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Abstract

Association mining may often derive an undesirably large
set of frequent itemsets and association rules. Recent
studies have proposed an interesting alternative: mining
frequent closed itemsets and their corresponding rules,
which has the same power as association mining but
substantially reduces the number of rules to be presented.

In this paper, we propose an efficient algorithm,
CLOSET, for mining closed itemsets, with the develop-
ment of three techniques: (1) applying a compressed,
frequent pattern tree FP-tree structure for mining closed
itemsets without candidate generation, (2) developing
a single prefix path compression technique to identify
frequent closed itemsets quickly, and (3) exploring a
partition-based projection mechanism for scalable mining
in large databases. Our performance study shows that
CLOSET is efficient and scalable over large databases, and
is faster than the previously proposed methods.

1 Introduction

It has been well recognized that frequent pattern
mining plays an essential role in many important
data mining tasks, e.g. associations [2, 7], sequential
patterns [3], episodes [8], partial periodicity [5],
etc. However, 1t is also well known that frequent
pattern mining often generates a very large number
of frequent 1temsets and rules, which reduces not only
efficiency but also effectiveness of mining since users
have to sift through a large number of mined rules to
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find useful ones.

There is an interesting alternative, proposed re-
cently by Pasquier et al. [9]: instead of mining the
complete set of frequent itemsets and their associa-
tions, assoctation mining only needs to find frequent
closed itemsets and their corresponding rules. An
important implication is that mining frequent closed
itemsets has the same power as mining the complete
set of frequent itemsets, but it will substantially re-
duce redundant rules to be generated and increase
both efficiency and effectiveness of mining.

Let’s examine a simple example. Suppose a
database contains only two transactions, “{(a1, as,

., a1p0), (@1,a9,...,a50)}”, the minimum sup-
port threshold is 1 (i.e., every occurrence is fre-
quent), and the minimum confidence threshold is
50%. The traditional association mining method will
generate 2190 — 1 ay 1030 frequent itemsets, which
are ((11), ey ((1100), ((11, (12), ey ((1997 aloo), ey
(@1,a2,...,a100), and a tremendous number of asso-
ciation rules, whereas a frequent closed itemset min-
ing will generate only two frequent closed itemsets:
{(a1,a2,...,a50), (a1,as,...,a100)}, and one asso-
ciation rule, “(a1,as, ..., as0) = (as1,as2,...,d100)”,
since all the others can be derived from this one easily.

In this paper, we study efficient mining of frequent
closed itemsets in large databases. Pasquier et
al. [9] propose an Apriori-based mining algorithm,
called A-close. Zaki and Hsiao [10] propose another
mining algorithm, CHARM, which improves mining
efficiency by exploring an item-based data structure.
According to our analysis, A-close and CHARM are
still costly when mining long patterns or with low
minimum support thresholds in large databases. As
a continued study on frequent pattern mining without
candidate generation [6], we propose an efficient
method for mining closed itemsets. Three techniques
are developed for this purpose: (1) the framework of
a recently developed efficient frequent pattern mining
method, FP-growth [6], is extended, (2) strategies
are devised to reduce the search space dramatically



and identify the frequent closed itemsets quickly,
and (3) a partition-based projection mechanism is
established to make the mining efficient and scalable
for large databases. Our performance study shows
that CLOSET is efficient and scalable over large
databases, and is faster than the previously proposed
methods.

The remaining of the paper is organized as fol-
lows. In Section 2, the problem of mining frequent
closed itemsets is defined and related concepts are
introduced. In Section 3, we introduce our method,
CLOSET, step-by-step. Section 4 reports the perfor-
mance comparison of our method with A-close and
CHARM as well as the scalability study. We summa-
rize our work and discuss some future research direc-
tions in Section 5.

2 Problem Definition

Let I = {i1,49,...,1,} be aset of items. An itemset
X is a non-empty subset of I. For brevity, itemset
X = {ij,4,,...,4;, } can also be denoted as X =
4,85, <-4, . An itemset with m items is called an
m-itemset. Duple (tid, X) is called a transaction
if tid is a transaction identifier and X is an itemset. A
transaction database T'DB is a set of transactions.

