
Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

1

Pittsburgh, PA 15213-3890

Current Best Practices in
Software Architecture

Paul Clements
Software Engineering Institute

Carnegie Mellon University
April 2006

Tandil, Argentina

© 2005 by Carnegie Mellon University 2

Applied R&D laboratory situated as a college-level unit at
Carnegie Mellon University, Pittsburgh, PA, USA

Established in 1984

Technical staff of 335

Offices in Pittsburgh, Pennsylvania,
Arlington, Virginia, and
Frankfurt, Germany

Purpose: Help others make
measured improvements in their
software engineering practices

Software Engineering Institute

© 2005 by Carnegie Mellon University 3

One of 5-6 programs at the SEI; approx. 30 people.
Our goal is to make improvements in

• Software product line engineering

• Predictable assembly of certifiable components

• Software architecture

• Creation

• Documentation

• Evaluation

• Use in system-building

Product Line Systems Program

© 2005 by Carnegie Mellon University 4

Introductions

Who are you?

Who am I?

© 2005 by Carnegie Mellon University 5

Topic

What do we mean by software architecture?

Why is it important?

© 2005 by Carnegie Mellon University 6

Software Architecture’s role in Software
Engineering

Some say that software engineering is about creating
high-quality multi-version multi-person software.

If we were just building a single system, all by ourselves,
that was never going to change, all we would need is
programming.

© 2005 by Carnegie Mellon University 7

Multi-person
For non-trivial software, teams of people cooperate to
build it. Teams may be
• In the same room
• In the same building
• In the same country
• On the same planet
• …or not.

Our systems need to be decomposable into pieces, such
that
• Teams can work in parallel
• Inter-team communication is not too burdensome

© 2005 by Carnegie Mellon University 8

Multi-version
At the dawn of computer science, people were most
concerned with programs that computed the right answer.
• Ballistic calculations
• Numerical problems
• Simulations and models of real-world processes

© 2005 by Carnegie Mellon University 9

Multi-version
In the late 1960s and early 1970s, people like Edsger
Dijkstra, David Parnas, Fred Brooks, Anthony Hoare, and
Harlan Mills were arguing that this was not enough.

They argued that systems could be constructed in better
ways
• To make changes easier.
• To make the programs easier to understand
• To make the programs less likely to contain errors
• To make the programs easier to test

They argued that structure matters!

© 2005 by Carnegie Mellon University 10

Edsger Dijkstra (1930-2002)

Contributions to architecture

•“On the T.H.E. Operating
System” (1968)

•Described the classic operating
system design,

•A brief appendix describes
semaphores.

•May have been the first
significant and/or popular
report on layered systems

© 2005 by Carnegie Mellon University 11

David Parnas
Contributions to architecture

•“On the Criteria for Decomposing
Systems into Modules” (1972) gave us
information-hiding as a design principle.
From outside, we can work with a
component only by its interface!

•“Designing Software for Ease of
Extension and Contraction” (1975)
introduced a useful architectural
relation: “uses”

•“On a ‘Buzzword’: ‘Hierarchically
Structured Systems’” (1976) taught
us that systems have many structures.

© 2005 by Carnegie Mellon University 12

Managing Change
Today we know that usually, most of the cost of a piece of
software comes after it has been deployed for the first
time.

Maintenance is very expensive. Anything we can do to
make systems easier to change will save money in the
long run.

Planning and designing for change is a very important part
of software engineering.

© 2005 by Carnegie Mellon University 13

High quality
Since the early times, other qualities have joined “ease of
change” as important parts of software engineering.
• Performance
• Security
• Availability
• What others?

© 2005 by Carnegie Mellon University 14

High quality
In fact, some say that software engineering is about the
achievement of quality attributes in a software-intensive
system.

It turns out that getting the right answer has become the
easy part.

Does this surprise you?

© 2005 by Carnegie Mellon University 15

Quality attributes

A system that computes the right answer – i.e., has the right
functionality -- but
• Takes too long to do it
• Allows hackers to break in and steal its data
• Is down too much of the time
• Cannot be changed in less than six months

…is not going to be a successful system. Nobody will want
to use it. Nobody will buy it.

© 2005 by Carnegie Mellon University 16

Quality attributes

If we accept the importance of quality attributes, then we need to
understand how to specify them…
• Our customer has to tell us what he wants
• Our architect and designers must understand it
• Our programmers have to achieve it
• Our testers have to test for it

…and how to design and build software to achieve them.

Software architecture helps with this.

© 2005 by Carnegie Mellon University 17

QA’s fall into two groups
“Run-time” QA’s
• We can measure how well a system exhibits these by

watching the system in operation
• Performance, security, availability, …

“Non-run-time” QA’s
• We can measure these by watching a team in operation
• Maintainability, portability, buildability, time to market…

© 2005 by Carnegie Mellon University 18

Software architecture
The rise of software architecture has resulted from two
trends:
• Recognition of the importance of quality attributes

- Increasingly “time to market” is critical
• The development of very large and very complex

systems.

© 2005 by Carnegie Mellon University 19

Software architecture
Large-scale design decisions cannot be
made by programmers.
• Have limited visibility and short-term

perspectives
• Trained in technology solutions to

specific problems.

Teams can only be coordinated, and QA’s
can only be achieved, by making broad
design decisions that apply to the entire
system – all of its elements.

© 2005 by Carnegie Mellon University 20

Summary so far
What do we know so far? A software architecture
• Exists to achieve a system’s quality attributes
• Exists to allow parallel development by distributed

teams (a special kind of quality attribute)
• Involves decomposing a whole into parts
• Involves system-wide design decisions such as

- How the parts work together to achieve the system’s
function and goals

© 2005 by Carnegie Mellon University 21

Software architecture and structure
Software architecture is largely about structure:
• What the pieces are
• What each one’s responsibility is
• How the pieces work together

© 2005 by Carnegie Mellon University 22

How does structure help?
By concentrating on structure, we treat the pieces as
atomic, as black boxes. This reduces detail we have to
tend to, and we can postpone that consideration until later.

It separates concerns between structure (the pieces) and
the details of implementing the pieces (which is a job we
give to programmers).

Suppressing the internal details of the elements does not
affect how the elements are used or how they relate to or
interact with other elements.

It makes an architecture an abstraction of a system –
which is a simplification.

© 2005 by Carnegie Mellon University 23

The Ascendance of Software
Architecture
Over the past 10 years, software architecture has
emerged as the prominent paradigm in large-system
development.
There are:
• worldwide conferences devoted to it
• books devoted to it
• defined “architect” roles in organizations
• courses and training for it

© 2005 by Carnegie Mellon University 24

And yet...
It is still not well understood in some circles.

Some organizations have no “architect” position. Others
have the position but it is informally defined.

Some organizations are still proceeding to development
without an architecture in place.

The tools of the trade -- styles and patterns, views,
evaluation -- are used sparingly if at all.

© 2005 by Carnegie Mellon University 25

Role of Software Architecture
If the only criterion for software was to get the right
answer, we would not need architectures―unstructured,
monolithic systems would suffice.
But other things also matter, such as
• modifiability
• time of development (time to market)
• performance
• coordination of work teams

System qualities are largely dependent on architectural
decisions.
• All design involves tradeoffs in system qualities.
• The earlier we reason about tradeoffs, the better.

© 2005 by Carnegie Mellon University 26

What is your definition of software
architecture?
The way that you partition a system or software process
for defining the teams that work on it.

A view or a structure of the main components of the
system and how they interact.

A tool for managing complexity and an abstraction of
reality.

© 2005 by Carnegie Mellon University 27

What Is Software Architecture?

Software architecture is the structure or structures of the system,
which comprise software elements, the externally visible properties
of these elements, and the relationships among them.

Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

© 2005 by Carnegie Mellon University 28

Implications of this Definition
Every system has an architecture. If you don’t explicitly
develop an architecture, you will get one anyway.
• Every system is composed of elements and there are

relationships among them.

Just having an architecture is different from having an
architecture that is known to everyone:
• Communicating (documenting) the architecture becomes

an important concern.

The architecture might not be the right one.
• Evaluating the architecture becomes an important

concern.

© 2005 by Carnegie Mellon University 29

“Externally visible properties”?
This refers to those assumptions that one element
can make about another element such as
• the services it provides
• how long it takes
• how it handles failures
• how it uses shared resources

Elements interact with each other via interfaces that
partition details into public and private parts.
Architecture is concerned with the public side of this
division.

© 2005 by Carnegie Mellon University 30

Structures: Plural!
Systems can and do have many structures.
• No single structure can be the architecture.
• The set of candidate structures is not fixed or prescribed.
• Relationships and elements might be runtime related such

as
- “sends data to,” “invokes,” or “signals”
- processes or tasks

• Relationships and elements might be nonruntime related
such as
- “is a submodule of,” “inherits from,” or “is allocated to

team X for implementation”
- a class or library

© 2005 by Carnegie Mellon University 31

Structures: Plural!
This means that box-and-line
drawings alone are not
architectures; but they are just
a starting point.
• You might imagine the

behavior of a box labeled
“database” or “executive” --
but that’s all

• You need to add
specifications and
properties.

• You need to specify what
the boxes are and what the
lines mean!

© 2005 by Carnegie Mellon University 32

Box-and-line drawings
Box-and-line diagrams are a
common form of architectural
notation.

But what do they mean?

If you use a box-and-line
diagram, always define
precisely what the boxes and
lines mean.

If you see a box-and-line
diagram, ask the owner what it
means. The result is usually
entertaining.

Are these modules? Objects?
Classes? Processes?
Functions? Code units?
Execution units? Other?

?

? ?
?

??

?

?

??

?

?

??

© 2005 by Carnegie Mellon University 33

Old ideas die hard

If you hear someone say

“Architecture is the overall structure of the system.”

…I hope you will disagree.

…I hope you will know how to answer them.

© 2005 by Carnegie Mellon University 34

Why is architecture so
valuable?

