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Abstract: Some connections between operator theory and wavelet anal-
ysis: Since the mid eighties, it has become clear that key tools in wavelet
analysis rely crucially on operator theory. While isolated variations of
wavelets, and wavelet constructions had previously been known, since
Haar in 1910, it was the advent of multiresolutions, and sub-band fil-
tering techniques which provided the tools for our ability to now eas-
ily create efficient algorithms, ready for a rich variety of applications to
practical tasks. Part of the underpinning for this development in wavelet
analysis is operator theory. This will be presented in the lectures, and
we will also point to a number of developments in operator theory which
in turn derive from wavelet problems, but which are of independent in-
terest in mathematics. Some of the material will build on chapters in
a new wavelet book, co-authored by the speaker and Ola Bratteli, see
http://www.math.uiowa.edu/˜jorgen/.
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One cannot expect any serious understanding of what wavelet analysis

means without a deep knowledge of the corresponding operator theory.

—Yves Meyer∗

1. Introduction

While this series of four lectures will be on the subject of wavelets, the

emphasis will be on some interconnections between topics in the mathe-

matics of wavelets and other areas, both within mathematics and outside.

Connections to operator theory, to quantum theory, and especially to sig-

nal processing will be studied. Concepts such as high-pass and low-pass

filters have become synonymous with wavelet tools, but they have also had

a significance from the very start of signal processing, for example early

telephone signals over transatlantic cables. This was long before the much

more recent advances in wavelets which started in the mid-1980’s (as a re-

sumption, in fact, of ideas going back to Alfred Haar [Haa10] much earlier).

2000 Mathematics Subject Classification: Primary 42C40, 46L60, 47L30, 42A16, 43A65;
Secondary 46L45, 42A65, 41A15 .
Key words and phrases: signal processing, matrix functions, infinite products, pyramid
algorithm, subdivision algorithm, multiresolution, generalized multiresolution, wavelet
packets, library of bases, wavelet filters, high-pass, low-pass filters, filter bank, Gabor
frames, fractal measures, wavelet sets, transfer operator, Ruelle operator, Perron–
Frobenius, dimension function, homotopy, winding number, index theorem, spectral
representation, translation invariance, Hilbert space, biorthogonal wavelet, Cuntz
algebra, completely positive map, Fock space, creation operators.
Work supported in part by the U.S. National Science Foundation under grants DMS-
9987777 and DMS-0139473(FRG); financial support from the National University of
Singapore.
∗[Mey00]; see also the web page http://www.math.uiowa.edu/˜jorgen/quotes.html.
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1.1. Index of terminology in math and in engineering

Since the mid-1980’s wavelet mathematics has served to some extent as a

clearing house for ideas from diverse areas from mathematics, from engi-

neering, as well as from other areas of science, such as quantum theory

and optics. This makes the interdisciplinary communication difficult, as

the lingo differs from field to field; even to the degree that the same term

might have a different name to some wavelet practitioners from what is

has to others. In recognition of this fact, Chapter 1 in the recent wavelet

book [BrJo02b] samples a little dictionary of relevant terms. Parts of it are

reproduced here:

Terminology

• multiresolution: —real world: a set of band-pass-filtered com-

ponent images, assembled into a mosaic of resolution bands, each

resolution tied to a finer one and a coarser one.

—mathematics: used in wavelet analysis and fractal analysis, mul-

tiresolutions are systems of closed subspaces in a Hilbert space,

such as L2 (R), with the subspaces nested, each subspace repre-

senting a resolution, and the relative complement subspaces rep-

resenting the detail which is added in getting to the next finer

resolution subspace.

• matrix function: a function from the circle, or the one-torus,

taking values in a group of N -by-N complex matrices.

• wavelet: a function ψ, or a finite system of functions {ψi}, such

that for some scale number N and a lattice of translation points on

R, say Z, a basis for L2 (R) can be built consisting of the functions

N
j

2ψi
(
N jx− k

)
, j, k ∈ Z.

Then dulcet music swelled

Concordant with the life-strings of the soul;

It throbbed in sweet and languid beatings there,

Catching new life from transitory death;

Like the vague sighings of a wind at even

That wakes the wavelets of the slumbering sea. . .

—Shelley, Queen Mab

• subband filter: —engineering: signals are viewed as functions of

time and frequency, the frequency function resulting from a trans-

form of the time function; the frequency variable is broken up into

bands, and up-sampling and down-sampling are combined with a
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filtering of the frequencies in making the connection from one band

to the next.

—wavelets: scaling is used in passing from one resolution V to

the next; if a scale N is used from V to the next finer resolution,

then scaling by 1
N takes V to a coarser resolution V1 represented

by a subspace of V , but there is a set of functions which serve as

multipliers when relating V to V1, and they are called subband

filters.

• cascades: —real world: a system of successive refinements which

pass from a scale to a finer one, and so on; used for example

in graphics algorithms: starting with control points, a refinement

matrix and masking coefficients are used in a cascade algorithm

yielding a cascade of masking points and a cascade approximation

to a picture.

—wavelets: in one dimension the scaling is by a number and a

fixed simple function, for example of the form
0 1

is chosen as

the initial step for the cascades; when the masking coefficients are

chosen the cascade approximation leads to a scaling function.

• scaling function: a function, or a distribution, ϕ, defined on the

real line R which has the property that, for some integer N > 1,

the coarser version ϕ
(
x
N

)
is in the closure (relative to some metric)

of the linear span of the set of translated functions . . . , ϕ (x+ 1),

ϕ (x), ϕ (x− 1), ϕ (x− 2) , . . . .

• logic gates: —in computation the classical logic gates are real-

ized as computers, for example as electronic switching circuits with

two-level voltages, say high and low. Several gates have two input

voltages and one output, each one allowing switching between high

and low: The output of the AND gate is high if and only if both

inputs are high. The XOR gate has high output if and only if one

of the inputs, but not more than one, is high.

• qubits: —in physics and in computation: qubits are the quantum

analogue of the classical bits 0 and 1 which are the letters of classi-

cal computers, the qubits are formed of two-level quantum systems,

electrons in a magnetic field or polarized photons, and they are rep-

resented in Dirac’s formalism |0〉 and |1〉; quantum theory allows

superpositions, so states |ψ〉 = a |0〉+ b |0〉, a, b ∈ C, |a|2 + |b|2 = 1,

are also admitted, and computation in the quantum realm allows

a continuum of states, as opposed to just the two classical bits.
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—mathematics: a chosen and distinguished basis for the two-

dimensional Hilbert space C2 consisting of orthogonal unit vectors,

denoted |0〉, |1〉.
• universality: —classical computing: the property of a set of logic

gates that they suffice for the implementation of every program; or

of a single gate that, taken together with the NOT gate, it suffices

for the implementation of every program.

—quantum computing: the property of a set S of basic quantum

gates that every (invertible) gate can be written as a sequence of

steps using only gates from S. Usually S may be chosen to consist

of one-qubit gates and a distinguished tensor gate t. An example of

a choice for t is CNOT. An alternative universal one is the Toffoli

gate.

—mathematics: the property of a set S of basic unitary matrices

that for every n and every u ∈ U2n (C), there is a factorization

u = s1s2 · · · sk, si ∈ S, with the understanding that the factors

si are inserted in a chosen tensor configuration of the quantum

register C2 ⊗ · · · ⊗ C2

︸ ︷︷ ︸
n times

. Note that the factors si, the number k, and

the configuration of the si’s all depend on n and the gate u ∈
U2n (C) to be studied. The quantum wavelet algorithm (2.2.6) is

an example of such a matrix u.

• chaos: a small variation or disturbance in the initial states or input

of some system giving rise to a disproportionate, or exponentially

growing, deviation in the resulting output trajectory, or output

data. The term is used more generally, denoting rather drastic

forms of instability; and it is measured by the use of statistical

devices, or averaging methods.

• GLN (C): the general linear group of all complex N ×N invertible

matrices.

• UN (C): = {A ∈ GLN (C) | AA∗ = 1CN } where A∗ denotes the ad-

joint matrix, i.e., (A∗)i,j = Āj,i.

• transfer operator (transition operator): —in probability: An

operator which transforms signals s from input sin to output sout.

The signals are represented as functions on some set E. In the sim-

plest case, the operator is linear and given in terms of conditional

probabilities p (x, y). The number p (x, y) may represent the prob-

ability of a transition from y to x where x and y are points in the
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set E. Then

sout (x) =
∑

y∈E

p (x, y) sin (y) .

—in computation: Let X and Y be functions on a set E, both

taking values in {0, 1}. Let Y be the initial state of the bit, and

X the final state of the bit. If the process is governed by a prob-

ability distribution P , then the transition probabilities p (x, y) :=

P ({X = x | Y = y }) are conditional probabilities: i.e., p (x, y) is

the probability of a final bit value x given an initial value y, and

we have

P ({X = x}) =
∑

y∈E

p (x, y)P ({Y = y}) .

—in wavelet theory: Let N ∈ Z+, and let W be a positive function

on T = { z ∈ C | |z| = 1 }, for example W = |m0|2 where m0 is

some low-pass wavelet filter with N bands. (Positivity is only in

the sense W ≥ 0, nonnegative, and the function W may vanish on

a subset of T.) Then define a function p on T× T as follows:

p (z, w) =

{(
1
N

)
W (w) if wN = z,

0 for all other values of w.

We arrive at the transfer operator RW , i.e., the operator trans-

forming functions on T as follows:

sout (z) = (RW sin) (z) =
1

N

∑

wN=z

W (w) sin (w) .

• coherence: —in mathematics and physics: The vectors ψi that

make up a tight frame, one which is not an orthonormal basis,

are said to be subjected to coherence. So coherent vector systems

in Hilbert space are viewed as bases which generalize the more

standard concept of orthonormal bases from harmonic analysis. A

striking feature of the wavelets with compact support, which are

based on scaling, is that the varieties of the two kinds of bases can

be well understood geometrically. For example, the collapse of the

wavelet orthogonality relations, degenerating into coherent vectors,

happens on a subvariety of a lower dimension.

More generally, coherent vectors in mathematical physics often

arise with a continuous index, even if the Hilbert space is sepa-

rable, i.e., has a countable orthonormal basis. This is illustrated by
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a vector system {ψr,s}, which should be thought of as a continuous

analogue, i.e., a version where a sum gets replaced with an integral

C−1
ψ

∫∫

R2

dr ds

r2
|〈ψr,s | f 〉|2 = ‖f‖2 .

For more details, see also Section 3.3 of [Dau92] and Chapter 3 of

[Kai94].

In quantum mechanics, one talks, for example, about coherent

states in connection with wavefunctions of the harmonic oscilla-

tor. Combinations of stationary wavefunctions from different en-

ergy eigenvalues vary periodically in time, and the question is which

of the continuously varying wavefunctions one may use to expand

an unknown function in without encountering overcompleteness of

the basis. The methods of “coherent states” are methods for us-

ing these kinds of functions (which fit some problems elegantly)

while avoiding the difficulties of overcompleteness. The term “co-

herent” applies when you succeed in avoiding those difficulties by

some means or other. Of course, for students who have just learned

about the classic complete orthonormal basis of stationary eigen-

functions, “coherent state” methods at first may seem like a daring

relaxation of the rules of orthogonality, so that the term seems to

stand for total freedom!

1.1.1. Some background on Hilbert space

Wavelet theory is the art of finding a special kind of basis in Hilbert space.

Let H be a Hilbert space over C and denote the inner product 〈 · | · 〉. For

us, it is assumed linear in the second variable. If H = L2 (R), then

〈 f | g 〉 :=
∫

R

f (x) g (x) dx. (1.1.1)

If H = ℓ2 (Z), then

〈 ξ | η 〉 :=
∑

n∈Z

ξ̄nηn. (1.1.2)

Let T = R/2πZ. If H = L2 (T), then

〈 f | g 〉 := 1

2π

∫ π

−π

f (θ) g (θ) dθ. (1.1.3)
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Functions f ∈ L2 (T) have Fourier series: Setting en (θ) = einθ,

f̂ (n) := 〈 en | f 〉 =
1

2π

∫ π

−π

e−inθf (θ) dθ, (1.1.4)

and

‖f‖2L2(T) =
∑

n∈Z

∣∣∣f̂ (n)
∣∣∣
2

. (1.1.5)

Similarly if f ∈ L2 (R), then

f̂ (t) :=

∫

R

e−ixtf (x) dx, (1.1.6)

and

‖f‖2L2(R) =
1

2π

∫

R

∣∣∣f̂ (t)
∣∣∣
2

dt. (1.1.7)

Let J be an index set. We shall only need to consider the case when J

is countable. Let {ψα}α∈J be a family of nonzero vectors in a Hilbert space

H. We say it is an orthonormal basis (ONB) if

〈ψα | ψβ 〉 = δα,β (Kronecker delta) (1.1.8)

and if
∑

α∈J

|〈ψα | f 〉|2 = ‖f‖2 holds for all f ∈ H. (1.1.9)

If only (1.1.9) is assumed, but not (1.1.8), we say that {ψα}α∈J is a

(normalized) tight frame. We say that it is a frame with frame constants

0 < A ≤ B <∞ if

A ‖f‖2 ≤
∑

α∈J

|〈ψα | f 〉|2 ≤ B ‖f‖2 holds for all f ∈ H.

Introducing the rank-one operators Qα := |ψα〉 〈ψα| of Dirac’s terminology,

see [BrJo02b], we see that {ψα}α∈J is an ONB if and only if the Qα’s are

projections and
∑

α∈J

Qα = I (= the identity operator in H). (1.1.10)

It is a (normalized) tight frame if and only if (1.1.10) holds but with no

further restriction on the rank-one operators Qα. It is a frame with frame

constants A and B if the operator

S :=
∑

α∈J

Qα (1.1.11)
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satisfies

AI ≤ S ≤ BI
in the order of hermitian operators. (We say that operators Hi = H∗

i ,

i = 1, 2, satisfy H1 ≤ H2 if 〈 f | H1f 〉 ≤ 〈 f | H2f 〉 holds for all f ∈ H).

