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Wavelet Transform Domain Filters: A 
Spatially Selective Noise Filtration Technique 

Yansun Xu, John B. Weaver, Dennis M. Healy, Jr., and Jian Lu 

Abstract- Wavelet transforms are multiresolution decompo- 
sitions that can be used to analyze signals and images. They 
describe a signal by the power at each scale and position. 
Edges can be located very effectively in the wavelet transform 
domain. A spatially selective noise filtration technique based 
on the direct spatial correlation of the wavelet transform at 
several adjacent scales is introduced. A high correlation is used 
to infer that there is a significant feature at the position that 
should be passed through the filter. We have tested the technique 
on simulated signals, phantom images, and real MR images. 
It is found that the technique can reduce noise contents in 
signals and images by more than 80% while maintaining at 
least 80% of the value of the gradient at most edges. We did 
not observe any Gibbs’ ringing or significant resolution loss 
on the filtered images. Artifacts that arose from the filtration 
are very small and local. The noise filtration technique is quite 
robust. There are many possible extensions of the technique. 
We see its applications in spatially dependent noise filtration, 
edge detection and enhancement, image restoration, and mo- 
tion artifact removal. We have compared the performance of 
the technique to that of the Weiner filter and found it to be 
superior. 

I. INTRODUCTION 
OURIER transform domain filters used in signal and F image processing involve a tradeoff between the signal-to- 

noise ratio (SNR) and the spatial resolution of the signallimage 
processed. Low-pass filters will not only smooth away noise 
but also blur edges in signals and images; high-pass filters can 
make edges even sharper and improve the spatial resolution 
but will also amplify the noisy background [l]. In many 
medical imaging applications, noise is often removed by 
averaging over many identical image acquisitions. This leads 
to a very long imaging time and turns an SNR and resolution 
tradeoff into an imaging time and image resolution tradeoff. 
Filtering images with advanced image processing techniques 
is still often needed after acquisition to mitigate the lack of 
SNR. Image processing techniques based on statistical models 
(Bayesian approaches) have shown certain strength at reducing 
noise, enhancing edges, and removing ringing artifacts in 
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clinical images [2], [3]. We are studying spatial filters in 
the wavelet transform domain as an alternative to Fourier 
transform domain filters for medical imaging applications. 
The preliminary results from these studies show that noise 
is reduced very effectively by wavelet filters with very little 
resolution loss; most sharp edges are preserved, and some of 
them are being enhanced [4]-[6]. 

Wavelet transforms are multiresolution representations of 
signals and images. They decompose signals and images into 
multiscale details [7]-[9]. The basis functions used in wavelet 
transforms are locally supported; they are nonzero only over 
part of the domain represented. Sharp transitions in images are 
preserved and depicted extremely well in wavelet expansions 
[9]. This special treatment of edges by wavelet transforms is 
very attractive in image filtering. 

The filters we are exploring pass essentially all the signal at 
large scales. The signal at small scales is passed if it is around 
an identified edge; it is eliminated as noise if it is not around 
an identified edge. Because most noise power is confined to 
small scales, the reduction of signal at small scales reduces 
noise preferentially. However, to keep edges sharp, small-scale 
information is required. By passing small-scale data around 
identified edges, noise is reduced, and the identified edges stay 
sharp. The key to this technique is to identify edges. Edges 
are identified as features that have signal peaks across many 
scales. An edge occurs at a position where there are maxima 
in the nonorthogonal wavelet transform at several adjacent 
scales. Direct spatial correlations of the wavelet transform 
at different scales are used to identify the edges; the small 
scale data is passed at positions where the correlation is large 
and suppressed if the correlation is small. The orthogonal 
wavelet transform used in our previous work [4] is not 
appropriate because the transformed signal is uncorrelated 
across scale. The nonorthogonal wavelet introduced by Mallat 
and Zhong [9] offers much better edge detection because the 
signal is correlated across scale and the wavelet is an “edge 
detector.” 

The signal power at large scales corresponds to that at low 
frequencies in the Fourier transform; the power at small scales 
corresponds to that at high frequencies in the Fourier transform 
[7], [8]. This filter can be seen as a low-pass filter that passes 
selected high-frequency data. The high-frequency data passed 
is that which occurs at positions where edges are identified. 
Compared with the optimum linear filter, the Wiener filter, 
which is solely adapted to SNR at a single scale, the wavelet 
filter performs much better in preserving high-frequency data 
around edges. 
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Fig. 1. Plot of a typical quadratic-spline wavelet used here for noise filtration. 