Why is it worth studying and
building?

Why is it worth investing in?

© 2005 by Carnegie Mellon University 35

Communication Vehicle among
Stakeholders
Architecture provides a common language in which the
architect can communicate with the stakeholders, and
stakeholders can communicate with each other.

This happens when
• negotiating requirements with users and other

stakeholders
• keeping the customer informed of progress and cost
• implementing management decisions and allocations
• Informing stakeholders about design decisions and

tradeoffs

© 2005 by Carnegie Mellon University 36

Architecture Constrains the
Implementation

An architecture defines constraints on an implementation.
• Architectures are descriptive and prescriptive

- descriptive for communication
- prescriptive for design and implementation

• Global resource allocation decisions constrain
implementations of individual components

• System tradeoffs regarding quality attributes are
architectural.
- Not all QA’s are possible all at once. We might

have to (for example) give up some reliability to gain
some performance. Architects make these
tradeoffs.

© 2005 by Carnegie Mellon University 37

The Development Project is Organized
Around Architectural Elements

The architecture influences the organizational structure for
development/maintenance efforts. Examples include
• division into teams
• assignment of work
• units for budgeting, planning by management
• basis of work breakdown structure
• organization of documentation
• organization of CM libraries
• basis of integration
• basis of test plans, testing
• basis of maintenance
• Incremental deployment

© 2005 by Carnegie Mellon University 38

Architecture Permits/Precludes
Achievement of Quality Attributes

For example

If you desire Examine
performance inter-component communication

modifiability component responsibilities

security inter-component communication,
specialized components (e. g., kernels)

scalability localization of resources

ability to subset inter-component usage

reusability inter-component coupling

© 2005 by Carnegie Mellon University 39

Architecture is Key to Managing
Change

An architecture helps reason about and manage change.
• important since ≈80% of effort in systems occurs after

deployment
Architecture divides all changes into three classes:
• local: modifying a single component
• non-local: modifying several components
• architectural: modifying the gross system topology,

communication, and coordination mechanisms
A “good” architecture is one in which the most likely changes
are also the easiest to make.

© 2005 by Carnegie Mellon University 40

Architecture is Basis for Incremental
Development

An architecture helps with evolutionary prototyping and
incremental delivery.
• Architecture serves as a skeletal framework into which

components can be plugged.
• By segregating functionality into appropriate

components, experimentation is easier.
• Risky elements of the system can be identified via the

architecture and mitigated with targeted prototypes.

© 2005 by Carnegie Mellon University 41

Architecture is a Reusable Model

An architecture is an abstraction: enables a one-to-many
mapping (one architecture, many systems).

Systems can be built from large, externally developed
components that are tied together via architecture.

Architecture is the basis for product (system)
commonality.

Entire software product lines can share a single
architecture.

© 2005 by Carnegie Mellon University 42

Architecture and structure, re-visited

Architecture is about structure. But which structure?
Software has more than one.

Parnas made this observation in 1976 (“On a ‘Buzzword’:
‘Hierarchically Structured Systems’”).
• Systems have many kinds of “pieces”: programs,

objects, classes, modules, processes, frameworks,
tasks, threads…

• Each one defines a different structure.
• Which one is the architecture?

Answer: All of them might be.

© 2005 by Carnegie Mellon University 43

Structures and Views
A representation of a structure (or a set of structures) is a

view.

Modern treatments of architecture all recognize the
importance of multiple architectural views.

Modern software systems are too complex to grasp all at
once. At any moment, we restrict our attention to a small
number of a software system’s structures.

To communicate meaningfully about an architecture, we
must make it clear which structure or structures we are
discussing…that is, which view we are taking of the
architecture.

© 2005 by Carnegie Mellon University 44

• structure – an actual set of architectural elements
as they exist in software or hardware

• view – a representation of a coherent set of
architectural elements, as written by and read by
system stakeholders. A view represents a a set of
elements and the relationships between those
elements.

Structures and Views - 2

© 2005 by Carnegie Mellon University 45

Example of Multiple Views
Software Architecture for A-7E Corsair II Aircraft
• U. S. carrier-based, light attack aircraft
• Used from the 1960s through the 1980s
• Small computer on board for navigation, weapons

delivery

© 2005 by Carnegie Mellon University 46

Module Decomposition View (2 Levels)
H

ar
dw

ar
e-

H
id

in
g

M
od

ul
e

Device
interface
module

Extended
computer
module

B
eh

av
io

r-
H

id
in

g
M

od
ul

e

Function
driver
module

Shared
services
module

Data banker
module

Physical
models module

Application
data types mod.

Filter
behavior module

Software
utilities module

System
generation mod.So

ftw
ar

e
-D

ec
is

io
n-

H
id

in
g

M
od

ul
e

© 2005 by Carnegie Mellon University 47

Data Flow View

Device interfaces

Data banker

Shared services

Function drivers Filter behaviors

Physical models

sensor inputs

computed values stored values

computed values

stored
values

values
to display

filtered
values

sensor
values

calculatedcalculated
realreal--worldworld

valuesvalues

Pilot, external world

© 2005 by Carnegie Mellon University 48

Layers View
Function drivers

Extended computer

Application data types

Device interfaces

Data
banker

Physical
models

Filter
behaviors

Shared services

Software
utilities

© 2005 by Carnegie Mellon University 49

Views -1

An architecture is a very complicated
construct -- too complicated to be seen all at once.

Views are a way to manage complexity.

Each view can be used to answer a different question
about the architecture
• What are the major execution units and data stores?
• What software is other software allowed to use?
• How does data flow through the system?
• How is the software deployed onto hardware?

© 2005 by Carnegie Mellon University 50

Views -2
A view is a representation
of a set of architectural
elements and the
relations associated
with them.

Not all architectural
elements -- some of them.

A view binds element
types and relation types
of interest, and shows
those.

All information

Some information

© 2005 by Carnegie Mellon University 51

Views -3
In the 1990s, the trend was to prescribe a set of views.
• Rational (Kruchten) 4+1 view model
• Siemens Four-Views Model for architecture
• Others

Now the trend is to prescribe choosing the right set of
views from an open set of possibilities.

IEEE/ANSI 1471-2000 (“Recommended Practice for
Architectural Description of Software-Intensive Systems”)
exemplifies this approach.

More on this when we discuss documentation.

© 2005 by Carnegie Mellon University 52

Architectural Structures
Architectural structures (and hence views) can be divided

into three types:

1. “module” structures – consisting of elements that are
units of implementation called modules

2. “component-and-connector” structures – consisting
of runtime components (units of computation) and the
connectors (communication paths) between them

3. “allocation” structures – consisting of software
elements and their relationships to elements in external
environments in which the software is created and
executed

© 2005 by Carnegie Mellon University 53

Example Module Structures
Decomposition structure – consisting of modules that
are related via the “is a submodule of” relation

Uses structure – consisting of modules that are related
via the “uses” relation (i.e., one module uses the services
provided by another module)

Layered structure – consisting of modules that are
partitioned into groups of related and coherent
functionality. Each group represents one layer in the
overall structure.

Class/generalization structure – consisting of modules
called classes that are related via the “inherits from” or “is
an instance” of relations

© 2005 by Carnegie Mellon University 54

Example Component-and-
Connector Structures
Process structure – consisting of processes or threads
that are connected by communication, synchronization,
and/or exclusion operations

Concurrency structure – consisting of components and
connectors where connectors represent “logical threads”

Shared-data (repository) structure – consisting of
components and connectors that create, store, and access
persistent data

Client-server structure – consisting of cooperating
clients and servers and the connectors between them (i.e.,
the protocols and messages they share)

© 2005 by Carnegie Mellon University 55

Example Allocation Structures
Deployment structure – consisting of software elements
and their allocation to hardware and communication
elements

Implementation structure – consisting of software
elements and their mapping to file structures in the
development, integration, and configuration control
environments

Work assignment structure – consisting of modules and
how they are assigned to the development teams
responsible for implementing and integrating them

© 2005 by Carnegie Mellon University 56

Architectural Structures Summary

Component-and-Connector

Client-Server

Concurrency

Process

Shared-Data

…

Module

Decomposition Class/Generalization

Uses

Layers

…

Allocation

Work Assignment

Deployment Implementation

…

© 2005 by Carnegie Mellon University 57

Using structures and views
Each structure provides the architect with an engineering
handle on some aspect of the system. For example:
• Carefully designing the module decomposition structure

has a powerful effect on modifiability.
• Carefully designing the module “uses” structure has a

powerful effect in the ability to field subsets and develop
incrementally.

• Carefully designing the deployment structure has a
powerful effect on performance and availability.

• Carefully designing the various C&C structures has a
powerful effect on run-time QA’s such as performance
or security.

© 2005 by Carnegie Mellon University 58

Using structures and views
Architects choose the structures that need to engineer
based on the important quality attribute drivers.

They record their designs using the corresponding views.

© 2005 by Carnegie Mellon University 59

Other kinds of architecture
Since the ascendance of software architecture, other
kinds of architecture have arisen. Two in particular
are:
• enterprise architecture
• system architecture

What do these terms mean to you?

© 2005 by Carnegie Mellon University 60

Enterprise Architectures

Enterprise architecture is a means for describing business
structures and processes that connect business structures.1

• It describes the flow of information and activities between
various groups within the enterprise that accomplish
some overall business activity.

• Enterprise architectures may or may not be supported by
computer systems.

• Software and its design are not typically addressed
explicitly in an enterprise architecture.

1 Zachman, John A. "A Framework for Information Systems Architecture." IBM Systems Journal
26, 3 (1987): 276-292.

© 2005 by Carnegie Mellon University 61

System Architecture

A system architecture is a means for describing the
elements and interactions of a complete system including
its hardware elements and its software elements.

System architecture is concerned with the elements of the
system and their contribution toward the system’s goal,
but not with their substructure.