Wavelets in L2 (R) are generated by simple operations on one or more

functions ψ in L2 (R), the operations come in pairs, say scaling and trans-

lation, or phase-modulation and translations. If N ∈ {2, 3, . . .} we set

ψj,k (x) := N j/2ψ
(
N jx− k

)
for j, k ∈ Z. (1.1.12)

1.1.2. Connections to group theory

We stress the discrete wavelet transform. But the first line in the two ta-

bles below is the continuous one. It is the only treatment we give to the

continuous wavelet transform, and the corresponding coherent vector de-

compositions. But, as is stressed in [Dau92], [Kai94], and [KaLe95], the

continuous version came first.

Summary of and variations on the resolution of the identity operator

1 in L2 or in ℓ2, for ψ and ψ̃ where ψr,s (x) = r−
1

2ψ
(
x−s
r

)
, Cψ =

∫
R

dω
|ω| |ψ̂ (ω)|2 <∞, similarly for ψ̃ and Cψ,ψ̃ =

∫
R

dω
|ω| ψ̂ (ω)

ˆ̃
ψ (ω):

N = 2 Overcomplete Basis Dual Bases

continuous

resolution

C−1
ψ

∫∫

R2

dr ds

r2
|ψr,s〉〈ψr,s|

= 1L2

C−1

ψ,ψ̃

∫∫

R2

dr ds

r2
|ψr,s〉〈ψ̃r,s|

= 1L2

discrete

resolution

∑

j∈Z

∑

k∈Z

|ψj,k〉 〈ψj,k| = 1L2 ,

ψj,k corresponding to

r = 2−j , s = k2−j

∑

j∈Z

∑

k∈Z

|ψj,k〉 〈ψ̃j,k| = 1L2

N ≥ 2 Isometries in ℓ2 Dual Operator System in ℓ2

sequence

spaces

N−1∑

i=0

SiS
∗
i = 1ℓ2 ,

where S0, . . . , SN−1

are adjoints to the

quadrature mirror filter

operators Fi, i.e., Si = F ∗
i

N−1∑

i=0

SiS̃
∗
i = 1ℓ2 ,

for a dual

operator system

S0, . . . , SN−1,

S̃0, . . . , S̃N−1
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Consult Chapter 3 of [Kai94] for the continuous resolution, and

Section 2.2 of [BrJo02b] for the discrete resolution. If h, k are vectors

in a Hilbert space H, then the operator A = |h〉 〈k| is defined by

the identity 〈u | Av 〉 = 〈u | h 〉 〈 k | v 〉 for all u, v ∈ H. Then the

assertions in the first table amount to:

C−1
ψ

∫∫

R2

dr ds

r2
|〈ψr,s | f 〉|2

= ‖f‖2L2 ∀ f ∈ L2 (R)

C−1

ψ,ψ̃

∫∫

R2

dr ds

r2
〈 f | ψr,s 〉 〈 ψ̃r,s | g 〉

= 〈 f | g 〉 ∀ f, g ∈ L2 (R)
∑

j∈Z

∑

k∈Z

|〈ψj,k | f 〉|2

= ‖f‖2L2 ∀ f ∈ L2 (R)

∑

j∈Z

∑

k∈Z

〈 f | ψj,k 〉 〈 ψ̃j,k | g 〉

= 〈 f | g 〉 ∀ f, g ∈ L2 (R)

N−1∑

i=0

‖S∗
i c‖

2
= ‖c‖2 ∀ c ∈ ℓ2

N−1∑

i=0

〈S∗
i c | S̃∗

i d 〉 = 〈 c | d 〉 ∀ c, d ∈ ℓ2

A function ψ satisfying the resolution identity is called a coherent vector

in mathematical physics. The representation theory for the (ax+ b)-group,

i.e., the matrix group G = { ( a b0 1 ) | a ∈ R+, b ∈ R }, serves as its underpin-

ning. Then the tables above illustrate how the {ψj,k} wavelet system arises

from a discretization of the following unitary representation of G:
(
U(a b0 1 )f

)
(x) = a−

1

2 f

(
x− b
a

)
(1.1.13)

acting on L2 (R). This unitary representation also explains the discretiza-

tion step in passing from the first line to the second in the tables above. The

functions {ψj,k | j, k ∈ Z } which make up a wavelet system result from the

choice of a suitable coherent vector ψ ∈ L2 (R), and then setting

ψj,k (x) =

(
U( 2−j k·2−j

0 1

)ψ

)
(x) = 2

j

2ψ
(
2jx− k

)
. (1.1.14)

Even though this representation lies at the historical origin of the subject

of wavelets (see [DGM86]), the (ax+ b)-group seems to be now largely

forgotten in the next generation of the wavelet community. But Chapters

1–3 of [Dau92] still serve as a beautiful presentation of this (now much

ignored) side of the subject. It also serves as a link to mathematical physics

and to classical analysis.

Since the representation U in (1.1.13) on L2 (R), when a unitary U is

defined from (1.1.13) setting a = 2, b = 0, (Uf) (x) := 2−
1

2 f
(
x
2

)
, leaves
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invariant the Hardy space

H+ =
{
f ∈ L2 (R) | supp (f̂) ⊂ [0,∞〉

}
, (1.1.15)

formula (1.1.14) suggests that it would be simpler to look for wavelets in

H+. After all, it is a smaller space, and it is natural to try to use the causal-

ity features of H+ implied by the support condition in (1.1.15). Moreover,

in the world of the Fourier transform, the two operations of the formulas

(1.1.13) and (1.1.14) take the simpler forms

f̂ 7−→ a
1

2 e−ibtf̂ (at) and ψ̂ 7−→ 2
j
2 e−i2

jktψ̂
(
2jt
)
. (1.1.16)

So in the early nineties, this was an open problem in the theory, i.e., whether

or not there are wavelets in the Hardy space; but it received a beautiful

answer in [Aus95]. Auscher showed that there are no wavelet functions ψ

in H+ which satisfy the following mild regularity properties:

(R0) ψ̂ is continuous;

(Rε) for some ε ∈ R+, ψ̂ (t) = O (|t|ε)
and ψ̂ (t) = O

(
(1 + |t|)−ε−

1

2

)
, t ∈ R.

Comparison of formulas (1.1.13) and (1.1.14) shows that The tradi-

tional discrete wavelet transform may be viewed as the restriction to a

subgroup H of a classical unitary representation of G. The unitary repre-

sentations of G are completely understood: the set of irreducible unitary

representations consists of two infinite-dimensional inequivalent subrepre-

sentations of the representation (1.1.13) on L2 (R), together with the one-

dimensional representations ( a b0 1 ) → aik parameterized by k ∈ R. (The

two subrepresentations of (1.1.13) are obtained by restricting to f ∈ L2 (R)

with supp f̂ ⊆ 〈−∞, 0] and supp f̂ ⊆ [0,∞〉, respectively.) However, the

subgroup H of G has a rich variety of inequivalent infinite-dimensional

representations that do not arise as restrictions of (1.1.13), or of any repre-

sentation of G. The group H considered in (1.1.14) is a semidirect product

(as is G): it is of the form

HN =

{(
a b

0 1

) ∣∣∣∣ a = N j , b =
∑

i∈Z

niN
i, j ∈ Z, ni ∈ Z,

where the
∑

i

summation is finite

}
. (1.1.17)

(In the jargon of pure algebra, the nonabelian group HN is the semidirect

product of the two abelian groups Z and Z
[

1
N

]
, with a naturally defined

action of Z on Z
[

1
N

]
.)
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The papers [DaLa98], [Jor01a], [BaMe99], [HLPS99], [LPT01], and

[BreJo91] show that it is possible to use these nonclassical representations

of H for the construction of unexpected classes of wavelets, the wavelet sets

being the most notable ones. Recall that a subset E ⊂ R of finite measure

is a wavelet set if ψ̂ = χE is such that, for some N ∈ Z+, N ≥ 2, the func-

tions
{
N

j

2ψ
(
N jx− k

) ∣∣ j, k ∈ Z
}

form an orthonormal basis for L2 (R).

Until the work of Larson and others, see [DaLa98] and [HLPS99], it was

not even clear that wavelet sets E could exist in the case N > 2. The paper

[LPT01] develops and extends the representation theory for the subgroups

HN independently of the ambient group G and shows that each HN has

continuous series of representations which account for the wavelet sets. The

role of the representations of the groups HN and their generalizations for

the study of wavelets was first stressed in [BreJo91].

There is a different transform which is analogous to the wavelet trans-

form of (1.1.13)–(1.1.14), but yet different in a number of respects. It is the

Gabor transform, and it has a history of its own. Both are special cases of

the following construction: Let G be a nonabelian matrix group with center

C, and let U be a unitary irreducible representation of G on the Hilbert

space L2 (R). When ψ ∈ L2 (R) is given, we may define a transform

(Tψf) (ξ) := 〈U (ξ)ψ | f 〉 , for f ∈ L2 (R) and ξ ∈ G�C. (1.1.18)

It turns out that there are classes of matrix groups, such as the ax +

b group, or the 3-dimensional group of upper triangular matrices, which

have transforms Tψ admitting effective discretizations. This means that it

is possible to find a vector ψ ∈ L2 (R), and a discrete subgroup Λ ⊂ G�C,

such that the restriction to Λ of the transform Tψ in (1.1.18) is injective

from L2 (R) into functions on Λ.

There are many books on transform theory, and here we are only making

the connection to wavelet theory. The book [Per86] contains much more

detail on the group-theoretic approach to these continuous and discrete

coherent vector transforms.

1.1.3. Some background on matrix functions in mathematics and in

engineering

One of our coordinates for the landscape of multiresolution wavelets takes

the form of a geometric index. In fact, it involves a traditional operator-

theoretic index with values in Z. When it is identified with a winding num-

ber or a counting of homotopy classes, it serves also as a Fredholm index of
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an associated Toeplitz operator. An orthogonal dyadic wavelet basis has its

wavelet function ψ satisfying the normalization ‖ψ‖L2(R) = 1, i.e., ψ is a vec-

tor of norm one in the Hilbert space L2 (R). In the lingo of quantum theory,

ψ is therefore a pure state, and the x-coordinate is an observable called the

position. The integral Eψ (x) =
∫

R
x |ψ (x)|2 dx is the expected value of the

position. If ψH denotes the standard Haar function in (1.2.15), then clearly

EψH
(x) = 1

2 . Also note the translation formula Eψ( · −k) (x) = Eψ (x) + k.

We showed in Corollary 2.4.11 of [BrJo02b], completely generally, that the

other orthonormal wavelets ψ have expected values in the set 1
2 +Z. Hence,

after ψ is translated by an integer, you cannot distinguish it from the Haar

wavelet ψH in (1.2.15) by looking only at the expected value of its position

coordinate. The translation integer k turns out to be a winding number.

Our result holds more generally when the definition of Eψ (x) is adapted

to a wider wavelet context, as we showed in Chapter 6 of [BrJo02b]; but in

all cases, there is a winding number which produces the above-mentioned

integer translate k.

The issue of connectedness for various classes of wavelets is a general

question which has been addressed previously in the wavelet literature; see,

e.g., [HLPS99], [HeWe96], [StZh01], and [ReWe98]. Here we bring homotopy

to bear on the question, and we identify the connected components when

the compact support is fixed and given. We show among other things that

for a fixed K1-class a homotopy may take place within a variety of wavelets

which is specified by a slightly bigger support than the initially given one.

An important point of our present discussion, beyond the mere fact of

compact support, is the size of the support of the wavelets in question.

Consider two wavelets A and B of a certain support size. Then our first

results in this section also specify the paths C (t), if any, which connect

A and B, and in particular the size of the support of the wavelets corre-

sponding to C (t). In [BrJo02b], we treat connectivity in the wider context

of noncompactly supported wavelets, following at the outset [Gar99], which

considers scale number N = 2, and wavelets ψ satisfying

{
2

j

2ψ
(
2jx− k

)}

j,k∈Z

is an orthonormal basis (ONB) for L2 (R) .

(1.1.19)

Garrigós considers, for 1
2 < α ≤ ∞, the class Wα of wavelets ψ such that

∫

R

|ψ (x)|2
(
1 + |x|2

)α
dx <∞, (1.1.20)
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and there is an ε = ε (ψ) such that
∫

R

∣∣∣ψ̂ (t)
∣∣∣
2 (

1 + |t|2
)ε

dt <∞, (1.1.21)

i.e., the wavelet is supposed to have some degree of smoothness in the sense

of Sobolev.

We now turn to the group of functions U : T → U(N), where U (N)

denotes the group of all complex N -by-N matrices. The functions will not

be assumed continuous in general. The continuous functions will be des-

ignated C (T,U(N)). Each function in C (T,U(N)) has a K1-class, also

called a winding number; see [BrJo02b]. The functions in C (T,U(N)) with

finite Fourier expansion will be called Fourier polynomials, also if they are

functions which take values in U (N).

Proposition 1.1.3.1: Let U ∈ C (T,U(N)) be a Fourier polynomial, and

assume that K1 (U) = d ∈ Z. Then U is homotopic in C (T,U(N)) to

V (z) = zdp⊕ (1N − p) (1.1.22)

where p is the one-dimensional projection onto the first coordinate slot in

CN , and if U has the form

U (z) =

D∑

k=−D

zkak, (1.1.23)

then U may be homotopically deformed to V in C (T,U(N)) through Fourier

polynomials of degree at most |d|+ND.

This proposition remains true if the word “Fourier polynomial” is re-

placed by “polynomial” and ak = 0 for k = −D,−D + 1, . . . ,−1. In that

case d ∈ Z+ and U may be homotopically deformed to V in the loop semi-

group of polynomial unitaries in C (T,U(N)) through polynomials of degree

at most d.

