evaluated.
Every time a node is expanded, all of its children will be explored. Many of these children
may be pruned, however, and never be expanded. In addition to minimizing the number
of nodes expanded, this form of best-first search will also minimize the number of nodes
explored (within the constraint that where nodes have equal optimistic values it is not
possible to anticipate which one to select in order to minimize the number of nodes explored).
This is due to the strategy that the algorithm employs to distribute operators beneath nodes.
The nodes that OPUS? expands under best-first search will be those with highest optimistic
value. OPUSP always allocates fewer active operators to a node with higher optimistic value
than to a node with lower optimistic value. The number of nodes examined when a node
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Algorithm:

1.

oL LN

10.

11.

Initialize a list called OPEN of unexpanded nodes as follows,
(a) Set OPEN to contain one node, the start node s.
(b) Set s.active to the set of all operators, {01,02,...0,,}

(c) Set s.state to the start state.

Initialize BEST, the best node examined so far, to s.
If OPEN is empty, exit successfully with the solution represented by BEST.
Remove from OPEN a node n, the next node to be expanded.

Initialize to m.active a set containing those operators that have yet to be examined, called
RemainingOperators.

Initialize to {} a set of nodes, called NewNodes, that will contain the descendants of n that
are not pruned.

Generate the children of n by performing the following steps for every operator o in n.active,

(a) Generate n’, a node for which n’.state is set to the state formed by application of o to
n.state.

(b) If value(n’) is greater than value(BEST)
i. Set BEST ton'.

ii. Prune the search tree by removing from OPEN all nodes = such that
optimisticV alue(z, x.active) is less than value(BEST).

(¢) Add n' to NewNodes.
(d) Set n'.mostRecentOperator to o.

While there is a node n’ in NewNodes such that pruning rules determine that no sole re-
maining goal state is accessible from n’ using only operators in RemainingOperators, prune
all nodes in the search tree below n’ from the search tree below n as follows,

(a) Remove n' from NewNodes.

(b) Remove n’.mostRecentOperator from RemainingOperators.

Allocate the remaining operators to the remaining nodes by processing each node n’ in
NewNodes in turn as follows, each time selecting the previously unselected node that mini-
mizes optimisticV alue(n’, RemainingOperators),

(a) Remove n'.mostRecentOperator from RemainingOperators.

(b) Set n'.active to RemainingOperators.

Perform optimistic pruning while adding the remaining nodes to OPEN by processing each
node n’ in NewNodes in turn as follows,

(a) If optimisticValue(n',n'.active) is greater than value(BEST),
i. Add »’ to OPEN.
Go to Step 3.

Figure 10: The OPUS© algorithm
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n is expanded equals the number of active operators at n. Hence, the number of nodes
examined for those nodes expanded will be minimized (within the constraints of the use
only of information that can be derived from the current state and the operators that are
active at that state).

However, while this best-first approach minimizes the number of nodes expanded, it may
not be storage optimal due to the large potential storage overheads. If the storage overhead
is of concern, depth-first rather than best-first traversal may be employed, at the cost of a
potential increase in the number of nodes that must be expanded. If depth-first search is
employed, nodes should be added to OPEN by order of optimistic value at Step 10. This
will ensure that nodes open at a single depth will be expanded in a best-first manner, with
the benefits outlined above.

5.2.2 RELATION TO PREVIOUS SEARCH ALGORITHMS

OPUSO can be viewed as an amalgamation of FSS (Narendra & Fukunaga, 1977) with A*
(Hart, Nilsson, & Raphael, 1968). FSS performs branch and bound search in unordered
search spaces, traversing the search space so as to visit each state at most once and dynam-
ically organizing the search tree so as to maximize the proportion of the search space placed
under unpromising operators. However, FSS requires that the values of states in the search
space be monotonically decreasing. That is, the value of a state cannot increase as a result
of an operator application. OPUSO generalizes from FSS by employing both the actual
values of states and optimistic evaluation of nodes in the search tree, in a manner similar
to A*. In consequence, there are only two minor constraints upon the values of states and
the optimistic values of nodes in the search spaces that OPUS© can search. These are the
requirements that—

e for at least one goal state g and for any node n, if g lies below a node n in the search
tree, the optimistic value of n be no lower than the value of g; and

e that any and only states of maximal value be goal states.

It follows that OPUS© has wider applicability than FSS.

OPUSO also differs from FSS by integrating pruning mechanisms other than optimistic
pruning into the search process. This facility is crucial when searching large search spaces
such as those encountered in machine learning.

A further innovation of the OPUS algorithms is the use of the restricted set of operators
available at a node in the search tree to enable more focused pruning than would otherwise
be the case. There may be circumstances in which it would be possible to reach a goal
from the state at a node n, but only through application of operators that are not active
at n. The pruning rules are able to take account of the active operators to provide pruning
in this context—pruning that would not otherwise be possible. Similarly, the set of active
operators can be used to calculate a more concise estimate of the optimistic value than
would otherwise be possible.

OPUSO differs from A* in the manner in which it dynamically organizes the search tree
so as to maximize the proportion of the search space placed under unpromising operators.
It also differs from A* in that A* relies upon the value of a node being equivalent to the
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sum of costs of the operations that lead to that node, whereas OPUS allows any method
for determining a node’s value.

Rymon (1993) discusses dynamic organization of the search tree during admissible search
through unordered search spaces for the purpose of altering the topology of the data struc-
ture (SE-tree) produced. This contrasts with the use of dynamic organization of the search
tree in OPUSP to increase search efficiency.

5.3 OPUS and Non-admissible Search

As was pointed out above, although the OPUS algorithms were designed for admissible
search, if they are applied with non-admissible pruning rules they may also be used for
non-admissible search. This may be useful if efficient heuristic search is required. Most
non-admissible heuristic search strategies embed the heuristics in the search technique. For
example, beam search relies upon the use of a fixed maximum number of alternative options
that are to be considered at any stage during the search. The heuristic is to prune all but
the n best solutions at each stage during search. The precise implications of this heuristic
for a particular search task may be difficult to evaluate. In contrast, the use of OPUS with
non-admissible pruning rules places the non-admissible heuristic in a clearly defined rule
which may be manipulated to suit the circumstances of a particular search problem.

