
 1

Analyzing the Subjective Interestingness of Association Rules

Bing Liu, Wynne Hsu, Shu Chen and Yiming Ma

School of Computing
National University of Singapore

3 Science Drive 2
Singapore 117543

{ liub, whsu, maym} @comp.nus.edu.sg

Abstract

Association rules are a class of important regularities in databases. They are found to be very

useful in practical applications. However, association rule mining algorithms tend to produce

a huge number of rules, most of which are of no interest to the user. Due to the large number

of rules, it is very diff icult for the user to analyze them manually in order to identify those

truly interesting ones. In this paper, we propose a new approach to assist the user in finding

interesting rules (in particular, unexpected rules) from a set of discovered association rules.

This technique is characterized by analyzing the discovered association rules using the user’s

existing knowledge about the domain and then ranking the discovered rules according to

various interestingness criteria, e.g., conformity and various types of unexpectedness. This

technique has been implemented and successfully used in a number of applications.

Keywords: subjective interestingness, association rules, interestingness analysis in data mining.

1. Introduction

The interestingness issue has long been identified as an important problem in data mining. It refers to

finding rules that are interesting/useful to the user, not just any possible rule [e.g., 1, 11, 12, 21, 23,

24, 27, 30]. The reason for its importance is that, in practice, it is all too easy for a data mining

algorithm to discover a glut of rules, and most of these rules are of no interest to the user [11, 12, 21,

27, 30]. This is particularly true for association rule mining [e.g., 2, 3, 7, 14, 16, 28], which often

produces a huge number of rules. The huge number of rules makes manual inspection of the rules

very diff icult. Automated assistance is needed. This paper presents an interestingness analysis system

(IAS) to help the user identify interesting association rules.

1.1 Rule interestingness measures

Past research in data mining has shown that the interestingness of a rule can be measured using

objective measures and subjective measures [e.g., 27, 11]. Objective measures involve analyzing the

rule’s structure, predictive performance, and statistical significance [e.g., 27, 21, 17, 14, 2, 3]. In

association rule mining, such measures include support and confidence [2, 28, 3]. However, it is noted

in [21] that objective measures are insuff icient for determining the interestingness of a discovered

To appear in IEEE Intellgent Systems, 2000

 2

rule. Subjective measures are needed. Subjective interestingenss is the topic of this paper. Two main

subjective interestingness measures are: unexpectedness [11, 27] and actionabilit y [21, 27].

• Unexpectedness: Rules are interesting if they are unknown to the user or contradict the user’s

existing knowledge (or expectations).

• Actionability: Rules are interesting if the user can do something with them to his/her advantage.

Although both unexpectedness and actionabilit y are important, actionabilit y is the key concept in

most applications because actionable rules allow the user to do his/her job better by taking some

specific actions in response to the discovered knowledge [21, 27]. Actionabilit y is, however, an

elusive concept because it is not feasible to know the space of all rules and the actions to be attached

to them [27]. Fortunately, the two measures are not mutually exclusive. Interesting rules can be

classified into three categories: (1) rules that are both unexpected and actionable; (2) rules that are

unexpected but not actionable; and (3) rules that are actionable but expected.

 In this research, we only focus on unexpectedness. Actionabilit y is partiall y handled through

unexpectedness because actionable rules are either expected or unexpected. Thus, the proposed

technique aims to find expected and unexpected association rules. Expected rules are also called

conforming rules as they conform to the user’s existing knowledge or expectations.

1.2 Generalized association rules

Before discussing our proposed technique, let us first introduce the concept of association rules, in

particular, generalized association rules [28]. The generalized association rule model is more general

than the original association rule model given in [2].

The (generalized) association rule mining is defined as follows: Let I = { i1, …, iw} be a set of

items. Let G be a directed acyclic graph on the items. An edge in G represents an is-a relationship.

Then, G is a set of taxonomies. A taxonomy example is shown in Figure 1. Let T be a set of

transactions, where each transaction t is a set of items such that t ⊆ I. A (generalized) association rule

is an implication of the form X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X → Y holds in the

transaction set T with confidence c if c% of transactions in T that support X also support Y. The rule

has support s in T if s% of the transactions in T contains X ∪ Y.

For example, an association rule could be:

 grape → apple [support = 10%, confidence = 60%],

which says that 10% of people buy grape and apple together, and 60% of the people who buy grape

also buy apple. This rule only involves items at the bottom level of the taxonomy. We can also have

rules that involve items of more than one level. For example,

 Fooditem

 Fruit Dairy_product Meat

grape pear apple milk cheese butter beef pork chicken

Figure 1: An example taxonomy

 3

 Fruit → Dairy_product [support = 2%, confidence = 67%]

Fruit, milk → Meat [support = 3%, confidence = 65%]

1.3 Summary of the proposed technique

The basic idea of our technique is as follows: The system first asks the user to specify his/her existing

knowledge, e.g., beliefs or concepts, about the domain. It then analyzes the discovered rules to

identify those potentiall y interesting ones (e.g., unexpected rules). The proposed technique is an

interactive and iterative post-processing technique (see Section 3). It consists of three components:

1. A specification language: it allows the user to specify his/her various types of existing knowledge.

2. An interestngness analysis system: it analyzes the discovered association rules using the user’s

specifications, and through such analysis, to identifiy: conforming rules, unexpected consequent

rules, unexpected condition rules and both-side unexpected rules.