An itemset X is contained in transaction (tid,Y")
if X CY. Given a transaction database T'DB, the
support’® of an itemset X, denoted as sup(X), is the
number of transactions in TDB which contains X.
An association rule R : X = Y is an implication
between two itemsets X and Y where X,Y C I and
XNY = 0. The support of the rule, denoted
as sup(X = Y), is defined as sup(X UY). The

confidence of the rule, denoted as conf(X =Y),
sup(XUY)
sup(X) -

As discussed by many studies, given a trans-
action database T'DB, a minimal support thresh-
old min_sup, and a minimal confidence threshold
min_conf, the problem of association rule min-
ing is to find the complete set of association rules in
the database with support and confidence passing the
thresholds, respectively. Also, as it has been shown
in [2], the problem of mining association rules can be
divided into two sub-problems:

1s defined as

1. Find all frequent itemsets in the transaction
database with respect to the given support thresh-
old. An itemset is called a frequent itemset if
its support 1s no less than min_sup.

1For convenience of discussion, support is defined here as
absolute occurrence frequency. Notice it is defined in some
literature as the relative one, i.e., the occurrence frequency vs.
the total number of transactions in the transaction database.

2. For each frequent itemset Y found, generate all
association rules X = Y — X where X C Y, if its
confidence 1s no less than min_conf.

The requirement of mining the complete set of
association rules leads to two problems: (1) there
may exist a large number of frequent itemsets in a
transaction database, especially when the support
threshold is low, and (2) there may exist a huge
number of association rules. It is hard for users to
comprehend and manipulate a huge number of rules.

An interesting alternative to this problem is the
mining of frequent closed itemsets and their corre-
sponding association rules, proposed in [9].

Definition 1 (Frequent closed itemset) An item-
set X is a closed itemset if there exists no itemset
X' such that (1) X' is a proper superset of X, and
(2) every transaction containing X also contains X'.
A closed itemset X is frequent if its support passes
the given support threshold. a

Thus, instead of mining association rules on all the
itemsets, one can mine association rules on frequent
closed 1temsets only.

Definition 2 (Association rule on frequent closed
itemsets) Rule X = Y is an association rule on
frequent closed itemsets if (1) both X and X UY
are frequent closed itemsets, (2) there does not exist
frequent closed itemset 7 such that X C 7 C (XUY),
and (3) the confidence of the rule passes the given
confident threshold?. a

Similar to mining association rules, the complete
set of association rules on frequent closed itemsets
can be mined in a two-step process: (1) mining the
set of frequent closed itemsets with min_sup, and (2)
generating the complete set of association rules on
the frequent closed itemsets with min_conf.

Example 1 (Association rule mining) A trans-

action database T DB is given in Table 1. (40, {a, ¢, d, f})

is a transaction, in which 40 is the transaction tdenti-
fier, and {a,c,d, f} is an itemset. Ttemset {a,c,d, f}
can also be denoted as acdf.

Given min_sup = 2 and min_conf = 50%,
association rules can be mined in a two-step process:

o Find frequent itemsets in the transaction database.
This can be done by Apriori as shown in most

2The second requirement is based on the rationale that if
there are rules X = Y and (XUY) = Z, therule X = (YUZ)
is redundant, since sup(X = (Y UZ)) yields to sup(XUY) = Z
and conf(X = (YUZ)) = conf(X = Y)xconf((XUY) = Z).



| Transaction 1D | Items in transaction |

10 a,c,d,e, f
20 a, b, e
30 c,e, f
40 a,c,d, f
50 c,e, f

Table 1: The transaction database TDB.

association mining studies. There are in total 20
frequent itemsets in T DB, out of which only six
are closed: acdf, cef, ae, cf, a and e. Neither ac
nor d is closed since every transaction containing
them also contains f.

e Generate all association rules on each frequent
itemset. For example, for frequent itemset acdf,
cf is a subset with support 4, so the confidence of

. . sup(acdf) __
rule R : ¢f = ad is % = 2 > 50%. Thus,

R is an association rule. It can be verified that
for frequent itemset acdf, in total 14 association
rules can be generated: every implication from
X C{a,c,d, f} (X # 0) to {a,c,d, f} — X is an

assoclation rule.

Notice that all the association rules generated
from acdf, except for c¢f = ad and a = cdf, are
with confidence 100%. For example, ¢ = adf with
confidence 100% since items ¢ and f always happen
together. That is, only the association rules on
frequent closed itemsets look interesting. Moreover,
to compute confidence of such interesting association
rules, only the supports of frequent closed itemsets
are needed. For example, to derive c¢f = ad and
a = cdf, we only need to know the support of acdf,
cf and a.