Another feature of OPUS© is that at all stages it has available the best solution en-
countered to date during the search. This means that the search can be terminated at any
time. When terminated prematurely, the current best solution would be returned on the
understanding that this solution may not be optimal. If the algorithm is to be employed
in this context, it may be desirable to employ best-first search, opening nodes with highest
actual (as opposed to optimistic) value first, on the assumption that this should lead to
early investigation of high valued nodes.

5.4 Complexity and Efficiency Considerations

OPUS ensures that no state is examined more than once (unless identical states can be
formed by different combinations of operator applications), using a similar search tree orga-
nization strategy to that of fixed-order search. It differs, however, in that instead of placing
the largest subsection of the search space under the highest ordered operator, the second
largest subsection under the second highest ordered operator, and so on, whenever pruning
occurs, the largest possible proportion of the search space is placed under the pruned node,
and hence is immediately pruned.

If there are n operators active at the node e being expanded, the search tree below and
including that node will contain every combination of any number of those operators (the
application of none of the operators results in e). Thus, the search tree below and including
e will contain 2" nodes. Exactly half of these, 2!, will have a label including any single
operator 0. OPUS ensures that if any operator o is pruned when a node e is expanded, that
all nodes containing o are removed from the search tree below e and are never examined
(except, of course, the node reached by a single application of o that must be examined in
order to determine that o should be pruned). Thus, the search tree below a node is almost
exactly halved if a single operator can be pruned. Each subsequent operator pruned at
that node reduces the remaining search tree by the same proportion. Thus, the size of the
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remaining search tree is divided by almost exactly 2P, where p is the number of operators
pruned.

In contrast, the number of nodes pruned under fixed-order search depends upon the
ranking of the operator within the fixed operator ranking scheme. Only for the highest
ranked operator will the same proportion of the search tree be pruned as under OPUS. In
general, when an operator is pruned, only those nodes whose labels include that operator in
combination exclusively with lower ranked operators will be pruned. This effect is illustrated
in Figure 5 in which pruning below {c} removes only {c,d} from the search tree. Thus,
27" — 1, nodes are immediately pruned from the search tree, where n is the number of
operators active at the node being expanded and 7 is the ranking within those operators of
the operator being pruned, with the highest rank being 1. This contrasts with the 27~ —1
nodes pruned by OPUS.

However, the difference in the number of nodes explored under the two strategies is not
quite as great as this analysis might suggest, as (assuming the availability of a reasonable
optimistic pruning mechanism) fixed-order search can also prune the operator every time
that it is examined deeper in the search tree in combination with higher ranked operators.
Thus, in Figure 5, when they were eventually examined, pruning would occur at nodes
{a,b,c}, {a,c} and {b,c}. Thus, {a,b,c,d}, {a,c,d} and {b, ¢, d} would also be pruned from
the search tree. In other words, under fixed-order search, if an operator is pruned it will not
be considered in combination with any lower ranked operator, but will be considered with
every combination of any number of higher ranked operators. There are 2"~! combinations
of higher ranked operator. It follows that fixed-order search considers this many more nodes
than OPUS when a single operator is pruned. Thus, for each operator that can be pruned
at a node n, OPUS explores 2" ! less nodes below n than fixed-order search.

As the rank order of the operators pruned will tend to grow as the number of operators
grows, it follows that, in the average case, the advantage accrued from the use of OPUS will
grow exponentially as the number of operators grows. OPUS will tend to have the greatest
relative advantage for the largest search spaces.

Note that OPUS is not always able to guarantee that the maximal possible pruning
occurs as the result of a single pruning action. For example, if OPUS is being used to
search the space of subsets of a set of items, and it can be determined that no superset
of the set s at a node may be a solution, but some items are not active at the current
node, supersets of s that contain the items that are not active may be explored elsewhere
in the search tree. An algorithm that could prune all such supersets could perform more
pruning than OPUS. While it might be claimed that Schlimmer’s (1993) search method
performs such pruning, it should be recalled that it does not prevent the ‘pruned’ nodes from
being generated elsewhere in the tree, but rather, ensures that such nodes are pruned once
generated. OPUS, if armed with suitable pruning rules, should also be able to prune such
nodes when encountered. OPUS maximizes the pruning performed within the constraints
of the localized information to which it has access.

However, while the constraint provided by the active operators prevents OPUS from
performing some pruning, it also enables it to perform other pruning that would not oth-
erwise be possible. This is because it is only necessary when considering whether to prune
a node to determine whether nodes that can be reached by active operators may contain a
solution. Thus, to continue the example of subset search, even when supersets of the set at
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the current node n are potential solutions, it will still be possible to prune the search tree
below n if all of the supersets that are potential solutions contain items that are not active
at n. Schlimmer’s (1993) approach does not allow pruning in such a context.

To illustrate this effect, let us revisit the search space examined in Figures 1 to 7. Even
though the search space below {c} has been pruned, ‘optimal pruning’ cannot take this
into account in its optimistic evaluations of other nodes as there is no mechanism by which
this information can be communicated to the optimistic evaluation function (other than by
actually exploring the space below the node to be evaluated, which defeats the purpose of
optimistic evaluation). For example, when evaluating the optimistic value of the node {a},
the optimistic evaluation function cannot return a different value than would be the case
if {¢} had not been pruned. By contrast, the optimistic evaluation function employed by
OPUSO can take account of this by taking the active operators for the current node into
consideration. Such an optimistic evaluation function is described in Section 6.1 below. It
will often be possible to use the information that particular operators are not available in
the search tree below a node to substantially improve the quality of the optimistic evaluation
of that node.