3. A visualization system: it enables the user to visually detect interesting rules easily.

The proposed technique has been implemented and successfully applied to a number of applications.

The system is called IAS. It can be downloaded from: http://www.comp.nus.edu.sg/~dm2.

The paper is organized as follows: In the next section, we discuss the related work. Section 3

presents the proposed technique. Section 4 describes the visualization system using an example.

Section 5 evaluates the proposed technique. Section 6 concludes the paper.

2 Related Work

Existing research in rule interestingness focuses on either objective interestingness or subjective

interestingness. Objective interestingness analyzes rules’ structure, predictive performance, statistical

significance, etc [e.g., 2, 3, 14, 16, 18, 22, 25, 31, 32]. Objective interestingness will not be discussed

further, as it is not the focus of this paper. This paper studies subjective interestingness. We assume

that objective interestingness analysis [14, 3, 32] has been performed to remove those redundant

and/or insignificant rules.

Most existing approaches to finding subjectively interesting association rules ask the user to

explicitl y specify what types of rules are interesting and uninteresting. The system then generates or

retrieves those matching rules. [10] proposes a template-based approach. In this approach, the user

specifies interesting and uninteresting association rules using templates. A template describes a set of

rules in terms of items occurred in the conditional and the consequent parts. The system then retrieves

the matching rules from the set of discovered rules.

 [29] proposes an association rule mining algorithm that can take item constraints specified by the

user in the rule mining process so that only those rules that satisfy the constraints are generated. [20]

extends this approach further to allow much more sophisticated constraints to be specified by the user.

It also uses the constraints to optimize the association rule mining process. The idea of using

constraints in the rule mining process is important as it avoids generating irrelevant rules.

Along the similar line, there are also a number of works based on data mining queries. For

 4

example, M-SQL in [8], DMQL in [7], and Metaqueries in [26]. A data mining query basically

defines a set of rules of a certain type (or constraints on the rule to be found). To “execute” a query

means to find all rules that satisfy the query.

All the above methods view the process of f inding subjectively interesting rules as a query-based

process, although the queries may be considered during rule generation or after all rules have been

discovered. Query-based methods have the following problems.

1. It is hard to find the truly unexpected rules. They can only find those anticipated rules because

queries can only be derived from the user’s existing knowledge space. Yet, many rules that do not

satisfy the user’s queries may also be of interest. It is just that the user has never thought of them

(they are unexpected or novel) or has forgotten about them.

2. The user often does not know or is unable to specify completely what interest him/her. He/she

needs to be stimulated or reminded. Query-based approaches do not actively perform this task

because they only return those rules that satisfy the queries.

Our proposed technique not only identifies those conforming rules as query-based methods, but also

provides three types of unexpected rules. Thus, the user is exposed to more possible interesting

aspects of the discovered rules rather than only focusing on his/her current interests (which he/she

may not be sure). If the unexpected rules are not truly unexpected, they serve to remind the user what

he/she has forgotten. IAS’s visualization system also helps the user explore interesting rules easily.

In [11, 12], we reported two techniques for analyzing the subjective interestingness of

classification rules. However, those techniques cannot be applied to analyzing association rules.

Association rules require a different specification language and different ways of analyzing and

ranking the rules.

[23, 24] proposes a method of discovering unexpected patterns that takes into consideration a set

of expectations or beliefs about the problem domain. The method discovers unexpected patterns using

these expectations to seed the search for patterns in data that contradict the beliefs. However, this

method is in general not as eff icient and flexible as our post-analysis method unless the user is able to

specify his/her beliefs or expectations about the domain completely beforehand, which is very

diff icult, if not impossible [4, 5]. Typically, user interaction with the system is needed in order for

him/her to provide a more complete set of expectations and to find more interesting rules. Our post-

analysis method facilit ates user-interaction because of its eff iciency. The approach given in [23, 24]

also does not handle user’s rough or vague feelings, but only precise knowledge (see Section 3.1).

User’s vague feelings are important for identifying interesting rules because in our applications we

found that the user is more li kely to have such forms of knowledge than precise knowledge. The

definitions of vague feelings and precise knowledge will be given in Section 3.1.

The system WizWhy [31] also has a method to produce unexpected rules. Its method, however, is

based on objective interestingness as its analysis does not depend on individual users. It first

computes the expected probabilit y of a rule assuming independence of each of its conditions. It then

compares this expected probabilit y with the rule’s actual probabilit y to compute its unexpectedness.

 5

 [27] proposes to use belief systems to describe unexpectedness. A number of formal approaches

to the belief systems are presented, e.g., Bayesian probabilit y and Dempster-Shafer theory. These

approaches require the user to provide complex belief information, such as conditional probabiliti es,

which are diff icult to obtain in practice.

 There are also existing techniques that work in the contexts of specific domains. For example,

[21] studies the issue of f inding interesting deviations in a health care application. Its data mining

system, KEFIR, analyzes health care information to uncover “key findings” . A domain expert system

is constructed to evaluate the interestingness (in this case, actionabil ity) of the “key findings” . The

approach is, however, application specific. It also does not deal with association rules. Our method is

general. It does not make any domain-specific assumptions.