Let’s derive all the association rules on frequent
closed itemsets. Each rule i1s presented in the form of
X =Y (support,confidence), where X and Y are
itemsets. Frequent closed itemset acdf has only two
subsets, cf and a, as frequent closed itemsets. Thus,
it generates two association rules: ¢f = ad (2, 50%)
and a = cdf (2, 67%). The other four are e = ¢f (3,
75%), cf = € (3, 75%), e = a (2, 50%) and a = ¢ (2,
67%). O

We refer readers to [9] for the theoretical founda-
tion of association rules on frequent closed itemsets.
In this paper, we focus on how to find the complete
set of frequent closed itemsets efficiently from large
database, which is called the frequent closed item-
set mining problem.

Before introducing our method on mining frequent
closed itemsets, we present one property of closed
itemsets, which follows the definition of closed item-
sets.

TDB
cefad

cef
cfad f_list: <c:4, e4, f:4, a3, d:2>

cef

d-cond DB (d:2) a-cond DB (a:3) f-cond DB (f:4) e-cond DB (e:4)
ofa cef ce:3 c3
cfa ; ¢ output F.C.L.; e:4

output F.C.1.: cf:4, cef:3

output F.C.|.: cfad:2
output F.C.I.: &

ea-cond DB (ea:2)

output F.C.I.: ea:2

F.C.| for frequent closed itemset

Figure 1: Mining frequent closed itemsets (abbrevi-

ated as F.C.1.) using CLOSET.

Lemma 2.1 Let X and Y be two itemsets, and
sup(X) = sup(Y). Y is not a closed itemset if
Y CX. O

3 Efficiently Mining Frequent
Closed Itemsets

In this section, we study efficient mining of frequent
closed itemsets. In Section 3.1, we first illustrate the
mining process of CLOSET with an example. Then,
we presents the CLOSET algorithm in Section 3.2.
Enhancement of the scalability of the method is
discussed in Section 3.3.

3.1 Mining frequent closed itemsets with
projected database: An example

Let’s examine how to mine frequent closed itemsets
using the following example.

Example 2 (CLOSET) For the same transaction
database T'DB in Table 1 with min_sup = 2, we
introduce a divide-and-conquer method for mining
frequent closed itemset. The method explores the
concepts of projected database [1, 6], as shown in
Figure 1.

1. Find frequent items. Scan T'DB to find the set
of frequent items and derive a (global) frequent
item list, called flist, and flist = (¢ : 4,e :
4, f : 4,a : 3,d : 2), where the items are sorted
in support descending order, and the number
after “:” indicates the support of the item. For
easier understanding, the frequent items in each
transaction are listed in Figure 1 according to the



order of f_list and any infrequent item, such as b,
is omitted. For example, abe is listed as ea.

2. Divide search space. All the frequent closed
itemsets can be divided into 5 non-overlap subsets
based on the f_list: (1) the ones containing item
d, (2) the ones containing item a but no d, (3) the
ones containing item f but no a nor d, (4) the ones
containing e but no f, a nor d, and (5) the one
containing only ¢. Once all subsets are found, the
complete set of frequent closed itemsets is done.

. Find subsets of frequent closed itemsets. The sub-
sets of frequent closed itemsets can be mined by
constructing corresponding conditional databases
and mine each recursively.

(a)

Find frequent closed itemsets containing d. Only
transactions containing d are needed. The d-
conditional database, denoted as TDB|4, con-
tains all the transactions having d, which is
{cefa, cfa}. Notice that item d is omitted in
each transaction since it appears in every trans-
action in the d-conditional database.

The support of d 1s 2. Ttems ¢, f, and a
appear twice respectively in TDB|,. That is,
every transaction containing d also contains
¢, f, and a. Moreover, e is infrequent since
it appears only once in TDB|4. Therefore,
cfad : 2 is a frequent closed itemset. Since this
itemset covers every frequent item in T'DB|q4,
the mining of TDB|4 finishes.

Find frequent closed itemsets containing a but
no d. Similarly, the a-conditional database,
TDB|, = {cef,e,cf}. Ttem d in such transac-
tions are omitted, since all frequent closed item-
sets containing d have been found in TDB|,4.

Since sup(a) = 3 and there is no any item ap-

pearing in every transactions in the a-conditional

database, a : 3 is a frequent closed itemset.

