Chapter 1

A Taxonomy of
Multirobot Systems

Gregory Dudek, Michael Jenkin, and Evangelos Mil-
ios

1.1 Why a Taxonomy is Important

A key difficulty in the design of multi-agent robotic systems is the size and
complexity of the space of possible designs. In order to make principled
design decisions, an understanding of the many possible system configura-
tions is essential. In Dudek et al. [DJMW96] we presented a taxonomy that
classifies multi-agent systems according to communication, computational
and other capabilities. In this chapter we update the taxonomy developed
in the early 1990’s and place a number of recent multirobot systems within
it.

Task oriented behaviour by groups of agents is ubiquitous in nature.
How and why should multiple mobile robots be used for a task? Al-
though most mobile robotic systems involve a single robot operating alone
in its environment, a number of researchers have considered the problems
and potential advantages involved in having an environment inhabited by
a group of robots which cooperate in order to complete some required
task. For some specific robotic tasks, such as exploring an unknown planet
[AB98], pushing objects [Par94b, MNS95, RDJ95], or cleaning up toxic
waste[Par98], it has been suggested that rather than sending one very com-
plex robot to perform the task it would more effective to send a number of
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smaller, simpler robots. Such a collection of autonomous agents is some-
times described as a swarm [BW89], a colony [DMC96], or as a collective
[KZ93], or the robots may be said to exhibit cooperative behaviour [Par93].
Using multiple robots rather than a single robot can have several advan-
tages and leads to a variety of design tradeoffs. Collectives of simple robots
may be simpler in terms of individual physical design than a larger, more
complex robot, and thus the resulting system may be more economical,
more scalable and less susceptible to overall failure.

There is a continuum of possible collective designs. A collective might
consist of a collection of completely autonomous agents which only com-
municate by pairwise transfer of information. A collective might consist of
a number of remotely controlled appendages so that the entire collective
might more properly be described as a single large robot with distributed
actuators. Both of these extremes exist in the literature. Although this
later extreme might be considered as a collective, the more interesting case
occurs when the elements of the collective lack any functionally relevant,
permanent physical connectivity. We thus distinguish between a single,
complex and possibly distributed robot R and a collective of robots {r;}
which lack a functionally relevant, permanent physical connection.

Collectives offer the possibility of enhanced task performance, increased
task reliability and decreased cost over more traditional robotic systems.
Although they have this potential, many possible collective designs are nei-
ther more efficient, nor more reliable, nor more robust than a comparable
single (more complex) robot. In order for a collective to have these advan-
tages the collective must be designed with these issues in mind.

In addition to having these properties, it is essential that the collective
have an overall behaviour or set of actions that accomplishes the same be-
haviour or action that was required of the single more complex robot. For
a collective to exhibit cooperative intelligent behaviour, the members of
the collective must be able to communicate with each other. This commu-
nication may take place directly via an explicit communication channel or
indirectly through one robot sensing a change in other robots in its environ-
ment. Michaud and Vu [MV99] present an interesting example of agents
communicating via an external light that allows robots to communicate
motivations. Intra-collective communication presents difficulties in terms
of collective efficiency, fault tolerance, and cost.

Interactions between natural organisms such as birds, ants, termites,
wasps, primates, fish or wolves have been examined in the context of ethol-
ogy [Tin51, Tin72, McF89]. Observations from biology and ethology have
provided inspiration for developments ranging from subsumption architec-
tures for single robots to inter-robot communication strategies for groups
of robots [Bro91, AD91]. Canonical issues for biological groups include the
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maintenance of an appropriate distance between members of a school or
flock, often via purely local communications [Par82], or the communication
of the location of a goal such as a food source. While the specific behaviours
used by animals have been examined rigorously, the alternative design op-
tions for inter-agent communication has been less extensively examined.

How Task Impacts Team Organization

The next chapter addresses multirobot tasks in detail. Here we discuss
the issue briefly in order to consider how task and robot team organization
interrelate.

Traffic Control, Box Pushing and Foraging have been proposed as mul-
tiple robot tasks. Although these tasks have been addressed by robotic
collectives, are they appropriate tasks for this type of approach? Some
tasks seem ideally suited to multiple robotics. Gage [Gag92] identifies a
number of military applications such as mine deployment, carrier deck for-
eign object disposal, etc., as potential applications for robotic collectives.
These tasks are typified by the high potential for damage to individual
collective elements, and thus it is the expendability of collective elements
which is identified as the major reason for proposing robot collectives for
the task, rather than any particular computational efficiency or reliabil-
ity requirement. Although expendability is certainly a strong argument
for collections of inexpensive robots over a single more complex expensive
robot, are there computational reasons why a collective of robots should
be preferred? Given a particular task 7', which can be solved with either
one very complex robot R, or with a collective of robots {r;}, under what
conditions should R be chosen over {r;}?