Proof: Multiplying U by zD, we obtain a polynomial zDU (z) of degree 2D

mapping T into U (N). Then K1

(
zDU

)
= d+ ND. By Proposition 3.3 of

[BrJo02a], there exist d+ND one-dimensional projections p1, p2, . . . , pd+ND
in MN (C) and a unitary V0 ∈MN (C) such that

zDU (z) = V0

d+ND∏

k=1

(1− pi + zpi) . (1.1.24)

(See § 2.2.4 for a related, but different, decomposition.) Now, deforming

each of the pi’s continuously through one-dimensional projections to the
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projection p0 onto the first coordinate direction, and deforming V0 in U (N)

into 1N , we see that zDU (z) can be deformed into

d+ND∏

k=1

(1− p0 + zp0) = 1− p0 + zd+NDp0. (1.1.25)

Thus U (z) itself is deformed into

z−D (1− p0) + zd+(N−1)Dp0. (1.1.26)

But writing (1− p0) as a sum of N − 1 one-dimensional projections

q1, . . . , qN−1, we have that the unitary that U (z) is deformed into is

N−1∏

k=1

(
(1− qk) + z−Dqk

)
·
(
1 + zd+(N−1)Dp0

)
, (1.1.27)

and next deforming each of the qk in this decomposition into p0, we see

that U (z) is deformed into

N−1∏

k=1

(
(1− p0) + z−Dp0

)
·
(
1 + zd+(N−1)Dp0

)
= (1− p0) + zdp0. (1.1.28)

The crude estimate |d| + ND on the degree of the Fourier polynomials

occurring during the deformation is straightforward.

To prove the last statement in the proposition one does not need to

multiply U by zD, and the proof simplifies. Note in particular that D ≤ d

(assuming aD 6= 0).

Remark 1.1.3.1: We do not know if Proposition 1.1.3.1 is true if

C (T,U(N)) is replaced by C (T,GL (N)). It is known from Lemma 11.2.12

of [RLL00] that if A ∈ C (T,GL (N)) is a polynomial of degree 1 in z,

then A can be homotopically deformed through first-order polynomials in

C (T,GL (N)) to a unitary of the form z → zp+ (1N − p) for some projec-

tion p, and hence Proposition 1.1.3.1 for C (T,GL (N)) would follow if any

polynomial A ∈ C (T,GL (N)) could be factored into first-order polynomi-

als. It is also clear, since any element A ∈ C (T,GL (N)) can be homotopi-

cally deformed into zdp⊕ (1N − p) in C (T,GL (N)), that if A is a Fourier

polynomial, then A can be homotopically deformed into zdp ⊕ (1N − p)
through Fourier polynomials. This follows by compactness and the Stone–

Weierstraß theorem (Lemma 11.2.3 of [RLL00]). For our purposes in wavelet

theory, though, we would need a computable upper bound for the degree

of the Fourier polynomials.
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For ease of reference we will now list the correspondences between the

various objects that interest us in this case. These objects are:

(i) matrix functions, A : T→ UN (C), satisfying the normalization

A (1) = H, Hk,l =
1√
N
ei2πkl/N , k, l = 0, . . . , N − 1, (1.1.29)

(ii) high- and low-pass wavelet filters mi, i = 0, 1, . . . , N − 1, satisfying
∑

wN=z

mi (w)mj (w) = Nδij , i, j = 0, . . . , N − 1, (1.1.30)

and

m0 (1) =
√
N, (1.1.31)

(iii) scaling functions ϕ together with wavelet generators ψi.

We did not specify the continuity and regularity requirements of the func-

tions A, mi, ϕ, ψi above. This will be done differently in different contexts

and the classes clearly depend on these added requirements. We will now

restrict to the case that the functions ϕ and ψi have compact support in

[0,∞〉, i.e., that A and mi are polynomials in z. Thus z → A (z) is a poly-

nomial function with

(A (z))
∗
A (z) = 1, z ∈ T. (1.1.32)

Scaling functions/wavelet generators to wavelet filters (ϕ, ψ) 7→ m

One defines an by

ϕ (x) =
√
N
∑

n∈Z

anϕ (Nx− n) , (1.1.33)

(cf. (2.3.7)) and then m0 by

m0 (z) =
∑

n

anz
n, (1.1.34)

or one uses
√
Nϕ̂ (Nt) = m0 (t) ϕ̂ (t) (1.1.35)

directly. Then the high-pass filters mi, i = 1, . . . , N−1, can be derived from

(2.3.10) below. If we are in the generic case (2.3.6), we may also recover the

Fourier coefficients a
(i)
n of mi by

a(i)
n =

(
1/
√
N
)
〈ϕ ( · − n) | ψi ( · /N)〉

= 〈ϕ ( · − n) | Uψi 〉 (with ψ0 = ϕ),
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where Uψi (x) := N−1/2ψi (x/N). In particular it follows in this generic

case that if the scaling and wavelet functions have compact support and

the filters are Lipschitz, then the filters are Fourier polynomials. Is this true

also in the nongeneric tight frame case?

Now, if D ∈ N, define:

• MF(D) = the set of polynomial functions in z ∈ T in

C (T,UN (C)) of degree at most D satisfying

(1.1.29);

(1.1.36)

• WF(D) = the set of N -tuples of wavelet filters

(m0, . . . ,mN−1) such that all mi are polynomials in

z ∈ T of degree at most D satisfying (1.1.30) and

(1.1.31);

(1.1.37)

• SF (D) = the set of N -tuples (ϕ, ψ1, . . . , ψN−1) of scaling

functions/ wavelet functions with support in [0, D].

(1.1.38)

The spaces MF (D), WF (D), and SF (D) may be equipped with the obvious

topologies, coming in the first two cases from, for example, the L∞-norm

over z, and in the last case either from the L2 (R)-norm or, as will be more

relevant, the tempered-distribution topology. By virtue of Proposition 3.2

in [BrJo02a], MF (D) has the structure of a compact algebraic variety, and

so by (2.3.4) below, WF (D) is a compact algebraic variety. It is clear from

(2.3.4) that the map A → m maps MF (D) into WF ((D + 1)N − 1), and

that m → A maps WF ((D + 1)N − 1) into MF (D). Furthermore, it is

clear from (1.1.33) and (2.3.10) that m→ (ϕ, ψ) maps WF ((N − 1)D) into

SF (D), and conversely (ϕ, ψ)→ m maps SF (D) into WF ((N − 1)D).

Now, let a subindex 0 denote the subsets of these various spaces such

that the condition

Spec (R0) ∩ T = {1} and dim
{
g ∈ K⌊ D

N−1⌋, R (g) = g
}

= 1 (1.1.39)

holds. It is known that the set of points such that (1.1.39) does not hold

is a lower-dimensional subvariety of the various varieties, see Section 6 of

[Jor01b], and hence MF0 (D), WF0 (D), and SF0 (D) contain the generic

points in MF (D), WF (D), and SF (D).

We now summarize the local connectivity results by stating the following

theorem. The proof may be found in [BrJo02b], where this is Theorem 2.1.3.

Theorem 1.1.3.1: Let k ∈ N. Equip the space SF (kN + 1) of scaling

functions/wavelet functions with support in [0, kN + 1] with the tempered-

distribution topology. Then SF (kN + 1) is homeomorphic to a com-
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pact algebraic variety. Furthermore, for two elements (ϕ0, ψ0) , (ϕ1, ψ1) ∈
SF (kN + 1), the following conditions are equivalent:

(a) The elements (ϕ0, ψ0) and (ϕ1, ψ1) can be connected to each other by

a continuous path in SF (NkN + 1);

(b) K1 (ϕ0, ψ0) = K1 (ϕ1, ψ1);

(c) The elements (ϕ0, ψ0) and (ϕ1, ψ1) can be connected to each other by

a continuous path in some SF (K).

Thus, SF (kN + 1) is divided into Nk (N − 1) + 1 components which are

connected over SF (NkN + 1).

1.2. Motivation

In addition to the general background material in the present section, the

reader may find a more detailed treatment of some of the current research

trends in wavelet analysis in the following papers: [Jor03a] (a book re-

view), [Jor03b] (a survey), and the research papers [DuJo03], [DuJo04a],

[DuJo04b], [DuJo04c], [Jor04a], and [Jor04b].

As a mathematical subject, the theory of wavelets draws on tools from

mathematics itself, such as harmonic analysis and numerical analysis. But

in addition there are exciting links to areas outside mathematics. The con-

nections to electrical and computer engineering, and to image compression

and signal processing in particular, are especially fascinating. These inter-

connections of research disciplines may be illustrated with the two subjects

(1) wavelets and (2) subband filtering [from signal processing]. While they

are quite different, and have distinct and independent lives, and even have

different aims, and different histories, they have in recent years found com-

mon ground. It is a truly amazing success story. Advances in one area

have helped the other: subband filters are absolutely essential in wavelet

algorithms, and in numerical recipes used in subdivision schemes, for ex-

ample, and especially in JPEG 2000—an important and extraordinarily

successful image-compression code. JPEG uses nonlinear approximations

and harmonic analysis in spaces of signals of bounded variation. Similarly,

new wavelet approximation techniques have given rise to the kind of data-

compression which is now used by the FBI [via a patent held by two math-

ematicians] in digitizing fingerprints in the U.S. It is the happy marriage of

the two disciplines, signal processing and wavelets, that enriches the union

of the subjects, and the applications, to an extraordinary degree. While the

use of high-pass and low-pass filters has a long history in signal process-

ing, dating back more than fifty years, it is only relatively recently, say the
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mid-1980’s, that the connections to wavelets have been made. Multiresolu-

tions from optics are the bread and butter of wavelet algorithms, and they

in turn thrive on methods from signal processing, in the quadrature mir-

ror filter construction, for example. The effectiveness of multiresolutions in

data compression is related to the fact that multiresolutions are modelled

on the familiar positional number system: the digital, or dyadic, represen-

tation of numbers. Wavelets are created from scales of closed subspaces of

the Hilbert space L2 (R) with a scale of subspaces corresponding to the

progression of bits in a number representation. While oversimplified here,

this is the key to the use of wavelet algorithms in digital representation of

signals and images. The digits in the classical number representation in fact

are quite analogous to the frequency subbands that are used both in signal

processing and in wavelets.

The two functions

ϕ (x) =

{
1 0 ≤ x < 1

0 elsewhere
and ψ (x) =






1 0 ≤ x < 1
2

−1 1
2 ≤ x < 1

0 elsewhere

-

6 ϕ

-

6 ψ

Father function Mother function

(a) (b)

(1.2.1)

capture in a glance the refinement identities

ϕ (x) = ϕ (2x) + ϕ (2x− 1) and ψ (x) = ϕ (2x)− ϕ (2x− 1) .

The two functions are clearly orthogonal in the inner product of L2 (R), and

the two closed subspaces V0 and W0 generated by the respective integral

translates

{ϕ ( · − k) : k ∈ Z} and {ψ ( · − k) : k ∈ Z} (1.2.2)

satisfy

UV0 ⊂ V0 and UW0 ⊂ V0 (1.2.3)
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where U is the dyadic scaling operator Uf (x) = 2−1/2f (x/2). The factor

2−1/2 is put in to make U a unitary operator in the Hilbert space L2 (R).

This version of Haar’s system naturally invites the question of what other

pairs of functions ϕ and ψ with corresponding orthogonal subspaces V0

and W0 there are such that the same invariance conditions (1.2.3) hold.

The invariance conditions hold if there are coefficients ak and bk such that

the scaling identity

ϕ (x) =
∑

k∈Z

akϕ (2x− k) (1.2.4)

is solved by the father function, called ϕ, and the mother function ψ is

given by

ψ (x) =
∑

k∈Z

bkϕ (2x− k) . (1.2.5)

A fundamental question is the converse one: Give simple conditions on two

sequences (ak) and (bk) which guarantee the existence of L2 (R)-solutions

ϕ and ψ which satisfy the orthogonality relations for the translates (1.2.2).

How do we then get an orthogonal basis from this? The identities for Haar’s

functions ϕ and ψ of (1.2.1)(a) and (1.2.1)(b) above make it clear that the

answer lies in a similar tiling and matching game which is implicit in the

more general identities (1.2.4) and (1.2.5). Clearly we might ask the same

question for other scaling numbers, for example x→ 3x or x→ 4x in place

of x → 2x. Actually a direct analogue of the visual interpretation from

(1.2.1) makes it clear that there are no nonzero locally integrable solutions

to the simple variants of (1.2.4),

ϕ (x) =
3

2
(ϕ (3x) + ϕ (3x− 2)) (1.2.6)

or

ϕ (x) = 2 (ϕ (4x) + ϕ (4x− 2)) . (1.2.7)

There are nontrivial solutions to (1.2.6) and (1.2.7), to be sure, but they

are versions of the Cantor Devil’s Staircase functions, which are prototypes

of functions which are not locally integrable.

Since the Haar example is based on the fitting of copies of a fixed “box”

inside an expanded one, it would almost seem unlikely that the system

(1.2.4)–(1.2.5) admits finite sequences (ak) and (bk) such that the corre-

sponding solutions ϕ and ψ are continuous or differentiable functions of

compact support. The discovery in the mid-1980’s of compactly supported
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Fig. 1. Daubechies wavelet functions and series of cascade approximants

differentiable solutions, see [Dau92], was paralleled by applications in seis-

mology, acoustics [EsGa77], and optics [Mar82], as discussed in [Mey93],
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and once the solutions were found, other applications followed at a rapid

pace: see, for example, the ten books in Benedetto’s review [Ben00]. It is the

solution ψ in (1.2.5) that the fuss is about, the mother function; the other

one, ϕ, the father function, is only there before the birth of the wavelet.