To find the remaining frequent closed itemsets
containing ¢ but no d, we need to further
project the a-conditional database.  First,
the set of frequent items in the a-conditional
database forms a local frequent item list, f_list,
= {c:2,e:2,f:2)3 Local infrequent item is
ignored even if it is in global f_list.

According to f_list,, the frequent closed itemsets
containing a but no d can be further partitioned
into three subsets: (1) the ones containing af
but no d, (2) the ones containing ae but not
d or f, and (3) the ones containing ac but no

3In this example, it happens flist, is a prefix of (global)

f_list, with different counts. In general, the local frequent items
can be re-arranged according to the local support counts.

d, e or f. They can be mined by constructing
conditional databases recursively.

The support of fa equals to that of cfad,
which is a super set of fa and also a frequent
closed itemset already found. That means every
transaction containing fa must also contain
cfad. Therefore, there is no frequent closed
itemset containing fa but no d. Similarly, there
is no frequent closed itemset containing ca but
not d, e or f, since ca is a subset of ¢fad and
sup(ca) = sup(cfad).

The ea-conditional database, TDBlc.a = {c},
cannot generate any frequent items. Thus,
ea : 2 should be a frequent closed itemset.

(c) Find frequent closed itemsets containing f but no
a nor d. The f-conditional database, TDB|; =
{ce : 3,¢}, where ce : 3 indicates that ce
happens three times. Since ¢ happens in every
transaction in the f-conditional database, and
cf 1s not a subset of any frequent closed itemset
with the same support, c¢f : 4 is a frequent
closed itemset. Since the support of fe also
equals to those of f and ¢, f and ¢ always
happen together, so there is no frequent closed
itemsets containing ¢ but no f. Also, that
cef : 3 1s not a subset of any itemset found,
so 1t 1s a frequent closed itemset.

(d) Find frequent closed itemsets containing e but no
f,anord. Similarly, the e-conditional database,
TDB|. = {c : 3}. But ce is not a closed
itemset since it is a proper subset of cef and
sup(ce) = sup(cef). However, e : 4 is a frequent
closed itemsets.

(e) Find frequent closed itemsets containing only c.
In Step 3c, we know that there is no frequent
closed itemsets containing ¢ but no f, so there
is no frequent closed itemsets containing only c.

4. In summary, the set of frequent closed itemsets
found is {acdf : 2, a : 3, ae : 2, c¢f : 4, cef : 3,
e:4}. O

3.2 CLOSET: Algorithm and Soundness

Now, let us justify the correctness and completeness
of the mining process in Example 2.

Definition 3 (Frequent item list, f_list) Given a
transaction database T DB and a support threshold
min_sup, the list of all frequent items in support
descending order is called the frequent item list,
or f_list in short. a

Lemma 3.1 Given a transaction database TDB, a
support threshold min_sup, and f_list = (i1,12,...,1,),



the problem of mining the complete set of frequent
closed itemsets can be divided into n sub-problems:
The jt* problem (1 < j < n) is to find the complete
set of frequent closed itemsets containing in41—; but
noi (forn+1—j<k<n). a

The problem partitioning can be performed recur-
sively. That is, each subset of frequent closed itemsets
can be further divided when necessary. This forms a
divide-and-conquer framework. To mine the subsets
of frequent closed itemsets, we construct correspond-
ing conditional databases.

Definition 4 (Conditional database) Given a
transaction database TDB. Let i be a frequent item
in TDB. The i-conditional database, denoted
as TDB|;, is the subset of transactions in T'DB
containing ¢z, and all the occurrences of infrequent
items, item ¢, and items following 7 in the f_list are
omitted.

Let j be a frequent item in X-conditional database
TDB|x, where X is a frequent itemset. The jX-
conditional database, denoted as TDB]|;x, is the
subset of transactions in TDB|x containing j and all
the occurrences of local infrequent items, item 7, and
items following j in local f_listx are omitted. a

To find the frequent closed itemsets containing 2
but no other items following 7 in f_list, we construct
the i-conditional database. Then the subproblem
can be divided further if necessary. For instance,
in Example 2, we further construct the fa- and
ea-conditional databases based on the a-conditional
database.

How can we identify the frequent closed itemsets
from conditional databases? The following lemma
provides the theoretical foundation that CLOSET can
find frequent closed itemsets correctly.

Lemma 3.2 If X is a frequent closed itemset, then
there is no item appearing in every transaction in the
X -conditional database.