Tasks that require multiple agents

Does there exist a task T which can be solved by {r;} but for which no R
can be found? Consider the following (missile launch) example;

There are two keys which are a large distance apart which must
be turned at the same time.

Note that this task does not necessarily require multiple robots to solve
it. If the keys are not too far apart then a single large robot can be used to
solve the problem. If the keys can be turned within some small time interval
of each other then a single fast robot R can solve the problem. In order to
exclude solutions which are based on a single robot R, the task must involve
spatially separate tasks which require some sort of synchronization. This
synchronization implies inter-robot communication. The robots must either
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have their clocks synchronized initially (which requires communication) and
then plan to turn their keys at precisely the same time, or they must be able
to communicate with each other in order to indicate that it is time to turn
the key. A more prosaic example is a multi-robot scene exploration system
that uses the motion of shadows in a scene to compute spatial occupancy. In
this case, one robot uses a camera to examine the scene while a second robot
moves a light source about the scene to cast appropriate shadows [LDZ95].

Tasks that are traditionally multiagent

Many modern transportation, industrial, agricultural, and fishing related
tasks are currently performed by a group of effectively autonomous agents.
The tasks that they perform are typically parallelized with small amounts of
coordinating communication at either the start (for truck delivery) or at the
end (forestry). In these tasks each element of {r;} operates independently
for the most part, utilizing inter-agent communication either initially, to
parcel up the expected workload in an efficient manner, or penultimately,
just before dealing with any work that was not covered during the parallel
portion of the processing. From a robotic collective point of view, the
computational processing is relatively straightforward due to the inherent
parallelism of the tasks.

Elements of these collectives operate in effective ignorance of each other.
Similar strategies have been proposed in robotic collectives work. For ex-
ample, the ignorant swarms of Mataric [Mat92] and the communication-
less swarms of Dudek et al [DJMW93a] propose to solve simple, highly
parallel tasks by having a number of robots solve a problem in parallel
without communication. Although this approach may maximize reliabil-
ity, it fails to maximize performance as members of the collective cannot
be directed to uncompleted work which they cannot sense directly. If ele-
ments of the collective do not communicate at all then task completion can
become probabilistic and while a probabilistic solution may be acceptable
for some problems it is not in general. For some foraging or search tasks,
such as finding lost children, a probabilistic solution is not appropriate and
inter-robot communication must occur.

Tasks which are inherently single agent

There exist tasks which do not benefit from the use of additional agents
in order to solve them. Task and environment can combine to remove any
benefit of the use of multiple agents. A single task at a single location
does not benefit from the use of multiple robots, as a single robot is both
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necessary and sufficient.

Tasks that may benefit from the use of multiple agents

Between these extremes exist tasks which could be performed faster, or
more reliably with a collective {r;} rather than with a single robot R.

Consider the issue of speed. Perhaps the collective {r;} can perform a
particular task faster than a single robot R. A typical task in this class is
that of finding a particular object in a finite region. If there are n elements
of {r;}, then one should expect a speedup of at most n if we assume that
each element of {r;} can do no more work per unit time than can R. Note
that in order to obtain a speedup near n the work performed by each
collective member must be well coordinated and each element of {r;} must
have abilities near those of R. If this is not the case then there will be a
loss of speedup as multiple robots will search the same area or individual
elements of {r;} will search less efficiently. Once again, a high level of
inter-robot communication is required.

It is also unlikely that individual elements of {r;} will be able to do
the same amount of work per unit time that can be accomplished by R.
Indeed, given a task 7" in which the only advantage of a collective is speed,
then it might be worthwhile improving the performance of R, rather than
constructing a reliable collective of {r;} to accomplish the same task.

Reliability (redundancy) is one performance measure for which collec-
tives easily exhibit performance over that of a single robot. Failure of a
single element of {r;} may not result in task failure. Failure of R guaran-
tees task failure. What sort of design features should be included in {r;}
so that the swarm exhibits reliability?

The communication mechanism utilized by the collective is critical to its
practicality, efficiency and reliability. The need for effective communication
is made quite clearly by Parker [Par95] who performed various tasks with
collectives whose members could and could not communicate with other
collective members. She found that global awareness of the state of the
collective members improves task efficiency. Rus et al [RDJ95] describes
furniture moving experiments using centralized and distributed control, and
also an experiment where communication takes place through the task itself.