The most famous of them are named after Daubechies, and look like the

graphs in Figure 1. With the multiresolution idea, we arrive at the closed

subspaces

Vj := U−jV0, j ∈ Z, (1.2.8)

as noted in (1.2.2)–(1.2.3), where U is some scaling operator. There are ex-

tremely effective iterative algorithms for solving the scaling identity (1.2.4):

see, for example, Example 2.5.3, pp. 124–125, of [BrJo02b]∗, [Dau92], and

[StNg96], and Figure 1. A key step in the algorithms involves a clever choice

of the kind of resolution pictured in (1.2.13), but digitally encoded. The

orthogonality relations can be encoded in the numbers (ak) and (bk) of

(1.2.4)–(1.2.5), and we arrive at the doubly indexed functions

ψj,k (x) := 2j/2ψ
(
2jx− k

)
, j, k ∈ Z. (1.2.9)

It is then not difficult to establish the combined orthogonality relations
∫

R

ψj,k (x)ψj′,k′ (x) dx =
〈
ψj,k | ψj′,k′

〉
= δj,j′δk,k′ (1.2.10)

plus the fact that the functions in (1.2.9) form an orthogonal basis for

L2 (R). This provides a painless representation of L2 (R)-functions

f =
∑

j∈Z

∑

k∈Z

cj,kψj,k (1.2.11)

where the coefficients cj,k are

cj,k =

∫

R

ψj,k (x) f (x) dx =
〈
ψj,k | f

〉
. (1.2.12)

What is more significant is that the resolution structure of closed subspaces

of L2 (R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · (1.2.13)

facilitates powerful algorithms for the representation of the numbers cj,k in

(1.2.12). Amazingly, the two sets of numbers (ak) and (bk) which were used

∗See an implementation of the “cascade” algorithm using Mathematica, and a “cartoon”
of wavelets computed with it, at
http://www.math.uiowa.edu/˜jorgen/wavelet motions.pdf .
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in (1.2.4)–(1.2.5), and which produced the magic basis (1.2.9), the wavelets,

are the same magic numbers which encode the quadrature mirror filters of

signal processing of communications engineering. On the face of it, those

signals from communication engineering really seem to be quite unrelated

to the issues from wavelets—the signals are just sequences, time is discrete,

while wavelets concern L2 (R) and problems in mathematical analysis that

are highly non-discrete. Dual filters, or more generally, subband filters, were

invented in engineering well before the wavelet craze in mathematics of

recent decades. These dual filters in engineering have long been used in

technology, even more generally than merely for the context of quadrature

mirror filters (QMF’s), and it turns out that other popular dual wavelet

bases for L2 (R) can be constructed from the more general filter systems;

but the best of the wavelet bases are the ones that yield the strongest form

of orthogonality, which is (1.2.10), and they are the ones that come from the

QMF’s. The QMF’s in turn are the ones that yield perfect reconstruction of

signals that are passed through filters of the analysis-synthesis algorithms of

signal processing. They are also the algorithms whose iteration corresponds

to the resolution sytems (1.2.13) from wavelet theory.

While Fourier invented his transform for the purpose of solving the

heat equation, i.e., the partial differential equation for heat conduction, the

wavelet transform (1.2.11)–(1.2.12) does not diagonalize the differential op-

erators in the same way. Its effectiveness is more at the level of computation;

it turns integral operators into sparse matrices, i.e., matrices which have

“many” zeros in the off-diagonal entry slots. Again, the resolution (1.2.13)

is key to how this matrix encoding is done in practice.

1.2.1. Some points of history

The first wavelet was discovered by Alfred Haar long ago, but its use was

limited since it was based on step-functions, and the step-functions jump

from one step to the next. The implementation of Haar’s wavelet in the

approximation problem for continuous functions was therefore rather bad,

and for differentiable functions it is atrocious, and so Haar’s method was

forgotten for many years. And yet it had in it the one idea which proved

so powerful in the recent rebirth (since the 1980’s) of wavelet analysis: the

idea of a multiresolution. You see it in its simplest form by noticing that

a box function B of (1.2.14) may be scaled down by a half such that two
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copies B′ and B′′ of the smaller box then fit precisely inside B. See (1.2.14).

-
B

B′ B′′

ϕ
0 1 2

x

(1.2.14)

-
ψ

0 1

2
1 x (1.2.15)

This process may be continued if you scale by powers of 2 in both directions,

i.e., by 2k for integral k, −∞ < k <∞. So for every k ∈ Z, there is a finer

resolution, and if you take an up- and a shifted mirror image down-version

of the dyadic scaling as in (1.2.15), and allow all linear combinations, you

will notice that arbitrary functions f on the line −∞ < x < ∞, with

reasonable integrability properties, admit a representation

f (x) =
∑

k,n

ck,nψ
(
2kx− n

)
, (1.2.16)

where the summation is over all pairs of integers k, n ∈ Z, with k rep-

resenting scaling and n translation. The very simple idea of turning this

construction into a multiresolution (“multi” for the variety of scales in

(1.2.16)) leads not only to an algorithm for the analysis/synthesis problem,

f (x)←→ ck,n, (1.2.17)

in (1.2.16), but also to a construction of the single functions ψ which solve

the problem in (1.2.16), and which can be chosen differentiable, and yet

with support contained in a fixed finite interval. These two features, the

algorithm and the finite support (called compact support), are crucial for

computations: Computers do algorithms, but they do not do infinite in-

tervals well. Computers do summations and algebra well, but they do not

do integrals and differential equations, unless the calculus problems are

discretized and turned into algorithms.

In the discussion to follow, the multiresolution analysis viewpoint is

dominant, which increases the role of algorithms; for example, the so-called

pyramid algorithm for analyzing signals, or shapes, using wavelets, is an

outgrowth of multiresolutions.

Returning to (1.2.14) and (1.2.15), we see that the scaling function ϕ

itself may be expanded in the wavelet basis which is defined from ψ, and
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we arrive at the infinite series

ϕ (x) =

∞∑

k=1

2−kψ
(
2−kx

)
(1.2.18)

which is pointwise convergent for x ∈ R. (It is a special case of the expansion

(1.2.16) when f = ϕ.) In view of the picture ( ) below, (1.2.18) gives an

alternative meaning to the traditional concept of a telescoping infinite sum.

If, for example, 0 < x < 1, then the representation (1.2.18) yields ϕ (x) =

1 = 1
2 +
(

1
2

)2
+ · · · , while for 1 < x < 2, ϕ (x) = 0 = − 1

2 +
(

1
2

)2
+
(

1
2

)3
+ · · · .

More generally, if n ∈ N, and 2n−1 < x < 2n, then

ϕ (x) = 0 = −
(

1

2

)n
+
∑

k>n

(
1

2

)k
.

So the function ϕ is itself in the space V0 ⊂ L2 (R), and ϕ represents the

initial resolution. The tail terms in (1.2.18) corresponding to

∑

k>n

2−kψ
(
2−kx

)
=

1

2n
ϕ
( x

2n

)
(1.2.19)

represent the coarser resolution. The finite sum

n∑

k=1

2−kψ
(
2−kx

)

represents the missing detail of ϕ as a “bump signal”. While the sum on

the left-hand side in (1.2.19) is infinite, i.e., the summation index k is in

the range n < k <∞, the expression 2−nϕ (2−nx) on the right-hand side is

merely a coarser scaled version of the original function ϕ from the subspace

V ⊂ L2 (R) which specifies the initial resolution. Infinite sums are analysis

problems while a scale operation is a single simple algorithmic step. And

so we have encountered a first (easy) instance of the magic of a resolution

algorithm; i.e., an instance of a transcendental step (the analysis problem)

which is converted into a programmable operation, here the operation of

scaling. (Other more powerful uses of the scaling operation may be found in

the recent book [Mey98] by Yves Meyer, especially Ch. 5, and [HwMa94].)

The sketch below allows you to visualize more clearly this resolution

versus detail concept which is so central to the wavelet algorithms, also

for general wavelets which otherwise may be computationally more difficult
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than the Haar wavelet.

0 1 2 3 4 5

-1

0

1 ϕ(x)

1
2ψ
(
x
2

)
1
4ψ
(
x
4

) 1
8ψ
(
x
8

)

1
16ψ

(
x
16

)

The wavelet decomposition of Haar’s bump function ϕ in (1.2.14) and (1.2.18)

Using the sketch we see for example that the simple step function

f (x) = aϕ (x) + bϕ (x− 1) = aχ[0,1〉 (x) + bχ[1,2〉 (x) (1.2.20)

0 1 2

a

b

has the wavelet decomposition into a sum of a coarser resolution and an

intermediate detail as follows:

f (x) =
a− b

2
ψ
(x

2

)

︸ ︷︷ ︸
intermediate detail

+
a+ b

2
ϕ
(x

2

)

︸ ︷︷ ︸
coarser version

, x ∈ R. (1.2.21)

Thus the details are measured as differences. This is a general feature that

is valid for other functions and other wavelet resolutions. See, for instance,

§ 2.2 below.

1.2.2. Some early applications

While the Haar wavelet is built from flat pieces, and the orthogonality prop-

erties amount to a visual tiling of the graphs of the two functions ϕ and ψ,

this is not so for the Daubechies wavelet nor the other compactly supported

smooth wavelets. By the Balian–Low theorem [Dau92], a time-frequency

wavelet cannot be simultaneously localized in the two dual variables: if ψ is
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a time-frequency Gabor wavelet, then the two quantities
∫

R
|xψ (x)|2 dx and

∫
R

∣∣∣tψ̂ (t)
∣∣∣
2

dt cannot both be finite. Since
(
dψ
dx

)
(̂t) = itψ̂ (t), this amounts

to poor differentiability properties of well-localized Gabor wavelets, i.e.,

wavelets built using the two operations translation and frequency modula-

tion over a lattice.

But with the multiresolution viewpoint, we can understand the first of

Daubechies’s scaling functions as a one-sided differentiable solution ϕ to

ϕ (x) = h0ϕ (2x) + h1ϕ (2x− 1) + h2ϕ (2x− 2) + h3ϕ (2x− 3) , (1.2.22)

where the four real coefficients satisfy

h0 + h1 + h2 + h3 = 2,

h3 − h2 + h1 − h0 = 0,

h3 − 2h2 + 3h1 − 4h0 = 0,

h1h3 + h0h2 = 0.






(1.2.23)

The system (1.2.23) is easily solved:

4h0 = 1 +
√

3, 4h2 = 3−
√

3,

4h1 = 3 +
√

3, 4h3 = 1−
√

3,

}
(1.2.24)

and Daubechies showed that (1.2.22) has a solution ϕ which is supported

in the interval [0, 3] , is one-sided differentiable, and satisfies the conditions
∫

R

ϕ (x) dx = 1,

∫

R

ψ (x) dx = 0, and

∫

R

xψ (x) dx = 0. (1.2.25)

The first applications served as motivating ideas as well: optics, seis-

mic measurements, dynamics, turbulence, data compression; see the book

[KaLe95] Actually, it is two books: the first one (primarily by Kahane) is

classical Fourier analysis, and the second one (primarily by P.-G. Lemarié-

Rieusset) is the wavelet book. It will help you, among other things, to get

a better feel for the French connection, the Belgian connection, and the

diverse and early impulses from applications in the subject. Enjoy!

For a list of more recent applications we recommend [Mey00].

2. Signal processing

If we idealize and view time as discrete, a copy of Z, then a signal is a se-

quence (ξn)n∈Z
of numbers. A filter is an operator which calculates weighted

averages

(ξn) 7−→
∑

k∈Z

akξn−k. (2.1)
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Fig. 2. Perfect reconstruction of signals

But working instead with functions of z ∈ T, this is multiplication, f (z) 7→
m (z) f (z), where m (z) =

∑
k∈Z

akz
k and f (z) =

∑
k∈Z

ξkz
k are the usual

Fourier representation of the corresponding generating functions. Similarly,

down-sampling©N↓ and up-sampling©N↑ as operators on sequences take the

form

f 7−→ 1

N

∑

w∈T, wN=z

f (w) (2.2)

and

f 7−→ f
(
zN
)
. (2.3)

Since the operators ©N↓ and ©N↑ are clearly dual to one another on the

Hilbert space ℓ2 (Z) of sequences (i.e., time-signals), we get the correspond-

ing duality for L2 (T), i.e.,
∫

T

f
(
zN
)
g (z) dµ (z) =

∫

T

f (z)
1

N

∑

wN=z

g (w) dµ (z) , (2.4)

where µ denotes the normalized Haar measure on T, or equivalently the

following identity for 2π-periodic functions:

∫ 2π

0

f (Nθ) g (θ) dθ =

∫ 2π

0

f (θ)
1

N

N−1∑

k=0

g

(
θ + k · 2π

N

)
dθ. (2.5)

Quadrature mirror filters withN frequency subbandsm0,m1, . . . ,mN−1

give perfect reconstruction when signals are analyzed into subbands and

then reconstructed via the up-sampling and corresponding dual filters. In

engineering formalism this is expressed in the diagram in Fig. 2, for N = 2,
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and m0, resp. m1, are called low-pass, resp. high-pass, filters. In operator

language, this takes the form

F ∗
0 F0 + F ∗

1 F1 = I,

where F0 and F1 are the operators in Fig. 2, with dual operators F ∗
0 and

F ∗
1 . The quadrature conditions may be expressed as

F0F
∗
0 = F1F

∗
1 = I (2.6)

and

F0F
∗
1 = F1F

∗
0 = 0. (2.7)

In operator theory there is tradition for working instead with the operators

Sj := F ∗
j . When viewed as operators on L2 (T) they are therefore isometries

with orthogonal ranges, and they satisfy

N−1∑

j=0

SjS
∗
j = I (2.8)

with I now representing the identity operator acting on L2 (T). The rela-

tions on the Sj-operators are known as the Cuntz relations because of their

use in C∗-algebra theory; see [Cun77]. In the present application they take

the form

(Sjf) (z) = mj (z) f
(
zN
)
, f ∈ L2 (T) , (2.9)

and

(
S∗
j f
)
(z) =

1

N

∑

wN=z

mj (w) f (w) , (2.10)

and the Cuntz relations are equivalent to the conditions
∑

wN=z

|mj (w)|2 = N (2.11)

and
∑

wN=z

mj (w)mk (w) = 0 for all z ∈ T and j 6= k. (2.12)

The last conditions are known in engineering as the quadrature conditions

for the subband filtersm0,m1, . . . ,mN−1, withm0 denoting the low-pass fil-

ter. The low-pass and band-pass conditions on the functions mj are perhaps
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more familiar in the additive notation given by the substitution z := e−iθ.

Then the functions mj are viewed as 2π-periodic, and

mj

(
j · 2π

N

)
=
√
N,

while

mj

(
k · 2π

N

)
= 0 for j 6= k,

with both of the indices j, k ranging over 0, 1, . . . , N − 1.

2.1. Filters in communications engineering

The coefficients of the functions mj ( · ) are called impulse response coef-

ficients in communications engineering, and when used in wavelets and

in subdivision algorithms, they are called masking coefficients. In the finite

case, the mj ( · )’s are also called FIR for finite impulse response. The model

illustrated in Fig. 2 is used in filter design in either hardware or software:

[[1]] Try filters m0, m1 in Fig. 2, and approximate the output to the input;

[[2]] Choose a specific structure in which the filter will be realized and then

quantize the coefficients, length and numerical values;

[[3]] Verify by simulation that the resulting design meets given performance

specifications.