Proof. If there exists an item ¢ appearing in every
transaction in the X-conditional database, we have
sup(iX) = sup(X). Following Lemma 2.1, X cannot
be a closed itemset. Thus, we have the lemma. O

Lemma 3.3 If an itemset Y is the mazximal set
of items appearing in every transaction in the X-
conditional database, and X U'Y 1is not subsumed
by some already found frequent closed itemset with
tdentical support, then X UY s a frequent closed
itemset.

Proof. If an itemset Y is the maximal set of items
appearing in every transaction in the X-conditional

database, X U Y 1is potentially a frequent closed
itemset. The crucial point becomes whether later
generated frequent closed itemset may subsume it.
Suppose there exists a frequent closed itemset X U
Y U Z which subsumes X UY, i.e., being frequent
and having identical support k. Z will occur together
with X at least k times and should be either in X’s
conditional database or earlier, based on the rules of
construction conditional databases. Thus it cannot
appear later. Thus, we have the lemma. a

The search for closed itemsets can be improved
further by a few optimization techniques as shown
below.

Optimization 1 : Compress transactional and
conditional databases using an FP-tree structure.

An FP-tree [6] is a prefiz tree structure, represent-
ing compressed but complete frequent itemset in-
formation for a database. Its construction is sim-
ple.  The transactions with the same prefix share
the portion of a path from the root. Similarly, con-
ditional FP-trees can be constructed for conditional
databases. We refer readers to [6] for details about
the FP-tree and the related techniques.  There are
the following benefits for using FP-tree in the closed
itemsets computation.

o FP-tree compresses databases for frequent itmset
mining.  Transactions sharing common prefix
paths of a branch of the tree will not create any
new nodes in an FP-tree. Moreover, the deeper
the recursion in the construction of conditional
databases, the better chance of sharing, and the
more compact the conditional FP-tree.

e Conditional databases can be derived from FP-tree
efficiently. This is shown in [6]. Since FP-tree may
compress multiple transactions into one path, the
projection of this path is equivalent to the scan of
multiple transactions.

Optimization 2 : Extract items appearing in
every transaction of conditional database.

If there exists a set of items Y appearing in every
transaction of the X-conditional database, X UY
forms a frequent closed itemset if it is not a proper
subset of some frequent closed itemset with the same
support. For instance, in Example 2, since ¢, f, and
a appear in every transaction in the d-conditional
database, cfad should be a frequent closed itemset.
Note since such items can be easily identified at
the item counting phase, such an optimization takes
effect even before constructing the FP-tree for the
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Figure 2: Directly extract frequent closed itemsets
from FP-tree.

conditional database. The items extracted should
be excluded from the local frequent item list and
the conditional database. The soundness of the
optimization follows Lemma 3.3.

Optimization 2 takes effect when forming the con-
ditional database. It has the following benefits: (1)
1t reduces the size of FP-tree because the conditional
database contains less number of items after such ex-
traction, and (2) it may reduce the level of recursions
since 1t combines a few 1tems into one.

Optimization 3 : Directly extract frequent
closed itemsets from FP-tree.

If there exists a single prefix path in an FP-tree,
some frequent closed itemsets can be extracted di-
rectly from the conditional database. For example,
the f-conditional database in Example 2 has trans-
actions ce : 3 and ¢ : 1. Its corresponding FP-tree has
only one branch: (¢ : 4 e :3). In this case, one can
directly enumerate itemsets c¢f : 4 and cef : 3. Let
us examine this in more detail.

Definition 5 Let 7 be a frequent item in the X-
conditional database. If there is only one node N
labeled 7 in the corresponding FP-tree, every ancestor
of N has only one child, and N has (1) no child, (2)
more than one child, or (3) one child with count value
smaller than that of N, then the i-single segment
itemset is the union of itemset X and the set of items
including N and N’s ancestors (excluding the root).

O

Lemma 3.4 The i-single segment itemset Y is a
frequent closed itemset if the support of i within the
conditional database passes the given threshold and Y
s not a proper subset of any frequent closed itemset
already found.