11. WAVELET TRANSFORMS 

Wavelets are families of functions 9.Jx) generated from 
a single base wavelet 9(x) by dilations and translations 

where s is the dilation (scale) parameter, and t is the translation 
parameter. Wavelets must have mean zero, and the useful ones 
have localized support in both spatial and Fourier domains. 
There are orthogonal and nonorthogonal wavelet sets that span 
L2(srZ). In this paper, we use nonorthogonal wavelets first 
introduced by Mallat et al. [9]; the base wavelet is shown in 
Fig. 1. It is very close to the derivative of a Gaussian function. 
The set of Q",n(x) spans L2(R) when s = 2m, t = n 

9m,n(x)  = 2-m/2Q(2-m(x - n) )  (2) 

where m is the scale index (m = 0,1,2, .  . .), and n is the 
translation (spatial) index (n = . . . , -2, - 1 , O ,  1 ,2 , .  . .). The 
discrete wavelet transform W(m,n)  of a 1-D function f ( x )  
is defined as the projection of the function onto the wavelet 
set q m , n ( x ) .  

J -ca 

Since the set of \Irm,n(x) spans the space containing f ( x ) ,  
the reconstruction of function f ( x )  from its wavelet transform 
W(m,n) is possible 

(4) 
m n  

where 9A,n(x)  is the normalized dual basis of 9m,n(x).  For 
the wavelet expansion we use here, 9' x 9. 

The wavelet transform W(m, n)  gives a scale-space decom- 
position of signals and, with simple modifications, images. It 
decomposes the signal into different resolution scales, with 
m indexing the scale and n indexing position in the original 
signal space. 

In practice, we are concerned with a finite length, discrete 
(sampled), 1-D data set { f (k) , IC = 1 ,2 , .  . . , N } ,  and we 
need appropriate discrete and finite versions of the calculations 
involved in the wavelet decomposition [9]. In particular, there 
is a fixed limit to the resolution and, therefore, a lower bound 
on the scale index m, which we may take as m = 1 without 
loss of generality. It is useful to model this resolution limit 
by representing the data f ( k )  as samples of a smoothed, or 
low-passed, version of a continuous signal: 

f ( k )  = J'" dx q x  - I C )  f ( x )  (5 )  

with respect to a smoothing or scaling function a. Based on 
this representation of the data, one may compute the wavelet 
coefficients in (3) by means of a purely discrete algorithm, 
as detailed in [9]. Beyond these considerations, there is also 
an effective upper limit on the scale m imposed by the finite 
length of the signal. 

Consequently, the nonorthogonal, discrete, dyadic wavelet 
coefficients W(m,n)  are computed on a 2-D space of m = 
1 , 2 , .  . . , M - 1 and n = 1,2, .  . . , N ,  where M = log, N ,  

-W 

with the remaining information contained in the coarse scale 
averages S ( M ,  n) = 2-M J-'," dx @ ( 2 - M ( ~  - n) )  f(x). 
This information determines thesignal f ( z ) :  

m = l  n= l  
N 

+ +(2-M(x - n ) ) S ( M ,  n). (6)  
n=l  

The M . N coefficients obviously form an overcomplete 
representation of the signal. For a data set of N = 256 
points, M is equal to 8, i.e., there are eight wavelet scales. 
At each scale, there are 256 data points corresponding to 
the signal detail projected at that scale. Orthogonal wavelet 
transforms have fewer coefficients at course scales, which 
makes correlations across scale difficult. Fig. 2 shows a 
simulated 1-D data set of 256 points and its discrete, dyadic 
wavelet transform at all eight scales. In the simulated data, 
we placed two small "bumps" on top of a large boxcar and 
added Gaussian distributed white noise. The SNR of the data 
is about 18 dB. The edges of the large boxcar and two small 
bumps are well localized in the wavelet transform domain and 
show up at most wavelet scales (from small to large). Noise 
power, however, is concentrated only at a few small scales. 