It should also be noted that no algorithm that does not employ backtracking can guar-
antee that it will minimize the number of nodes expanded under depth-first search. If a
poor node is chosen for expansion under depth-first search, the system is stuck with having
to explore the search space below that node before it can return to explore alternatives. No
algorithm can guarantee against a poor selection unless the optimistic evaluation function
has high enough accuracy to prevent the need for backtracking. It follows that no algorithm
that requires backtracking can guarantee that it will minimize the number of nodes that are
expanded. Thus, OPUS is heuristic with respect to minimizing computational complexity
under depth-first search.

The storage requirements of OPUS will depend upon whether depth, breadth or best-
first search is employed. If depth-first search is employed, the maximum storage requirement
will be less than the maximum depth of the search tree multiplied by the maximum branch-
ing factor. However, if breadth or best-first search is employed, in the worst case, the storage
requirement is exponential. At any stage during the search, the storage requirement is that
of storing the frontier nodes of the search. The number of frontier nodes cannot exceed the
number of leaf nodes in the complete search tree. For search in which no operator may be
applied more than once (subset selection), if there is no pruning, the number of leaf nodes
is 2!, where n is the number of operators. This assertion can be justified as follows. If
the order in which operators are considered is invariant, all nodes reached via the last op-
erator considered will be a leaf node. As the search is admissible, the last operator must be
considered with every combination of other operators. There are 2"~!, other combinations
of operators. The order in which operators are considered will not alter the number of
leaf nodes in the absence of pruning. For search in which there is no limit on the number
of applications of a single operator (sub-multiset selection) there is no upper limit on the
potential storage requirements.

Irrespective of the storage requirements, in the worst case OPUS will have to explore
every node in the search space. This will only occur if no pruning is possible during a search.
If operators can only be applied once per solution, the number of nodes in the search space
will equal 2", where n is the number of operators. Thus, the worst case computational
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complexity of OPUS is exponential, irrespective of whether depth, breadth or best-first
search is employed.

OPUS is clearly inappropriate, both in terms of computational and, when using breadth
or best-first search, storage requirements, for search problems in which substantial propor-
tions of the search space cannot be pruned. For domains in which substantial pruning is
possible, however, the average case complexity (computational and/or storage) may turn
out to be polynomial. Experimental evidence that this is indeed the case for some machine
learning tasks is presented below in Section 6.3.

5.5 How the Search Efficiency of OPUS Might be Improved

As is noted in Section 5.4, the OPUS algorithms are not always able to guarantee that the
maximum possible amount of pruning is performed. As noted, one restriction upon the
amount of pruning performed is the localization inherent in the use of active operators.
While this localization allows some pruning that would not otherwise be possible, it also
has the potential to restrict the number of supersets of the set of operators at a pruned
node that are also pruned. There may be value in developing mechanisms that enable
such pruning to be propagated beyond the node at which a pruning action occurs and the
sub-tree below that node.

Another aspect of the algorithms that has both positive and negative aspects is the type
of information returned by the pruning mechanisms. These mechanisms allow the pruning
of any branch of the search tree so long as at least one goal is not below that branch. This
contrasts with an alternative strategy of only pruning branches that do not lead to any
goal. The strategy used can be beneficial, as it maximizes the amount of pruning that can
be performed. However, it is always possible that a branch containing a goal that could
be found with little exploration will be pruned in favor of a branch containing a goal that
requires extensive exploration to uncover. There is potential for gain through augmenting
the current pruning mechanisms with means of estimating the search cost of uncovering a
goal beneath each branch in a tree.

6. Evaluating the Effectiveness of the OPUS Algorithms

Theoretical analysis has demonstrated that OPUS will explore fewer nodes than fixed-order
search and that the magnitude of this advantage will increase as the size of the search
space increases. However, the precise magnitude of this gain will depend upon the extent
and distribution within the search tree of pruning actions. Of further interest, there are a
number of distinct elements to each of the OPUS algorithms, including—optimistic pruning;
other pruning (pruning in addition to optimistic pruning); dynamic reorganization of the
search tree; and maximization of the proportion of the search space placed under nodes with
low optimistic value. The following experiments evaluate the magnitude of the advantage
to OPUS obtained for real world search tasks and explore the relative contribution of each
of the distinct elements of the OPUS algorithms.

To this end, OPUS® was applied to a class of real search tasks—finding pure conjunctive
expressions that maximize the Laplace accuracy estimate with respect to a training set of
preclassified example objects. This is, for example, the search task that CN2 purports to
heuristically approximate (Clark & Niblett, 1989) when forming the disjuncts of a disjunc-
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tive classifier. Machine learning systems have employed OPUSO in this manner to develop
rules for inclusion both in sets of decision rules (Webb, 1993) and in decision lists (Webb,
1994b). (The current experiments were performed using the Cover learning system, which,
by default, performs repeated search for pure conjunctive classifiers within a CN2-like cov-
ering algorithm that develops disjunctive rules. This more extended search for disjunctive
rules was not used in the experiments, as it makes it difficult to compare alternative search
algorithms. This is because, if two alternative algorithms find different pure conjunctive
rules for the first disjunct, their subsequent search will explore different search spaces.)

Numerous efficient admissible search algorithms exist for developing classifiers that are
consistent with a training set of examples. The two classic algorithms for this purpose are
the least generalization algorithm (Plotkin, 1970) and the version space algorithm (Mitchell,
1977). The least generalization algorithm finds the most specialized class description that
covers all objects in a training set containing only positive examples. The version space algo-
rithm finds all class descriptions that are complete and consistent with respect to a training
set of both positive and negative examples. Hirsh (1994) has generalized the version space
algorithm to find all class descriptions that are complete and consistent to within defined
bounds of the training examples. The least generalization and version space algorithms will
usually require a strong inductive bias in the class description language (restriction on the
types of class descriptions that will be considered) if they are to find useful class descriptions
(Mitchell, 1980). SE-tree-based learning (Rymon, 1993) demonstrates admissible search for
a set of consistent class descriptions within more complex class description languages than
may usefully be employed with the least generalization or version space algorithms. Oblow
(1992) describes an algorithm that employs admissible search for pure conjunctive terms
within a heuristic outer search for k-DNF class descriptions that are consistent with the
training set.