See: Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

© 2005 by Carnegie Mellon University 62

Where Does Software
Architecture Fit?
Enterprise architecture and system architecture
provide an environment in which software lives.
• Both provide requirements and constraints to

which software architecture must adhere.
• Elements of both are likely to contain software

architecture.

© 2005 by Carnegie Mellon University 63

Summary
Software architecture refers to the structures of systems:
their elements, externally visible properties, and
relationships among them.

Software architecture represents the earliest and farthest-
reaching design decisions about a system.

Software architecture permits or precludes nearly every
quality attribute for a system…

…which is what software engineering is about achieving.

© 2005 by Carnegie Mellon University 64

Next:
We’ll discuss where architectures come from:

• Understanding architectural requirements: Quality
attributes, quality attribute scenarios, quality
requirements elicitation and capture

• The Architecture Business Cycle: forces that shape the
architecture, and where they come from

© 2005 by Carnegie Mellon University 65

Specifying quality attributes

If quality attributes are so important, we need a way to
communicate them unambiguously.

© 2005 by Carnegie Mellon University 66

Specifying quality attributes
Suppose our customer tells us he wants a system that

runs very fast.

Is that helpful? (Not
very.) What would
help?

I want a system that runs
very fast!

© 2005 by Carnegie Mellon University 67

Specifying quality attributes
How fast?

How do you measure that?

You can’t everything run fast. What do you really care
about?

© 2005 by Carnegie Mellon University 68

Specifying quality attributes
Suppose our customer tells us he wants a system that is

very secure.

Is that helpful? (Not
very.) What would
help?

I want a system that is
very secure!

© 2005 by Carnegie Mellon University 69

Specifying quality attributes
How secure?

How do you measure that?

You can’t have totally secure software. What do you really
care about, or what threats are the most important to
guard against?

© 2005 by Carnegie Mellon University 70

Specifying quality attributes
Suppose our customer tells us he wants a system that is

very easy to change.

Is that helpful? (Not
very.) What would
help?

I want a system that is
very easy to change!

© 2005 by Carnegie Mellon University 71

Specifying quality attributes
How easy?

How do you measure that?

You can’t make everything equally easy to change. Which
changes do you really care about?

© 2005 by Carnegie Mellon University 72

Specifying quality attributes

I want a system
that…

Be quiet!

© 2005 by Carnegie Mellon University 73

Specifying quality attributes
Conclusion: Just naming a quality attribute doesn’t help
very much.

We can’t build software with just that.

We need to be more specific.

Most people use quality attribute scenarios to capture
quality attributes.

© 2005 by Carnegie Mellon University 74

Scenarios
A scenario is a little story describing an interaction

between a stakeholder and a system.

A use case is a kind of scenario. The stakeholder is the
user. The interaction is a functional use of the system.

“The user pushes this button, and this result occurs.”

© 2005 by Carnegie Mellon University 75

Scenarios
We can generalize the notion of a use case to come up
with quality attribute scenarios.

A quality attribute scenario is a short description of how a
system is required to respond to some stimulus.

© 2005 by Carnegie Mellon University 76

QA Scenarios
A quality attribute scenario has six parts:
• source – an entity that generates a stimulus
• stimulus – a condition that affects the system
• artifact – the part of that was stimulated by the

stimulus
• environment – the condition under which the

stimulus occurred
• response – the activity that results because of the

stimulus
• response measure – the measure by which the

system’s response will be evaluated

© 2005 by Carnegie Mellon University 77

A QA Scenario for Availability
• An unanticipated external message is received by a

process during normal operation. The process
informs the operator of the message’s receipt, and
the system continues to operate with no downtime.

1. source – external
2. stimulus – unanticipated message received
3. artifact – process
4. environment – during normal operation
5. response – system continues to operate
6. response measure – zero downtime

© 2005 by Carnegie Mellon University 78

A QA Scenario for Modifiability
• During maintenance, a change is made to the system’s

rules engine. The change is completed in one day.

1. source – requestor of the change
2. stimulus – a change is made
3. artifact – rules engine
4. environment – during maintenance
5. response – the change is completed
6. response measure – …in one day

© 2005 by Carnegie Mellon University 79

A QA Scenario for Security
• During peak operation, an unauthorized intruder tries

to download prohibited data via the system
administrator’s interface. The system detects the
attempt, blocks access, and notifies authorities within
15 seconds.

1. source – an unauthorized intruder
2. stimulus – tries to download prohibited data
3. artifact – system administrator’s interface
4. environment – during peak operation
5. response – the attempt is detected, blocked, reported
6. response measure – …within 15 seconds

© 2005 by Carnegie Mellon University 80

Scenarios for other QA’s
Can you imagine QA Scenarios for
• Usability?
• Testability?
• Time to market?
• Freedom from error?
• Others

Q: How many scenarios does it take to specify a quality
attribute?

A: As many as you need.

© 2005 by Carnegie Mellon University 81

One QA, many scenarios
For a system we’re about to build:

We might capture several performance scenarios, one for
each of:
• (Min, max, average) transaction throughput under

(peak, normal) load
• (Min, max, average) end-to-end latency for a

transaction

We might capture several security scenarios, one for each
of:
• Denial of service
• Unauthorized access
• Non-repudiatability

© 2005 by Carnegie Mellon University 82

One QA, many scenarios
For a system we’re about to build:

We might capture several modifiability scenarios, one for
each of:
• Adding a new function
• Correcting a bug
• Changing the platform or middleware
• Changing the behavior
• Replacing one component with another
• Changing the user interface
• Etc.

And so forth.

© 2005 by Carnegie Mellon University 83

Exercise
Write a quality attribute scenario that expresses a
requirement for
• Modifiability
• Security
• Usability
• Performance
• Testability

Take 30 minutes. Plan to read your results to the class.

© 2005 by Carnegie Mellon University 84

More about QAs
There is no standard set of quality attributes

• People disagree on names:
Maintainability/modifiability/portability

• People come up with new ones: “calibrate-ability”
• There is no standard meaning of what it means to

be “secure”

Scenarios let us avoid all of these problems!

The QAs are defined by the scenarios!

Who tells us what QA’s are important? Stakeholders!

© 2005 by Carnegie Mellon University 85

Stakeholders
Stakeholders are people with a vested interest in the
system. They are the people who can tell us what is
needed. They are the people who can tell us if what we
are building is the right thing.

We usually think of the user as telling us what is required,
but there are many kinds of stakeholders.

© 2005 by Carnegie Mellon University 86

Stakeholders

Who are the stakeholders of an architecture?
Name some of the roles.

© 2005 by Carnegie Mellon University 87

Stakeholders have an interest in the construction and
operation of a software system. They might include:
• customers
• users
• developers
• project managers
• marketers
• maintainers

Stakeholders have different concerns
that they want to guarantee and/or
optimize.

Influence of System Stakeholders

© 2005 by Carnegie Mellon University 88

Concerns of System Stakeholders

Marketing
stakeholder

Behavior,
performance,

security,
reliability,
usability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

I need a raise!

© 2005 by Carnegie Mellon University 89

Stakeholder Involvement
Stakeholders’ quality attribute requirements are seldom
documented, which results in
• goals not being achieved
• conflict between stakeholders

Architects must identify and actively engage stakeholders
early in the life cycle to
• understand the real constraints of the system (many times,

stakeholders ask for everything!)
• manage the stakeholders’ expectations (they can’t have

everything!)
• negotiate the system’s priorities
• make tradeoffs

© 2005 by Carnegie Mellon University 90

SEI Quality Attribute Workshop
(QAW)
The QAW is a facilitated method that engages system

stakeholders early in the life cycle to discover the
driving quality attributes of a software-intensive system.

Key points about the QAW are that it is
• system-centric
• stakeholder focused
• used before the software architecture has been

created

© 2005 by Carnegie Mellon University 91

QAW Steps

1. QAW Presentation and Introductions

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement
Iterate as necessary with broader
stakeholder community

© 2005 by Carnegie Mellon University 92

Update Architectural Vision
Refine Requirements
Create Prototypes
Exercise Simulations
Create Architecture

QAW Benefits and Next Steps

• increased stakeholder communication
• clarified quality attribute requirements
• informed basis for architectural decisions

QAW
Quality
Attribute
Scenarios:
• raw
• prioritized
• refined

Evaluate
Architecture

Can be
used to

Potential Next Steps

Potential Benefits

© 2005 by Carnegie Mellon University 93

Architectural Requirements
Architectural requirements are shaped by quality attribute
requirements.

These come from stakeholders.

What else shapes an architecture?

© 2005 by Carnegie Mellon University 94

Development Organization’s
Influence on Architectures
• An organization may have an investment in certain assets,

such as
- existing architectures and products based on them.
- a purchased tool environment
- training

• The architecture can form the core of a long-term
investment to meet the strategic goals.

• The organizational structure can shape the architecture.
E.g., a Database Division may influence the architect to
include a database in the design.

© 2005 by Carnegie Mellon University 95

Influence of Technical Environment
on Architectures
The technical environment that is current when an
architecture is designed will influence that architecture.

Today, a business system will almost certainly be
• Web-based
• Have a main database
• Be layered and/or tiered
• Be distributed and use commercial middleware
• Etc.

It may also use
• Agents
• Service-oriented architecture
• .NET or J2EE or…

It wasn’t always like this.

© 2005 by Carnegie Mellon University 96

Influence of Architect’s Background
on Architectures
Architects make choices based on their past
experiences:
• Good experiences will lead to the replication of

those prior designs that worked well.
• Bad experiences will be avoided in new designs,

even if the methods, techniques, and/or
technology that led to those bad experiences
might work better in subsequent designs.

• An architect’s choices might be influenced by
education and training.