111. FILTERING ALGORITHM 

Several edge detection and noise reduction techniques based 
on the approaches of wavelet and subband decompositions 
have been proposed in recent years [lo], [ l l ] .  Witkin first 
introduced the idea of using the scale space correlation of 
the subband decompositions of a signal to filter noise from 
the signal [lo]. He developed an algorithm to track major 
edges in a signal from coarse scales to fine scales in the 
subband decompositions and was able to distinguish major 
edges from noise background at finer scales. Recently Mallat 
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Fig. 2. 
transform at all eight scales. 

Simulated 1-D data of 256 points and its discrete dyadic wavelet 

et al. introduced the complete signal representation by wavelet 
transform domain maxima [9] (wavelet transforms are special 
types of subband decompositions). They were able to dis- 
tinguish edge maxima from noise maxima by analyzing the 
singularity properties of wavelet transform domain maxima 
of a signal across the various scales [ 113. Our approach to 
filtering noise from a signal also relies on the variations in 
scale of the wavelet transform data of the signal, but rather 
than detecting edges directly on the wavelet transform data 
with a complicated algorithm, such as those introduced in 
[lo] and [ l l ] ,  we use the direct multiplication of wavelet 
transform data at adjacent scales to distinguish important edges 
from noise and accomplish the task of removing noise from 
signals. Rosenfeld et al. demonstrated that it is very efficient 
and quite accurate to simply use the direct multiplication of the 
subband decompositions of an image to locate important edges 
in digital images [12], [13]. Although it may be slightly less 
accurate than the techniques in [lo] and [ l l ] ,  we believe that 
our approach is more straightforward, easier to implement, 
and significantly more robust. 

The wavelet transform domain noise filtration technique 
we are developing is based on the fact that sharp edges 
have large signal over many wavelet scales, and noise dies 
out swiftly with increasing scale. We are using the direct 
spatial correlation Corrl (m, n)  of wavelet transform contents 
at several adjacent scales to accurately detect the locations of 
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edges or other significant features. 

Corrl(m, n)  = n ~ ( m  + i, n) ,  
1-1 

n = 1 , 2 , .  . . , N (7) 
i = O  

where 1 is the number of scales involved in the direct mul- 
tiplication, m < M - l + l ,  and M is the total number of 
scales. The absence of edges or other significant features in 
a localized region of the signal allows the noisy background 
to be removed there. The direct spatial correlation of edge- 
detection data over several scales sharpens and enhances major 
edges while suppressing noise and small sharp features. The 
correlation, Corrl(m, n) will improve the accuracy of locating 
important edges in signals and images [12], [13]. 

Fig. 3 demonstrates the effect of this wavelet filter on the 
smallest (first) scale of the wavelet transform of the signal 
shown in Fig. 2. The wavelet transform of the signal at the 
first scale W(1 ,n )  is shown in Fig. 3(a). Fig. 3(b) gives the 
direct multiplication of the wavelet transform contents at the 
first two smallest scales Corrz(1, n)  = W(1, n)W(2, n). Note 
that the two edges of the large boxcar in the original data 
set show up much sharper and stronger in Corrz( 1, n)  than 
they appear in W (  1, n). Furthermore, one may observe that 
they are much larger in Corrz(1, n) than the edges of the two 
small bumps and the noisy background. Our algorithm uses the 
strength of these correlated features to discriminate significant 
signal features from noise, as follows. 

First, the power of the { Corrz (1, n ) }  data is rescaled to that 
of the (W(1, n ) }  data. The most important edges (two major 
edges in Fig. 3) are identified in W (  1, n)  and CorrZ( 1, n)  by 
comparing the absolute values of Corrz (1, n)  and W (  1, n). An 
edge is identified at any position n for which ICorrZ(1, n)I > 
IW(1, .)I. This edge position and its corresponding value 
W(1,n) are stored. Finally, all the edges identified in this 
way are extracted from Corrz(1, n) and W(1, n) by resetting 
the values of these signals to 0’s at the positions identified. 
We refer to the remainder of the data points in W (  1, n)  and 
Coma( 1, n)  after the first round of edge extraction as W’( 1, n)  
and Corrh( 1, n). By rescaling the power of Con$( 1, n)  to 
that of W’(1,n) and comparing their absolute values, the 
next most significant edges (edges of the two small bumps 
in Fig. 3) are extracted from W(1,n)  and Corrz(1,n). This 
procedure of power normalization, data value comparison, and 
edge information extraction can be iterated many times until 
the power of the unextracted data points in W (  1, n)  is nearly 
equal to some reference noise power at the first wavelet scale. 
In digital image processing, one can often use the background 
noise at the “dark” (signal-free) regions near the boundaries 
of an image as the reference noise [4]. Through the wavelet 
transform of this “reference noise,” the average noise power 
at each wavelet scale can be estimated for a particular image 
and used as a threshold to terminate the iteration procedure 
explained above. 