Proof. In FP-tree, the count of N’s every ancestor
is no less than that of N. Since the support of 7
within the conditional database passes the support
threshold, Y is a frequent itemset. Now we show Y is
closed. Suppose there is an item j appearing in every
transaction containing Y but j ¢ Y. The support of j
in the conditional database must be equal to that of 7.
Since j ¢ Y, j must follow ¢ in the local frequent item
list and all item between ¢ and j (including ¢ and j)
have the same support, i.e., they also appear in every
transaction in the conditional database. According
to the construction of FP-tree, ¢ should have only one
son node, which is labeled by the item following 2
in the local frequent item list, and the count of that
node is exactly the same as that of 7. That leads to a
conflict with Y is the i-single segment itemset. Thus,
we have the lemma. a

Optimization 3 shares similar benefits as Optimiza-
tion 2. It allows the program to identify frequent
closed itemsets quickly, reduces the size of the remain-
ing FP-tree to be examined, and reduces the level of
recursions since it combines multiple items into one.

Optimization 4 : Prune search branches.

Let X and Y be two frequent itemsets with the
same support. If X C Y, and Y is a closed
itemset, then there is no need to search the X-
conditional database because there is no hope to
generate frequent closed itemset from there. For
example, in Example 2, we do not need to search the
c-conditional database, since ¢ is a subset of fe, which
is a frequent closed itemset with the same support.
The soundness of the optimization is verified in the
following lemma.

Lemma 3.5 Let X and Y be two frequent itemsets
with the same support. If X C Y, and Y 1is closed,
then there exists no frequent closed itemset containing
X but notY — X.

Proof. Let Z be a frequent closed itemset containing
X. Suppose Z does not contain some itemi € Y — X.
Since X C Y, according to the A-prior: heuristic,
sup(X) > (V). sup(X) = sup(Y) holds only if
for every transaction containing X, it also contains
Y — X. So item 7 must appear in every transaction
containing 7, since X C Z. That means Z is not
closed. So we have the lemma. a



Based on the above reasoning and analysis, we have

the algorithm of CLOSET as follows.

Algorithm 1 (CLOSET): Mining frequent closed
itemsets by the FP-tree method.

Input: Transaction database T'D B and support thresh-

old min_sup;

Output: The complete set of frequent closed item-
sets;

Method:

1. Initialization. Let FCI be the set of frequent
closed itemset. Initialize FCT +— 0;

2. Find frequent items. Scan transaction database
T DB, compute frequent item list f_list;

3. Mine frequent closed itemsets recursively. Call

CLOSET(#, TDB, flist, FCT).

Subroutine CLOSET(X, DB, f_list, FCT)

Parameters:

e X: the frequent itemset if DB is an X-conditional
database, or 0 if DB is TDB,;

e DB: transaction database of conditional database;

e f_list: frequent item list of DB;

e FCT: The set of frequent closed itemsets already
found.

Method:

1. Let Y be the set of items in f_list such that
they appear in every transaction of DB, insert
X UY to FCI if it is not a proper subset of
some itemset in F'C'T with the same support; //
Applying Optimization 2

2. Build FP-tree for DB, items already be extracted
should be excluded; // Applying Optimization 1

3. Apply Optimization 3 to extract frequent closed
itemsets if it 1s possible;

4. Form conditional database for every remaining
item in f_list, at the same time, compute local
frequent item lists for these conditional databases;

5. For each remaining item i in f.list, starting from
the last one, call CLOSET(iX, DB|;,f list;, FCT)
if X 1s not a subset of any frequent closed itemset
already found with the same support count, where
DB|; is the i-conditional database with respect to
DB and flist; is the corresponding frequent item
list. // Applying Optimization 4 O

Lemma 3.6 An itemset is a frequent closed itemset

iff CLOSET says so.

Proof. An itemset X 1is identified as a frequent
closed itemset by CLOSET when (1) X is frequent,
(2) there is no item appearing in every transaction
in X-conditional database, and (3) X is not a proper
subset of any frequent closed itemset already found.
To have the lemma, we show that there is no frequent
closed itemset Y which can be found later such that
X C Y. Suppose we can find such an itemset Y.
Then (Y — X) # () must happen in every transaction
of the X-conditional database. That leads to a
conflict with the fact that there i1s no item appearing
in every transaction in the X-conditional database.
Thus, we have the lemma. O

The correctness of the algorithm has been reasoned
step-by-step in this section. It generates the complete
set of frequent closed itemsets, as shown in Lemma
3.6. The four optimization techniques work with
the divide-and-conquer method to ensure that the
frequent closed itemsets can be extracted efficiently,
and the search space can be reduced substantially.
However, if the transaction database is very large, we
cannot assume that the FP-tree can always be held
in main memory. In next section, we develop some
techniques to ensure the scalability of CLOSET in
large databases.