The requirements of practicality, efficiency and reliability are typically
at odds with one another. Sophisticated inter-robot communication can
maximize performance for many tasks, yet such communication require-
ments often leads to reduced reliability. If there are fixed communication
topologies (e.g. [UFA92]) or controller robots (e.g. [HB92]), or other fragile
communication mechanisms, then failure of these fixed links in the commu-
nications network will cause the entire collective to fail. In order to maxi-



mize the reliability of the collective, the communication mechanism between
elements of {r;} must survive the worst possible destruction of collective el-
ements. Communication, like action, should be distributed throughout the
collective. Balch and Arkin [BA94] describe a number of simulation exper-
iments of various tasks (forage - look for things, consume - look for things
and then do work there removing it, graze - consume everything). Simu-
lations were constructed using different levels of communication between
the various elements of the collective, including no communication, state
communication (robots communicate information concerning their current
internal state to each other), and goal communication (robots communi-
cation information concerning goals to each other). The work is plainly
impacted by the implementation of the robots, and details of the simu-
lation. General findings are the following: (a) communication improves
performance significantly in tasks with little implicit communication, (b)
communication appears unnecessary in tasks for which implicit communi-
cation exists, (¢) more complex communication strategies offer little benefit
over basic communications. They define goal communication as more com-
plex than state communication.

Many different collective architectures have been proposed. The be-
haviour based control strategy proposed by Brooks [Bro91] has become
established as one possible approach for collections of simple independent
robots, particularly for simple tasks. Other authors have considered how a
collection of simple robots can be used to solve complex problems. Ueyama
et al [UFA92] propose a scheme whereby complex robots are organized
in tree-like hierarchies with communication between robots limited to the
structure of the hierarchy. Hackwood and Beni [HB92] propose a model
in which the robots are particularly simple but act under the influence of
“signpost robots”. These signposts can modify the internal state of the
swarm units as they pass by. Under the action of the signposts, the entire
swarm acts as a unit to carry out complex behaviours.

Mataric [Mat92] describes experiments with a homogeneous population
of actual robots acting under different communication constraints. The
robots either act in ignorance of one another, informed by one another,
or intelligently (cooperating) with one another. As intra-collective com-
munication improves, more and more complex behaviours are possible. In
the limit, in which all of the robots have complete communication, then
the robots can be considered as appendages of a single larger robot (or
robotic “intelligence”). One major goal of many robotic collectives is to
distribute not only the sensing (and possibly actions) of the robots, but
also the intelligence. What sort of processing can be accomplished by a
collection of robots that cannot be accomplished by a single one? What
effects do limits on communications and unit processing capabilities have
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on the potential actions of the collective? How do we compare the structure
of various possible collectives?

The information processing ability of a collective is dependent upon a
large number of factors including the number of units, their sensing abil-
ities, and their communication mechanisms (see [AH92, NA93]). In order
to understand more fully the properties of various designs of collectives, it
is instructive to group collectives into classes and to determine the capabil-
ities of each class. It may be the case that certain collective organizations
have more potential processing ability than others, and that some collective
organizations may be similar to existing parallel models of computation.

1.2 Dimensions of Robot Collective Taxonomies

There have been a number of efforts to develop descriptive categories or tax-

onomies for describing robot collectives. Dudek et al [DJMW93a, DJMW93c,
DIJMWO96] and independently Cao et al. [CFK97] have proposed the clas-

sification of swarm, collective or robot collaboration research by defining a

taxonomy or collection of axes. Cao et al [CFK97] define five research axes

for collectives:

e Group Architecture.

— Centralized/Decentralized.
— Differentiation - heterogeneous vs. homogeneous.

— Communication Structures (interaction via environment, via sens-
ing, and via via communications).

— Modelling of Other agents.

e Resource Conflicts - how members deal with resource conflicts (com-
munication).

e Origins of Cooperation - how cooperation is motivated and achieved.

e Learning - how the collective adapts to the task, primarily using evo-
lutionary techniques, such as reinforcement learning, neural network
controllers, genetic algorithms, and genetic programming.

e Geometric Problems - how path planning is addressed in collectives.

These axes are highly interdependent, as they focus on problems and solu-
tions, and very broad making it difficult to identify isolated sample points
within the taxonomy. The paper has an extensive set of references, and it
is an excellent survey of research up to 1997.
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Yuta and Premvuti [YP92] subdivided collectives based on the interac-
tions of collective elements; do individual elements work towards a common
objective or do they work independently. Arkin et al [ABN93] also exam-
ined different collectives along several dimensions but only in terms of a par-
ticular task. The objective of each of these taxonomies is both to clarify the
strengths, constraints and tradeoffs of various designs, and also to highlight
various design alternatives. Whereas Dudek et al [DJMW93a, DJIMW93c,
DIMWO96] concentrated on defining a taxonomy within which different
robot collectives could be compared and contrasted, Cao et al [CFKM95)
expands the axes of comparison to include learning and the geometric struc-
ture of the problem. Following Dudek et al this paper concentrates on the
more restrictive taxonomic comparison.