All the edge information in the original data that is extracted 
from W(1,n) during this iteration process is kept in a data 
vector. We call this data vector Wnew(l,n). By replacing 
W (  1, n)  with WneW( 1, n), we can have a new and spatially 
filtered first scale wavelet transform data where most of 
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Fig. 3. Graphic illustration of the noise filtration technique based on the di- 
rect spatial correlation of wavelet transform data at several adjacent resolution 
scales: (a) First scale wavelet transform W(1, n)  before filtering; (b) direct 
multiplication of W(1, n )  and W(2,  n ) ;  (c) demonstration of the filtering 
technique in the form of a spatially selective filter for the first scale; (d) first 
scale wavelet transform W,,, (1, n )  after filtering. 

the noise is removed and most of the original edges are 
preserved. Fig. 3(d) shows the spatially filtered first scale 
wavelet transform data of the signal shown in Fig. 2. This noise 
filtration and edge extraction technique can be thought of as 
a spatially dependent filter. This spatial filter is demonstrated 
by the mask shown in Fig. 3(c); it spatially selects which part 
of the data to keep (the edges) and which part of the data to 
eliminate (the noise); the signal is passed where the wavelet 
transform is highly correlated across scales and suppressed 
elsewhere. 

The procedure can be summarized as a comparison of the 
normalized ICorrz(m,n)l data with IW(m,n)l to guide the 
extraction of the edge information from W(m,n) iteratively 
at the mth wavelet scale. By repeating the procedure at 
every resolution scale, we can acquire all the spatially filtered 
wavelet transform data Wnew(m,n). The entire procedure is 
illustrated by the “control flow” pseudo-software code in Table 
I. The reconstruction from Wnew(m,n) through the inverse 
wavelet transform shown in (6)  will yield the final filtered 
signal. The inverse wavelet transform that we implemented in 
our technique uses a kernel function that is the same as the 
basis function (the wavelet kernel shown in (2)) used to build 

TABLE I 
ENTIRE FILTERING PROCESS IN THE WAVELET TRANSFORM 

DOMAIN DESCRIBED BY A “CONTROL FLOW” TYPE OF SCHEME 

First, Save a copy of W(mnl to WWim.nl 
Initialize the “spatial filter mask: masklm.nl to 0’s 

Loop for each wavelet scale m 

Loop for the iteration process 
[ 

( 

PCorr(m) = ~ ~ o r r 2 ( m , n ) ~  

P W ( ~  = CW(m,n)’  

Re-scale the power of Corr2lm.n) to that of Wlm.nl: 

Compute the power of Corr2lm.n) and Wlm,nl: 

Loop for each pixel point n 
f 

new Corr2lm.nJ = Corr2[m,nJ * 4- 
1 end loop n 
Loop for each pixel point n 
I 

Compare pixel values in new Corr2hnJ and Wlm,n): 
if I Corr2lm.n) I > I W(m,nJ I 
( 

Extract edge informatton from W(m,n) and Corr2lm.n). 
and save it in the ”spatial filter mask: 

Corr2(m,n) = 0.0 
W(m,nj = 0.0 
masklm,n) = 1 

) end if 
1 end loop n 

] iterate until PWld < the noise threshold at scale m 
Apply the “spatial filter mask to the saved copy, WWlm.n). 
at scale m. Save the filtered data to W n e w h n h  

Loop for each pixel point n 
[ 

) end loop n 
Wnewlm,n) = masklm,n) WWlm,nl 

1 end loop m 

the forward wavelet transform [9]. Fig. 4 shows the filtered 1- 
D simulation data and its spatially filtered wavelet transform 
data Wnew(m,n). Edges of the large boxcar and the higher 
bump remain as sharp after filtration as they were before 
filtration. Noise reduction is remarkable; the synthetic noise in 
the signal has been reduced by 80 to 90%. The SNR is raised 
from 18 to 26.3 dB. There is no Gibbs’ ringing around major 
edges in the filtered signal; artifacts arising from the filtration 
are very small and local. We do notice, however, that there is 
slight degradation in both the edges and the contrast of small 
features (i.e., the smaller bump in the simulated data). It is 
difficult for the filter to discriminate between noise and the 
features that are the same size as the noise. 