3.3 Scaling up CLOSET in large databases

As specified in the last section, FP-tree contributes
substantially to the efficiency of CLOSET. When
the transaction database is large, it is unrealistic to
construct a main memory-based FP-tree. In such
cases, we can first construct conditional databases
without FP-tree, or construct disk-based FP-trees.
Disk-based FP-tree has been discussed in [6]. In this
section, we focus on building conditional databases
without FP-tree.

A naive method is to expand all conditional
databases from one parent at a time. However,
such a method basically duplicates T DB é times,
where [ 1s the average number of frequent items in
transactions. If the transaction database is very
large, the transactions are long, and there are many
frequent items, construction of many conditional
databases could be a costly operation.

Here, we propose a partition-based approach, which
can reduce the space cost dramatically. We illustrate
the principle using the following example.

Example 3 Let us consider construction of condi-
tional databases in Example 2 using a partition-based
approach, as demonstrated in Figure 3.
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Figure 3: Constructing conditional databases in
partition-based approach.

In the construction of conditional databases, in-
stead of copying a transaction to every conditional
database it takes part in, we only copy it to that of
the last f_list item it contains. For example, d is the
last item of the f_list the first transaction cefad con-
tains. So, instead of being copied into d- a- f- and
e-conditional databases simultaneously, the tuple is
only copied to the d-conditional database. After the
d-conditional database is processed, the transaction
is transferred to the conditional database of the sec-
ond to the last item a, and so on. In such a way, we
guarantee that at each level of recursion, the database
is partitioned at most once. But once the partition
is done, the original database can be gone. Such
a partition-based conditional database construction
needs to scan the database only once.

Please note that in the processing of a-conditional
database, it takes one scan of the a-conditional
database to partition it to fa- and ea-conditional
databases. At the same time, transactions in the a-
conditional database should be copied to the f- and
e-conditional databases. Figure 3 shows that how
cefad is copied to various conditional databases in
turn. O

With the partition-based conditional database con-
struction, CLOSET can proceed without FP-tree at
the first several rounds when the transaction database
is large, and FP-trees are constructed only when the
size of conditional databases can fit in memory.

One may wonder if we still can use Optimization
3 without FP-tree. Fortunately, we still can use it by
maintaining one branch of FP-tree. The spirit is that
we only maintain the upper portion of FP-tree from
the root to the first node with more than one son
branch.

4 Performance Study

In this section, we report our performance study of
the three algorithms for mining frequent closed item-
sets: CLOSET, CHARM, and A-close. A-close finds
frequent closed itemsets by (1) using the Apriori
framework, (2) pruning redundancies in candidates,
and (3) post-processing to generate complete but
non-duplicate result. CHARM explores a vertical data
format, and find frequent closet itemsets by comput-
ing intersections of sets of transaction ids (tids) for
itemsets.

All the experiments are performed on a 233MHz
Pentium PC with 128MB main memory, running on
Microsoft Windows/NT. All the programs are writ-
ten in Microsoft/Visual C++46.0. The A-close and
CHARM are implemented as described in [9] and [10].
We use runtime, i.e., the period between input and
output, to report our result, instead of using CPU
time measured in some literature.

We test the three methods on various datasets,
including synthetic ones generated by the standard
procedure described in [2], and real datasets used in
[4, 10]. Limited by space, we reported here only the
results on three datasets as follows.

e Synthetic dataset T25120D100K with 10K items.
In this dataset, the average transaction size and
average maximal potentially frequent itemset size
are set to 25 and 20, respectively, while there are
totally 100K transactions. This dataset is sparse.
Most of frequent itemsets are closed.

e Real dataset |: Connect-4. This data set is
from the UC-Irvine Machine Learning Database
Repository?. It is compiled from the Connect-
4 game state information. The total number of
transactions is 67,557, while each transaction is
with 43 items. It is a dense dataset with a lot of
long frequent itemsets.

e Real dataset IlI: pumsb. This data set is from
the IBM Almaden Resecarch Center®. There are
49,046 transactions in 1t, while each transaction
has 74 items. It is a dense dataset with many long
frequent itemsets.