However, for many learning tasks it is desirable to consider class descriptions that are
inconsistent with the training set. One reason for this is that the training set may contain
noise (examples that are inaccurate). Another reason is that it may not be possible to ac-
curately describe the target class in the available language for expressing class descriptions.
In this case it is necessary to consider approximations to the target class. A further reason
is that the training set may contain insufficient information to reliably determine the exact
class description. In this case, the best solution may be an approximation that is known to
be incorrect but for which there is strong evidence that the level of error is low.

Both Clearwater and Provost (1990) and Segal and Etzioni (1994) use admissible fixed-
order search to explore classifiers that are inconsistent with the training set. However, the
admissible search of Clearwater and Provost (1990) is not computationally feasible for large
search spaces. Segal and Etzioni (1994) bound the depth of the search space considered in
order to maintain computational tractability. Smyth and Goodman (1992) use optimistic
pruning to search for optimal rules, but do not structure their search to ensure that states
are not searched multiple times. No other previous admissible search algorithm has been
employed in machine learning to find classifiers that are inconsistent with the training
set and maximize an arbitrary preference function. The following experiments seek to
demonstrate that such search is feasible using OPUS.

Where it is allowed that a class description may be inconsistent with the training set,
it is helpful to employ an explicit preference function. Such a function is applied to a
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class description and returns a measure of its desirability. This evaluation will usually take
account of how well the description fits that training set and may also include a bias toward
particular types of class descriptions, for example, a preference for syntactic simplicity. Such
a preference function expresses an inductive bias (Mitchell, 1980).

OPUSP may be employed for admissible search in such contexts, provided a search space
can be defined that may be traversed by a finite number of unordered search operators.
For example, OPUS® may be employed to search for a class description in a language of
pure-conjunctive descriptions by examining a search space starting with the most general
possible class description true and employing search operators, each of which has the effect
of conjoining a specific clause to the current description. Such search may be performed
with an arbitrary preference function, provided appropriate optimistic evaluation functions
can be defined.

The next section describes experiments in which OPUSO was applied in this manner.

6.1 The Search Task

The pure conjunctive expressions consisted of conjunctions of clauses of the form attribute #
value. For attributes with more than two values, such a language is more expressive than
a language allowing only conjunctions of clauses of the form attribute = value. Indeed,
it has equivalent expressiveness to a language that supports internal disjunction. For ex-
ample, with respect to an attribute a with the values z, y and 2, a language restricted to
conjunctions of equality expressions cannot express a # x, whereas a language restricted to
conjunctions of inequality expressions can express a = x using the expression a # yAa # z.
In internal disjunctive (Michalski, 1984) terms, a # z is equivalent to a = y or z.
It should be noted that—

e For attributes with more than two values the search space for conjunctions of in-
equality expressions is far larger than the search space for conjunctions of equality
expressions. For each attribute, the size of the search space is multiplied by 2" for the
former and by n 4 1 for the latter, where n is the number of values for the attribute.

e The software employed in this experimentation can also be used to search the smaller
search spaces of equality expressions with the same effects as are demonstrated in the
following experiments.

Search starts from the most general expression, true. Each operator performs conjunc-
tion of the current expression with a term A # v, where A is an attribute and v is any
single value for that attribute.

The Laplace (Clark & Boswell, 1991) preference function was used to determine the goal
of the search. This function provides a conservative estimate of the predictive accuracy of
a class description, e. It is defined as

posCover(e) + 1

I —
value(e) posCover(e) + negCover(e) + noO fClasses

where posCover(e) is the number of positive objects covered by e; negCover(e) is the
number of negative objects covered by e; and noO fClasses is the number of classes for the
learning task.
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The Laplace preference function trades-off accuracy against generality. It favors class
descriptions that cover more positive objects over class descriptions that cover fewer, and
favors class descriptions for which a lower proportion of the cover is negative over those for
which it is higher. In the following study, the Laplace preference function was employed
with a pruning mechanism at Step 10a of the OPUS© algorithm that pruned sections of
the search space with optimistic values less than or equal to the value of a class description
that covered no objects. If there was no solution with a value higher than that obtained by
a class description that covered no objects, no rule was developed for the class.

The optimistic value function is derived from the observation that the cover of specializa-
tions of an expression must be subsets of the cover of that expression. Thus, specializations
of an expression may not cover more positive objects, but may cover fewer negative objects
than are covered by the original expression. As the Laplace preference function is maxi-
mized when positive cover is maximized and negative cover is minimized, no specialization
of the expression at a node may have higher value than that obtained with the positive
cover of that expression and the smallest negative cover within the sub-tree below the node.
The smallest negative cover within a sub-tree below a node n is obtained by the expression
formed by applying all operators active at n to the expression at n.

Other pruning can be performed through the application of cannotImprove(ni,nz), a
boolean function that is true of any two nodes n; and no in the search tree such that ns is
either the child or sibling of n; and no specialization of no may have a higher value than
the highest value in the search tree below n; inclusive but excluding the search tree below
ng. This function may be defined as

cannotImprove(z,y) < neg(x) C neg(y) A pos(z) 2 pos(y)

where neg(n) denotes the set of negative objects covered by the description for node n
and pos(n) denotes the set of positive objects covered by the description for node n. If
cannotImprove(ni, ny) then search below ny cannot lead to a higher valued result than can
be obtained by search through specialization’s of n; excluding nodes in the search space
below no. This can be shown where n; is the parent and nsg is the child node as follows. If
n1 is the parent of ny then the expression for no must be a specialization of the expression
for n; and all operators available for ny must be available for ny. For any expression g
and its specialization, s, if neg(g) C neg(s) then neg(g) = neg(s) (as specialization can
only decrease cover). It follows that for any further specialization of ns, ng, obtained by
applications of operators O, there must be a specialization of n; obtained by application
of operators O, ng4, which is a generalization of ng and which has identical negative cover
to m3. As ng4 is a generalization of ng, it must cover all positive objects covered by ns.
Therefore, ny must have equal or greater positive cover and equal negative cover to ng and
consequently must have an equal or greater value. It follows that it must be possible to
reach from n; a node of at least as great a value as the greatest valued node below no
without applying the operator that led from n; to ns.