Fig. 5(a) is an overlay plot of the simulated signal before 
and after the noise filtration. The edge preserving property of 
this technique is clearly seen from a close-up view at the larger 
bump in the signal. Fig. 5(b) gives an overlay plot of a real 
image line before and after the noise filtration. This image line 
data is drawn from a fairly noisy magnetic resonance (MR) 
image of human neck. The intensity gradients at most edges 
in the filtered line remain at more than 80% of their original 
values. No large artifacts are observed. A close-up view of 
the central portion of the line shows that this wavelet domain 
filter technique protects edges very well. 

We should mention that the test data we have shown so 
far contain mainly very sharp edges (even though some of 
them are small) and noise. It appears that the wavelet filter 
works well on those signals. Most clinical images (such as 
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Fig. 4. 
Fig. 2 after being processed with the wavelet domain filtering technique. 

computed tomography and MR images) show up as regions of 
tissues with different intensities and fairly sharp boundaries. 
We have, however, also tested the filter on some noisy data 
with rather smooth features. In Fig. 6(a), the original data 
(dashed line) has a fairly large and smooth “bump” on top of 
a large boxcar embedded in the noisy background. The solid 
line is the filtered data. Fig. 6(b) gives the filtered data (solid 
line) against the original data without the presence of noise 
(dashed line). Smooth features have significant signal power 
in the middle size scales. The presence of more signal power 
in the middle size scales retains slightly more noise power in 
the same scales. When the spatial filter passes signals in the 
small neighborhood of a sharp edge, the noise power that is 
passed along with the signal is not very noticeable. When the 
filter passes signals over a wide area around a smooth feature, 
the noise power that is passed along is more noticeable as 
shown in Fig. 6(b). 

Same 1-D data and its discrete dyadic wavelet transform shown in 

IV. RESULTS ON 2-D IMAGES 

Two-dimensional wavelet transforms used in image analysis 
and processing are not very different from the 1-D trans- 
forms shown in (3) and (4), except that the wavelet kemel 
(basis function) becomes a 2-D one Qm,n=,ny(x,y), and the 
transformed image data will be a 3-D data set W(m,  n,, n,). 

(b) 

Fig. 5. Plots of the synthetic noisy signal shown in Fig. 2 and the image 
line #I09 from an MR image against their corresponding filtered data: (a) 
Syntheticsignal (with a closeup at the larger bump). The standard deviation 
of the synthetic Gaussian white noise is about 10% of the amplitude of the 
large boxcar; (b) MR image line 109 (with a closeup at the center peak). 

and 

where Q’(x,y) is the dual basis of e ( z , y ) ,  and the scale 
index m is not greater than it4 = log2[min(Nz, Ny)] if 
n, = 1 , 2 , .  . . , N ,  and n, = 1,2 , .  . . ,Ny. The 2-D wavelet 
transform kemel we used is a separable kemel function [9]. 
The 2-D filtering algorithm is built on the direct spatial 
correlation data 

1-1 

COrrl(m,n,,ny) = n W ( m + i , n e , n y ) ,  1 I n, I N,, 
i=Q 

1 I ny I N, 

where 1 is the number of resolution scales involved in 
the direct multiplication, and m is the intended processing 
scale. The iterating process of rescaling the Corrl(m, n,, nY) 
data to W(m,nz,ny), comparing the absolute values of 
Corn(? n,, nY) and W(m, n,, n,), and extracting edge 
information from the two data sets will yield the spatially 
filtered wavelet transform data Wnew(m, n,, n, ). The 
processed 2-D image data can then be generated through 
the inverse transform (9). 
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(b) 
Fig. 6. One-dimensional filtering of a synthetic noisy signal with a large and 
smooth feature. The standard deviation of the synthetic Gaussian white noise 
is about 10% of the amplitude of the large boxcar: (a) Original noisy signal 
against the filtered data; (b) original clean (no noise) synthetic signal against 
the wavelet filtered noisy data. In the wavelet filter, I = 2 (the number of 
scales to correlate), and the first six wavelet scales are processed. 