3. IAS: Interestingness Analysis System

We now present IAS. Basically, IAS is an interactive and iterative technique. In each iteration, it first

asks the user to specify his/her existing knowledge about the domain. It then uses this knowledge to

analyze the discovered rules according to some interestingness criteria, conformity and various types

of unexpectedness, and through such analysis to identify those potentiall y interesting rules. The IAS

system works as follows:

 Repeat until the user decides to stop

 1 the user specifies some existing knowledge or modifies the knowledge specified previously;

 2 the system analyzes the discovered rules according to their conformity and unexpectedness;

3 the user inspects the analysis results through the visualization system, saves the interesting

rules, and removes those unwanted rules.

3.1. The specification language

IAS has a simple specification language to enable the user to express his/her existing knowledge. This

language focuses on representing the user’s existing knowledge about associative relations on items in

the database. The basic syntax of the language takes the same format as association rules. It is

intuiti ve and simple, which is important for practical applications.

The language allows three types of specifications. Each represents knowledge of a different

degree of preciseness. They are:

• general impressions,

• reasonably precise concepts, and

• precise knowledge.

The first two types of knowledge represent the user’s vague feelings. The last type represents

his/her precise knowledge. This division is important because human knowledge has granularities. It

is common that some aspects of our knowledge about a domain are quite vague, while other aspects

are very precise. For example, we may have a vague feeling or impression that some Meat items and

Fruit items should be associated, but have no idea what items are involved and how they are

 6

associated. However, we may know precisely from past experiences or a previous data mining session

that buying bread implies buying milk with a support of around 10% and confidence of around 70%.

It is crucial to allow different types of knowledge to be specified. This not only determines how

we can make use of the knowledge, but also whether we can make use of all possible knowledge from

the user. For example, if a system can only handle precise knowledge, then the user who does not

have precise knowledge but has only vague impressions cannot use it.

The proposed specification language also make use of the idea of class hierarchy (or taxonomy),

which is the same as the one used in generalized association rules [28]. We represent the hierarchy in

Figure 1 as follows:

{ grape, pear, apple} ⊂ Fruit ⊂ Fooditem

{ milk, cheese, butter} ⊂ Dairy_product ⊂ Fooditem

{ beef, pork, chicken} ⊂ Meat ⊂ Fooditem

Fruit, Dairy_product, Meat and Fooditems are classes (or class names). grape, pear, apple, milk,

cheese, beef, pork, chicken, #Fruit, #Dairy_product, #Meat and #Fooditems are items. Note that in

generalized association rules, class names can also be treated as items, in which case, we append a “#”

in front of a class name. Note also that in the proposed language, a class hierarchy does not need to be

constructed beforehand, but can be created on the fly when needed.

We now discuss the three types of knowledge that the user may input. The next sub-section shows

how these types of knowledge are used in finding conforming and unexpected rules.

General Impression (GI): It represents the user’s vague feeling that there should be some

associations among some classes of items, but he/she is not sure how they are associated. This can

be expressed with:

 gi(<S1, …, Sm>) [support, confidence]

where (1) Each Si is one of the following: an item, a class, or an expression C+ or C*, where C

is a class. C+ and C* correspond to one or more, and zero or more instances of the

class C, respectively.

(2) A discovered rule: a1, …, an → b1, …, bk, conforms to the GI if <a1,…, an, b1,…, bk>

can be considered to be an instance of <S1, …, Sm>, otherwise it is unexpected with

respect to the GI.

(3) This impression actually represents a disjunctive propositional formula. Each

disjunct is an implication. For example, “gi(<a, { b, c} +>)” can be expanded into the

following (note that { b, c} is treated as a constructed class without a name):

 (a → b) ∨ (a → c) ∨ (b → a) ∨ (c → a) ∨

 ((a ∧ b) → c) ∨ ((a ∧ c) → b) ∨ ((b ∧ c) → a) ∨

 (a → (b ∧ c)) ∨ (b → (a ∧ c)) ∨ (c → (a ∧ b))

A discovered association rule conforms to the impression if the rule is one of the

disjuncts. We can see that the formula is much more complex than the GI.

 7

(4) Support and confidence are optional. The user can specify the minimum support and

the minimum confidence of the rules that he/she wants to see.

Example: The user believes that there exist some associations among { milk, cheese} , Fruit items, and

beef (assume we use the class hierarchy in Figure 1). He/she specifies this as:

 gi(<{ milk, cheese} *, Fruit+, beef>)

{ milk, cheese} here represents a class constructed on the fly unlike Fruit. The following are

examples of association rules that conform to the specification:

 apple → beef

 grape, pear, beef → milk

The following two rules are unexpected with respect to this specification:

(1) milk → beef

(2) milk, cheese, pear → clothes

(1) is unexpected because Fruit+ is not satisfied. (2) is unexpected because beef is not present in

the rule, and clothes is not from any of the elements of the GI specification.

Reasonably Precise Concept (RPC): It represents the user’s concept that there should be some

associations among some classes of items, and he/she also knows the direction of the associations.

This can be expressed with:

 rpc(<S1, …, Sm → V1, …, Vg>) [support, confidence]

where (1) Si or Vj is the same as Si in the GI specification.