Next we consider the case where ny and ngy are siblings. It follows from the definition
of cannotImprove that neg(ni) C neg(na) and pos(ni) 2O pos(ng2). Let the operators o;
and oy be those that led from the parent node p to n; and ng, respectively. It follows that
02 cannot exclude any negative objects from expressions below p not also excluded by o1
and that o; cannot exclude any positive objects from expressions below p not also excluded
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Table 1: Summary of experimental data sets

# # #
Domain Description Values | Objects | Classes
Audiology Medical diagnosis 162 226 24
House Votes 84 Predict US Senators’ political 48 435 2
affiliation from voting record.
Lenses Spectacle lens prescription. 9 24 3
Lymphography Medical diagnosis. 60 148 4
Monk 1 Artificial data. 17 556 2
Monk 2 Artificial data. 17 601 2
Monk 3 Artificial data. 17 554 2
Multiplexor (F11) Artificial data, requiring dis- 22 500 2
junctive concept description.
Mushroom Identify poison mushrooms. 126 8124 2
Primary Tumor Medical diagnosis. 42 339 22
Slovenian Breast Cancer | Medical prognosis. 57 286 2
Soybean Large Botanical diagnosis. 135 307 19
Tic Tac Toe Identify won or lost positions. 27 958 2
Wisconsin Breast Cancer | Medical diagnosis. 91 699 2

by o09. Therefore, application of 02 below ny will have no effect on the negative cover of
the expression but may reduce positive cover. For any expression e reached below no by a
sequence of operator applications O, application of O to ny cannot result in an expression
with lower positive or higher negative cover than that of e.

The cannotImprove function was employed to prune nodes at Step 8 of the OPUS©
algorithm.

6.2 Experimental Method

This search was performed on fourteen data sets from the UCI repository of machine learning
databases (Murphy & Aha, 1993). These were all the data sets from the repository that the
researcher could at the time of the experiments identify as capable of being readily expressed
as a categorical attribute-value learning tasks. These fourteen data sets are described in
Table 1. The number of attribute values (presented in column 3) treats missing values as
distinct values. The space of class descriptions that OPUS considers for each domain (and
hence the size of the search space examined for each pure conjunctive rule developed) is
2™ where n is the number of attribute values. Thus, for the Audiology domain, for each
class description developed, the search space was of size 2162, Columns 4 and 5 present the
number of objects and number of classes represented in the data set, respectively.

The search was repeated once for each class in each data set. For each such search, the
objects belonging to the class in question were treated as the positive objects and all other
objects in the data set were treated as negative objects. This search was performed using
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each of the following search methods—OPUSO; OPUS© without optimistic pruning; OPUS°C
without other pruning; OPUSO without optimistic reordering; and fixed-order search, such
as performed by Clearwater and Provost (1990), Rymon (1993), Schlimmer (1993), Segal
and Etzioni (1994) and Webb (1990).

Optimistic pruning was disabled by removing the condition from Step 10a of the OPUS©
algorithm. In other words, Step 10(a)i was always performed.

Other pruning was disabled by removing Step 8 from the OPUS? algorithm.

Optimistic reordering was disabled by changing Step 9 to process each node in a prede-
termined fixed-order, rather than in order by optimistic value. Under this treatment, the
topology of the search tree is organized in a fixed-order, but operators that are pruned at
a node are removed from consideration in the entire subtree below that node.

Fixed-order search was emulated by disabling Step 8b and disabling optimistic reorder-
ing, as described above.

All of the algorithms are to some extent under-specified. OPUS®, no optimistic pruning
and no other pruning are all leave unspecified the order in which operators leading to nodes
with equal optimistic values should be considered at Step 9. Such ambiguities were resolved
in the following experiments by ordering operators leading to nodes with higher actual
values first. Where two operators tied on both optimistic and actual values, the operator
mentioned first in the names file that describes the data was selected first.

No optimistic reordering and fixed-order search both leave unspecified the fixed-order
that should be employed for traversing the search space. As fixed-order search is represen-
tative of previous approaches to unordered search employed in machine learning, and thus
it is important to obtain a realistic evaluation of its performance, ten alternative random
orders were generated and all employed for each fixed-order search task. While, due to
the high variability in performance under different orderings, it would have been desirable
to explore more than ten alternative orderings, this was infeasible due to the tremendous
computational demands of this algorithm. The comparison with no optimistic reordering
was considered less crucial, as it is used solely to evaluate the effectiveness of one aspect
of the OPUSO algorithm, and thus, due to the tremendous computational expense of this
algorithm, a single fixed ordering was used, employing the order in which attribute values
are mentioned in the names file.

All of the algorithms leave unspecified the order in which nodes with equal optimistic
values should be selected from OPFEN under best-first search, or directly expanded under
depth-first search. Under best first search nodes with equal optimistic values were removed
from OPEN in a last-in-first-off order. Under depth-first search, nodes with equal optimistic
value were expanded in the same order as was employed for allocating operators at Step 9.

Note that the fixed-order search and OPUSO with disabled optimistic reordering con-
ditions both used optimistic and other pruning. Note also that while fixed-order search
ordered the topology of the search tree in the manner depicted in Figure 4, it explored that
tree in either a best or depth-first manner.