© 2005 by Carnegie Mellon University 97

Influences on the Architecture

Architect’s influences

Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements

System

Architect(s)
Architecture

© 2005 by Carnegie Mellon University 98

Architectures Affect the Factors
That Influence Them

Once the architecture is created and a system (or
systems) built from it, both will affect
• the structure and goals of the organization

developing them
• customers’ requirements
• the architect’s experience in developing

subsequent systems because the corporate
experience base has been enhanced

• technology

© 2005 by Carnegie Mellon University 99

How Architectures Affect the
Organization – 1
Architectures can influence the structure of the organization
developing them.

Architectures prescribe the units of software that must be
implemented and integrated.

In turn, software units are the basis for
• team formation
• development, test, and integration activities
• resource allocation in schedules and budgets

© 2005 by Carnegie Mellon University 100

How Architectures Affect the
Organization – 2
Architectures can influence the goals of an organization.

The architecture can provide opportunities for the
efficient production and deployment of similar systems.

The organization might adjust its goals to take
advantage of new market opportunities based on its
architecture-enabled capability.

© 2005 by Carnegie Mellon University 101

How Architectures Affect
Customers’ Requirements
Architectures can influence customers’ requirements:
• Knowledge of similarly fielded systems leads customers to

ask for particular kinds of features.

They may even ask for systems using language of the
architecture: client-server, .NET, service-oriented, etc.

• Customers will alter their system requirements based on the
availability of existing systems and components.

They often save time and money this way.

© 2005 by Carnegie Mellon University 102

How Architectures Affect the
Architect’s Experience
The process of building systems influences the architect’s
experience base. This, in turn, influences how
subsequent systems in the organization are constructed:

• Successful systems built around a technology,
tool, or method will engender future systems
that are built in the same way.

• The architecture for a failed system is less
likely to be chosen for future projects.

© 2005 by Carnegie Mellon University 103

How Architectures Affect Technology -1
Occasionally, a system or architecture will actually change
the software engineering technical environment.

There was a “first time” for all of these architectures:
• Layered (Dijkstra, 1968)
• N-tier client-server
• Service-oriented architectures
• Java / EJB / J2EE
• Object-oriented

© 2005 by Carnegie Mellon University 104

How Architectures Affect Technology -2
Also, applications that were very successful “donate” their
architectures into the technical environment:
• Large relational databases and systems that use them
• Web-based e-commerce systems
• The World Wide Web itself
• “Standard” avionics or “vetronics” architectures
• Compilers and compiler-compilers

© 2005 by Carnegie Mellon University 105

Architecture Business Cycle (ABC)

Architect’s Influences
Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements

System

Architect(s) Architecture

© 2005 by Carnegie Mellon University 106

How to use the ABC
Architects must recognize all of the ways that
architectures are influenced.
• Engage stakeholders
• Understand the goals of their organization
• Learn the current technical environment
• Be aware of their own experiences

Management should recognize the ways in which an
architecture can (or should be allowed) to influence the
organization.
• New market opportunities
• New ways to engage customers
• New organizational structures aligned with architecture

© 2005 by Carnegie Mellon University 107

Many paths through the cycle
Sometimes systems traverse the cycle many times.

Example: World Wide Web

Early version of web requirements produced one
architecture for clients and servers (LibWWW).

Success of that architecture led to explosive growth, which
influenced the stakeholders to want even more features.

This led to the current architectures for web-based
applications, which are quite different.

© 2005 by Carnegie Mellon University 108

A Picture of Architecture-Based
Development -1

Development organizations who use architecture as a
fundamental part of their way of doing business often
define an architecture-based development process.

This seminar series will illuminate the usual parts of that
process.

Typically, the first few steps are
• Analyze the business case
• Understand the architecturally significant requirements

© 2005 by Carnegie Mellon University 109

A Picture of Architecture-Based
Development -2

1. Analyze the business case
• The business case will tell you why we’re building the

system, and why the customer is buying it.
• The business case will start to reveal the driving QA

requirements
• No formal method for analyzing; architect uses

experience

2. Understand the architecturally significant requirements
• Not all requirements have an equal impact on the

architecture.
• Usually, QA requirements have the most impact.
• Capturing those QA requirements is critical

© 2005 by Carnegie Mellon University 110

A Picture of Architecture-Based
Development -3

We now have tools in hand to carry out these steps.

• Architecture Business Cycle (ABC) – helps us identify
business case factors that will shape the architecture

• Quality Attribute Workshop (QAW) – first way to engage
the stakeholders.

• QA scenarios – the way to capture QA requirements.

© 2005 by Carnegie Mellon University 111

Summary
Architectures are shaped by quality attributes.

We need help capturing and expressing quality attributes.
Scenarios help.

Quality attributes come from stakeholders.

But other influences are at work also:
• Developing organization
• Technical environment
• Architect’s experience

There is a cycle of influences.

© 2005 by Carnegie Mellon University 112

Topics
How to create an architecture:

• Designing architectures

• Patterns, styles, and tactics

© 2005 by Carnegie Mellon University 113

Review
Each structure provides the architect with an engineering
handle on some aspect of the system. Architects choose
the structures they need to engineer based on the
important quality attribute drivers.

Architectures are documenting by capturing views: A view
is a representation of a set of architectural elements and
the relations associated with them.

© 2005 by Carnegie Mellon University 114

Review
We need help capturing and expressing quality attributes.
Quality Attribute scenarios help.

Quality attributes come from stakeholders. Use a Quality
Attribute Workshop to elicit them.

Other influences on the architecture are at work also:
• Developing organization
• Technical environment
• Architect’s experience

The architect must recognize and capture these.

Organizations must recognize that an architecture can influence
these very factors: An Architecture Business Cycle exists.

© 2005 by Carnegie Mellon University 115

Creating the Architecture

How does the architect create an architecture? (Multiple
choice):

a. By re-using approaches from other architectures

b. By inventing new approaches out of thin air

c. By magic

© 2005 by Carnegie Mellon University 116

Creating the architecture
Architects primarily work by using previously-tried
solutions

• Large scale: Patterns and styles

• Small scale: Tactics

Styles, patterns, and tactics represent conceptual tools in
the architect’s “tool bag.”

Professional architects always keep their tool bag up to
date.

© 2005 by Carnegie Mellon University 117

Patterns and styles
The modern term is “patterns” but early papers on
software architecture wrote about “software architecture
styles.”

Styles in architecture were analogous to styles in houses:
• Victorian (multi-story, lots of frilly wood decorations, tall

windows, basically square footprint…)
• Colonial (brick front, pillars or columns, usually

symmetrical front…)
• Ranch (single-story, sprawling, not very decorated…)

© 2005 by Carnegie Mellon University 118

Patterns and styles
Authors such as Shaw and
Garlan wrote “style catalogs”

Independent component
patterns
• communicating-processes
• event systems

-implicit invocation
-explicit invocation

Data flow patterns
• batch sequential
• pipe-and-filter
• layers

Data-centered patterns
• blackboard
• repository

Virtual machine patterns
• interpreters
• rule-based systems

Call-return patterns
• main program and

subroutine
• object oriented

© 2005 by Carnegie Mellon University 119

Styles Patterns
Then, the design patterns community arrived.

Architectural styles were clearly just patterns, whose
scope of design was the whole system – that is, whose
scope was the architecture.

Now, architectural patterns is the term in use.

There are books of architectural patterns, e.g.,
• Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad,

and M. Stal. 1996. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. Wiley.

© 2005 by Carnegie Mellon University 120

Architectural patterns
These are broadly-scoped solutions to previously
encountered problems.

An architectural pattern
• is found repeatedly in practice
• is a package of design decisions
• has known properties that permit reuse
• describes a class of architectures

© 2005 by Carnegie Mellon University 121

Architectural patterns
A pattern is determined and described by
• a set of element types

- for example, data repositories, processes, and
objects

• a set of interaction mechanisms or connectors
- for example, subroutine calls, events, and pipes

• a topological layout of the components
• a set of semantic constraints covering topology,

element behavior, and interaction mechanisms

© 2005 by Carnegie Mellon University 122

Architectural patterns
These are widely known and include many familiar design
approaches:
• Layered
• Pipe-and-filter
• Client-server

- Thin client
- Thick client
- Asynchronous
- Synchronous
- N-tier client-server
- Etc.

• Peer-to-peer
• Agent-based systems
• Service-oriented architectures
• Etc.

Observe:

• No “universal” list

• Patterns can be combined:
e.g., layered client-server

• Patterns can be specialized

• Choice of patterns to use is
not random!

© 2005 by Carnegie Mellon University 123

Architectural patterns
These are widely known and include many familiar design
approaches:
• Layered
• Pipe-and-filter
• Client-server

- Thin client
- Thick client
- Asynchronous
- Synchronous
- N-tier client-server
- Etc.

• Peer-to-peer
• Agent-based systems
• Service-oriented architectures
• Etc.

A pattern is determined by
• a set of element types
• a set of interaction

mechanisms or connectors
• a topological layout of the

components
• a set of semantic constraints for

topology, element behavior, and
interaction mechanisms

In addition, a pattern is described by
• when and why to use it

© 2005 by Carnegie Mellon University 124

Patterns are coarse-grained solutions
While there are dozens (hundreds?) of patterns, there are
thousands of design problems.

Expecting a complete list of patterns is not realistic.

What if we can’t find a pattern to solve our problem?

© 2005 by Carnegie Mellon University 125

Tactics
An architectural tactic is a fine-grained design approach
used to achieve a quality attribute response.

Tactics are the “building blocks” of design from which
architectural patterns are created.