In the next chapter of this book Balch presents two highly focussed
taxonomies of multirobot systems. The first is a taxonomy of the features
of the task to be accomplished. The second is a taxonomy of rewards,
assuming a reinforcement learning framework.

Parker [Par00] presents a survey of research areas in distributed mobile
robot systems, and identifies open research questions and challenges. It is
claimed that biological influences, as emulations of known biological sys-
tems, on simple tasks involving cooperation and/or competition are well
understood, whereas biological approaches to complex tasks such as robot
soccer and especially their learning aspects are still wide open. Parker
includes references to more recent hardware implementations (up to 2000).

Stone and Veloso (Chapter ?? in this book) propose a taxonomy along
what are believed to be the most important aspects of agents, namely de-
gree of heterogeneity and degree of communication, with a focus on learn-
ing issues that arise because of the presence of multiple interacting agents.
Other issues touched upon include whether agents have global or local view,
whether an agent alters the environment so as to either affect the sensory
input or the effects of another agent’s actions. Machine learning techniques
involve reinforcement learning, genetic programming, or case-based reason-
ing (where agents store negative cases so as to avoid them in the future).
Interesting questions surveyed are:

e Whether explicit cooperation and commitment is better than totally
self-interested agents. In certain simplified predator-prey environ-
ments is no, but yes in more complex domains.

e What is communicated (goal information or state information, goal
is generally better).

e Open problem for agents is how to learn for themselves what to com-
municate and how to interpret it.
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e Simulated soccer domain has been a successful testbed for testing
multiagent designs, including machine learning. A survey of recent
research results in robotic soccer is presented.

e Layered learning (by the authors) is useful when learning a direct
mapping from sensing to actuators is intractable. Layered learning
consists in a hierarchical task decomposition and learning of mappings
between successive layers.

1.3 A Taxonomy of Robot Collectives

There are several natural dimensions along which robotic collectives can be
naturally classified. These dimensions address the characteristics of the col-
lective as a whole rather then the architectural characteristics of individual
robots. The dimensions follow, with key points along each dimension noted
with symbolic labels. Table 1.1 summarizes the axes of the taxonomy.

By size of the collective:

The number of robots in the environment.
SIZE-ALONE 1 robot. The minimal collective
SIZE-PAIR 2 robots. The simplest group.

SIZE-LIM Multiple robots. The number n is small relative to the size of
the task or environment.

SIZE-INF n > 1 robots. There is effectively an infinite number of robots.

Two robots can, of course, succeed at tasks that are impossible with a single
robot. Almost any operation involving simultaneity or near simultaneity of
events (such as turning two keys at the same time), is impossible with a sin-
gle spatially limited robot. Multiple robots can be used to obtain speedups
in terms of task performance subject to robot task synchronization.

The distinction between SIZE-LIM and SIZE-INF is a property of the
size of the task. A number of robot collectives assume that the number of
robots available for the task is unbounded (SIZE-INF) and this provides a
number of simplifications in terms of probabilistic task completion. As a
simple example, consider the task of searching a bounded environment for a
lost child or robot (this is known as the “find robbie” task). Provided that
the collective is SIZE-INF then one algorithm is given by flood filling the
environment with the robots. Eventually every location will either be filled
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with a robot (robbie wasn’t there) or one of the robots will find robbie. Note
that the robots do not have to communicate with each other to complete
this task - they just need sufficient sensing in order to be able to determine
if they have found robbie and to navigate to flood the environment. For any
finite sized collective (SIZE-LIM) this same algorithm is only probabilistic.

By communication range:

In most systems there are limits to the range of direct communication for
any single robot. This is a function both of the communications medium
and the robot distribution. We list three key classes for this dimension.

COM-NONE Robots cannot communicate with other robots directly.
It is possible for robots to communicate with each other indirectly
by observing their presence, absence or behaviour (as many animals
seem to). In order to have truly “ignorant robots” [Mat92], the robots
must not only not communicate with each other they must not try to
signal each other through behaviour.

COM-NEAR Robots can only communicate with other robots which are suf-
ficiently nearby.
This corresponds to the communication mechanism proposed by Hack-
wood and Beni [HB92]. Distance, in this context, can be interpreted
either topologically or in a Euclidean sense. A limited communica-
tion distance can occur due to physical communication constraints.
For example, the power of the communication signal is often limited
not only for local design reasons, but also to allow non-overlapping
use of the same channel (a scarce resource) by agents in different
geographical areas.