6.3 Experimental Results

Tables 2 and 3 present the number of nodes examined by each search in this experiment.
For each data set the total number of nodes explored under each condition is indicated.
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Table 2: Number of nodes explored under best-first search

No No No

optimistic other optimistic | Fixed-order
Data set OPUS® | pruning pruning | reordering (mean)
Audiology 7,044 — 24,199 — —
House Votes 84 533 661 554 355,040 1,319,911
Lenses 41 176 41 38 64
Lymphography 1,142 1,143 1,684 658,335 2,251,652
Monk 1 357 9,156 371 925 788
Monk 2 4,326 6,578 4,335 10,012 5,895
Monk 3 281 25,775 281 682 656
Multiplexor (F11) 2,769 96,371 2,769 4,932 4,948
Mushroom 391 392 788 233,579 —
Primary Tumor 10,892 10,893 13,137 | 4,242,978 | 29,914,840
Slovenian B. C. 17,418 | 4,810,129 32,965 — | 42,669,8221
Soybean Large 8,304 8338 21,418 | 21,551,436 —
Tic Tac Toe 2,894 | 4,222,641 2,902 16,559 16,471
Wisconsin B. C. 447,786 — | 1,159,011 — —

— Execution terminated after exceeding virtual memory limit of 250 megabytes.
T Only one of ten runs completed.

For fixed-order search, the mean of all ten runs is presented. Tables 4 and 5 present for
fixed-order search the number of runs that completed successfully, the minimum number of
nodes examined by a successful run, the mean number of nodes examined by successful runs
(repeated from Tables 2 and 3) and the standard deviations for those runs. Every node
generated at Step 7a is counted in the tally of the number of nodes explored. A hyphen
(—) indicates that the search could not be completed as the number of open nodes made
the system exceed a predefined virtual memory limit of 250 megabytes. An asterisk (*)
indicates that the search was terminated due to exceeding a pre-specified compute time
limit of twenty-four CPU hours. (For comparison, the longest CPU time taken for any data
set by OPUS© was sixty-seven CPU seconds on the Wisconsin Breast Cancer data under
depth-first search.)

It should be noted that one pure conjunctive rule was developed for each class. As a
separate search was performed for each rule, the number of searches performed equals the
number of classes. Thus, for the Audiology data using best-first search OPUSO explored
just 7,044 nodes to perform 24 admissible searches of the 262 node search space.

For only two search tasks does OPUSC with best-first search explore more nodes than an
alternative. For the Lenses data, OPUS? explores 41 nodes while no optimistic reordering
explores 38. For the Monk 2 data, OPUSO explores 4,326 nodes while the best of ten fixed-
order runs with different random fixed orders explores 4,283 nodes. It is possible that these
outcomes have arisen from situations where two sibling nodes share the same optimistic
value. In such a case, if two approaches each select different nodes to expand first, one
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Table 3: Number of nodes explored under depth-first search

No No No

optimistic other optimistic | Fixed-order
Data set OPUS° pruning pruning | reordering (mean)
Audiology 7,011 * 17,191 3,502,475 *
House Votes 84 568 | 17,067,302 596 10,046 3,674,418
Lenses 38 513 38 38 66
Lymphography 1,200 | 39,063,303 1,825 798,276 | 22,225,745
Monk 1 364 54,218 378 980 1,348
Monk 2 16,345 85,425 16,427 12,879 12,791
Monk 3 289 63,057 289 588 1,236
Multiplexor (F11) | 2,914 188,120 2,914 6,961 6,130
Mushroom 386 * 761 | 1,562,006 | 132,107,513%
Primary Tumor 18,209 | 34,325,234 23,668 3,814,422 | 31,107,648
Slovenian B. C. 30,647 | 172,073,241 61,391 | 271,328,080 | 308,209,464
Soybean Large 9,562 * 23,860 | 17,138,467 *
Tic Tac Toe 3,876 11,496,736 4,010 93,521 110,664
Wisconsin B. C. 465,058 * 101,211,211 * *

* Execution terminated after exceeding the 24 CPU hour limit.
1 Only three of ten runs completed.

Table 4: Number of nodes explored under best-first fixed-order search

Data set Runs | Minimum Mean sd

Audiology 0 — — —
House Votes 84 10 451,038 | 1,319,911 624,957
Lenses 10 51 64 9
Lymphography 10 097,842 | 2,251,652 1,454,583
Monk 1 10 463 788 225
Monk 2 10 4,283 5,895 931
Monk 3 10 527 656 110
Multiplexor (F11) 10 4,210 4,948 364
Mushroom 0 — — —
Primary Tumor 10 | 10,552,129 | 29,914,840 | 12,390,146
Slovenian B. C. 1| 42,669,822 | 42,669,822 0
Soybean Large — — —
Tic Tac Toe 10 8,046 16,471 5,300
Wisconsin B. C. 0 — — —

— Execution terminated for all ten runs after exceeding the

virtual memory limit of 250 megabytes.
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Table 5: Number of nodes explored under depth-first fixed-order search

Data set Runs | Minimum Mean sd

Audiology 0 * * *
House Votes 84 10 1,592,391 3,674,418 2,086,159
Lenses 10 50 66 12
Lymphography 10 484,694 | 22,225,745 | 27,250,834
Monk 1 10 553 1,348 922
Monk 2 10 9,274 12,791 2,686
Monk 3 10 627 1,236 891
Multiplexor (F11) 10 4,467 6,130 1,164
Mushroom 3 | 105,859,320 | 132,107,513 | 22,749,211
Primary Tumor 10 | 10,458,421 | 31,107,648 | 14,907,744
Slovenian B. C. 10 | 110,101,761 | 308,209,464 | 303,800,659
Soybean Large 0 * * *
Tic Tac Toe 10 49,328 110,664 65,809
Wisconsin B. C. 0 * * *

* Execution terminated for all ten runs after exceeding the
24 CPU hour limit.

may turn out to be a better choice than the other, leading to the exploration of fewer
nodes. To test the plausibility of this explanation, OPUSO was run again on the Lenses
data set with Step 8 altered to ensure that where two siblings have equal optimistic value
they are ordered in the same order as was employed with no optimistic reordering. This
resulted in the exploration of just 36 nodes, fewer than any alternative. When OPUS© and
fixed-order were run with fixed-order using the order of attribute declaration in the data
file to determine operator order and OPUSO using the same order to order siblings with
equal optimistic values, the numbers of nodes explored for the Monk 2 data were 4,302 for
OPUSO and 8,812 for fixed-order search.