We synthesized a digital image of 256 (Nx) by 256 (Ny) ma- 
trix size to test our wavelet transform domain noise filtration 
technique. In the synthetic image, there are 24 small circles 
of different sizes and intensities on top of a large circle. We 
added a certain amount of synthetic Gaussian distributed white 
noise into the image data. The synthetic image is shown in Fig. 
7(a), its average signal to noise ratio (SNR) is about 15 dB. 
Fig. 7(b) and (c) show filtered images with the wavelet filter 
and Wiener filter, respectively. In implementing the wavelet 
filter, we used the wavelet transform data only at two adjacent 
scales (1 = 2) in calculating the direct spatial correlation. In 
addition, we filtered the wavelet transform data at the first 
six scales (from scale 1 to scale 6). There are eight wavelet 
scales. The boundaries of most of the small circles and the 
large circle remain very sharp after the noise filtration. The 
average SNR is enhanced to more than 25 dB (90% noise 
reduction) in Fig. 7(b). There is very little reduction of the 
spatial resolution, and artifacts are small and local. However, 
we did observe that certain noisy spots were left around 
the neighborhoods of the sharp edges. The smallest, lowest 
contrast circles could not be fully recovered from the noisy 
background. In the Wiener filtered image shown in Fig. 7(c), 
the amount of noise reduction is not as great as that in Fig. 
7(b); the average SNR is 22.6 dB. On the other hand, the loss 

of image sharpness and ringing at the edges of the phantom are 
more noticeable. An error image acquired by subtracting the 
wavelet filtered image data from the original noisy synthetic 
image data and taking the absolute values is shown in Fig. 
7(d). 

In our implementation of the Wiener filter, we assumed the 
noise was white. A noisy image power spectrum was first 
computed by an averaged periodogram to reduce estimation 
variance. The noise power was then estimated at the high- 
frequency band of the noisy image spectrum, and the object 
spectrum was obtained by subtracting the estimated noise 
power from the noisy image spectrum. This method is referred 
to as spectral pruning or subtraction [14], [15]. The amount 
of spectral subtraction is controlled by the estimated noise 
power and a multiplicative factor that represents the tradeoff 
between the noise reduction and the image resolution. The 
more spectral subtraction is applied, the more noise is removed 
at the expense of having more blurring and ringing at edges. 

We have also tested this wavelet domain filter on clinical 
images. Fig 8(a) is a real, axial, gradient echo, MR image of 
a volunteer taken on a General Electric Signa 1.5-T whole- 
body MR scanner.' The noise is not large in this particular 
image. The average SNR of the image is below 20 dB. The 
wavelet filtered head image is shown in Fig. 8(b), and the 
Wiener filtered one is shown in Fig. 8(c). In Fig. 8(b), we can 
see that most of the low-contrast and fairly small features in 
the brain tissues are recovered after the noise filtration. The 
noise reduction is remarkable. The filtered head image looks 
very clean and sharp. No ringing or other artifacts are present. 
In Fig. 8(c), small features in the head image are blurred 
considerably after Wiener filtering. 

Figs. 9(a) and 10(a) give two more MR images from the 
axial head scan of the same volunteer. The noise in these 
two images is much larger than that in the previous one. The 
average SNR in these two images is about 12 dB. Many small 
and low-contrast features in the brain are heavily contaminated 
by the noise. Figs. 9(b) and 10(b) show the corresponding 
images after the wavelet domain filtering, and Figs. 9(c) and 
1O(c) are the ones after the Wiener filtering. At these low 
SNR's, the Wiener filter performs very poorly. The images are 
significantly blurred while the noise is still not smoothed as 
much as desired. The average SNR is raised to about 20.5 dB 
in the Wiener filtered images. With the wavelet filter, however, 
most low-contrast, large features are very well recovered as 
are the high-contrast, small features. However, the small, low- 
contrast features in the brain tissue, which do not have a 
spatial correlation Corrl(m, n)  superior to that of noise, are 
not well recovered. There is a little reduction in the spatial 
resolution; however, it does not appear to be a result of ringing 
artifacts and edge blurring but rather a result of the slight 
degradation in tissue contrast. Heavy noise has been more 
effectively removed. The filtered images again are very clean. 
The average SNR is raised to 22 dB in the wavelet filtered 
images. An error image acquired by subtracting the wavelet- 
filtered image data from the original MR image data and taking 
the absolute values is shown in Fig. 9(d). 