COM-INF Robots can communicate with any other robot. This is a classical
assumption, which is probably impractical if n > 1. The distinction
between COM-NEAR and COM-INF is analogous to the distinction
between SIZE-LIM and SIZE-INF. From a practical point of view,
the collective may be considered to be COM-NEAR if the communi-
cation range is smaller than the maximum separation of the robots
during their execution of the task of interest, and COM-INF if the
communication range is greater than this maximum separation. We
identify these two points in the communication range continuum to
highlight the qualitative difference in the constraints imposed on the
solution of a problem as the result of differences in communication
range.
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Note that we have deferred issues related to having multiple robots (au-
tonomous agents) communicating (writing) to a single robot (memory lo-
cation). This is a classic problem in parallel computation [FRW88]. As
minor modifications in the communication design of parallel machines can
result in major changes in the power of the resulting machine [Boa89], we
also partition the taxonomy by considering the topology of the inter-unit
communication strategy utilized by the collective.

Cao et ol [CFKM95] identify the communication structure as one of their
taxonomic axes, and identify interaction via the environment, sensing and
communications as three critical structures. The taxonomy presented here
provides a finer granularity in terms of communications in order to high-
light the importance of different communication strategies on the overall
capability of the collective.

By communication topology:

Robots may not be able to communicate with an arbitrary element of the
collective regardless of its proximity. Robots may only be allowed to com-
municate within a particularly hierarchy [UFA92], or with specific controller
robots [HB92]. Individual robots may have names and messages may be
sent to them directly, or messages may be broadcast to all robots. Some
key variations are:

TOP-BROAD Broadcast. Every robot can communicate with all of the other
robots.
It is not possible to send a message only to a particular element of
the collective.

TOP-ADD Address. Every robot can communicate with any arbitrary robot
by name or address.

TOP-TREE Tree. Robots are linked in a tree and may only communicate
through this hierarchy. This communication topology is utilized in
systems with controlling robots or supervisors such as in the FIRST
system [CP95].

TOP-GRAPH Robots are linked in a general graph.
This is a more general connectivity scheme than the tree and is more
robust since redundant links can prevent the entire collective from
becoming disconnected.

Communication strategies based on either tree-like or address based
communication topologies are likely to be highly sensitive to failure of par-
ticular robots in the collective. Failure of a particular robot will isolate
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robots on either side of the failed node in the hierarchy. Addressing implies
distinctive roles for individuals; resulting in reduced interchangeability, un-
less the robots’ roles change dynamically based on actions or failures of
other members of the collective. Note that the actual set of robots that can
communicate directly at any time is a function both of this dimension and
of the communication range and robot distribution in space.

By communication bandwidth:

Communication may be inexpensive in terms of the robots’ processing time,
in that the robot has a special channel for communication, or it may be
expensive in that the robot is prevented from doing other work while com-
municating. Sample points along this dimension include;

BAND-INF Communication is free.
The communication bandwidth is sufficiently high that the communi-
cation cost and overhead can be ignored. This is a common assump-
tion in theoretical computational models and can lead to robots that
behave as if there was a central intelligence.

BAND-MOTION Communication costs of the same order of magnitude of the
cost of moving the robot between locations.
This can be thought of as being similar to the mechanism by which
bees communicate by performing an intricate dance that is observed
by other bees in the neighborhood. Systems such as the block moving
algorithm of Brown and Jennings [BJ95] and some of the furniture
moving approaches of Rus et al [RDJ95] use the task to signal com-
munication. Although these may appear to be classified as BAND-ZERO
(described below), they are more correctly classified as BAND-MOTION
as the pushing action (motion) of one robot is communicated through
the object being pushed to other robots in the collective.

BAND-LOW Very high cost. Communication costs much more than the cost
of moving from one location to another.
This suggests very independent robots.

BAND-ZERO No communication.
Robots are unable to sense each other. As mentioned earlier, this
is probably an impractical case if coordinated collective behaviour is
desired.

Note that low bandwidth may be acceptable if the primary reason for using
multiple robots is redundancy rather than efficiency.
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Axis Description

Collective Size The number of autonomous agents in the
collective.
Communication Range The maximum distance between two elements of

the collective such that communication is still

possible.

Communication Topology Of the robots within the communication range,

those which can be communicated with.

Communication Bandwidth How much information elements of the collective

can transmit to each other.

Collective reconfigurability =~ The rate at which the organization of the collective

can be modified.

Processing Ability The computational model utilized by individual
elements of the collective.

Collective Composition Are the elements of the collective homogeneous or
heterogeneous.