(2) A discovered rule, a1, …, an → b1, …, bk, conforms to the RPC, if the rule can be

considered to be an instance of the RPC, otherwise it is unexpected with respect to

the RPC.

(3) Similar to a GI, an RPC also represents a complex disjunctive propositional formula.

(4) Support and confidence are again optional.

Example 2: Suppose the user believes the following:

 rpc(<Meat, Meat, #Dairy_product → { grape, apple} +>)

 Note that #Dairy_product here refers to an item, not a class. The following are examples of

association rules that conform to the specification:

 beef, pork, Dairy_product → grape

 beef, chicken, Dairy_product → grape, apple

 The following association rules are unexpected with respect to the specification:

 (1) pork, Dairy_product → grape

 (2) beef, pork → grape

 (3) beef, pork → milk

(1) is unexpected because it has only one Meat item, but two Meat items are needed as we have

two Meat’s in the specification. (2) is unexpected because Dairy_product is not in the conditional

 8

part of the rule. (3) is unexpected because Dairy_product is not in the conditional part of the rule,

and milk is not in the consequent of the RPC specification.

Precise knowledge (PK): The user believes in a precise association. This is expressed with:

 pk(<S1, …, Sm → V1, …, Vg>) [support, confidence]

where (1) Each Si or Vj is an item.

(2) A discovered rule, a1, …, an → b1, …, bk [sup, confid], is equal to the PK, if the rule

part is the same as S1, …, Sm→ V1, …, Vg. Whether it conforms to the PK or is

unexpected depends on the support and confidence specifications.

(3) Support and confidence need to be specified (not optional).

Example 3: Suppose the user believes the following:

 pk(<#Meat, milk → apple>) [10%, 30%]

 The discovered rule below conforms to the PK quite well because the supports and confidences of

the rule and the PK are quite close.

 Meat, milk → apple [8%, 33%]

However, if the discovered rule is the following:

 Meat, milk → apple [1%, 10%]

then it is less conforming, but more unexpected, because its support and confidence are quite

different from those of the PK.

3.2. Analyzing discovered rules using the user’s existing knowledge

After the existing knowledge of the user is specified, the system uses it to analyze the discovered

rules. For GIs and RPCs, we perform syntax-based analysis, i.e., comparing the syntactic structure of

the discovered rules with GIs and RPCs. It does not make sense to do semantics-based analysis

because the user does not have any precise associations in mind. Using PKs, we can perform

semantics-based analysis, i.e., to perform support and confidence comparisons of the user’s

specifications against the discovered rules that are equal to the specifications. This process is quite

straightforward and will not be discussed here. See [15] for details.

Let U be the set of user’s specifications representing his/her knowledge space, A be the set of

discovered association rules. The proposed technique “matches” and ranks the rules in A in a number

of ways for finding different types of interesting rules, conforming rules, unexpected consequent

rules, unexpected condition rules and both-side unexpected rules. Below, we define them intuiti vely

and explain the purposes they serve. The computation details will follow.

Conforming rules: A discovered rule Ai ∈ A conforms to a piece of user’s knowledge Uj ∈ U if both

the conditional and consequent parts of Ai match those of Uj ∈ U well . We use confmij to denote

the degree of conforming match.

Purpose: ranking of conforming rules shows us those rules that conform to or are consistent with

our existing knowledge fully or partiall y.

 9

Unexpected consequent rules: A discovered rule Ai ∈ A has unexpected consequents with respect to

a Uj ∈ U if the conditional part of Ai matches that of Uj well , but not the consequent part. We

use unexpConseqij to denote the degree of unexpected consequent match.

Purpose: ranking of unexpected consequent rules shows us those discovered rules that are contrary

to our existing knowledge (fully or partiall y). These rules are often very interesting.

Unexpected condition rules: A discovered rule Ai ∈ A has unexpected conditions with respect to a Uj

∈ U if the consequent part of Ai matches that of Uj well , but not the conditional part. We use

unexpCondij to denote the degree of unexpected condition match.

Purpose: ranking of unexpected condition rules shows us that there are other conditions which can

lead to the consequent of our specified knowledge. We are thus guided to explore the unfamili ar

territories, i.e., other associations that are related to our existing knowledge.

Both-side unexpected rules: A discovered rule Ai ∈ A is both-side unexpected with respect to a Uj ∈

U if both the conditional and consequent parts of the rule Ai do not match those of Uj well . We

use bsUnexpij to denote the degree of both-side unexpected match.

Purpose: ranking of both-side unexpected rules reminds us that there are other rules whose

conditions and consequents have never been mentioned in our specification(s). It helps us to go

beyond our existing concept space.

The values for confmij, unexpConseqij, unexpCondij, and bsUnexpij are between 0 and 1. 1 represents a

complete match, either a complete conforming or a complete unexpectedness match, and 0 represents

no match. Let Lij and Rij be the degrees of condition and consequent match of rule Ai against Uj

respectively. confmij, unexpConseqij, unexpCondij, and bsUnexpij are computed as follows:

 Note that we use Lij – Rij to compute the unexpected consequent match degree because we wish to

rank those rules with high Lij but low Rij higher. Similar idea applies to unexpectCondij. The formula

for bsUnexpij is basically to make sure that those rules with high values in any other three categories

should have lower values here, and vice versa.

