Apunte 3-1: Fórmulas y Ecuaciones

Sustancias inorgánicas

Moléculas diatómicas: H₂, O₂, N₂, F₂, Cl₂, Br₂, I₂

Metales + O₂ (óxidos básicos/óx. iónicos) + H₂O (hidróxidos/bases) + H₂ (hidruros metálicos)
 No metales + O₂ (óxidos ácidos/óx. covalentes) + H₂O (oxácidos/ácidos) + H₂ (hidruros no-metálicos o hidrácidos/ácidos (en sol. acuosa))

<u>Ácidos</u>: Sustancias que en disolución acuosa liberan iones hidrógeno como H⁺ (protón H): oxácidos (ácidos oxigenados) e hidrácidos (ácidos no oxigenados).

<u>Bases</u>: Sustancias que liberan aniones oxhidrilo (OH⁻) cuando están en solución acuosa. El amoníaco (NH₃) es un compuesto molecular que también se clasifica como base.

$$NH_3 + H_2O(1) \leftrightarrow NH_4^+ + OH^-$$

Nomenclatura:

- 1.- <u>Óxidos básicos</u>: (metal + O₂) (1) mono (4) tetra Ej: Na₂O óxido de sodio (clásica) (2) di (5) penta Monóxido de disodio (por atomicidad) (3) tri (6) hexa
 - Formación: $4 \text{ Na} + \text{O}_2 \rightarrow 2 \text{ Na}_2\text{O}$

Si tienen varias valencias:

Ej: 2 Fe^{II} + O₂
$$\rightarrow$$
 2 FeO óxido ferroso (clásica) (oso) \rightarrow valencia menor (ico) \rightarrow valencia mayor monóxido de hierro (por atomicidad)

óxido de Fe(II) (nomenclatura de Stock)

2.- $\underline{\acute{O}xidos}$ ácidos: (no metal + O₂)

Ej:
$$C + O_2 \rightarrow CO_2$$
 anhídrido carbónico u óxido carbónico dióxido de carbono

valencias en óxidos ácidos:

S: 4 (oso) / 6 (ico) / -2 forma un hidrácido **N**: 3 (oso) / 5 (ico)

Elementos con más de dos valencias:

Cl: 1 (hipo_oso) / 3 (oso) / 5 (ico) / 7 (per_ico) Ej: $4 \text{ Cl}^{\text{I}} + \text{O}_2 \rightarrow 2 \text{ Cl}_2\text{O}$ anhídrido hipocloroso

3.- **Hidróxidos**: (óxido básico + H₂O) bases

Tienen un radical hidróxido o anión oxhidrilo [OH⁻]

Ej: Na₂O + H₂O → 2 NaOH hidróxido de sodio (clásica)

(colocar tantos aniones oxhidrilo como valencia posea el metal, se ajusta el metal, H y O)

Ej: Fe^{II}: FeO + H₂O \rightarrow Fe(OH)₂ hidróxido ferroso (clásica)

hidróxido de Fe(II) (nomenclatura de Stock)

4.- **Hidruros metálicos**: (metal + H₂)

En este tipo de compuestos los metales actúan con valencias positivas mientras que el hidrógeno actúa con valencia -1. Se forman anteponiendo en primer lugar el metal seguido del hidrógeno. Ej: NaH

La nomenclatura tradicional de los hidruros metálicos se nombra con la palabra hidruro seguido del elemento metálico teniendo en cuenta la valencia del elemento metálico:

Ej: NaH hidruro sódico

CoH₂ hidruro cobaltoso

 TiH_2 hidruro hipotitanioso Ti(+2, +3, +4)

La nomenclatura de Stock se realiza con la palabra hidruro seguido del elemento metálico indicando entre paréntesis en números romanos el número de oxidación.

Ej: CoH₂: hidruro de cobalto (II)

La nomenclatura sistemática (atomicidad) se realiza utilizando los prefijos numerales:

Ej: NiH₂: dihidruro de níquel

5.- Oxácidos: (óxido ácido + H₂O) ácidos

Ej: S^{IV} : $SO_2 + H_2O \rightarrow H_2SO_3$ ácido sulfuroso

Ej: S^{VI} : $SO_3 + H_2O \rightarrow H_2SO_4$ ácido sulfúrico

Excepción en nombre (se obtienen con 3 moléculas de agua, polihidratado):

 $P_2O_3 + 3 H_2O \rightarrow 2 H_3PO_3$ ácido fosforoso

 $P_2O_5 + 3 H_2O \rightarrow 2 H_3PO_4$ ácido ortofosfórico o ácido fosfórico

6.- Hidrácidos: (halógeno ó S⁻² + H₂ en sol. acuosa) ácidos

Es una disolución de halogenuros de hidrógeno o sulfuro de hidrógeno en agua.

Los halógenos actúan con sus electrones de valencia desapareados, -1 y -2, respectivamente. El hidrógeno actúa con valencia +1.

Ej:
$$H_2 + Cl_2 \rightarrow 2$$
 HCl cloruro de hidrógeno (gas, hidruro no-metálico) ácido clorhídrico (acuoso, hidrácido)

7.- Sales: Se obtienen por reacción entre un ácido y una base, neutralización ácido-base.

$$H^+ + OH^- \rightarrow H_2O$$
oso \rightarrow ito oxácido
ico \rightarrow ato
hídrico \rightarrow uro } hidrácido

Ej:
$$2 \text{ HCl}$$
 + $Ca(OH)_2$ \rightarrow $CaCl_2$ + 2 H_2O ác. $clor\underline{h\acute{q}rico}$ hidróxido de calcio $clor\underline{uro}$ de calcio

Primero igualar la cantidad de iones H⁺ y OH⁻ liberados, en el ácido y el hidróxido, respectivamente (nos indicará la cantidad de moléculas de agua formadas).

Ej:
$$3 \text{ HNO}_2$$
 + Fe(OH)₃ \rightarrow Fe(NO₂)₃ + 2 H₂O ác. nitroso hidróxido férrico nitrito férrico

Los compuestos binarios formados por un metal y un no metal, en la fórmula va el metal seguido por el no metal. Ej: NaCl clor<u>uro</u> de sodio

En los compuestos binarios formados por dos no metales, en la fórmula se escribe primero el elemento con el estado de oxidación positivo. Ej: HCl