Table 1.1: Summary of the taxonomic axes

Collective reconfigurability:

The rate at which the collective can spatially re-organize itself; roughly
equivalent to the rate at which members can move with respect to one
another. For example, bees can presumably reconfigure their spatial lay-
out with respect to one another very quickly while soldiers marching in
lock-step or cars on a highway cannot. This dimension is closely related to
the communication range of members of the collective. Changes in topol-
ogy, however, will alter the nearest-neighbor relationships and thus are not
equivalent to simple scaling of the communication range. In practice, there
may be topological constraints to the allowed reconfigurations. For exam-
ple, if the members of a robotic collective drive on roads, then only certain
topological changes are allowed irrespective of member velocity. This can
be seen in the work of Aguilar et al [AAFt95]. Here global control of a
collective operating within a roadway-like environment utilizes controllers
at intersections to communicate with robots adjacent to and heading to-
wards the intersection as well as other controllers. Another issue that de-
termines reconfigurability is the possible presence of non-holonomic motion
constraints on collective members: non-holonomic robots can reduce the
rate of reconfiguration due to complex maneuvering that may be required,
or they may render some configurations unattainable.
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ARR-STATIC Static arrangement.
The topology is fixed.

ARR-COMM Coordinated rearrangement.
Re-arrangement with members that communicate. In interesting ex-
ample of this is the formation control work of Balch et al [BA95] where
the group of robots can sometimes change to a specified alternative
topology.

ARR-DYN Dynamic arrangement.
The relationship of members of the collective can change arbitrarily.

Static collective arrangement is likely to result in very fragile collectives.
The centralization/decentralization axis of Cao et ol [CFKM95] includes
aspects of the collective reconfigurability and collective topology axes. Cao et
al distinguish between collectives in which there is a single controlling agent
and those which do not, while the design space presented here places less
emphasis on this particular dichotomy, in contrast with other options.

By processing ability of each collective unit:

Each unit of the collective has a particular model of computation. It may
be useful to model individual members of the collective with a computa-
tional model that is simpler, and therefore weaker, than that of a Turing
Machine. For example, if individual members of the collective are modelled
as finite state machines [HU79] (operating as a function of their sensors, the
current communication input, and some finite number of internal states)
then it will be possible to provide formal bounds on the execution of an
individual member of the collective. It is interesting to note that, even if in-
dividual members of the collective have a particular limited computational
model, the entire collective may have an overall computational ability that
is considerably more powerful. Thus, there exists the attractive possibil-
ity of having collectives where the computational power of individual units
is deliberately restricted, in order to allow formal reasoning about their
behaviour for example, but where the collective as a whole exhibits very
general computational abilities.

For simplicity, we deal only with the common simple sequential compu-
tational models. Note that this is a non-continuous dimension.

PROC-SUM Non-linear summation unit [HKP91].
This very simple unit is used in constructing a simulated neural net-
work but may be too simple to be a realistic model for a single robot
although it illustrates the near-extremum of this dimension.
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PROC-FSA Finite state automaton.
This is the computational model preferred by the subsumption archi-
tecture computational systems [Bro86]. Finite state models are also
used for many communication protocols to facilitate proofs of correct-
ness [Tan88]. It should be noted that individual units may in fact be
general-purpose processors, programmed to behave as FSAs in order
to simplify reasoning concerning their behaviour.

PROC-PDA Push-down automaton.

PROC-TME Turing machine equivalent.
The computational model assumed by most robotic systems.

By collective composition:

Even an ensemble of robots that is homogeneous in terms of physical struc-
ture may be differentiated by programming or behaviour. Thus, hetero-
geneity could be subdivided into both a physical component and a software
component, implemented using physically homogeneous robots. However,
we do not distinguish robots with identical software from those with non-
identical software since even identical software can act in very different
ways as a result of environmental stimuli or explicit negociation. Thus, a
collective may be:

CMP-IDENT Identical.

The collective is made up of units that are homogeneous in both
form and function (hardware and software). Note that this does not
preclude differentiation in the roles assumed by members of the group
based on environmental or stochastic factors. Note, further, that
assigning unique labels to elements of the collective is consistent with
this classification since it could be achieved procedurally, as it is in
some computer networks.

CMP-HOM Homogeneous.
The collective is made up of units all with essentially the same physical
characteristics.

CMP-HET Heterogeneous. The collective is made of of units that are not
physically uniform. In general, this also implies difference at the
behavioral level.

Balch (Chapter ?? in this book) treats the degree of homogeneity as a
result rather than an initial condition. He defines the notion of hierarchic
social entropy and uses it as a continuous measure for defining hierarchic
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clustering based on behavioural characteristics. Reinforcement learning is
used to associate actions with state, experiments with various reward func-
tions, including both individual rewards and group rewards, and rewards
upon delivery or progressive rewards as task gets accomplished. For two
tasks, soccer and multi-foraging, the diversity of the evolved team is mea-
sured and correlated with performance. It was found that local rewards
lead to greater homogeneity in both domains. In soccer, higher diversity
is associated with higher performance, whereas in multi-foraging, higher
diversity is associated with lower performance.

The value of the taxonomy as a language of discourse concerning swarm
robotics is twofold. First, it provides for the succinct description of systems
and results in the literature. Second, it maps out the space of possible
designs for a collective, giving the researcher guidance and perspective when
engaged in any theoretical or practical work. To illustrate the descriptive
power of the taxonomy, the following section provides the full taxonomic
labelling of some sample collectives from the literature.