We now show how to compute Lij and Rij for GI and RPS specifications. Let I = { i1, …, iw} be the

set of items in the database. Let LNi and RNi be the total numbers of items in the conditional and

consequent parts of Ai respectively. Let the discovered rule Ai be

 a1, …, an → b1, …, bk

confmij = Lij * Rij;

unexpConseqij ;
0

00





>−−
≤−

=
ijijijij

ijij

RLRL

RL

unexpCondij ;
0 - -

0 - 0





>
≤

=
ijijijij

ijij

LRLR

LR

bsUnexpij = 1- max(confmij, unexpConseqij, unexpCondij);

 10

1. Uj is a general impression (GI):

 gi(<S1, …, Sm>)

Let SNj be the total number of elements in the GI, where a class with a “* ” , i.e., C*, is not

counted. Let LMij and RMij be the numbers of items in the conditional and consequent parts of Ai

that match { S1, …, Sm} respectively. Let SMij be the number of elements in { S1, …, Sm} that have

been matched by Ai (again, matching with a C* is not counted).

We define that an item ap ∈ { a1, …, an} matches Sq ∈ { S1, …, Sm} (the same applies to bp

∈{ b1, …, bk} and Sq match) as follows:

(i) if Sq ∈ I and ap = Sq, or

(ii) if Sq is a class C, and only exactly one ap ∈ C (or exactly one ap is an instance of C), or

(iii) if Si is C+ or C*, and ap ∈ C.

Lij and Rij are computed as follows:

if
i

ij

i

ij

RN

RM

LN

LM > then

),min(
j

ij

i

ij
ij

SN

SM

LN

LM
L = ;

 ;
i

ij
ij

RN

RM
R =

 else),min(
j

ij

i

ij
ij

SN

SM

RN

RM
R = ;

 ;
i

ij
ij

LN

LM
L =

 Note that if SNj = 0 then 1=
j

ij

SN

SM
�

2. Uj is a reasonably precise concept (RPC):

 rpc(<S1, …, Sm → V1, …, Vg>).

Let LSNj and RVNj be the total numbers of elements in the conditional and consequent parts of the

RPC respectively, where a class with a *, e.g., C*, is not counted. Let LMij and RMij be the

numbers of items in the conditional and consequent parts of Ai that match { S1, …, Sm} and { V1,

…, Vg} respectively. Let LSMij and RVMij be the numbers of elements in { S1, …, Sm} and { V1, …,

Vg} that have been matched by the conditional and consequent parts of Ai respectively (matching

with C* is not counted).

The meaning of matching is the same as above for the GI, except that here the conditional and

the consequent parts of Ai are considered separately with respect to { S1, …, Sm} and { V1, …, Vg} .

Lij and Rij are computed as follows:

),min(
j

ij

i

ij
ij

LSN

LSM

LN

LM
L = ;

 11

),min(
j

ij

i

ij
ij

RVN

RVM

RN

RM
R = ;

 Note that if LSNij = 0 (or RVNij = 0) then 1=
j

ij

LSN

LSM (or 1=
j

ij

RVN

RVM).

After confmij, unexpConseqij, unexpCondij, and bsUnexpij have been computed, we rank the

discovered rules using these values.

Ranking the rules with respect to each individual Uj ∈∈ U: For each Uj ∈ U, we simply use the

confmij, unexpConseqij, unexpCondij and bsUnexpij values to sort the discovered rules in A in a

descending order to obtain the four rankings. In each ranking, those rules that do not satisfy the

support and confidence requirements of Uj are removed.

Ranking the rules with respect to the whole set of specifications U: Formulas for these rankings

are also designed and implemented. However, in our applications, we find that it is less effective

to use these rankings because all the conforming rules or unexpected rules with respect to all the

specifications in U are lumped together, thus making them hard to understand. Ranking with

respect to individual specification is more effective and easy to understand. However, ranking of

the discovered rules in A with respect to the whole set U is useful for finding rules whose

conditional and consequent parts are both unexpected, namely, both-side unexpected rules.

 Both-side unexpected: Both the conditional and consequent parts of the rule Ai ∈ A are

unexpected with respect to the set U. The match value BsUnexpi of Ai is computed with:

 BsUnexpi = 1- max(Cfmi, UCondi, UConseqi),

 where Cfmi = max(confmi1, confmi2, …, confmi|U|),

 UConseqi = max(unexpConseqi1, unexpConseqi2,…, unexpConseqi|U|),

 UCondi = max(unexpCondi1, unexpCondi2, …, unexpCondi|U|).

Clearly, 0 ≤ BsUnexpi ≤ 1. This formula ensures that those rules that have been ranked high in

other rankings will not be ranked high here.

Time complexity: Assume the maximal number of items in a discovered rule is N; the number of

existing concept specifications is |U|, and the number of discovered rules is |A|. Computing LMij

and RMij can be done in O(N). Without considering the final ranking which is a sorting process,

the runtime complexity of the algorithm is O(N|U||A|). Since N is small (at most 6 in our

applications) and |U| is also small (most of the time we only use each individual specification for

analysis), the computation is very eff icient.