4.1 Reduction of the size of itemsets
using frequent closed itemsets

Our experiments show that the number of frequent
itemsets which need to be represented in mining can
be reduced by an order of magnitude in a dense
database if they are represented by frequent closed
itemsets. For example, Table 2 lists the numbers

4http://www.ics.uci.edu/~mlearn/MLRepository.html
Shttp://www.almaden.ibm.com/cs/quest/demos.html



of frequent closed itemsets (#F.C.I) and frequent
itemsets (#F.I), as well as their ratio, in dataset
Connect-4.

Support | #F.C.1 |  #F.1 %
64179 (95%) | 812 2,205 .72
60801 (00%) | 3,486 | 27,127 778
54046 (0%) | 15,107 | 533,975 | 3535
17200 (70%) | 35,875 | 4,120,830 | 115.12

Table 2: The number of frequent closed itemsets
and frequent itemsets in dataset Connect-4.(F.C.I for
frequent closed itemsets and F.I for frequent itemsets.)

If we want to mine association rules in a dense
database, such as Connect-4, mining the set of
frequent closed itemsets and then generating rules
only on them will reduce search space substantially
and generate much smaller set of rules. As the
support threshold decreases, the saving becomes
increasingly substantial.

4.2 Comparison of A-close, CHARM and
CLOSET

The scalabilities of A-close, CHARM and CLOSET are
tested using various datasets. CLOSET outperforms
both CHARM and A-close.

As shown in Figure 4, in sparse dataset 120T25100K,
a majority of frequent itemsets are closed itemsets.
The performance of A-close is close to that of Apriori.
The advantage of CLOSET over A-close is basically
the same as that of FP-growth over Apriori. In this
dataset, CHARM also wins Apriori. Since the support
threshold is low, and the transaction identification
(tid) sets for frequent itemsets are relatively small,

CHARM is efficient. But it is slower than CLOSET.

The advantage of CLOSET becomes significant on
dense datasets. The results on dataset Connect-
4 1s shown in Figure 5. Please note that the
runtime in this figure i1s in logarithmic scale. For
example, CLOSET uses only 1690 seconds to find
out the complete set of 130,101 frequent closed
itemsets, when the support threshold is set to 33779
(50%). A-close even cannot find the result for support
threshold 54046 (80%) within that time.

Pumsb is a challenging dataset. The results over
this dataset are shown in Figure 6. A-close uses
more than 250 seconds to find out the frequent
closed itemsets for support threshold 90%, but
CLOSET needs only less than 100 seconds to find out
that for support threshold 80%.

From the experiments, we can observe that a
non-trivial cost of CHARM is from many intersection
operations over large sets of tids. For example, in

dataset Connect-4, if the support threshold is set to
95%, each set of tids of frequent itemset contains at

least 67557 x 95% = 64179 tids.

In order to test the scalability of CLOSET, we
generate the synthetic datasets with size in 2 to 10
times, and replicate the transactions of real datasets 2
to 10 times. We keep the support threshold constant
in percentage. The results are shown in Figure
7. The figure shows that CLOSET is scalable with
the increase of the number of transactions. It is
interesting to see that the runtime of CLOSET over
real datasets increases much slower than the sizes
of real datasets do. That is because CLOSET scans
the transaction databses only twice. After that,
the mining is confined to the FP-tree. No matter
how many times the datasets are replicated, the
FP-tree remains in the same shape with respect to
the constant support threshold in percentage.

In summary, CLOSET is efficient and scalable in
mining frequent closed itemsets in large databases.
It is much faster than A-close, and also faster than

CHARM.

5 Conclusions

Mining complete set of itemsets often suffers from
generating a very large number of itemsets and
association rules. Mining frequent closed itemsets
provides an interesting alternative since it inherits
the same analytical power as mining the whole set
of frequent itemsets but generates a much smaller
set of frequent itemsets and leads to less and more
interesting association rules than the former.

In this paper, we proposed an FP-tree-based database
projection method, CLOSET, for efficient mining of
frequent closed itemsets in large databases. Our pro-
posed algorithm, CLOSET, for mining closed item-
sets adopts three techniques: (1) applying a com-
pressed, frequent pattern tree FP-tree structure for
mining closed itemsets without candidate generation,
(2) developing a single prefix path compression tech-
nique to identify frequent closed itemsets quickly, and
(3) exploring a partition-based projection mechanism
for scalable mining in large databases.

Our performance study shows that CLOSET is
efficient and scalable over large databases, and is
faster than the previously proposed methods.
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