Once filters are constructed, we saw that they are also providing us

with wavelet algorithms. When the steps of Fig. 2 are iterated, we arrive at

wavelet subdivision algorithms. Relative to a given resolution (pictured as a

closed subspace V1, say, in L2 (R)), signals, i.e., functions in L2 (R), decom-

pose into coarser ones and intermediate details. Relative to the subspaces

W0 and V1, this amounts to

V1

↑
given

resolution

= V0

↑
coarser

resolution

+ W0.
↑

intermediate

detail

(2.1.1)

Ideally, we wish the decomposition in (2.1.1) to be orthogonal in the sense

that

〈 f | g 〉 = 0 for all f ∈ V0 and all g ∈ W0. (2.1.2)
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Since the subdivisions involve translations by discrete steps, we specialize

the resolution such that both of the spaces V0 and W0 are invariant under

translations by points in Z, i.e., such that

T : f 7−→ f ( · − 1) (2.1.3)

leaves both of the subspaces V0 andW0 invariant. The multiresolution anal-

ysis case (MRA) corresponds to the setup when V0 is singly generated, i.e.,

there is a function ϕ ∈ V0 such that the closed linear span of

Tnϕ ( · ) = ϕ ( · − n) , n ∈ Z, (2.1.4)

is all of V0. If N = 2, then there is then also a ψ ∈ W0 such that the closed

linear span of {ψ ( · − n) : n ∈ Z } is all ofW0. If N > 2, we may need func-

tions ψ1, . . . , ψN−1 in W0 such that {ψi ( · − n) : i = 1, . . . , N − 1, n ∈ Z }
has a closed span equal to W0.

2.2. Algorithms for signals and for wavelets

The pyramid algorithm and the Cuntz relations. Since the two

Hilbert spaces L2 (T) and ℓ2 (Z) are isomorphic via the Fourier series

representation, it follows that the system {Si}1i=0 is equivalent to a sys-

tem {Ŝi}1i=0 acting on ℓ2 (Z). Specifically, (Sif)̂ = Ŝif̂ , i = 0, 1, where

f̂ (n) :=
∫

T
z−nf (z) dµ (z). For c := (cn)n∈Z

in ℓ2 (Z), and functions f on

R, set

f−1 (x) := (Uf) (x) = 2−
1

2 f
(x

2

)
, and

(c ∗ f) (x) :=
∑

n∈Z

cnf (x− n) .

For the present, let {mi}1i=0 be the low-pass and high-pass wavelet filters,

and let ϕ, ψ be the corresponding scaling function, resp., wavelet function,

also called father function, resp., mother function. Now introduce the corre-

sponding operators Si and their cousins Ŝi. The adjoints Ŝ∗
i are also called

filters.

Then

c ∗ ϕ =
((
Ŝ∗

0c
)
∗ ϕ
)

−1︸ ︷︷ ︸
coarser resolution

+
((
Ŝ∗

1c
)
∗ ψ
)

−1︸ ︷︷ ︸
detail

for all c ∈ ℓ2 (Z) . (2.2.1)

Define W : ℓ2 → ℓ2 by

W (c) (x) = (c ∗ ϕ) (x) =
∑

n∈Z

cnϕ (x− n) . (2.2.2)
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Then W maps ℓ2 isometrically onto V0 in the orthogonal case and

WŜ0 = UW.

Further

WŜ0Ŝ
∗
0c =

(
Ŝ∗

0c ∗ ϕ
)

−1
.

Embedding ℓ2 into ℓ2 ⊕ ℓ2 as ℓ2 ⊕ 0, extend W to ℓ2 ⊕ ℓ2 by putting

W (c⊕ d) = c ∗ ϕ+ d ∗ ψ.

Then the extended W maps ℓ2 ⊕ ℓ2 isometrically onto U−1V0 and

W
(
Ŝ0c+ Ŝ1d

)
= UW (c⊕ d)

for all c, d ∈ ℓ2, where the left W is the one from (2.2.2) and the right is

the extension of W to ℓ2 ⊕ ℓ2.
At this point you can use 1ℓ2 = Ŝ0Ŝ

∗
0 + Ŝ1Ŝ

∗
1 to show (2.2.1). Note that

if c0 = a and c1 = b and ci = 0 for other i, the formula (2.2.1) reduces to

(1.2.21).

The subdivision relations (2.2.1) are equivalent to the system

√
2ϕ (2x) =

∑

k∈Z

ā2kϕ (x+ k) +
∑

k∈Z

b̄2kψ (x+ k) , (2.2.3)

√
2ϕ (2x− 1) =

∑

k∈Z

ā2k+1ϕ (x+ k) +
∑

k∈Z

b̄2k+1ψ (x+ k) , (2.2.4)

where the coefficients an, bn are those of the quantum wavelet algorithm,

i.e., the coefficients in the “large” unitary matrix (2.2.5). Thus the quan-

tum algorithm does the wavelet decomposition within a fixed resolution

subspace.

The scaling function ϕ defines a resolution subspace V0 ⊂ L2 (R). Then

(2.2.1), or equivalently (2.2.3)–(2.2.4), represents the orthogonal decompo-

sition of functions in V0 into an orthogonal sum of a function with coarser

resolution and a function in the intermediate detail subspace.

Let m0, m1 be a dyadic wavelet filter, and let T ∋ z 7→ A (z) ∈ U2 (C)

be the corresponding matrix function, Ai,j (z) = 1
2

∑
w2=z w

−jmi (w). If

the low-pass filter m0 (z) = a0 + a1z + · · · + a2n+1z
2n+1, then a choice

for m1 (z) =
∑2n+1

k=0 bkz
k is bk = (−1)

k
ā2n+1−k. We then have A (z) =

∑n
k=0Akz

k where Ak =

(
a2k a2k+1

b2k b2k+1

)
, and the following 2n+2×2n+2 scalar



December 16, 2005 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) umfwaspw

34 P.E.T. Jorgensen

matrix can be checked to be unitary:





a1

b1
A1 A2 · · · An−1 An 0 · · · 0

a0

b0
0

0
A0 A1 · · · An−2 An−1 An 0 · · · 0

0

0

0

0
0 A0 · · · An−3 An−2 An−1 An 0 · · · 0

0

0

0

0

0

0
...

. . .
. . .

...

0

0

0

0

a2n+1

b2n+1
0 · · · 0 A0 A1 A2 · · · An−1

a2n

b2n
a2n−1

b2n−1
An 0 · · · 0 A0 A1 · · · An−2

a2n−2

b2n−2

a2n−3

b2n−3
An−1 An 0 · · · 0 A0 · · · An−3

a2n−4

b2n−4

...
. . .

. . .
...

a3

b3
A2 A3 · · · An 0 · · · 0 A0

a2

b2





(2.2.5)

Except for the scalar entries in the two extreme left and right columns,

all the other entries of the big combined matrix UA are taken from the

cyclic arrangements of the 2 × 2 matrices of coefficients A0, A1, . . . , An in

the expansion of A (z). For the case of n = 1 this amounts to the simple

8× 8 wavelet matrix





a1

b1
A1 0 0

a0

b0
0

0
A0 A1 0

0

0

0

0
0 A0 A1

0

0

a3

b3
0 0 A0

a2

b2





A0

A1,

(2.2.6)
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which is the one that produces the sequence of quantum gates. The quantum

algorithm of a wavelet filter is thus represented by a 2n+2 × 2n+2 unitary

matrix UA acting on the quantum qubit register C⊗ · · · ⊗ C︸ ︷︷ ︸
n+2 times

= C2(n+2),

i.e., it acts on a configuration of n+ 2 qubits. The realization of a wavelet

algorithm in the quantum realm thus amounts to spelling out the steps in

factoring UA into a product of qubit gates. By Shor’s theorem, we know

that this can be done, and UA may be built out of one-qubit gates and

CNOT gates following the ideas sketched above. The reader may find more

discussion of the matrix UA in Section 3 of [Fre02].

The generalization of classical and quantum wavelet resolution algo-

rithms from N = 2 to N > 2 is immediate: Then mi (z) =
∑
k∈Z

a
(i)
k zk,

(Sif) (z) = mi (z) f
(
zN
)
, i = 0, . . . , N − 1, (2.2.7)

and the transformation rules

ξNk+i =
∑

l∈Z

a
(i)
l−Nkεl, i = 0, 1, . . . , N − 1, (2.2.8)

permute the set of ONB’s in ℓ2 (Z) and define a unitary commuting with the

N -shift. Hence, the standard formulas from [Wic93], [Kla99], and [FiWi99]

for the quantum computing algorithm naturally generalize to the case N >

2 via (2.2.8). Instead of k-registers C2 ⊗ · · · ⊗ C2

︸ ︷︷ ︸
k times

= C2k

over C2, we will

now have to work rather with CN ⊗ · · · ⊗ CN︸ ︷︷ ︸
k times

= CN
k

.

The use of the algorithmic relations in engineering and operator algebra

theory predates their more recent use in wavelet theory and wavepacket

analysis.

2.2.1. Pyramid algorithms

For N > 2, the algorithm of the previous section takes the following form.

The pyramid algorithm and the Cuntz relations revisited. By

Fourier equivalence of L2 (T) and ℓ2 (Z) via the Fourier series, it fol-

lows that the system {Si}N−1
i=0 is equivalent to a system {Ŝi}N−1

i=0 acting

on ℓ2 (Z). Specifically, (Sif)̂ = Ŝif̂ , i = 0, . . . , N − 1, where f̂ (n) :=∫
T
z−nf (z) dµ (z). For c := (cn)n∈Z

in ℓ2 (Z), and functions f on R, set

f−1 (x) := N− 1

2 f
( x
N

)
,
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and

(c ∗ f) (x) :=
∑

n∈Z

cnf (x− n) .

Let {mi}N−1
i=0 be low-pass and high-pass wavelet filters, and let ϕ,

ψ1, . . . , ψN−1 be the corresponding scaling function, resp., wavelet func-

tions. Now introduce the corresponding operators Si, and their cousins Ŝi.

The adjoints Ŝ∗
i are also called filters.

Then

c∗ϕ =
((
Ŝ∗

0c
)
∗ ϕ
)

−1︸ ︷︷ ︸
coarser resolution

+

N−1∑

i=1

((
Ŝ∗
i c
)
∗ ψi

)

−1

︸ ︷︷ ︸
detail

for all c ∈ ℓ2 (Z) . (2.2.9)

The scaling function ϕ defines a resolution subspace V0 ⊂ L2 (R). For

the case N > 2:

Discrete vs. continuous wavelets, i.e., ℓ
2 vs. L

2 (R):

{0} ←− · · · ←− V2

ց
V1

ց
V0

ց
finer scales

· · · W3 W2 W1 · · · rest of L2 (R)

· · · ←−
U

←−
U

←−
U

W ↑|
↑
|

↑
|

↑
|W

{0} ←− · · · S0←− S0←− S0←−

· · · S2
0L S0L L =

N−1∨
i=1

Siℓ
2

S2
0ℓ

2
ր

S0ℓ
2
ր

ℓ2
ր

More refined pyramid algorithms yield wavelet packets as follows.

The Haar wavelet is supported in [0, 1], and if j ∈ Z+ and k ∈ Z, then

the modified function x 7→ ψ
(
2jx− k

)
is supported in the smaller interval

k
2j ≤ x ≤ k+1

2j . When j is fixed, these intervals are contained in [0, 1] for

k ∈
{
0, 1, . . . , 2j − 1

}
. This is not the case for the other wavelet functions.

For one thing, the non-Haar wavelets ψ have support intervals of length

more than one, and this forces periodicity considerations; see [CDV93]. For

this reason, Coifman and Wickerhauser [CoWi93] invented the concept of
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wavelet packets. They are built from functions with prescribed smoothness,

and yet they have localization properties that rival those of the (discontin-

uous) Haar wavelet.

There are powerful but nontrivial theorems on restriction algorithms

for wavelets ψj,k (x) = 2
j
2ψ
(
2jx− k

)
from L2 (R) to L2 (0, 1). We refer the

reader to [CDV93] and [MiXu94] for the details of this construction. The

underlying idea of Alfred Haar has found a recent renaissance in the work

of Wickerhauser [Wic93] on wavelet packets. The idea there, which is also

motivated by the Walsh function algorithm, is to replace the refinement

equation (1.1.33) by a related recursive system as follows: Let m0 (z) =∑
k akz

k, m1 (z) =
∑

k bkz
k, for example bk = (−1)

k
ā1−k, k ∈ Z, be

a given low-pass/high-pass system, N = 2. Then consider the following

refinement system on R:

W2n (x) =
√

2
∑

k∈Z

akWn (2x− k) , (2.2.10)

W2n+1 (x) =
√

2
∑

k∈Z

bkWn (2x− k) . (2.2.11)

Clearly the function W0 can be identified with the traditional scaling func-

tion ϕ of (2.3.7). A theorem of Coifman and Wickerhauser (Theorem 8.1,

[CoWi93]) states that if P is a partition of {0, 1, 2, . . .} into subsets of the

form

Ik,n =
{
2kn, 2kn+ 1, . . . , 2k (n+ 1)− 1

}
,

then the function system
{
2

k
2Wn

(
2kx− l

) ∣∣∣ Ik,n ∈ P , l ∈ Z
}

is an orthonormal basis for L2 (R). Although it is not spelled out in

[CoWi93], this construction of bases in L2 (R) divides itself into the two

cases, the true orthonormal basis (ONB), and the weaker property of form-

ing a function system which is only a tight frame. As in the wavelet case,

to get the P-system to really be an ONB for L2 (R), we must assume the

transfer operator R|m0|
2 to have Perron–Frobenius spectrum on C (T). This

means that the intersection of the point spectrum of R|m0|
2 with T is the

singleton λ = 1, and that dimker((1−R|m0|
2)|C(T)) = 1.