4. The Visualization System of IAS

After the discovered rules have been analyzed, IAS displays different types of potentiall y interesting

rules to the user. The key here is to show the essential aspects of the rules such that it can take

advantage of the human visual capabiliti es to enable the user to identify the truly interesting rules

 12

easily and quickly. Let us discuss what are the essential aspects:

1. Types of potentiall y interesting rules: Different types of interesting rules should be separated

because they give the user different kinds of interesting knowledge.

2. Degrees of interestingness (“match” values): Rules should be grouped according to their degrees

of interestingness. This enables the user to focus his/her attention on the most unexpected (or

conforming) rules first and to decide whether to view those rules with lower degrees of

interestingness.

3. Interesting items: Showing the interesting items in a rule is more important than the whole rule.

This is perhaps the most crucial decision that we have made. In our applications, we find that it is

those unexpected items that are most important to the user because due to 1 above, the user

already knows what kind of interesting rules he/she is looking. For example, when the user is

looking at unexpected consequent rules, it is natural that the first thing he/she wants to know is

what are the unexpected items in the consequent parts. Even if we show the whole set of rules, the

user still needs to look for the unexpected items in the rules.

The main screen of the visualization system contains all the above information. Below, we use an

example to ill ustrate the visualization system.

4.1. An example

Our example uses a RPC specification. The rules in the example are a small subset of rules (857 rules)

discovered in an exam results database. This application tries to discover the associations between the

exam results of a set of 7 specialized courses (called GA courses) and the exam results of a set of 7

basic courses (called GB courses). A course together with an exam result form an item, e.g., GA6-1,

where GA6 is the course code and “1” represents a poor exam grade (“2” represents an average grade

and “3” a good grade). The discovered rules and our existing concept specification are li sted below.

• Discovered association rules: The rules below have only GA course grades on left-hand-side and

GB course grades on right-hand-side (we omit their support and confidence).

R1: GA1-3 → GB2-3 R7: GA4-1 → GB7-2

R2: GA4-3 → GB4-3 R8: GA6-2 → GB7-2

R3: GA2-3 → GB2-3 R9: GA5-1, GA2-2 → GB2-2

R4: GA2-3 → GB5-1 R10: GA5-2, GA1-2 → GB3-2

R5: GA6-1 → GB1-3 R11: GA6-1, GA3-3 → GB6-3

R6: GA4-2 → GB3-3 R12: GA7-2, GA3-3 → GB4-3

• Our existing concept specification: Assume we have the common belief that students good in

some GA courses are li kely to be good in some GB courses. This can be expressed as a RPC:

 Spec1: rpc(GA-good+ → GB-good)

 where the classes, GA-good and GB-good, are defined as follows:

 GA-good ⊃ { GA1-3, GA2-3, GA3-3, GA4-3, GA5-3, GA6-3, GA7-3}

 GB-good ⊃ { GB1-3, GB2-3, GB3-3, GB4-3, GB5-3, GB6-3, GB7-3}

 13

4.2. Viewing the results

After running the system with the above RPC specification, we obtain the screen in Figure 2 (the main

screen). We see “RPC” in the middle. To the bottom of “RPC”, we have the conforming rules

visualization unit. To the left of “RPC”, we have the unexpected condition rules visualization unit. To

the right, we have the unexpected consequent rules visualization unit. To the top, we have both-side

unexpected rules visualization unit. Below, we will discuss these units in turn with the example.

Figure 2. RPC main visualization screen

Conforming rules visualization unit: Clicking on Conform, we will see the complete conforming rules

ranking in a pop-up window.

 Rank 1: 1.00 R1 GA1-3 → GB2-3

 Rank 1: 1.00 R2 GA4-3 → GB4-3

 Rank 1: 1.00 R3 GA2-3 → GB2-3

 Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3

 Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

The number (e.g., 1.00 and 0.50) after each rank number is the conforming match value, confmi1.

The first three rules conform to our belief completely. The last two only conform to our belief

partiall y since GA6-1 and GA7-2 are unexpected. This li st of rules can be long in an application.

The following mechanisms help the user focus his/her attention, i.e., enabling him/her to view

rules with different degrees of interestingness (“match” values) and to view the interesting items.

• On both sides of Conform we can see 4 pairs of boxes, which represent sets of rules with

different conforming match values. If a pair of boxes is colored, it means that there are rules

there, otherwise there is no rule. The line connecting “RPC” and a pair of colored boxes also

 14

indicates that there are rules under them. The number of rules is shown on the line. Clicking on

the box with a value will give all the rules with the corresponding match value and above. For

example, cli cking on 0.50 shows the rules with 0.50 ≤ confmi1 < 0.75. Below each colored box

with a value, we have two small windows. The one on the top has all the rules’ condition items

from our RPC specification, and the one at the bottom has all the consequent items. Clicking on

each item gives us the rules that use this item as a condition item (or a consequent item).

• Clicking on the colored box without a value (below the valued box) brings us to a new screen

(not shown here). From this screen, the user sees all the items in different classes involved, and

also conforming and unexpected items.