Tactics to
control
responseStimulus Response

© 2005 by Carnegie Mellon University 126

Tactics for Availability

Tactics to
control
AvailabilityStimulus:

Fault occurs
Response:
Fault masked or
Repair made

© 2005 by Carnegie Mellon University 127

Availability Tactics – 1
Fault detection
• ping/echo: when one component issues a ping and

expects to receive an echo within a predefined time
from another component

• heartbeat: when one component issues a message
periodically while another listens for it

• exceptions: using exception mechanisms to raise
faults when an error occurs

© 2005 by Carnegie Mellon University 128

Availability Tactics – 2
Fault recovery
• voting: when processes take equivalent input and

compute output values that are sent to a voter
• active redundancy: when redundant components are

used to respond to events in parallel
• passive redundancy: when a primary component

responds to events and informs standby components
of the state updates they must make

• spare: when a standby computing platform is
configured to replace failed components

© 2005 by Carnegie Mellon University 129

Availability Tactics – 3

Fault recovery and reintroduction
• shadow operation: running a previously failed

component in “shadow mode” before it is returned
to service

• state resynchronization: saving a state periodically
and then using it to resynchronize failed
components

• checkpoint/rollback: recording a consistent state
that is created periodically or in response to
specific events

© 2005 by Carnegie Mellon University 130

Availability Tactics – 4
Fault prevention
• removal from service: removing a system component from

operation so it can undergo some procedure that will help it
avoid failure in the future (e.g., rebooting a component
prevents failures caused by memory leaks)

• transactions: the bundling of several sequential steps such
that the entire bundle can be undone at once
- prevents data from being affected if one step in a

process fails
- prevents simultaneous access to data by concurrent

threads
• process monitor: Monitoring processes are used to monitor

critical components, remove them from service. and
re-instantiate new processes in their place.

© 2005 by Carnegie Mellon University 131

Summary of Availability Tactics
Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery
Preparation
and Repair

• Voting
• Active

Redundancy
• Passive

Redundancy
• Spare

Fault Recovery
and
Reintroduction

Fault
Prevention

• Shadow
• State

Resynchronization
• Rollback

• Removal
From Service

• Transactions
• Process

Monitor

Fault

Fault
masked
or
repair
made

© 2005 by Carnegie Mellon University 132

Tactics for Modifiability

Tactics to
control
ModifiabilityStimulus:

Change arrives
Response:
Changes made,
tested, and deployed
within time and budget

© 2005 by Carnegie Mellon University 133

Summary of Modifiability Tactics

Stimulus:
Change
arrives

Response:
Changes
made,tested,
and deployed
within time
and budget

Prevention
of Ripple Effect

Defer Binding
Time

Localize
Changes

Runtime
registration

Configuration
files

Polymorphism
Component

replacement
Adherence to

defined
protocols

Hide information
Maintain existing

interface
Restrict

communication
paths

Use an
intermediary

Semantic
coherence

Anticipate
expected
changes

Generalize
module

Limit possible
options

Abstract common
services

Modifiability

© 2005 by Carnegie Mellon University 134

Tactics for Performance

Stimulus:
Events
arrive

Response:
Response
generated
within time
constraints

Resource
management

Resource
arbitration

Resource
demand

Scheduling
policy

Introduce
concurrency

Maintain
multiple copies

Increase
available
resources

Increase
computation
efficiency

Reduce
computational
overhead

Manage event rate
Control freq. Of

sampling

Performance

© 2005 by Carnegie Mellon University 135

Tactics for Security

Stimulus:
Attack

Response:
System
detects,
resists, or
recovers from
attacks

Detecting
Attacks

Recovering
from an attack

Resisting
Attacks

RestorationIntrusion
detection

Authenticate
users

Authorize users
Maintain data

confidentiality
Maintain integrity
Limit exposure
Limit access

Security

Identification

Audit trailSee
“Availability”

© 2005 by Carnegie Mellon University 136

Tactics for Testability

Stimulus:
Completion
of an
increment

Response:
Faults
detected

Internal
monitoring

Manage
Input/Output

Built-in
monitors

Record/playback
Separate interface

from implementation
Specialized access

routines/interfaces

Testability

© 2005 by Carnegie Mellon University 137

Tactics for other QAs
Tactics exist for other QA’s as well.

To catalog tactics for a QA.
1. Begin with a general scenario for the QA of interest.

2. Capture stimulus and the response

3. Capture the broad approaches

4. Fill in specific design approaches for each

© 2005 by Carnegie Mellon University 138

Exercise

Create a list of tactics that promote usability.

Work in teams if you wish.

© 2005 by Carnegie Mellon University 139

Tools – and how to use them
Tactics round out an architect’s bag of tools.
• Patterns are the large-grained solution tools.
• Tactics fill in the gaps.

But tools aren’t enough. An architect – like a carpenter --
has to know how to use the tools to build something.

Architecture – like carpentry – is more than a matter of
bringing some tool out of the bag and using it on the
problem.
• A hammer is not the best tool for cleaning glass.

A method for using the tools would be very helpful.

© 2005 by Carnegie Mellon University 140

Attribute-Driven Design (ADD) Method
ADD is a step-by-step method for systematically producing the
first architectural designs for a system.

ADD results
• Overall structuring decisions
• Interconnection and coordination mechanisms
• Application of patterns and tactics to specific parts of

architecture
• Explicit achievement of quality attribute requirements
• NOT detailed interfaces

ADD requires as input:
• Quality attribute requirements
• Functional requirements
• Constraints

© 2005 by Carnegie Mellon University 141

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 142

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 143

Step 2: Choose Part of the System to
Decompose – 1
ADD is a decomposition method:
• Just starting out? Then the “part” is the whole system
• Otherwise, choose a part identified from an earlier

iteration
All required inputs for the part you choose to decompose
should be available. They include
• functional requirements
• quality attribute requirements
• constraints

© 2005 by Carnegie Mellon University 144

How to choose? It might depend on
• Risk. Design the high-risk pieces first.
• Progress and hand-off. Design the low-risk (i.e., simple)

pieces quickly, to begin implementation.
• Importance. Design the important pieces (in terms of

business context) first.
• Depth first. Choose a part of the system and “drive” its design

to completion
• Breadth first. Make sure there are no major unknowns lurking

at the high levels.
• Prototype building. Design enough (and in the right areas) to

build a prototype early on.

Step 2: Choose Part of the System
to Decompose – 2

© 2005 by Carnegie Mellon University 145

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 146

Step 3: Prioritize requirements and
identify architectural drivers

Some requirements are more influential than others in the
architecture and the decomposition of each module.

Influential requirements can be
• functional (e.g., training crews in flight simulator)
• quality attribute related (e.g., high security)
• business oriented (e.g., product line)

Architectural drivers are the combination of functional, quality
attribute, and business requirements that “shape” the
architecture or the particular module under consideration.

© 2005 by Carnegie Mellon University 147

Step 3: Prioritize requirements and
identify architectural drivers

To identify the key architectural drivers
• Locate the quality attribute scenarios that reflect the

highest priority business goals relative to the module.
• Locate the quality attribute scenarios that have the

most impact on the decomposition of the module.

Try to keep the number of architectural drivers to five or
less.

Prioritize the architectural drivers.

© 2005 by Carnegie Mellon University 148

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 149

Step 4: Choose design concept – patterns,
styles, tactics -- that satisfies the
architectural drivers associated with the part
of the system we’ve chosen to decompose.

The goal of this step is to establish an overall architectural
approach that satisfies the architectural drivers.
• Start by trying to apply an architectural pattern.

- E.g. client-server
• If necessary, apply a combination of patterns.

- E.g., layered client-server
• If necessary, augment the pattern(s) with tactics.

- E.g., layered client-server with ping-echo interaction

© 2005 by Carnegie Mellon University 150

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 151

Step 5: Instantiate architectural
elements and allocate functionality
Patterns define the types of elements but not a specific
number.
• A layered pattern doesn’t tell you how many layers
• A pipe-and-filter pattern doesn’t tell you how many pipes

and filters
• A shared data pattern doesn’t tell you how many data

repositories and data accessors
The architect now has to apply the chosen pattern(s) to
define a new set of elements that conform to it.

Functionality is allocated to the instantiated elements.

© 2005 by Carnegie Mellon University 152

Step 5: Instantiate architectural
elements and allocate functionality
The responsibilities of each module type must be
documented:
• This usually requires the refinement of the parent

module’s responsibilities and the reallocation of its
responsibilities to the child modules.

Note: This is the step that “creates” new elements.

These elements might need to be further refined – that is,
decomposed and given sub-structure – during the next
iteration of the method.

© 2005 by Carnegie Mellon University 153

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 154

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality

These are bookkeeping and consolidation steps.

We must “hook together” designs of different parts of the
system.

We must make sure that no requirements have “fallen
through the cracks”.

© 2005 by Carnegie Mellon University 155

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 156

Step 8: Define interfaces for
instantiated elements
The interface for each instantiated element is identified.

Interfaces consist of
• the services and properties that a element requires and

produces
- identified during the allocation of functionality

• the data and control flow information needed by each
element as defined by the architectural pattern

At this point, interfaces need not be as detailed as a
signature, but they document what elements need, what
they can use, and on what they can depend.

© 2005 by Carnegie Mellon University 157

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 158

Step 9: Verify and refine requirements
and make them constraints for
instantiated elements
Each child element has responsibilities that are derived
partially from the decomposition of requirements of the
child’s parent.

Those responsibilities must be translated into
requirements that are derived and refined from the
parent’s requirements.

For example, a use case that initializes the whole system
can be decomposed into use cases that initialize the
subsystems.

© 2005 by Carnegie Mellon University 159

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 160

Step 10: Repeat steps 2 through 9
for the next part of the system you
wish to decompose
After each iteration, we have:
• A set of elements that decomposes an element we

started the iteration with
• Each element will have

- a collection of responsibilities
- an interface
- quality and functional requirements that pertain to it
- constraints

Now we have the input for the next iteration of
decomposition.

© 2005 by Carnegie Mellon University 161

ADD: Summary
ADD is a general-purpose architecture design method.

As you can see, it
• Relies heavily on patterns and tactics
• Relies heavily on quality attribute requirements
• Results in a fully-justified architecture

We haven’t discussed architecture documentation yet,
but the architect needs to document the selection and
instantiation of patterns as he/she goes along.

More on that topic later.

© 2005 by Carnegie Mellon University 162

A Picture of Architecture-Based
Development -1

Development organizations who use architecture as a
fundamental part of their way of doing business often
define an architecture-based development process.