2.2.2. Subdivision algorithms

The algorithms for wavelets and wavelet packets involve the pyramid idea as

well as subdivision. Each subdivision produces a multiplication of subdivi-

sion points. If the scaling is by N , then j subdivisions multiply the number
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of subdivision points by N j. If the scaling is by a d × d integral matrix

N, then the multiplicative factor is |detN|j in the number of subdivision

points placed in Rd.

In the discussion below, we restrict attention to d = 1, but the conclu-

sions hold with only minor modification in the general case of d > 1 and

matrix scaling.

If W is a continuous function on T, the transfer operator or kneading

operator RW

RW ξ (z) =
1

N

∑

wN=z

W (w) ξ (w) = S∗
0Wξ (z) , (2.2.12)

with the alias

(RW f)n =
∑

k

cNn−kfk (2.2.13)

in the Fourier transformed space, has an adjoint which is the subdivision

operator or chopping operator

(R∗
W ξ) (z) = W (z) ξ

(
zN
)

(2.2.14)

on functions ξ on T, with the alias

(R∗
W f)n =

∑

k

cNk−n fk (2.2.15)

on sequences.

We will analyze the duality between RW and R∗
W and their spectra.

Specializing to W = |m0|2, we note that RW is then the transfer operator

of orthogonal type wavelets. In the following, W is assumed only to satisfy

W ∈ Lip 1 (T) and W ≥ 0. Other conditions are discussed in [BrJo02b].

In the engineering terminology of § 2.2, the operation (2.2.13) is com-

posed of a local filter with the numbers ck as coefficients, followed by the

down-sampling©N↓ , while (2.2.15) is composed of up-sampling©N↑ , followed

by an application of a dual filter. In signal processing,©N↓ is referred to as

“decimation” even if N is not 10.

The operator S (= R∗
W ) is called the subdivision operator, or the wood-

cutter operator, because of its use in computer graphics. Iterations of S will

generate a shape which (in the case of one real dimension) takes the form of

the graph of a function f on R. If ξ ∈ ℓ∞ (Z) is given, and if the differences

Dn (i) = f

(
i

2n

)
− (Snξ) (i) , i ∈ Z, (2.2.16)
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are small, for example if

lim
n→∞

sup
i∈Z

|Dn (i)| = 0, (2.2.17)

then we say that ξ represents control points, or a control polygon, and the

function f is the limit of the subdivision scheme.

It follows that the subdivision operator S on the sequence spaces, espe-

cially on ℓ∞ (Z), governs pointwise approximation to refinable limit func-

tions. The dual version of S, i.e., R = S∗ (= the transfer operator) governs

the corresponding mean approximation problem, i.e., approximation rela-

tive to the L2 (R)-norm.

In Scholium 4.1.2 of [BrJo02b], we consider the eigenvalue problem

Sξ = λξ, λ ∈ C, (2.2.18)

and ξ 6= 0 in some suitably defined space of sequences. The formula (2.2.16)

for the limit of a given subdivision scheme S makes it clear that the case

(2.2.18) must be excluded. For if (2.2.18) holds, for some λ ∈ C, and some

sequence ξ of control points, then there is not a corresponding regular

function f on R with its values given on the finer grids 2−nZ, n = 1, 2, . . . ,

by

fξ
(
i2−n

)
≈ (Snξ) (i) = λnξ (i) , i ∈ Z. (2.2.19)

We show in Example 4.1.3 of [BrJo02b] that there are no such control points

ξ in ℓ2 (Z) \ {0}. Hence the stability of the algorithm!

2.2.3. Wavelet packet algorithms

The main difference between the algorithms of wavelets and those of wavelet

packets is that for the wavelets the path in the pyramid is to one side only:

a given resolution is split into a coarser one and the intermediate detail.

The intermediate detail may further be broken down into frequency bands.

With the operators Sjf (z) = mj (z) f
(
zN
)

acting on L2 (T), the coarser

subspace after j steps is modelled on Sj0L
2 (T), and the projection onto

this subspace is Sj0S
∗ j
0 where S0 is the isometry of L2 (T) ∼= V0 defined by

the low-pass filter m0. But in the construction of the wavelet packet, the

subspace resulting by running the algorithm j times is Si1Si2 · · ·SijL2 (T),

and the projection onto this subspace is

Si1Si2 · · ·SijS∗
ij · · ·S

∗
i2S

∗
i1 .
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If n ∈ Z+, the wavelet function Wn is computed from the iteration i1, . . . , ij
corresponding to the representation

n = i1 + i2N + i3N
2 + · · ·+ ijN

j−1,

where i1, . . . , ij ∈ {0, 1, . . . , N − 1} are unique from the Euclidean algo-

rithm.

2.2.4. Lifting algorithms: Sweldens and more

The discussion centers around the matrix functions A : T→ GL2 (C).

The case detA ≡ 1. Recall that we call a finite sum
∑n1

k=−n0
Akz

k,

n0, n1 ≥ 0, a Fourier polynomial both if the coefficients Ak are numbers,

and if they are matrices. The matrix-valued Fourier polynomials T ∋ z 7→
A (z) ∈ M2 (C) such that detA (z) ≡ 1 form a subgroup of C (T,GL2 (C))

which we denote SL2.

For every A (z) in SL2 there arem ∈ Z+, K ∈ C\{0}, and scalar-valued

Fourier polynomials u1(z), . . . , um(z), l1(z), . . . , lm(z) such that

A (z) =

(
K 0

0 K−1

)
·
(

1 0

l1 (z) 1

)
·
(

1 u1 (z)

0 1

)
·

·
(

1 0

l2 (z) 1

)
·
(

1 u2 (z)

0 1

)
· · ·
(

1 0

lm (z) 1

)
·
(

1 um (z)

0 1

)
. (2.2.20)

See [DaSw98]. This is the first step in the Daubechies–Sweldens lifting algo-

rithm for the discrete wavelet transform. Thus the case det (A (z)) = 1 gives

a constructive lifting algorithm for wavelets, and such an algorithm has not

been established in the C (T,GL2 (C)) case. The decomposition could also

be compared with Proposition 3.3 of [BrJo02a], which was mentioned in

connection with the proof of (1.1.24).

Recall the correspondence between matrix functions and wavelet filters:

If A : T → GL2 (C) is a matrix function, then the corresponding dyadic

wavelet filters are

m
(A)
i (z) =

1∑

j=0

Ai,j
(
z2
)
zj, i = 0, 1.

It follows that the two matrix functions A and B satisfy

A =

(
1 0

l 1

)
B

for some l in the ring F of Fourier polynomials if and only if m
(A)
0 = m

(B)
0

and m
(A)
1 (z) = m

(B)
1 (z) + l

(
z2
)
m

(A)
0 (z).
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Similarly note that the two matrix functions A and B satisfy

A =

(
1 u

0 1

)
B

for some u ∈ F if and only if m
(A)
1 = m

(B)
1 and m

(A)
0 (z) = m

(B)
0 (z) +

u
(
z2
)
m

(A)
1 (z).

Remark. The conclusion is that the wavelet algorithm for a general wavelet

filter corresponding to a matrix function, say A, may be broken down in a

sequence of zig-zag steps acting alternately on the high-pass and the low-

pass signal components.

2.3. Factorization theorems for matrix functions

We mentioned that for matrix functions corresponding to finite impulse

response (FIR) filters which are unitary, we need only the constant matrix

(which is chosen such as to achieve the high-pass and low-pass conditions)

and factors of the form

UP (z) = zP + P⊥ ∼=
(
z 0

0 1

)

where P is a rank-one projection in CN and N is the scaling number of the

subdivision.

Unfortunately, no such factorization theorem is available for the non-

unitary FIR filters. But the matrix functions take values in the non-singular

complex N ×N matrices. The Sweldens–Daubechies factorization and the

lifting algorithm serve as a substitute. There are still the general non-

unimodular FIR-matrix functions where factorizations are so far a bit of

a mystery. The matrix functions are called polyphase matrices in the engi-

neering literature. The following summary serves as a classification theorem

for the orthogonal wavelets of compact support: the wavelets correspond to

FIR polyphase matrices which are unitary.

In summary, an algorithm to construct all the wavelet functions ψ of

scale 2 with support in [0, 2k + 1] can be established as follows:

[[1]] Pick k one-dimensional orthogonal projections Q1, . . . , Qk in M2 (C)

and define the unitary-valued matrix function A (z) on T by

A (z) = V (1−Q1 + zQ1) (1−Q2 + zQ2) · · · (1−Qk + zQk) , (2.3.1)

where

V =
1√
2

(
1 1

1 −1

)
. (2.3.2)
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Then each Qj has the form

Qj =

(
λj

√
λj (1− λj)eiθj

√
λj (1− λj)e−iθj 1− λj

)
, (2.3.3)

where λj ∈ [0, 1] and θj ∈ [0, 2π). (See Proposition 3.3 of [BrJo02a].)

[[2]] Define the filters m0 (z) and m1 (z) by

mi (z) =

N−1∑

j=0

zjAij
(
zN
)
, i, j = 0, . . . , N − 1, (2.3.4)

with N = 2.

[[3]] Define ϕ̂ by

ϕ̂ (t) =
∞∏

k=1

(
m0

(
tN−k

)
√
N

)
. (2.3.5)

If the condition

PER
(
|ϕ̂|2

)
(t) :=

∑

n∈Z

|ϕ̂ (t+ 2πn)|2 = 1 (2.3.6)

fails, then the algorithm stops.

[[4]] If the condition (2.3.6) holds, one may alternatively define ϕ by the

cascade algorithm

ϕ (x) =
√
N
∑

n∈Z

anϕ (Nx− n) , (2.3.7)

χ (x) =

{
1, 0 ≤ x < 1,

0, x ∈ R \ [0, 1〉 , (2.3.8)

Ma : ψ 7−→
√
N
∑

n

anψ (Nx− n) . (2.3.9)

[[5]] The wavelet function ψ is then defined by

ψi (x) =
√
N
∑

n∈Z

a(i)
n ϕ (Nx− n) , (2.3.10)

where a
(i)
n are the Fourier coefficients of mi,

mi (z) =
∑

n

a(i)
n zn, (2.3.11)

and z = e−it; this is the most general wavelet function with support in

[0, 2k + 1].

[[6]] All other wavelet functions with compact support can be obtained from

the ones in [[5]] by integer translation.
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2.3.1. The case of polynomial functions [the polyphase matrix, joint

work with Ola Bratteli]

One problem occurring in the biorthogonal context which does not have

an analogue in the orthogonal setting stems from the fact that the duality

relations
∑

wN=z

mi (w) m̃j (w) = Nδi,j for i, j = 0, . . . , N − 1 (2.3.12)

do not give any absolute restrictions on the size of mi and m̃j, e.g., a bound

on the inner product of two vectors in CN does not give a bound on the

size of the vectors if they are not equal. This is reflected in the bi-Cuntz

relations defined by mi, m̃i. Let us now define

(Sif) (z) = mi (z) f
(
zN
)
, (S̃if) (z) = m̃i (z) f

(
zN
)

(2.3.13)

for z ∈ T, f ∈ L2 (T). Instead of the usual Cuntz relations, the Si, S̃i now

satisfy

S∗
i S̃j = δi,j1, (2.3.14)

∑

i

SiS̃
∗
i = 1. (2.3.15)

If A, Ã ∈ C (T,GLN (C)) are the matrix-valued functions associated to mi

and m̃i by

m (z) = A
(
zN
)
v (z) , m̃ (z) = Ã

(
zN
)
v (z) , (2.3.16)

we compute

S∗
i Sj = (AA∗)j,k (2.3.17)

in the sense that S∗
i Sj is contained in the commutative algebra of mul-

tiplication operators on L2 (T) defined by C (T), and (AA∗)j,i ∈ C (T).

Correspondingly,

S̃∗
i S̃j = (ÃÃ∗)j,i (2.3.18)

so all the operators S∗
i Sj, S̃

∗
i S̃j are contained in the abelian algebra C (T).

We may introduce operators S, S̃ from

L2 (T)
N

= L2 (T)
0
⊕ · · · ⊕ L2 (T)

N−1

(2.3.19)

into L2 (T) by

S = (S0, S1, . . . , SN−1) , S̃ = (S̃0, . . . , S̃N−1) (2.3.20)
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and then S∗ maps L2 (T) into (2.3.19), etc., and the relations

(2.3.14)–(2.3.18) take the form
{
S∗S̃ = 1, where 1 is the identity in MN (C)⊗ C (T) ,

SS̃∗ = 1, where 1 is the identity in C (T) ,
(2.3.21)

{
S∗S = AA∗,

S̃∗S̃ = ÃÃ∗.
(2.3.22)

These relations say that all combinations of products of S and S∗ with S̃

and S̃∗ lie in the algebra MN (C) ⊗ C (T). But in addition A and Ã are

matrix-valued functions on T, so

AA∗ÃÃ∗ = AÃ∗ = 1 = ÃÃ∗AA∗ (2.3.23)

and hence

S∗S =
(
S̃∗S̃

)−1

(2.3.24)

and all the matrix-valued functions commute.

This discussion can be summarized by saying that the bi-Cuntz relations

are much less rigid than the original Cuntz relations, i.e.:

Scholium 2.3.1.1: Given any bijective operator S from L2 (T)N into

L2 (T) one may define S̃ = (S∗)
−1

and the bi-Cuntz relations (2.3.21) are

satisfied. If, more specifically, S is given by (2.3.20) and (2.3.13), then oper-

ators S̃0, . . . , S̃N−1 exist such that the bi-Cuntz relations (2.3.14)–(2.3.15)

are satisfied if and only if the operator A ∈ MN (C) ⊗ C (T) defined by

(2.3.16) is invertible, in which case one must use Ã = (A∗)
−1

, (2.3.16), and

(2.3.13) to define S̃0, . . . , S̃N−1.