It is notable that this effect is only apparent for very small search spaces. This is
significant because it suggests that there is only an effect of small magnitude resulting from
a poor choice of node to expand when two nodes have equal optimistic value. This is to
be expected. Consider the case where there are two nodes n; and ny with equal highest
optimistic value, v, but n; leads to a goal whereas no does not. If ns is expanded first, so
long as no child of ng has an optimistic value greater than or equal to v, the next node to
be expanded will be ny, as n; will now be the node with the highest optimistic value. (If a
child of no has an optimistic value greater than v, the optimistic evaluation function cannot
be very good, as the fact that no had an optimistic value of v means that no node below no
can have a value greater than v.) Thus, the number of unnecessary node expansions due to
this effect can never exceed the number of times that nodes with equal highest optimistic
values are encountered during the search.

In contrast to the case with best-first search, as discussed in Section 5.4, OPUS is only
heuristic with respect to minimizing the number of nodes expanded under depth-first search.
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Nonetheless, for only one search task, the Monk 2 data set, does OPUS® explore more
nodes under depth-first search (16,345) than an alternative (both no optimistic reordering
and fixed-order search that explore 12,879 and 12,791 nodes respectively). These results
demonstrate that this heuristic is not optimal for this data. It should be noted, however,
that the single exception for depth-first search again occurs only for a relatively small search
space. This suggests that efficient exploration of the search space below a poor choice of
node can do much to minimize the damage done by that poor choice, even when there is
no backtracking as is the case for depth-first search.

For five data sets (House Votes 84, Lymphography, Mushroom, Primary Tumor and
Soybean Large), disabling optimistic pruning has little effect under best-first search. Dis-
abling optimistic pruning always has large effect under depth-first search. Under best-first
search the smallest increase caused by disabling optimistic pruning is an increase of just
one node for both the Lymphography and Mushroom data sets. Of those data sets for
which it was possible to complete the search without optimistic pruning, the biggest effect
was an almost 1,500 fold increase in the number of nodes explored for the Tic Tac Toe
data. Under depth-first search, of those data sets for which processing could be completed
without optimistic pruning, the smallest increase was a five-fold increase for the Monk 2
data and the largest increase was a 30,000 fold increase for the Lymphography data.

For seven data sets (House Votes 84, Lenses, Monk 1, Monk 2, Monk 3, F11 Multiplexor,
Tic Tac Toe) disabling other pruning had little or no effect under best-first or depth-first
search. The largest effects are 2.5 fold increases for the Soybean Large and Wisconsin
Breast Cancer data sets under best-first search and for the Audiology, Soybean Large and
Wisconsin Breast Cancer data sets under depth-first search.

From these results it is apparent that while there are some data sets for which each
pruning technique has little effect (so long as the other is also employed), there are also
data sets for which other pruning more than halves the amount of the search space explored
and data sets for which optimistic pruning reduces the amount of the search space explored
to thousandths of that which would otherwise be explored.

The effect of optimistic reordering was also highly variable. For two search tasks (best-
first search for the Lenses data set and depth-first search for the Monk 2 data set) its use
actually resulted in a slight increase in the number of nodes explored. This is discussed
above. In many cases, however, the effect of disabling optimistic reordering was far greater
than that of disabling optimistic pruning. Processing could not be completed without
optimistic reordering for three of the best-first search tasks and one of the depth-first search
tasks. Of those tasks for which search could be completed, the largest effect for best-first
search was a 2,500 fold increase in the number of nodes explored for the Soybean Large data.
Under depth-first search, of those tasks for which search could be completed, the largest
effect was an 8,000 fold increase for the Slovenian Beast Cancer data. While it would be
desirable to evaluate the effect of alternative fixed-orderings of operators on these results,
it seems that optimistic reordering is critical to the general success of the algorithm.

For all but one data set (the Monk 2 data under depth-first search), fixed-order search
on average explores substantially more nodes than OPUSC. It was asserted in Section 5.4
that the average case advantage from the use of OPUSO as opposed to fixed-order search
will tend to grow exponentially as the number of search operators increases. The number
of search operators for the search tasks above equal the number of attribute values in the
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Figure 11: Plot of difference in nodes explored by fixed-order and OPUS? search against
search space size.

corresponding data sets. Analysis of Tables 2 and 3 reveals that the relative advantage
to OPUSO for the data sets with fewest attribute values (Lenses, Monk 1, 2 and 3, and
F11 Multiplexor) is approximately a two-fold reduction in the number of nodes examined.
As the number of attribute values increases, so does the relative advantage. For the four
data sets with the greatest number of attribute values (Audiology, Mushroom, Soybean
Large and Wisconsin Breast Cancer) in only one case (depth-first search of the Mushroom
data) does the fixed-order search terminate. In this one case, OPUS® enjoys a 350,000-fold
advantage. These results lend credibility to the claim that OPUS9’s average case advantage
over fixed-order search is exponential with respect to the size of the search space. This is
illustrated in Figure 11. In this figure, for searches for which fixed-order search terminated
within the resource constraints, the size of the search space is plotted against loga(f/o)
where f is the number of nodes explored by fixed-order search and o is the number of nodes
explored by OPUSO.

It seems clear from these results that admissible fixed-order search is not practical for
many of these search tasks within the scope of current technology.