This seminar series will illuminate the usual parts of that
process.

Typically, the first few steps are
• Analyze the business case
• Understand the architecturally significant requirements
• Create an architecture to satisfy those requirements

© 2005 by Carnegie Mellon University 163

A Picture of Architecture-Based
Development -2

We now have tools in hand to carry out these steps.

• Architecture Business Cycle (ABC) – helps us identify
business case factors that will shape the architecture

• Quality Attribute Workshop (QAW) – first way to engage
the stakeholders.

• QA scenarios – the way to capture QA requirements.

• ADD – a method to design an architecture to meet its
functional and QA requirements.

© 2005 by Carnegie Mellon University 164

A Picture of Architecture-Based Dev.

Prioritized
QA scenarios

ADD

C lie n t
Te lle r 1

A cc o u n t
S e rve r-M a in

A c c o u n t
S e rve r -B a c k u p

A cc o u n t
A d m in is tra tiv eD a ta b a s e

C on n e c to r Typ e s :
P u blis h -S us cr ib e

C lie n t-S er ve r
R e q ue st/R e p ly

D a tab a se A cc e ss

A ttac h m e ntKEY C o m p on e n t Ty p e s:

C lie n t

S e rve r

D a ta b a se

D a ta b a se
A p plica tio n

ASTER
Gateway

V0
Gateway

Maintenance
Tool

DSSYBASE

KEY Repository Component

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and tactics

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

“Sketches” of
candidate views,

determined by patterns

Requirements
and constraints

QAW

Stakeholders

© 2005 by Carnegie Mellon University 165

Now what?

How do we know that our architecture is appropriate for its
intended purpose?

In a large development project, an enormous amount of
money may be riding on the architecture.

The company’s future may be at stake.

We need to evaluate the architecture.

© 2005 by Carnegie Mellon University 166

How can we do this?

The SEI has developed the Architecture
Tradeoff Analysis Method (ATAM).

The purpose of ATAM is: to assess the
consequences of architectural decisions
in light of quality attribute requirements and
business goals.

© 2005 by Carnegie Mellon University 167

Purpose of the ATAM – 1

The ATAM is a method that helps stakeholders
ask the right questions to discover potentially
problematic architectural decisions.

Discovered risks can then be made the focus of
mitigation activities: e.g. further design, further
analysis, prototyping.

Tradeoffs can be explicitly identified and
documented.

© 2005 by Carnegie Mellon University 168

Purpose of the ATAM – 2

The purpose of the ATAM is NOT to provide
precise analyses . . . the purpose IS to discover
risks created by architectural decisions.

We want to find trends: correlation between
architectural decisions and predictions of
system properties.

© 2005 by Carnegie Mellon University 169

ATAM Benefits

There are a number of benefits from performing
ATAM evaluations

• identified risks
• clarified quality attribute requirements
• improved architecture documentation
• documented basis for architectural decisions
• increased communication among stakeholders

The results are improved architectures.

© 2005 by Carnegie Mellon University 170

ATAM evaluations are conducted in four phases.

ATAM Phases

Phase 0:
Partnership

and
Preparation

Phase 1:
Initial

Evaluation

Phase 2:
Complete
Evaluation

Phase 3:
Follow-up

Duration: varies
Meeting: primarily
phone, email

Duration: 1.5 - 2 days each for
Phase 1 and Phase 2
Meeting: typically conducted
at customer site

Duration: varies
Meeting: primarily
phone, email

© 2005 by Carnegie Mellon University 171

Phase 0: This phase precedes the technical
evaluation.
• The customer and a subset of the evaluation team

exchange understanding about the method and the
system whose architecture is to be evaluated.

• An agreement to perform the evaluation is worked out.
• A core evaluation team is fielded.

ATAM Phase 0

© 2005 by Carnegie Mellon University 172

Phase 1: involves a small group of
predominantly technically-oriented stakeholders

Phase 1 is
• architecture centric
• focused on eliciting detailed architectural information

and analyzing it
• top down analysis

ATAM Phase 1

© 2005 by Carnegie Mellon University 173

ATAM Phase 1 Steps

1. Present the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Phase 1

© 2005 by Carnegie Mellon University 174

1. Present the ATAM
The evaluation team presents an overview of the
ATAM including:
• ATAM steps in brief
• Techniques

- utility tree generation
- architecture elicitation and analysis
- scenario brainstorming/mapping

• Outputs
- architectural approaches
- utility tree and scenarios
- risks, non-risks, sensitivity points, and tradeoffs

© 2005 by Carnegie Mellon University 175

2. Present Business Drivers

ATAM customer representative describes the
system’s business drivers including:

• business context for the system

• high-level functional requirements

• high-level quality attribute requirements
- architectural drivers: quality attributes that “shape”

the architecture

- critical requirements: quality attributes most central
to the system’s success

© 2005 by Carnegie Mellon University 176

3. Present Architecture

Architect presents an overview of the
architecture including:
• technical constraints such as an OS, hardware, or

middleware prescribed for use

• other systems with which the system must interact

• architectural approaches used to address quality
attribute requirements

Evaluation team begins probing for and
capturing risks.

© 2005 by Carnegie Mellon University 177

Identify predominant architectural approaches
such as
• client-server
• 3-tier
• watchdog
• publish-subscribe
• redundant hardware

The evaluators begin to identify places in the
architecture that are key to realizing quality
attribute goals.

4. Identify Architectural
Approaches

© 2005 by Carnegie Mellon University 178

Identify, prioritize, and refine the most important
quality attribute goals by building a utility tree.
• A utility tree is a top-down vehicle for characterizing and

prioritizing the “driving” attribute-specific requirements.

• The driving quality attributes are the high-level nodes
(typically performance, modifiability, security, and availability).

• Scenarios are the leaves of the utility tree.

Output: a characterization and a prioritization of
specific quality attribute requirements.

5. Generate Quality
Attribute Utility Tree

© 2005 by Carnegie Mellon University 179

Utility Tree Construction

Utility

Performance

Modifiability

Availability

Security

Add CORBA middleware
in < 20 person-months
Change web user interface
in < 4 person-weeks

Power outage at site1 requires traffic
redirected to site2 in < 3 seconds.

Network failure detected and recovered
in < 1.5 minutes

Reduce storage latency on
customer DB to < 200 ms.

Deliver video in real time

Customer DB authorization works
99.999% of the time

Credit card transactions are secure
99.999% of the time

Data
Latency

Transaction
Throughput
New products

Change
COTS

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(L,M)

(M,M)
(H,H)

(H,L)
(H,H)

(H,H)

(H,M)

(H,L)

© 2005 by Carnegie Mellon University 180

Scenarios are used to
• represent stakeholders’ interests
• understand quality attribute requirements

Scenarios should cover a range of
• use case scenarios: anticipated uses of the system
• growth scenarios: anticipated changes to the system
• exploratory scenarios: unanticipated stresses to the system

A good scenario makes clear what the stimulus is
that causes it and what responses are of interest.

Scenarios

© 2005 by Carnegie Mellon University 181

Example Scenarios

Use case scenario
Remote user requests a database report via the Web
during peak period and receives it within 5 seconds.

Growth scenario
Add a new data server to reduce latency in scenario 1 to
2.5 seconds within 1 person-week.

Exploratory scenario
Half of the servers go down during normal operation
without affecting overall system availability.

Scenarios should be as specific as possible.

© 2005 by Carnegie Mellon University 182

Stimuli, Environment, Responses

Use Case Scenario
Remote user requests a database report via the Web
during peak period and receives it within 5 seconds.

Growth Scenario
Add a new data server to reduce latency in scenario
1 to 2.5 seconds within 1 person-week.

Exploratory Scenario
Half of the servers go down during normal operation
without affecting overall system availability.

© 2005 by Carnegie Mellon University 183

Evaluation team probes architectural
approaches from the point of view of specific
quality attributes to identify risks.
• identify the architectural approaches
• ask quality attribute specific questions for highest

priority scenarios
• identify and record risks and non-risks, sensitivity

points and tradeoffs

6. Analyze Architectural
Approaches

© 2005 by Carnegie Mellon University 184

Quality Attribute Questions
Quality attribute questions probe architectural
decisions that bear on quality attribute
requirements.
Performance
• How are priorities assigned to processes?
• What are the message arrival rates?

Modifiability
• Are there any places where layers/facades are

circumvented?
• What components rely on detailed knowledge of

message formats?

© 2005 by Carnegie Mellon University 185

Risks, Tradeoffs, Sensitivities, and
Non-Risks

A risk is a potentially problematic architectural decision.

Non-risks are good architectural decisions that are
frequently implicit in the architecture.

A sensitivity point is a property of one or more components
(and/or component relationships) that is critical for
achieving a particular quality attribute response.

A tradeoff point is a property that affects more than one
attribute and is a sensitivity point for more than one
attribute.

© 2005 by Carnegie Mellon University 186

Risks and Tradeoffs

Example Risk:
• “Rules for writing business logic modules in the

second tier of your 3-tier architecture are not
clearly articulated. This could result in replication
of functionality thereby compromising modifiability
of the third tier.”

Example Tradeoff:
• “Changing the level of encryption could have a

significant impact on both security and
performance.”

© 2005 by Carnegie Mellon University 187

Sensitivity Points and Non-Risks

Example Sensitivity Point:
• “The average number of person-days of effort it takes to

maintain a system might be sensitive to the degree of
encapsulation of its communication protocols and file
formats.”

Example Non-Risk:
• “Assuming message arrival rates of once per second, a

processing time of less than 30 ms, and the existence
of one higher priority process, a 1 second soft deadline
seems reasonable.”