1.4 The Power of Robot Collectives: Case
Studies

Distributed computer processing has been extensively studied by theoretical
computer scientists and mathematicians, as well as by computer designers.
Many models of robot collectives map onto pre-existing computational or
hardware models. An example of a related computational model is PRAM
(parallel random access machines) [van90], which is highly developed, but
has significant differences from robot collectives, because the latter involve
mobile processors.

The following case studies illustrate that there is something to be gained
by using a collective in place of a single robot. We show that sufficiently
sophisticated collectives can be used to solve particular problems and relate
these collectives to the taxonomy given above. We outline how the perfor-
mance of a collective can be provably better than that of a single robot for
certain tasks such as exploration.

Turing equivalence of a collective of finite automata

An unbounded number of robots {4;} whose processing abilities can be
modelled individually as finite automata with the ability to communicate
their state to their neighbours may simulate an arbitrary Turing Machine[DJMW96).
This is notable, because this fact makes it possible in principle to construct
a spatially distributed intelligence from a large collection of very simple
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devices. The individual automata may be mobile (moving according to

their own current state, as assigned by the distributed computation), and

thus able to accomplish some interesting actions in the world. It is not

our purpose to explore applications of the simulation constructed for the

proof of this result, because it is undoubtedly the case that more efficient

use could be made of the collective members by tailoring their behaviour to

the particular problem of interest instead of a Turing machine simulation.

This type of system is classified as:

(SIZE-INF, COM-NEAR, TOP-ADD, BAND-INF, ARR-STATIC, PROC-FSA, CMP-HET)

Exploration

Environmental exploration is a fundamental problem in autonomous robots.
Although many different exploration algorithms have been proposed in the
literature (see [DJ00] for a general introduction to the task), the vast bulk
of these algorithms deal with single-robot exploration. Given the time-
cost associated with exploration, it seems an almost ideal task for a robot
collective. A number of different multiple-robot exploration algorithms have
appeared in the literature.

Exploration using an occupancy-grid-based map

The problem of constructing an occupancy-grid-based map has been con-
sidered by Burgard et al [BMF*00]. Here two autonomous robots coop-
erate to construct an occupancy-grid representation of space. Each indi-
vidual robot constructs a probability-based occupancy-grid representation

of space. When the robots meet, data in the two grids are combined by
combining the occupancy probabilities computed by the robots separately.

Such a system is

(SIZE-LIM, COM-NEAR, TOP-ADD, BAND-INF, ARR-COM, PROC-TME, CMP-HOM)

Exploration using a topological map

A collective of robots can explore a graph-like (topological) environment
more effectively than a single robot[DJMW96]. The collective operates by
having individual robots start at a common location, and then move inde-
pendently to explore parts of the graph using the pebble-based exploration
algorithm described in [DJMW91]. This algorithm equips each robot with
a unique marker which the robot can pick-up/put-down at the robot’s cur-
rent location and thus can be used to solve the “have I been here before”
problem. The individual members of the collective meet on a pre-arranged
schedule to merge their maps and to subdivide the remaining unexplored
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portions of the graph. Various refinements of the general algorithm are
presented assuming more powerful robot-to-robot communication strate-

gies. Our taxonomy classifies this kind of system as

(SIZE-LIM, COM-NEAR, TOP-ADD, BAND-INF, ARR-COM, PROC-TME, CMP-HOM)

Exploration using a metric map

Although construction of a global metric representation may be useful for
some applications of robotic collectives, it is also possible to use the collec-
tive itself to define a global representation of space. Dudek et al[DIMW93b]
demonstrated how a collection of autonomous robots can define a mesh of
local coordinate systems with respect to one another without reference to
environmental positions (landmarks, markers, etc.). The approach involves
a robot-based representation for the environment, in which metric infor-
mation is used locally to determine the relative positions of neighbouring
robots, but the global map is a graph, capturing the neighbour relations
among the robots.

(SIZE-LIM, COM-NEAR, TOP-GRAPH, BAND-INF, ARR-COMM, PROC-TME, CMP-HOM)

Materials transport

Materials transport, and specifically box pushing have been considered by
a number of different researchers. Kube and Zhange[KZ96] describe a box-
pushing system in which a large number (n > 1) of robots find and move
boxes to an indicated goal. The boxes are designed so that they cannot be
moved by individual robots, but at least three robots are required in order
to move them. Essentially individual robots are attracted to the box to be
moved, and then push the box towards the goal. As multiple members of
the collective

(SIZE-INF, COM-NONE, NA, NA, NA, PROC-FSA, CMP-HOM)

Parker (see [Par98]) has conducted a series of experiments with both
homogeneous and heterogeneous teams of robots engaged in box pushing.
Individual members of the teams operate under ALLIANCE — a control
architecture in which a collection of motivational behaviours exist within
each robot. Each of the behaviours cross-inhibits other behaviours and be-
haviours become more or less urgent depending upon external events. The
ALLIANCE control architecture is expanded to multiple mobile robots by
having individual members of the collective broadcast their current active
behaviours to the other robots and hence through cross-inhibition to affect
the behaviour of other members of the collective.