Let us now connect the filters to the wavelets. We have already defined

the scaling functions ϕ, ϕ̃ and wavelet functions ψi, ψi, i = 1, . . . , N . The

expansions for ϕ and ϕ̃ converge uniformly on compacts, thus ϕ̂ and ˆ̃ϕ are

continuous functions on R. To decide that these functions are in L2 (R) one

again forms

fϕ (t) = PER
(
|ϕ̂|2

)
(t) =

∑

n∈Z

|ϕ̂ (t− 2πn)|2 (2.3.25)

and fϕ̃ similarly, and one deduces again from the nonlinear intertwining

relation

Rk (p (ψ1, ψ2)) = p
(
Mk
m0
ψ1,M

k
m0
ψ2

)
, k ∈ N (2.3.26)

that

Rm0
(fϕ) = fϕ, Rm̃0

(fϕ̃) = fϕ̃. (2.3.27)
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2.3.2. General results in mathematics on matrix functions

In the standard case of the good old orthogonal wavelets in L2 (R) of N

subbands, we will look for functions ψ1, . . . , ψN−1 in L2 (R) such that, if k

and n run independently over all the integers Z, i.e., −∞ < k, n <∞, then

the countably infinite system of functions
{
Nk/2ψi (N

kx− n)
∣∣ i = 1, . . . , N − 1, k, n ∈ Z

}
(2.3.28)

is an orthonormal basis in the Hilbert space L2 (R). The second half of

the word “orthonormal” refers to the restricting requirement that all the

functions ψ1, . . . , ψN−1 satisfy
∫

R

|ψi (x)|2 dx = 1, (2.3.29)

or stated more briefly,

‖ψi‖L2(R) = 1; (2.3.30)

or yet more briefly,

‖ψi‖ = 1. (2.3.31)

From familiar properties of the Lebesgue measure on R, it then follows that

all the functions

ψi,k,n (x) := Nk/2ψi (N
kx− n) , 1 ≤ i < N, k, n ∈ Z, (2.3.32)

satisfy the normalization, i.e., that

‖ψi,k,n‖ = 1 for all i, k, n. (2.3.33)

The functions (2.3.32) are said to be orthogonal if
∫

R

ψi,k,n (x)ψi′,k′,n′ (x) dx = 0 (2.3.34)

whenever (i, k, n) 6= (i′, k′, n′). We say that the two triple indices are dif-

ferent if i 6= i′ or k 6= k′ or n 6= n′. If, for example, i = i′ and k = k′,

then when the same function is translated by different amounts n and n′,

the two resulting functions are required to be orthogonal. It is an elemen-

tary geometric fact from the theory of Hilbert space that if the functions

in (2.3.32) form an orthonormal basis, then for every function f ∈ L2 (R),

i.e., every measurable function f on R such that

‖f‖2 =

∫

R

|f (x)|2 dx <∞, (2.3.35)
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we have the identity

‖f‖2 =
∑

i,k,n

∣∣∣∣
∫

R

ψi,k,n (x) f (x) dx

∣∣∣∣
2

, (2.3.36)

where the triple summation in (2.3.36) is over all configurations 1 ≤ i < N ,

k, n ∈ Z. It is convenient to rewrite (2.3.36) in the following more compact

form:

‖f‖2 =
∑

i,k,n

|〈ψi,k,n | f 〉|2 . (2.3.37)

Surprisingly, it turns out that (2.3.37) may hold even if the functions ψi,k,n
of (2.3.32) do not form an orthonormal basis. It may happen that one

of the initial functions ψ1, . . . , or ψN−1 satisfies ‖ψi‖ < 1, and yet that

(2.3.37) holds for all f ∈ L2 (R). These more general systems are still called

wavelets, but since they are special, they are referred to as tight frames, as

opposed to orthonormal bases. In either case, we will talk about a wavelet

expansion of the form

f (x) =
∑

i,k,n

〈ψi,k,n | f 〉ψi,k,n (x) . (2.3.38)

It follows that the sum on the right-hand side in (2.3.38) converges in the

norm of L2 (R) for all functions f in L2 (R) if (2.3.37) holds.

But there is a yet more general form of wavelets, called biorthogonal. The

conditions on the functions ψ1, . . . , ψN−1 are then much less restrictive than

the orthogonality axioms. Hence these wavelets are more flexible and adapt

better to a variety of applications, for example, to data compression, or to

computer graphics. But the biorthogonality conditions are also a little more

technical to state. We say that some given functions ψi, i = 1, . . . , N−1, in

L2 (R) are part of a biorthogonal wavelet system if there is a second system

of functions ψ̃i, i = 1, . . . , N − 1, in L2 (R), such that every f ∈ L2 (R)

admits a representation

f (x) =
∑

i,k,n

〈ψi,k,n | f 〉 ψ̃i,k,n (x) =
∑

i,k,n

〈 ψ̃i,k,n | f 〉ψi,k,n (x) , (2.3.39)

and

ψ̃i,k,n (x) = Nk/2ψ̃i (N
kx− n) . (2.3.40)

In the standard normalized case where 〈ψi | ψ̃i 〉 = 1, then you will notice

that condition (2.3.37) turns into

‖f‖2 =
∑

i,k,n

〈ψi,k,n | f 〉 〈 ψ̃i,k,n | f 〉 (2.3.41)
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for all f ∈ L2 (R).

The orthogonal wavelets correspond to matrix functions T → UN (C),

while the wider class of biorthogonal wavelets corresponds to the much big-

ger group of matrix functions T → GLN (C), via the associated wavelet

filters. You may ask, why bother with the more technical-looking biorthog-

onal systems? It turns out that they are forced on us by the engineers. They

tell us that the real world is not nearly as orthogonal as the mathematicians

would like to make it out to be. There is a paucity of symmetric orthogonal

wavelets, and symmetry (“linear phase”) is prized by engineers and work-

ers in image processing, where the more general wavelet families and their

duality play a crucial role. Now what if we could change the biorthogonal

wavelets into the orthogonal ones, and still keep the essential spectral prop-

erties intact? Then everyone will be happy. This last chapter shows that it

is possible, and even in a fairly algorithmic fashion, one that is amenable

to computations.

Wavelet filters may be understood as matrix functions, i.e., functions

from the one-torus T ⊂ C into some group of invertible matrices. If the scale

number is N , then there are three such matrix groups which are especially

relevant for wavelet analysis:

UN (C): all

unitary N ×N
complex

matrices

⊂
GLN (C): all

invertible

N ×N complex

matrices

⊃ SLN (C): all

N ×N complex

matrices A with

detA = 1.

It is possible to reduce some questions in the GLN case to better understood

results for UN (C); see Chapter 6 of [BrJo02b]. The SL2 case is especially

interesting in view of Daubechies–Sweldens lifting for dyadic wavelets; see

§ 2.2.4.

2.3.3. Connection between matrix functions and wavelets

Definitions: A function, or a distribution, ϕ satisfying (2.3.7) is said to

be refinable, the equation (2.3.7) is called the refinement equation, or also,

as noted above, the “scaling identity”, and ϕ is called the scaling function.

The coefficients an of (2.3.7) are called the masking coefficients.

We will mainly concentrate on the case when the set {an} is finite. But

in general, a function ϕ ∈ L2 (R) is said to be refinable with scale number N

if ϕ (x/N) is in the L2-closed linear span of the translates {ϕ (x− k)}k∈Z
⊂
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L2 (R); see, e.g., [HSS96, SSZ99, StZh98, StZh01].

Since there are refinement operations which are more general than scal-

ing (see for example [DLLP01]), there are variations of (2.3.7) which are

correspondingly more general, with regard to both the refinement steps

that are used and the dimension of the spaces. The term “scaling identity”

is usually, but not always, reserved for (2.3.7), while more general refine-

ments lead to “refinement equations”. However, (2.3.7) often goes under

both names. The vector versions of the identities get the prefix “multi-”,

for example multiscaling and multiwavelet.

If m0 satisfies a condition for obtaining orthogonal wavelets,
∑

wN=z

|m0 (w)|2 = N, (2.3.42)

together with the normalization

m0 (1) =
√
N, (2.3.43)

then (2.3.7) has a solution ϕ in L2 (R) which can be obtained by taking the

inverse Fourier transform of the product expansion

ϕ̂ (t) =

∞∏

k=1

(
m0

(
tN−k

)
√
N

)
. (2.3.44)

(Here and later we use the convention that if m (z) is a function of z ∈ T,

then m (t) = m
(
e−it

)
.) That (2.3.44) gives a solution ϕ of (2.3.7) follows

from the relation

ϕ̂ (t) =
1√
N
m0

(
t

N

)
ϕ̂

(
t

N

)
. (2.3.45)

2.3.3.1 Multiresolution wavelets

We mentioned that there is a direct connection between m0 =
∑
anz

n and

the scaling function ϕ on R given in (1.1.34), (2.3.7), and (2.3.44). There is

a similar correspondence between the high-pass filters mi and the wavelet

generators ψi ∈ L2 (R). In the biorthogonal case, there is a second system

m̃i ↔ ψ̃i and the two systems
{
N

j

2ψi
(
N jx− k

)}
and

{
N

j′

2 ψ̃i′
(
N j′x− k′

)}
,

i, i′ ∈ {1, 2, . . . , N − 1} , j, j′, k, k′ ∈ Z, (2.3.46)

then form a dual wavelet basis, or dual wavelet frame for L2 (R) in the sense

of [Dau92], Chapter 5. We considered this biorthogonal case in more detail

in § 2.3.1 above. Much more detail can be found in Chapter 6 of [BrJo02b].
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The idea of constructing maximally smooth wavelets when some side

conditions are specified has been central to much of the activity in wavelet

analysis and its applications since the mid-1980’s. As a supplement to

[Dau92], the survey article [Stra93] is enjoyable reading. The paper [LaHe96]

treats the issue in a more specialized setting and is focussed on the moment

method. Some of the early applications to data compression and image

coding are done very nicely in [HSS + 95], [SHS + 99], and [HSW95]. An

interesting, related but different, algebraic and geometric approach to the

problem is offered in [PeWi99].

We now turn to an interesting variation of this setup, which includes

higher dimensions, i.e., when the Hilbert space is L2
(
Rd
)
, d = 2, 3, . . . .

Staying for the moment with d = 1, and N fixed, we will take the viewpoint

of what is called resolutions, but here understood in a broad sense of closed

subspaces: A closed linear subspace V ⊂ L2 (R) is said to be anN -resolution

if it is invariant under the unitary operator

U = UN : f 7−→ N− 1

2 f
( x
N

)
, (2.3.47)

i.e., if U maps V into a proper subspace of itself. The subspace V is said to

be translation invariant if

f ∈ V ⇐⇒ f ( · − k) ∈ V for all k ∈ Z. (2.3.48)

If there is a function ϕ such that V = Vϕ is the closed linear span of

{ϕ ( · − k) | k ∈ Z} , (2.3.49)

then clearly V is translation invariant. The translation-invariant resolution

subspaces V are actively studied and reasonably well understood. If V is of

the form Vϕ in (2.3.49), then we say that it is singly generated, and that ϕ

is a scaling function of scale N .

2.3.3.2 Generalized multiresolutions [joint work with L. Baggett,

K. Merrill, and J. Packer]

The case when the resolution subspace V is not singly generated is also

interesting, and these resolution subspaces are frequently called general-

ized multiresolution subspaces (GMRA). There is much current and very

active research on them; see, for example, [BaLa99], [LPT01], [BaMe99],

[HLPS99], [HSS01], [SSZ99], and [Jor01a]. The case when V is not singly

generated as a resolution subspace of scale N > 2, i.e., when V is not of

the form (2.3.49), occurs in the study of wavelet sets. A wavelet set in Rd is

defined relative to an expansive d× d matrix N over Z. A subset E ⊂ Rd is
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said to be an N-wavelet set if there is a single wavelet function ψ ∈ L2
(
Rd
)

such that ψ̂ = χE . Specifically, the condition states that the family
{
|detN|j/2 ψ

(
Njx− k

)
: j ∈ Z, k ∈ Zd

}
(2.3.50)

is an orthonormal basis for L2
(
Rd
)
. This can be checked to be equivalent

to the combined set of two tiling properties for E as a subset of Rd:

(a) the family of subsets
{
NjE : j ∈ Z

}
tiles Rd;

(b) the translates
{
E + 2πk : k ∈ Zd

}
tile Rd.

We define tiling by the requirement that the sets in the family have over-

lap at most of measure zero relative to Lebesgue measure on Rd. Similarly,

the union

Rd =
⋃

j∈Z

NjE =
⋃

k∈Zd

E + 2πk (2.3.51)

is understood to be only up to measure zero.

It is easy to see that compactly supported wavelets in L2
(
Rd
)

are MRA

wavelets, while most wavelets ψ = (χE)
∨

from wavelet sets E are not. Thess

wavelets are typically (but not always) frequency localized.

The main difference between the GMRA (stands for generalized mul-

tiresolution analysis) wavelets and the more traditional MRA ones may be

understood in terms of multiplicity. Both come from a fixed resolution sub-

space V0 ⊂ L2
(
Rd
)

which is invariant under the translations
{
Tn : n ∈ Zd

}

where

(Tnf) (x) := f (x− n) for x ∈ Rd and n ∈ Zd. (2.3.52)

Hence {Tn|V0
}n∈Zd is a unitary representation of Zd on the Hilbert space

V0. As a result of Stone’s theorem, we find that there are subsets

E1 ⊃ E2 ⊃ · · · ⊃ Ej ⊃ · · ·

of Td such that the spectral measure of the (restricted) representation has

multiplicity ≥ j on the subset Ej , j = 1, 2, . . . . It can be checked that

the projection-valued spectral measure is absolutely continuous. Moreover,

there is an intertwining unitary operator

J : V0 −→
∑⊕

j≥1

L2 (Ej) (2.3.53)

such that

PL2(Ej)JTnf (z) = zn (Jf) (z) (2.3.54)
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holds for all f ∈ V0 and z ∈ Ej . We may then consider the functions ϕj ∈ V0

(⊂ L2
(
Rd
)
) defined by

ϕj := J−1(0, . . . , 0, χEj︸︷︷︸
j’th place

, 0, 0, . . . ). (2.3.55)

It was proved by Baggett and Merrill [BaMe99] that {ϕj : j ≥ 1 } generates

a normalized tight frame for V0: specifically, that
∑

j≥1

∑

n∈Zd

|〈Tnϕj | f 〉|2 = ‖f‖2L2(Rd) (2.3.56)

holds for all f ∈ V0.