© 2005 by Carnegie Mellon University 188

Phase 2: involves a larger group of stakeholders

Phase 2 is
• stakeholder centric
• focused on eliciting diverse stakeholder points of view

and on verification of the Phase 1 results

ATAM Phase 2

© 2005 by Carnegie Mellon University 189

ATAM Phase 2 Steps

Recap
Phase 1

1. Present the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Do this

Phase 2

© 2005 by Carnegie Mellon University 190

Stakeholders generate scenarios using a
facilitated brainstorming process.
• Scenarios at the leaves of the utility tree serve as

examples to facilitate the step.

In phase 2, each stakeholder is allocated a
number of votes roughly equal to 0.3 x
#scenarios.

7. Brainstorm and
Prioritize Scenarios

© 2005 by Carnegie Mellon University 191

Identify the architectural approaches impacted
by the scenarios generated in the previous step.
• This step continues the analysis started in step 6 using

the new scenarios.
• Continue identifying risks and non-risks.
• Continue annotating architectural information.

8. Analyze Architectural
Approaches

© 2005 by Carnegie Mellon University 192

Recapitulate all the steps of the ATAM and
present the ATAM outputs, including
• architectural approaches
• utility tree
• scenarios
• risks and non-risks
• sensitivity points and tradeoffs
• risk themes

9. Present Results

© 2005 by Carnegie Mellon University 193

Conceptual Flow of ATAM

Analysis
Architectural

Decisions

ScenariosQuality
Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

Risks

Sensitivity Points

Tradeoffs

Non-Risks

impacts

Risk Themes

distilled
into

© 2005 by Carnegie Mellon University 194

Phase 3: primarily involves producing a final
report for the customer as well as reflecting
upon the quality of the evaluation and the
ATAM materials.

ATAM Phase 3

© 2005 by Carnegie Mellon University 195

The Final Report

The evaluation team will typically create the final
report which includes:
• Executive summary
• Description of ATAM
• Description of business drivers and architecture
• List of phase 1 and phase 2 scenarios and utility tree
• Phase 1 and phase 2 analysis: architectural approaches,

decisions, risks, sensitivities, tradeoffs, and non-risks
• Risk themes
• Next steps

© 2005 by Carnegie Mellon University 196

Summary

The ATAM is
• a method for evaluating an architecture with respect to

multiple quality attributes
• an effective strategy for discovering the consequences of

architectural decisions
• a method for identifying trends, not for performing precise

analyses

© 2005 by Carnegie Mellon University 197

A Picture of Architecture-Based Dev.

Prioritized
QA scenarios

ADD

C lie n t
Te lle r 1

A cc o u n t
S e rve r-M a in

A c c o u n t
S e rve r -B a c k u p

A cc o u n t
A d m in is tra tiv eD a ta b a s e

C on n e c to r Typ e s :
P u blis h -S us cr ib e

C lie n t-S er ve r
R e q ue st/R e p ly

D a tab a se A cc e ss

A ttac h m e ntKEY C o m p on e n t Ty p e s:

C lie n t

S e rve r

D a ta b a se

D a ta b a se
A p plica tio n

ASTER
Gateway

V0
Gateway

Maintenance
Tool

DSSYBASE

KEY Repository Component

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and tactics

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

“Sketches” of
candidate views,

determined by patterns

Requirements
and constraints

QAW

ATAM

Stakeholders

© 2005 by Carnegie Mellon University 198

Topics

Documenting software architectures:

How do we write down our architecture so that others
can use it, understand it, and build a system from it?

© 2005 by Carnegie Mellon University 199

Documenting an architecture
Architecture serves as the blueprint for the system, and
the project that develops it.
• It defines the work assignments.
• It is the primary carrier of quality attributes.
• It is the best artifact for early analysis.
• It is the key to post-deployment maintenance and

mining.

Documenting the architecture is the crowning step to
creating it.

Documentation speaks for the architect, today and 20
years from today.

© 2005 by Carnegie Mellon University 200

Is documentation that important?
Architecture documentation is important if and only if
communication of the architecture is important.

How can an architecture be used
if it cannot be understood?

How can it be understood
if it cannot be
communicated?

© 2005 by Carnegie Mellon University 201

How do you document a software
architecture?

We used to hear this question all the time!
• Via our website
• When we engage customers
• When we perform an architecture evaluation,

which requires documentation.

Until now, our answer has always been “Not like that.”

© 2005 by Carnegie Mellon University 202

What’s the answer?

“How do you document a software architecture?”

In industry, the answer seems to be
• “Use UML.”

• “Draw boxes and lines.”

• “What else do I need besides my class diagrams in

Rose?”

• “Not very well.”

• “How do you document a what?”

Now, however, we have a much better answer.

© 2005 by Carnegie Mellon University 203

Seven Principles of Sound
Documentation
Certain principles apply to all documentation, not just
documentation for software architectures.

1. Write from the point of view of the
reader.

2. Avoid unnecessary repetition.
3. Avoid ambiguity.
4. Use a standard organization.
5. Record rationale.
6. Keep documentation current but

not too current.
7. Review documentation for fitness of purpose.

© 2005 by Carnegie Mellon University 204

1. Write from the point of view
of the reader.

What will the reader want to know when reading a
document?
• Make information easy to find!
• Your reader will appreciate your effort

and be more likely to read your
document.

Signs of documentation written for the writer’s
convenience:
• stream of consciousness: the order is that in which

things occurred to the writer
• stream of execution: the order is that in which things

occur in the computer

© 2005 by Carnegie Mellon University 205

2. Avoid unnecessary repetition.
Each kind of information should be recorded in exactly one
place.

This makes documents easier to use and easier to
change.

Repetition often confuses, because the information is
repeated in slightly different ways. Which is correct?

© 2005 by Carnegie Mellon University 206

3. Avoid ambiguity.
Documentation is for communicating information and
ideas. If the reader misunderstands, the documentation
has failed.

Precisely-defined notations/languages help avoid whole
classes of ambiguity.

If your documentation uses a graphical language
• always include a key
• either point to the language’s formal definition or give

the meaning of each symbol. Don’t forget the lines!

© 2005 by Carnegie Mellon University 207

3. Avoid ambiguity (cont’d.)
Box-and-line diagrams are a very
common form of architectural
notation.

But what do they mean?

These do not show an
architecture, but only the beginning of one.

If you use one, always define precisely what the boxes are
and what the lines are.

If you see one, ask the owner what it means. The result is
usually very entertaining.

© 2005 by Carnegie Mellon University 208

4. Use a standard organization.
Establish it, make sure your documents follow it, and
make sure that readers know what it is.

A standard organization
• helps the reader navigate and find information

• helps the writer place information and measure work left
to be done

• embodies completeness rules, and helps check for
validation

© 2005 by Carnegie Mellon University 209

4. Use a standard organization
(cont’d.)

Corollaries:

• Organize the documentation for ease of reference.
- A document may be read once, if at all.
- A successful document will be referred to hundreds

or thousands of times.
- Make information easy to find.

• Don’t leave incomplete sections blank; mark them “to
be determined”

© 2005 by Carnegie Mellon University 210

5. Record rationale.
Why did you make certain design decisions the way you
did?

Next week, next year, or next decade, how will you
remember? How will the next designer know?

Recording rationale requires discipline, but saves
enormous time in the long run.

Record rejected alternatives as well.

© 2005 by Carnegie Mellon University 211

6. Keep documentation current but
not too current.
Keep it current:
• Documentation that is incomplete, out of date, does not

reflect truth, and does not obey its own rules for form is
not used.

• Documentation that is kept current is used.
• With current documentation, questions are most

efficiently answered by referring the questioner to the
documentation.

• If a question cannot be answered with a document, fix
the document and then refer the questioner to it.

• This sends a powerful message.

© 2005 by Carnegie Mellon University 212

6. Keep documentation current but
not too current (cont’d.)
Don’t keep it too current
• During the design process, decisions are considered

and re-considered with great frequency.
• Revising the documentation every five minutes will

result in unnecessary expense.
• Choose points in the development plan when

documentation is brought up to date
• Follow a release strategy that makes sense for your

project.

© 2005 by Carnegie Mellon University 213

Some key documentation questions
1. Who will use the documentation and for what

purposes?

2. What kind of information shall we record about an
architecture?

3. What languages and notations shall we use to record
that information?

4. How shall we record and organize the information
we’ve chosen, using the languages/notations we’ve
chosen, to best meet the purposes we’ve identified?

© 2005 by Carnegie Mellon University 214

1. Who will use the documentation and
for what purposes?

Who are the stakeholders of architecture documentation?

What purposes do they need it for?
• Communication and understanding
• Education of people new to the system
• Analysis

© 2005 by Carnegie Mellon University 215

Some key documentation questions
1. Who will use the documentation and for what

purposes?

2. What kind of information shall we record about an
architecture?

3. What languages and notations shall we use to record
that information?

4. How shall we record and organize the information
we’ve chosen, using the languages/notations we’ve
chosen, to best meet the purposes we’ve identified?

© 2005 by Carnegie Mellon University 216

2. What kind of information shall we
record about an architecture?

The concept of a “view” gives us our main principle of
architecture documentation:

Document the relevant views,
and then add information

that applies to more than one view,
thus tying the views together.

We call this the “Views and Beyond” approach to
architecture documentation.

© 2005 by Carnegie Mellon University 217

Review: Views

© 2005 by Carnegie Mellon University 218

Architecture and structure, re-visited

Architecture is about structure. But which structure?
Software has more than one.

Parnas made this observation in 1976 (“On a ‘Buzzword’:
‘Hierarchically Structured Systems’”).
• Systems have many kinds of “pieces”: programs,

objects, classes, modules, processes, frameworks,
tasks, threads…

• Each one defines a different structure.
• Which one is the architecture?

Answer: All of them might be.

© 2005 by Carnegie Mellon University 219

Using structures and views
Each structure provides the architect with an engineering
handle on some aspect of the system.

Architects choose the structures that need to engineer
based on the important quality attribute drivers.

They record their designs using the corresponding views.

© 2005 by Carnegie Mellon University 220

• structure – an actual set of architectural elements
as they exist in software or hardware

• view – a representation of a coherent set of
architectural elements, as written by and read by
system stakeholders. A view represents a a set of
elements and the relationships between those
elements.