' (G.E. Medical Systems, Milwaukee, WI). 
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Fig. 7. Fairly noisy synthetic digital image. The average SNR = 15 dB; the standard deviation of the synthetic Gaussian white noise is about 10% of 
the amplitude of the large circle image: (a) Before filtering; (b) after 2-D wavelet filtering; (c) after 2-D Wiener filtering; (d) difference between (a) and 
(b). In the wavelet domain filter, 1 = 2, and the first six wavelet scales are processed. 

V. DISCUSSION a high-frequency band, but estimating the object spectrum 
the noise and power spectra from a noisy observation is not an easy task. In particular, 

of the object a priori. In practice, both object and noise the estimation of the object spectrum in a high-frequency 
spectra are often unknown and have to be estimated from band is hampered by the strong presence of noise. At 
a single noisy observation. The noise spectrum can often very low SNR, the Wiener filter tends to close its high- 
be estimated from a signal-free region of the image or in frequency passing band; it essentially rejects almost all 

The wiener filter 
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(C) 

Fig. 8. 
filtering. In the wavelet domain filter, 1 = 2, and the first six wavelet scales are processed. 

MR image from an axial head scan of a volunteer (SNR = 18 dB): (a) Before 2-D filtering; (b) after 2-D wavelet filtering; (c) after 2-D Wiener 

high-frequency components, including those from important 
edge features. 

The wavelet domain filter is superior to the Wiener filter 
because of its edge and feature-sensitive selectivity in passing 
certain high-frequency data. The direct spatial correlation of 
wavelet transform contents at several adjacent scales obviously 
enhanced major edges in the wavelet transform domain while 

the noise and small features were suppressed. The tradeoff 
with this filter is between noise suppression and small feature 
retention. Features that were large compared with the noise 
were easily retained and were not degraded. However, the 
features that were the same size as the noise were also 
suppressed because they were not distinguished from the noise. 
Rescaling the power of the direct multiplication values to that 
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(C) ( 4  

Fig. 9. 
filtering; (d) difference between (a) and (b). In the wavelet domain filter, I = 2, and the first six wavelet scales are processed. 

Much noisier MR head image of the same volunteer (SNR = 12 dB): (a) Before 2-D filtering; (b) after 2-D wavelet filtering; (c) after 2-D Wiener 

of the wavelet transform data at the smallest scale among 
the scales involved in the multiplication apparently transferred 
energy from the noisy background and small features to the 
major edge contents in the wavelet transformed data. 

We found, from our experiments, that the direct spatial 
correlation involving only two or three adjacent wavelet scales 
(1 =2 or 3) yielded the best filtering results. If we used more 

wavelet scales in the spatial correlation operation, we did not 
achieve better edge enhancement; in fact, many times, the 
situation became worse. We believe this is because the center 
locations of many types of edges do not occur at the same 
position over a wide range of scales in the wavelet transform 
domain; the shape of the edge determines where the maxima 
in the wavelet transform domain occur at each scale. For a 
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(C) 

Fig. 10. 
Wiener filtering. In the wavelet domain filter, 1 = 2, and the first six wavelet scales are processed. 

Another very noisy MR head image of the same volunteer (SNR = 12 dB): (a) Before 2-D filtering; (b) after 2-D wavelet filtering; (c) after 2-D 

perfectly sharp edge the maxima at each scale occurs at the 
same position, but for other edges, the maxima can move. 
In addition, the position of the maxima can move if other 
edges interfere. It was also found that the more wavelet scales 
are involved in the spatial correlation operation, the more and 
stronger noise events were passed in the neighborhood of the 
sharp edges. 