Treating (ϕ1, ϕ2, . . . ) as a vector-valued function, denoted simply by ϕ,

we see that there is a matrix function

H : Td −→ (complex square matrices)

such that

ϕ̂
(
Ntr

ր
for transpose

t
)

= H
(
eit
)
ϕ̂ (t) , (2.3.57)

where t = (t1, . . . , td) ∈ Rd, and eit :=
(
eit1 , eit2 , . . . , eitd

)
.

But this method takes the Hilbert space L2
(
Rd
)

as its starting point,

and then proceeds to the construction of wavelet filters in the form (2.3.57).

Our current joint work with Baggett, Merrill, and Packer reverses this. It

begins with a matrix functionH defined on Td, and then offers subband con-

ditions on the matrix function which allow the construction of a GMRA for

L2
(
Rd
)

with generator ϕ = (ϕ1, ϕ2, . . . ) given by (2.3.57). So the Hilbert

space L2
(
Rd
)

shows up only at the end of the construction, in the conclu-

sions of the theorems.

2.3.4. Matrix completion

In using the polyphase matrices, one may only have the first few rows, and

be faced with the problem of completing to get the entire function A from

a torus into the matrices of the desired size. The case when only the first

row is given, say corresponding to a specified low-pass filter, is treated in

[BrJo02b] and [BrJo02a], and we refer the reader to the references given

there, especially [JiSh94], [RiSh91], [RiSh92], and [Vai93].

The wavelet transfer operator is used in a variety of wavelet applica-

tions not covered here, or only touched upon tangentially: stability of refin-

able functions, regularity, approximation order, unitary matrix extension

principles, to mention only a few. The reader is referred to the following



December 16, 2005 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) umfwaspw

52 P.E.T. Jorgensen

papers for more details on these subjects: [DHRS03], [RoSh03], [RST01],

[JJS01], [RoSh00], [RiSh00], [JiSh99], [She98], [RoSh98], [LLS98], [RoSh97],

[BJMP03], and [BJMP04].

The unitary extension principle (UEP) of [DHRS03] involves the inter-

play between a finite set of filters (functions on R/Z), and a corresponding

tight frame (alias Parseval frame) in L2
(
Rd
)
.

For the sake of illustration, let us take d = 1, and scaling number N =

2, i.e., the case of dyadic framelets. Naturally, the notion of tight frame

is weaker than that of an orthonormal basis (ONB), and it is shown in

[DHRS03] that when a system of wavelet filters mi, i = 0, 1, . . . , r is given

(m0 must be low-pass), then the orthogonality condition on the mi’s always

gets us a framelet in L2 (R), i.e., the functions ψi corresponding to the high-

pass filters mi, i = 1, . . . , r, generate a tight frame for L2 (R), also called a

framelet. The correspondence mi to ψi is called the UEP in [DHRS03].

The orthogonality condition for mi, i = 0, 1, . . . , r, referred to in the

UEP is simply this: Form an (r + 1)-by-2 matrix-valued function F (x)

by using mi (x), i = 0, 1, . . . , r in the first column, and the translates of

the mi’s by a half period, i.e., mi (x+ 1/2), i = 0, 1, . . . , r in the second.

The condition on this matrix function F (x) is that the two columns are

orthogonal and have unit norm in ℓ2 for all x. Note that we still get the

unitary matrix functions acting on these systems, in the way we outlined

above. But there is redundancy as the unitary matrices are (r + 1)-by-

(r + 1). The reader is refered to [DHRS03] for further details.

We emphasize that several of these, and other related topics, invite the

kind of probabilistic tools that we have stressed here. But a more systematic

discussion is outside the scope of this brief set of notes. We only hope to

offer a modest introduction to a variety of more specialized topics.

Remark 2.3.4.1: The orthogonality condition for mi, i = 0, 1, . . . , r, may

be stated in terms of the operators Si from equation (2.9), N = 2. For

each i = 0, 1, . . . , r, define an operator on L2 (R/Z) as in (2.9). Then the

arguments from Section 2 show that the orthogonality condition for mi,

i = 0, 1, . . . , r, i.e., the UEP condition, is equivalent to the operator identity

(2.8) where the summation now runs from 0 to r. Operator systems Si
satisfying (2.8) are called row-isometries.

Remark 2.3.4.2: There are two properties of the low-pass filter m0 which

we have glossed over. First, m0 must be such that the corresponding scaling

function ϕ is in L2 (R). Without an added condition onm0, ϕ might only be

a distribution. Secondly, when the dyadic scaling in L2 (R) is restricted to
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the resolution subspace V0 (ϕ), the corresponding unitary part must be zero.

These two issues are addressed in [BJMP03], [BJMP04], and [DHRS03].

2.3.5. Connections between matrix functions and signal processing

Since our joint work with Baggett, Merrill, and Packer on the GMRA

wavelets is still in progress, we restrict the discussion of matrix functions

here to the MRA case.

The two groups of matrix functions C (T,UN (C)) and C (T,GLN (C)),

i.e., the continuous functions from the torus into the respective groups,

enter wavelet analysis via the associated wavelet filters (mi)
N−1
i=0 .

In [BrJo02b] (see also § 1.1.3 above), we give the details of the multiple

correspondence between:

(i) matrix functions, A : T→ GLN (C),

(ii) high- and low-pass wavelet filters mi, m̃i′ , i, i
′ = 0, 1, . . . , N − 1, and

(iii) wavelet generators ψi, ψ̃i′ , i, i
′ = 1, . . . , N − 1, together with scaling

functions ϕ, ϕ̃.

In particular,

Ai,j (z) =
1

N

∑

wN=z

mi (w)w−j , z ∈ T, (2.3.58)

(
A−1

)
i,j

=
1

N

∑

wN=z

m̃j (w)wi, z ∈ T. (2.3.59)

The dependence of the L2 (R)-functions in (iii) on the group elements

A from (i) gives rise to homotopy properties. The standard orthogo-

nal wavelets represent the special case when mi = m̃i, or equivalently,

A (z) =
(
(A (z))

∗)−1
, z ∈ T. Hence, the matrix functions are unitary in

this case.

The scaling/wavelet functions ϕ, ψ1, . . . , ψN−1 with support on a fixed

compact interval, say [0, kN + 1], k = 0, 1, . . . , can be parameterized with

a finite number of parameters since the unitary-valued function z → A (z)

in (2.3.58) then is a polynomial in z of degree at most k (N − 1). It is

well-known folklore from computer-generated pictures that the shape of

the scaling/wavelet functions depends continuously on these parameters;

see Figures 1.1–1.7 in [BrJo02b] and [Tre01].

The scaling function ϕ ∈ L2 (R) of (2.3.7) is illustrated there, in the

case N = 2, and for orthogonal Z-translates, i.e., the case (2.3.42). These

pictures illustrate the dependence of ϕ on the masking coefficients (an) in
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the case of [Tre01]:

a0 = (η0 − η1 − η2 + η3 + η4)/4,

a1 = (η0 + η1 − η2 + η3 − η4)/4,
a2 = (η0 − η3 − η4)/2,
a3 = (η0 − η3 + η4)/2,

a4 = (η0 + η1 + η2 + η3 + η4)/4,

a5 = (η0 − η1 + η2 + η3 − η4)/4,

(2.3.60)

where

η0 = 1/
√

2,

η1 = (cos 2θ + cos 2ρ)/
√

2, η2 = (sin 2θ + sin 2ρ)/
√

2,

η3 = cos(2θ − 2ρ)/
√

2, η4 = sin(2θ − 2ρ)/
√

2.

(2.3.61)

These formulas arise from an independent pair of rotations by angles θ and

ρ of two “spin vectors”, i.e., by taking the matrix function A in (2.3.58)

unitary, T ∋ z → Aθ,ρ (z) ∈ U2 (C), and setting

A(z) = V (Q⊥
θ + zQθ)(Q

⊥
ρ + zQρ) = V Uθ(z)Uρ(z) (2.3.62)

with

V =
1√
2

(
1 1

1 −1

)
, (2.3.63)

Qθ =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)

=
1

2

((
1 0

0 1

)
+

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

))
, (2.3.64)

and the orthogonal complement to the one-dimensional projection Qθ,

Q⊥
θ = Qθ+(π/2). (2.3.65)

With the coefficients a0, a1, a2, a3, a4, a5 given by (2.3.60), the algorith-

mic approach to graphing the solution ϕ to the scaling identity (2.3.7) is as

follows (see [Jor01b], [Tre01] for details): the relation (2.3.7) for N = 2 is in-

terpreted as giving the values of the left-hand ϕ by an operation performed

on those of the ϕ on the right, and a binary digit inversion transforms this

into the form

f ′k+1

(
x+

1

2k+1

)
= Afk (x) , (2.3.66)
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where A is the 2× 3 matrix Ai,j =
√

2a4+i−2j constructed from the coeffi-

cients in (2.3.7), and fj and f ′j are the vector functions

fj (x) =




ϕ
(
x− 2

2j

)

ϕ
(
x− 1

2j

)

ϕ (x)



 , f ′j (x) =

(
ϕ
(
x− 1

2j

)

ϕ (x)

)
. (2.3.67)

The signal processing aspect can be understood from the description

of subband filters in the analusis and synthesis of time signals, or more

general signals for images. In either case, we have two subband systems

m = (m0,m1, . . . ) and m̃ = (m̃0, m̃1, . . . ) where the functions

mj (z) =
∑

n

a(j)
n zn and m̃j (z) =

∑

n

ã(j)
n zn

are the generating functions defined from the filter coefficients
(
a
(j)
n

)
and(

ã
(j)
n

)
, n ∈ Zd.

Appendix A: Topics for further research

Originally we had anticipated adding two more chapters to these tutorials,

but time and space prevented this. Instead we include the table of contents

for this additional material. The details for the remaining chapters will be

published elsewhere. But as the items in the list of contents suggest, there

are still many exciting open problems in the subject that the reader may

wish to pursue on his/her own. We feel that the following list of topics

offers at least an outline of several directions that the reader, could take in

his/her own study and research on wavelet-related mathematics.
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3. Connection between the discrete signals and the wavelets

3.1. Wavelet geometry in L
2(Rn)

3.2. Intertwining operators between sequence spaces l
2 and

L
2(Rn)

3.3. Infinite products of matrix functions

3.3.1. Implications for L2(Rn)

3.3.2. Wavelets in other Hilbert spaces of fractal measures

3.4. Dependence of the wavelet functions on the matrix

functions which define the wavelet filters

3.4.1. Cycles

3.4.2. The Ruelle-Lawton wavelet transfer operator

4. Other topics in wavelets theory

4.1. Invariants

4.1.1. Invariants for wavelets: Global theory

4.1.2. Invariants for wavelet filters: Local theory

4.2. Function classes

4.2.1. Function classes for wavelets

4.2.2. Function classes for filters

4.3. Wavelet sets

4.4. Spectral pairs

Appendix B: Duality principles in analysis

Several versions of spectral duality are presented. On the two sides we

present (1) a basis condition, with the basis functions indexed by a fre-

quency variable, and giving an orthonormal basis; and (2) a geometric

notion which takes the form of a tiling, or a Iterated Function System

(IFS). Our initial motivation derives from the Fuglede conjecture, see

[Fug74, Jor82, JoPe92]: For a subset D of Rn of finite positive measure,

the Hilbert space L2(D) admits an orthonormal basis of complex exponen-

tials, i.e., D admits a Fourier basis with some frequencies L from Rn, if

and only if D tiles Rn (in the measurable category) where the tiling uses

only a set T of vectors in Rn. If some D has a Fourier basis indexed by a
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set L, we say that (D,L) is a spectral pair. We recall from [JoPe99] that

if D is an n-cube, then the sets L in (1) are precisely the sets T in (2).

This begins with work of Jorgensen and Steen Pedersen [JoPe99] where the

admissible sets L = T are characterized. Later it was shown, [IoPe98] and

[LRW00] that the identity T = L holds for all n. The proofs are based on

general Fourier duality, but they do not reveal the nature of this common

set L = T . A complete list is known only for n = 1, 2, and 3, see [JoPe99].

We then turn to the scaling IFS’s built from the n-cube with a given

expansive integral matrixA. EachA gives rise to a fractal in the small, and a

dual discrete iteration in the large. In a different paper [JoPe98], Jorgensen

and Pedersen characterize those IFS fractal limits which admit Fourier

duality. The surprise is that there is a rich class of fractals that do have

Fourier duality, but the middle third Cantor set does not. We say that an

affine IFS, built on affine maps in Rn defined by a given expansive integral

matrix A and a finite set of translation vectors, admits Fourier duality if the

set of points L, arising from the iteration of the A-affine maps in the large,

forms an orthonormal Fourier basis (ONB) for the corresponding fractal µ

in the small, i.e., for the iteration limit built using the inverse contractive

maps, i.e., iterations of the dual affine system on the inverse matrix A−1. By

“fractal in the small”, we mean the Hutchinson measure µ and its compact

support, see [Hut81]. (The best known example of this is the middle-third

Cantor set, and the measure µ whose distribution function is corresponding

Devil’s staircase.)

In other words, the condition is that the complex exponentials indexed

by L form an ONB for L2(µ). Such duality systems are indexed by complex

Hadamard matrices H , see [JoPe99] and [JoPe98]; and the duality issue is

connected to the spectral theory of an associated Ruelle transfer operator,

see [BrJo02b]. These matrices H are the same Hadamard matrices which in-

dex a certain family of quasiperiodic spectral pairs (D,L) studied in [Jor82]

and [JoPe92]. They also are used in a recent construction of Terence Tao

[Tao04] of a Euclidean spectral pair (D,L) in R5 for which D does not a

tile R5 with any set of translation vectors T in R5; see also [IKT03].

We finally report on joint research with Dorin Dutkay [DuJo03],

[DuJo04a], [DuJo04b], [DuJo04c] where we show that all the affine IFS’s,

and more general limit systems from dynamics and probability theory, ad-

mit wavelet constructions, i.e., admit orthonormal bases of wavelet func-

tions in Hilbert spaces which are constructed directly from the geometric

data. A substantial part of the picture involves the construction of limit

sets and limit measures, a part of geometric measure theory.
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