Unexpected condition rules visualization unit: The boxes here have similar meanings as the ones for

conforming rules. From Figure 2, we see that there are 4 unexpected condition rules. Two have the

unexpected match value of 1.00 and two have 0.50. The window (on the far left) connected to the

box with a match value gives all the unexpected condition items. Clicking on each item reveals the

relevant rules. Similarly, cli cking on the colored box next to the one with a value shows both the

unexpected condition items and the items used in the consequent part of the rules. To obtain all the

rules in the category, we can click Unexpected Condition.

Rank 1: 1.00 R5 GA6-1 → GB1-3

Rank 1: 1.00 R6 GA4-2 → GB3-3

Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3

Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

1.00 and 0.50 are the unexpCondi1 values. Here, we see something quite unexpected. For example,

many students with bad grades in GA6 actually have good grades in GB1.

Unexpected consequent rules visualization unit: This is also similar to the conforming rules

visualization unit. From Figure 2, we see that there is only one unexpected consequent rule and the

unexpected consequent match value is 1.00. Clicking on the colored box with 1.00, we will obtain

the unexpected consequent rule:

 Rank 1: 1.00 R4 GA2-3 → GB5-1

This rule is very interesting because it contradicts our belief. Many students with good grades in

GA2 actually have bad grades in GB5.

Both-side unexpected rules visualization unit: We only have two unexpected match value boxes here,

i.e., 1.00 and 0.50. Due to the formulas in Section 3.2, rules with bsUnexpij < 1.00 can actually all

be seen from other visualization units. The unexpected items can be obtained by clicking on the

box above the one with a value. All the ranked rules can be obtained by clicking Both Sides

Unexpected.

 Rank 1: 1.00 R7 GA4-1 → GB7-2

 Rank 1: 1.00 R8 GA6-2 → GB7-2

 Rank 1: 1.00 R9 GA5-1, GA2-2 → GB2-2

 Rank 1: 1.00 R10 GA5-2, GA1-2 → GB3-2

 15

 Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3

 Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

From this ranking, we also see something quite interesting, i.e., average grades lead to average

grades and bad grades lead to average grades. Some of these rules are common sense, e.g., average

to average rules (R8 and R10), but we did not specify them as our existing knowledge (if “average

to average” had been specified as our knowledge earlier, these rules would not have appeared here

because they would have been removed). This shows the advantage of our technique, i.e., it can

remind us what we have forgotten if the rules are not truly unexpected.

The visualization system also allows the user to incrementally save interesting rules and to remove

unwanted rules. Whenever a rule is removed or saved (also removed from the original set of rules),

the related pictures and windows are updated.

5. Evaluation

The IAS system is implemented in Visual C++. Our association rule mining system is based on the

generalized association rule mining algorithm in [28]. Those redundant and/or insignificant rules are

removed using the pruning technique in [14] (objective interestingness analysis).

Since there is no existing technique that is able to perform our task, we could not carry out a

comparison. Most existing methods [10, 7, 8, 18, 20, 29] only produce conforming rules but not

unexpected rules. Although the system described in [23, 24] produces unexpected association rules, it

is not an interactive post-analysis system, and it does not handle RPC and GI specifications.

As the proposed technique deals with subjective interestingness, it is diff icult to have an objective

measure of its performance. We have carried out a number of experiments involving our users (2) and

students (6) to check whether the rankings do reflect people’s intuitions of subjective interestingness,

in particular, unexpectedness.

In the experiments, we used 3 application datasets, and each subject is asked to specify 10 pieces

of existing knowledge for each dataset and to view the ranking results. In the process, we found that

some subjects do occasionally disagree with the relative ranking. For example, a subject may believe

that a particular rule should be ranked above its neighbor. There were 5 such cases. However, this

(i.e., slightly different relative ranking) is not a problem. We do expect such minor disagreements

because we are dealing with a subjective issue here. The important thing is that everyone agrees that

the technique is able to bring those interesting rules to the top of the li st.

Our system has been successfully used in three real-li fe applications in Singapore, one

educational application, one insurance application and one medical application. Due to confidentiality

agreements, we could not give details of these applications. In the applications, the smallest rule set

has 770 rules. Most of them have one to two thousand rules. When our users first saw a large number

of rules, they were overwhelmed. Our tool makes it much easier for them to analyze these discovered

rules. Initiall y, they were only interested in finding a few types of rules to confirm (or verify) their

hypotheses. However, they ended up finding many interesting rules that they had never thought of

 16

before as a result of the various unexpectedness rankings. The rules used in the example of Section 4

are from one of our applications (the items appeared in the rules were encrypted).

6. Conclusion and Future Work

This paper proposes a new approach for helping the user identify interesting association rules, in

particular, expected and unexpected rules. It consists of an intuiti ve specification language and an

interestingness analysis system. The specification language allows the user to specify his/her various

types of existing knowledge about the domain. The interestingness analysis system analyzes the

discovered association rules using the user’s specifications to identify those potentiall y interesting

ones for the user. The new method is more general and powerful than the existing methods because

most existing methods only produce the conforming rules, but not the unexpected rules of various

types. Unexpected rules are by definition interesting.

In our future work, we will i nvestigate more sophisticated representation schemes and analysis

methods such that we not only can perform analysis at individual rule level but also at higher levels,

e.g., to determine whether a set of rules is interesting as a group to the user, and to infer interesting

knowledge from the discovered rules.