In the filtering algorithm, we used the “dark” (signal-free) 
regions at the boundaries of each image to estimate the noise 
power at each wavelet scale. This reference noise power serves 
as a threshold to terminate the edge extraction iteration. We 
found that the filtering results are not very sensitive to the 
slightly inaccurate selection of this reference noise power. We 
inserted an adjusting factor to the estimated reference noise 

I n 
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power. The effect of the filtering did not deviate very much (no 
more than 5% variation on the amount of resolution reduction 
in images) when the adjusting multiplicative factor varied from 
1.0 to 1.3. However, we found that the adjusting factor was 
useful because the noise near the boundaries of an MR image 
is a bit lower than that near the center of the image. We have 
used a factor of around 1.3 to adjust the reference noise power 
estimated near the boundaries of MR images before using it as 
a threshold. This new threshold yields the best wavelet domain 
filtering results in reducing noise from MR images. 

The computation time spent on filtering noise from 2-D 
images in the wavelet transform domain is not significant. 
The part of applying the 2-D filtering algorithm is much less 
time-consuming than the 2-D forward and inverse wavelet 
transforms. In the entire filtering process, 90% of the total 
processing time is spent on the 2-D wavelet transformations. 
However, it has been estimated that parallelization of the 
wavelet transform algorithm can increase the processing speed 
by three orders of magnitude [ 161. 

VI. CONCLUSION 
We have introduced an effective wavelet transform domain 

noise filtration technique. This filter preserves edges and 
removes noise. Noise is preferentially removed from the 
wavelet transform data at a given scale by comparing the 
data at that scale to the correlation of the data at that scale 
with those at larger scales. Features are identified and retained 
because they are strongly correlated across scale in the wavelet 
transform domain. Noise is identified and removed because it 
is poorly correlated across scale in the wavelet transform do- 
main. Features remain relatively undistorted because they are 
very well localized in space in the wavelet transform domain; 
therefore, edges remain sharp after filtration. In comparison 
with the Wiener filter, the wavelet domain filter has edge and 
feature-sensitive selectivity in passing high-frequency data at 
very low SNR, whereas the Wiener filter tends to close its 
high-frequency passing band exclusively. It appears that the 
Wiener filter can improve SNR almost as much as the wavelet 
domain filter does. However, the mean square error is not a 
perfect criterion to measure the success in filtering noise from 
digital images. The visual appearance of the wavelet-filtered 
images is far superior to that of the Wiener-filtered images. 

Our results show that this new filtering technique can 
remove more than 80% of the noise from the tested images 
and maintain all the edge gradients to more than 80% of 
their original values. There is no equivalent to Gibbs’ ringing 
at edges after filtration. The noise filtration is anisotropic in 
both spatial and Fourier domains. Any artifacts present are 
always small and local. The loss of spatial resolution is almost 
unnoticeable. 

However, this filtering technique does present a tradeoff 
between the SNR and the presence of small, low-contrast 
features in the filtered image; features that are the same size as 
noise are suppressed because they are not distinguished from 
the noise. We also noticed that the noise near a sharp edge is 
not removed as effectively as the noise in the smooth regions 
of an image. 

We see several possible improvements of this technique. 
First, we are currently using the noisy background at the near- 
boundary regions of the image to estimate the noise power 
at each wavelet scale. This reference noise power serves as 
a threshold to terminate the iteration process employed by 
the filtering technique. We can extend the technique to allow 
users to select and analyze any noisy regions in the image 
to establish this reference noise power so that more effective 
noise filtering can be achieved. Second, spatial continuity of 
edges can be used to identify weak but long edges in large 
noise. Spatial continuity of edges will help us effectively 
remove noise near sharp edges. More importantly, it will help 
discriminate very weak, low-contrast features from the noisy 
background. This is a very powerful extension if it can be 
made to work effectively. 

There are many possible applications of this filter. The 
spatially selective nature of this filter makes it useful in 
spatially dependent noise filtration, which is impossible for 
Fourier domain filters. Its good localization and protection of 
sharp edges will allow the wavelet filters to be very com- 
petitive in edge detection, pattern recognition, and computer 
vision as well as image enhancement and restoration. This 
wavelet transform domain filtering technique may become a 
very robust post-processing tool in many imaging applications, 
e.g., in MR angiography to help to identify the conspicuous 
blood vessel boundaries. 
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