It is interesting to observe that under best-first search, for all of the four artificial data
sets (Monk 1, Monk 2, Monk 3 and F11 Multiplexor) fixed-order search often explores
slightly fewer nodes than OPUSO with optimistic reordering disabled. The difference be-
tween these two types of search is that the latter deletes pruned operators from the sets
of active operators under higher ordered operators whereas the former does not. Thus
the latter prunes more nodes from the search tree with each pruning operation. It seems
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counter-intuitive that this increased pruning should sometimes lead to the exploration of
more nodes. To understand this effect it is necessary to recall that other pruning can prune
solutions from the search tree so long as there are alternative solutions available. For the
artificial data sets in question, retaining alternative solutions in the search tree in some cases
leads to a slight increase in search efficiency as the alternative can be encountered earlier
than the first solution. Despite this minor advantage for a number of artificial data sets to
fixed-order search over OPUS® with optimistic reordering disabled, the latter enjoys a large
advantage for all other data sets for which processing could be completed. For the House
Votes 84 data, fixed-order search explores over 3.5 times as many nodes under best-first
search and over 350 times as many under depth-first search.

It can be seen that there is some reason to believe that the the average case number
of nodes explored by OPUSO is only polynomial with respect to the search space size for
these machine learning search tasks. The numbers of nodes explored for the three largest
search spaces are certainly not suggestive of an exponential explosion in the numbers of
nodes examined (Audiology—2%? nodes in the search space: 7,044 and 7,011 nodes exam-
ined. Soybean Large—2'3 nodes in the search space: 8,304 and 9,562 nodes examined.
Mushroom—2'2% nodes in the search space: 391 and 386 nodes examined.)

It is interesting that there is little difference in the number of nodes explored by OPUS©
using either best or depth-first search for most data sets. Surprisingly, slightly fewer nodes
are explored by depth-first search for three of the data sets (Audiology, Lenses and Mush-
room). This will be for similar reasons to those presented above in the context of the occa-
sional slight advantage enjoyed by fixed-order search over OPUSO with optimistic reordering
disabled. In some cases depth-first search fortuitously encounters alternative solutions to
those found by best-first search. To evaluate the plausibility of this explanation, OPUS©
was run on the three data sets in question using the fixed-order ordering to order operators
with equal optimistic values. The resulting numbers of nodes explored were Audiology:
6678, Lenses: 36 and Mushroom: 385. As can be seen, these numbers are in all cases lower
than the numbers of nodes explored under depth-first search. As is the case when OPUS©
was outperformed by other best-first strategies, this effect appears to be of small magnitude
and thus is only significant where small numbers of nodes need to be explored. For four
of the data sets depth-first search explores substantially more nodes than best-first search
(Slovenian Breast Cancer, 75%; Monk 2, 275%; Primary Tumor, 67%; and Tic Tac Toe,
33%).

6.4 Summary of Experimental Results

The experiments demonstrate that admissible search for pure conjunctive classifiers is fea-
sible using OPUSO for the types of learning task contained in the UCI repository.

They also support the theoretical findings that OPUS® will in general explore fewer
nodes than fixed-order search and that the magnitude of this advantage will tend to grow
exponentially with respect to the size of the search space.

Optimistic pruning and other pruning are both demonstrated to individually provide
large decreases in the number of nodes explored for some search spaces but to have little
effect for others. Optimistic reordering is demonstrated to have a large impact upon the
number of nodes explored.
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The results with respect to the search of the largest search spaces suggest that the
average case complexity of the algorithm is less than exponential with respect to search
space size.

7. Summary and Future Research

The OPUS algorithms have potential application in many areas of endeavor. They can
be used to replace admissible search algorithms for unordered search spaces that maintain
explicit lists of pruned nodes, such as currently used in ATMS (de Kleer, 1986). They
may also support admissible search in a number of application domains, such as learning
classifiers that are inconsistent with a training set, that have previously been tackled by
heuristic search.

In addition to their applications for admissible search, the OPUS algorithms may also be
used for efficient non-admissible search through the application of non-admissible pruning
rules. The OPUS© algorithm is also able to return a solution if prematurely terminated at
any time, although this solution may be non-optimal.

The availability of admissible search is an important step forward for machine learning
research. While the studies in this paper have employed OPUSO to optimize the Laplace
preference function, the algorithm could be used to optimize any learning bias. This means
that for the first time it is possible to isolate the effect of an explicit learning bias from
any implicit learning bias that might be introduced by a heuristic search algorithm and its
interaction with that explicit bias.

The application of OPUS© to provide admissible search in machine learning has already
proved to be productive. Webb (1993) used OPUS® to demonstrate that heuristic search
that fails to optimize the Laplace accuracy estimate within a covering algorithm frequently
results in the inference of better classifiers than found by admissible search that does opti-
mize this preference function. It was to explain this result that Quinlan and Cameron-Jones
(1995) developed their theory of oversearching.

The research reported herein has demonstrated that OPUS can provide efficient admis-
sible search for pure conjunctive classifiers on all categorical attribute-value data sets in the
UCI repository. It would be interesting to see if the techniques can be extended to more
powerful machine learning paradigms such as continuous attribute-value and first-order logic
domains.

The research has also demonstrated the power of pruning. This issue has been given
scant attention in the context of search for machine learning. Although it is presented here
in the context of admissible search, the pruning rules presented are equally applicable to
heuristic search. The development of these and other pruning rules may prove important
as machine learning tackles ever more complex search spaces.

OPUS provides efficient admissible search in unordered search spaces. When creating
a machine learning system it is necessary to consider not only what to search for (the
explicit learning biases) but also how to search for it (appropriate search algorithms). It
has been assumed previously that such algorithms must necessarily be heuristic techniques
for approximating the desired explicit biases. Admissible search decouples these two issues
by removing confounding factors that may be introduced by the search algorithm. By
guaranteeing that the search uncovers the defined target, admissible search makes it possible
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to systematically study explicit learning biases. By supporting efficient admissible search,
OPUS for the first time brings to machine learning the ability to clearly and explicitly
manipulate the precise inductive bias employed in a complex machine learning task.
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