Acknowledgement: We would li ke to thank many people, especially Minqing Hu, Ken Wong and

Yiyuan Xia, for their contributions to the project. The project is funded by National Science and

Technology Board (NSTB) and National University of Singapore (NUS).

References

[1]. Adomavicius, G. and Tuzhili n, A. “Discovery of actionable patterns in databases: the action

hierarchy approach.” KDD-97, 1997, pp. 111-114.

[2]. Agrawal, R. and Srikant, R. Fast algorithms for mining association rules. VLDB-94, 1994.

[3]. Bayardo, R. and Agrawal, R. "Mining the most interesting rules.” KDD-99, 1999.

[4]. Boose, J. “A survey of knowledge acquisition techniques and tools.” In B. Buchanan & D.

Wilkins (ed.) Knowledge Aacquisition and Learning, 1993, pp. 39-56.

[5]. Buchanan, B. and Wilkin, D. (eds.). Readings in knowledge acquisition and learning. Morgan

Kaufmann, 1993.

[6]. Fayyad, U., Piatesky-Shapiro, G. and Smyth, P. “From data mining to knowledge discovery: an

overview,” In: Advances in knowledge discovery and data mining, U. Fayyad, G. Piatesky-

Shapiro, P. Smyth and R. Uthurusamy, (eds.), AAA I/MIT Press, 1996, pp. 1-34.

[7]. Han, J., Fu, Y., Wang, W., Koperski, K. and Zaiane, O. “DMQL: a data mining query language

for relational databases.” Proceedings of the SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, 1996.

[8]. Imielinski, T., Virmani, A. and Abdulghani, A. “DataMine: application programming interface

and query language for database mining.” KDD-96, 1996.

[9]. Kamber, M., and Shinghal, R. 1996. “Evaluating the interestingness of characteristic rules.”

 17

KDD-96, 1996, pp. 263-266.

[10]. Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.I. 1994. “Finding

interesting rules from large sets of discovered association rules.” Proceedings of the Third

International Conference on Information and Knowledge Management, 1994, pp. 401-407.

[11]. Liu, B., and Hsu, W. “Post-analysis of learned rules.” AAAI-96, 1996, pp. 828-834.

[12]. Liu, B., Hsu, W., and Chen, S. “Using general impressions to analyze discovered classification

rules.” KDD-97, 1997, pp. 31-36.

[13]. Liu, B., Hsu, W. and Ma, Y. M. “ Integrating classification and association rule mining.” KDD-

98, 1998, pp. 80-86.

[14]. Liu, B., Hsu, W. and Ma, Y. “Pruning and summarizing the discovered associations.” SIGKDD-

99, pp. 125-134, 1999.

[15]. Liu, B., Hsu, W, and Chen, S. “Helping the user identify unexpected association rules.”

Technical Report, School of Computing, 1999.

[16]. Liu, B., Hu, M. and Hsu, W. "Multi -level organization and summarization of the discovered

rules," KDD-2000, 2000.

[17]. Major, J., and Mangano, J. “Selecting among rules induced from a hurricane database.” KDD-

93, 1993, pp. 28-41.

[18]. Meo, R., Psaila, G. and Ceri, S. “A new SQL-like operator for mining association rules.” VLDB-

96, 1996, pp. 122-133.

[19]. Mill s, F. Statistical Methods, Pitman, 1955.

[20]. Ng. R. T., Lakshmanan, L. V. S., Han, J., and Pang, A. “Exploratory mining and pruning

optimizations of constrained associatino rules.” SIGMOD-98, 1998.

[21]. Piatesky-Shapiro, G., and Matheus, C. “The interestingness of deviations.” KDD-94, 1994.

[22]. Piatesky-Shapiro, G. “Discovery, analysis and presentation of strong rules.” In Piatesky-

Shapiro, G., and Frawley, W (Eds) Knowledge Discovery in Databases, pp. 229-248, MIT Press,

Cambridge, MA, 1991.

[23]. Padmanabhan, B., and Tuzhili n, A. “A belief-driven method for discovering unexpected

patterns.” KDD-98, 1998, pp. 74-100.

[24]. Padmanabhan, B., and Tuzhili n, A. “Small i s Beautiful: Discovering the Minimal Set of

Unexpected Patterns.” KDD-2000, 2000.

[25]. Quinlan, R. C4.5: program for machine learning. Morgan Kaufmann, 1992.

[26]. Shen, W-M. Ong, K-L. Mitbander, B. and Zaniolo, C. “Metaqueries for data mining.” Advanced

in knowledge discovery and data mining, AAA I Press, chapter 15, 1996, pp. 375-398.

[27]. Silberschatz, A., and Tuzhili n, A. “What makes patterns interesting in knowledge discovery

systems.” IEEE Trans. on Know. and Data Eng. 8(6), 1996, pp. 970-974.

[28]. Srikant, R. and Agrawal, R. “Mining generalized association rules.” VLDB-1995, 1995.

[29]. Srikant, R., Vu, Q. and Agrawal, R. “Mining association rules with item constraints.” KDD-97,

1997, pp. 67-73.

[30]. Tuzhili n, A. “A pattern discovery algebra.” SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, 1997, pp. 71-76.

[31]. WizWhy, http://www.wizsoft.com.

[32]. Zaki, M. “Generating non-redundant association rules,” KDD-2000, 2000.