(SIZE-LIM, COM-NEAR, TOP-BROAD, BAND-INF, ARR-COMM, PROC-TME, CMP-HOM)

18



Mataric et al [MNS95] describe experiments in box pushing with legged
robots. This system utilizes a synchronized “turn-taking” protocol to co-
ordinate the members of the collective. A my-turn token is cycled through
the members of the collective and only the robot who has the token is
permitted to move. Their system is
(SIZE-LIM, COM-NEAR, TOP-ADD, BAND-INF, ARR-COMM, PROC-TME, CMP-HET)

Hirataet al [HKA™00] describe a multiple mobile robot system for co-
ordinated transportation of material. A leader robot with one or more
follower robots coordinate to transport a solid object. Each of the robots
is assumed to be attached to the object to be moved. As the leader moves,
each of the follower robots sense the force acting upon them by the motion
of the leader robot and then move in the same direction. In essence the
leader robot communicates to the follower robot through the object to be
transported.

(SIZE-LIM, COM-NEAR, TOP-BROAD, BAND-LIM, ARR-STATIC, PROC-TME,
CMP-HET)

Coordinated sensing

Jenkin and Dudek [JD00] describe a multi-robot system in which the robots
in the collective coordinate to provide maximal sensor coverage of a target
robot. The robots in the collective define a common coordinate system
based on the target, and each robot broadcasts its pose relative to this
common coordinate system. A global energy function is defined which has
a minimum when sensor coverage is achieved. Each member of the collective
then estimates the global energy and moves to minimize the system energy.
(SIZE-LIM, COM-NEAR, TOP-BROAD, BAND-LIM, ARR-COMM, PROC-TME, CMP-HOM)

Robot soccer

RoboCup[KAK™95] is an international effort to establish a set of Robot soc-
cer leagues. One particular example is the CMUnited-97 system [VSHA98]
in which, as is typical for CMP-HOM, not all robots are necessarily attempt-
ing to play the same role at any given time. The roles of the individual
agents or the fixed-size team can be modified during the course of a soccer
game, based on observed characteristics of the game. A single global pro-
cessor performs perception and reasoning for the entire team, and hence
the entire team can also be regarded as a single distributed robot, although
each robot has its own “module”.

(SIZE-LIM, COM-INF, TOP-BROAD, BAND-MOTION, ARR-DYN, PROC-TME,
CMP-HOM)
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Moving in formation

There is considerable research interest in the task of having one autonomous
vehicle follow another [DZ87, KRIT94, Par94a, KRIT94, DOK98, BA95).
The task is usually implemented as only a single robot following some other
autonomous agent. (The task is often called leader-follower, and is typi-
cally implemented using heterogeneous robots.) A variety of strategies are
available for implementing this type of inter-robot collaboration. It is usu-
ally assumed that the target to be followed does not actively aid in the
processes but rather that the follower must attempt to track the leader as
the leader undergoes possibly rapid random motion changes, although if
the leader does communicate its intentions to the follower, this information
can be exploited (see Dudek et al.[DJMW96].

Desai et al.[DOK98] have developed a collection of control laws for non-
holonomic robots moving in formation. They assume that the robots can
sense and communicate with local robots, and develop control laws for the
individual robots which converge in such a manner that the entire collective
exhibits the desired behaviour. Fundamental to their control system is the
ability for individual robots to establish a common coordinate system and
communicate/sense within it.

(SIZE-LIM, COM-NEAR, TOP-ADD, BAND-INF, ARR-COMM, PROC-TME, CMP-HET)

Dudek et al.[DJMW96] describe leader-follower experiments in which
the leader robot signals its intention to the follower robot. This signalling is
performed by the leader robot making specific motions prior to the intended
motion which can be easily sensed by the follower robot. This cue is then
exploited by the follower robot.

(SIZE-LIM, COM-NEAR, TOP-BROAD, BAND-LIM, ARR-COMM, PROC-TME, CMP-HET)

1.5 Summary and Conclusions

A taxonomy for systems of multiple mobile robots provides a common lan-
guage for the description of seemingly disparate theoretical and practical
results. The taxonomy serves the dual functions of allowing concise de-
scription of the key characteristics of different collectives, and describing
the extent of the space of possible designs. As a result, we have been able
to provide a succinct comparative survey of the current literature.
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