Structures and Views - 2

© 2005 by Carnegie Mellon University 221

Views -1

Views are a way to manage complexity.

Each view can be used to answer a different question
about the architecture
• What are the major execution units and data stores?
• What software is other software allowed to use?
• How does data flow through the system?
• How is the software deployed onto hardware?

© 2005 by Carnegie Mellon University 222

Views -2
A view is a representation
of a set of architectural
elements and the
relations associated
with them.

Not all architectural
elements -- some of them.

A view binds element
types and relation types
of interest, and shows
those.

All information

Some information

© 2005 by Carnegie Mellon University 223

Architectural Structures
Architectural structures (and hence views) can be divided

into three types:

1. “module” structures – consisting of elements that are
units of implementation called modules

2. “component-and-connector” structures – consisting
of runtime components (units of computation) and the
connectors (communication paths) between them

3. “allocation” structures – consisting of software
elements and their relationships to elements in external
environments in which the software is created and
executed

© 2005 by Carnegie Mellon University 224

Example Module Views
Decomposition view – shows modules that are related
via the “is a submodule of” relation

Uses view – shows modules that are related via the
“uses” relation (i.e., one module uses the services
provided by another module)

Layered view – shows modules that are partitioned into
groups of related and coherent functionality. Each group
represents one layer in the overall structure.

Class/generalization view – shows modules called
classes that are related via the “inherits from” or “is an
instance” of relations

© 2005 by Carnegie Mellon University 225

Example Component-and-
Connector Views
Process view – shows processes or threads that are
connected by communication, synchronization, and/or
exclusion operations

Concurrency views – shows components and connectors
where connectors represent “logical threads”

Shared-data (repository) views – shows components
and connectors that create, store, and access persistent
data

Client-server view – shows cooperating clients and
servers and the connectors between them (i.e., the
protocols and messages they share)

© 2005 by Carnegie Mellon University 226

Example Allocation Views
Deployment view – shows software elements and their
allocation to hardware and communication elements

Implementation view – shows software elements and
their mapping to file structures in the development,
integration, and configuration control environments

Work assignment view – shows modules and how they
are assigned to the development teams responsible for
implementing and integrating them

© 2005 by Carnegie Mellon University 227

End of Review on Views

© 2005 by Carnegie Mellon University 228

Other Views -1
Kruchten’s 4+1 views
(1995, later adopted for RUP):
• Logical view: supports behavioral requirements. Key

abstractions, which are objects or object classes
• Process view: addresses concurrency and distribution.

Maps threads to objects.
• Development view: organization of software modules,

libraries, subsystems, units of development.
• Physical view: maps other elements onto processing

and communication nodes.
• “Plus one” view: Maps the other views onto important

use cases to show how they work.

© 2005 by Carnegie Mellon University 229

Other Views -2

Siemens Four-Views (Hofmeister, Nord,
Soni, Applied Software Architecture, 2000):
• Conceptual view
• Module interconnection view
• Execution view
• Code view

Herzum & Sims (Business Component Factory, 1999):
• Technical architecture
• Application architecture
• Project management architecture
• Functional architecture

© 2005 by Carnegie Mellon University 230

Other Views -3

Software Cost Reduction method
(Parnas, et al., 1980s)
• Module decomposition view: shows modules as units of

encapsulation; used to isolate changes and achieve
modifiability

• Process view: shows processes and how they
synchronize and communicate at run-time; used to
achieve performance

• Uses view: shows programs and how they depend on
each other; used to achieve incremental development
and the ability to quickly field subsets

© 2005 by Carnegie Mellon University 231

Which Views to Use?
As you can see, many authors and methods prescribe a
standard set of views.

However, a more modern approach is to say that an
architect should choose the views that best serve the
purposes for the system and its stakeholders.

Hence, we need a method for choosing views.

© 2005 by Carnegie Mellon University 232

How many views do we need in our
documentation package?
Each view comes with
a cost.

Each view comes with
a benefit.

Planning a view set
requires understanding
the needs of the
stakeholders, and
the resources available.

© 2005 by Carnegie Mellon University 233

How to proceed?

1. Build a table.
• ROWS: Enumerate the stakeholders
• COLUMNS: Enumerate the set of styles that could apply

to the architecture being documented. This is our
potential set of views.

• Check box (x,y) if stakeholder x would like view y.

2. Combine views appropriately to reduce number.

3. Prioritize views based on need. (Some stakeholders may
have extra weight.)

© 2005 by Carnegie Mellon University 234

Some key documentation questions
1. Who will use the documentation and for what

purposes?

2. What kind of information shall we record about an
architecture?

3. What languages and notations shall we use to record
that information?

4. How shall we record and organize the information
we’ve chosen, using the languages/notations we’ve
chosen, to best meet the purposes we’ve identified?

© 2005 by Carnegie Mellon University 235

3. What languages and notations shall
we use to record that information?

UML
• Not designed to document architecture information

(Evidence: No concept of “layer” – although you can
stereotype a package to represent a layer)

• Nevertheless, the de facto standard language
• UML 2.0 is better, with architecture constructs like

“component” and “connector”.

Informal “box and line” notations
• Always use a key!
• Advantage: Flexibility. Disadvantage: Vagueness, no

tool support.

Architecture description languages (ADLs)
- Subject of much research in 1990s; not used much in

practice: Rapide, Wright, UniCon, ACME, …
- AADL recently became an IEEE standard

© 2005 by Carnegie Mellon University 236

If you use UML
Do not be seduced by the power of UML diagrams.

For example, a UML class diagram is a notation to show
module views. But UML class diagrams are so powerful
(some would say so conceptually confused) that you can
show all kinds of run-time information in them as well.

Adopt a discipline for using UML diagrams. This serves
the same role as a coding standard for programmers.

© 2005 by Carnegie Mellon University 237

Some key documentation questions
1. Who will use the documentation and for what

purposes?

2. What kind of information shall we record about an
architecture?

3. What languages and notations shall we use to record
that information?

4. How shall we record and organize the information
we’ve chosen, using the languages/notations we’ve
chosen, to best meet the purposes we’ve identified?

© 2005 by Carnegie Mellon University 238

Documenting a view -1

1. A primary presentation

• Usually graphical (we call this a cartoon)
• May be textual -- e.g., a table
• If graphical, includes a key explaining the notation (or

pointing to explanation)
• Shows elements and relationships among them
• Shows information you wish to convey about the view

(view packet) first

Many times, the primary presentation is all you get. It’s
not enough!

© 2005 by Carnegie Mellon University 239

Documenting a view -2
2. An element catalog
• Explains the elements depicted in the primary

presentation
• Lists elements and their properties (as defined by the

relevant style guide)
• Explains relations, and any exceptions or additions to

the relations shown in the primary presentatio
• Interfaces of elements

3. A context diagram
• Shows how system (or portion shown in this view

packet) relates to its environment.

© 2005 by Carnegie Mellon University 240

Documenting a view -3
4. A variability guide
• Shows the architectural mechanisms available to

change the element

5. Architecture background
• Rationale for design decisions that apply to the entire

view (or to that portion of the view being shown),
including rejected alternatives and factors that
constrained the design

• Analysis results validating the design decisions
• Assumptions about the environment and about the

need that the system is fulfilling

© 2005 by Carnegie Mellon University 241

Documenting a view -4
6. Other information
• System- and project-specific.
• CM information, ownership information
• Mapping to requirements
• Not architectural, strictly speaking. But useful to

capture alongside the architecture anyway.

7. Related view packets
• Pointers to sibling, child, and parent view packets

© 2005 by Carnegie Mellon University 242

Summary: Documenting a View

Section 1:
Primary presentation

Sections 2-6:
Supporting documentation

© 2005 by Carnegie Mellon University 243

Documentation beyond views - 1
1. Documentation roadmap
• How the documentation is organized to serve a

stakeholder
• List of views, with the elements/relations of each, and a

statement of what the view is for
• Scenarios for using the documentation, showing which

parts should be consulted

2. View template
• Explanation of how each view is documented
• The standard organization for each view

© 2005 by Carnegie Mellon University 244

Documentation beyond views -2
3. System overview
• An informal, prose description of the system and its

purpose and functionality
• Goal is to provide context for new member
• Perfectly OK to point to overview elsewhere if one

exists in overall system documentation

4. Mapping between views
• Establishes useful/insightful correspondence between

various views
• Tabular

© 2005 by Carnegie Mellon University 245

Documentation beyond views -3
5. Directory
• An index showing where every element, relation, and

property is defined and used.

6. Architecture glossary and acronym list
• May be subset of overall system glossary and acronym

list. OK to point to larger document if so.

7. Background, design constraints, and rationale
• As in views, but applied to cross-view design decisions.

© 2005 by Carnegie Mellon University 246

Document template available

A Microsoft Word template for a software architecture
document based on the Views and Beyond approach
is available at

http://www.sei.cmu.edu/architecture/arch_doc.html

or

http://www.sei.cmu.edu/architecture
Click on documentation

Click on download

© 2005 by Carnegie Mellon University 247

Topic

Software product lines:
One way to leverage the investment in architecture across

an entire family of systems

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

248

Pittsburgh, PA 15213-3890

1

Carnegie Mellon University
Software Engineering Institute

Two StoriesTwo Stories

© 2005 by Carnegie Mellon University 249

Cummins, Inc.
World’s largest
manufacturer of
large diesel engines.

© 2005 by Carnegie Mellon University 250

Complex domain of variation
Today’s diesel engines are driven by software
• Micro-control of ignition timing to achieve optimum mix

of power, economy, emissions

• Conditions change dynamically as function of road
incline, temperature, load, etc.

• Must also respond to statutory regulations that often
change

• Reliability is critical! Multi-million dollar fleets can be
put out of commission by a single bug

• 130KSLOC -- C, assembler, microcode

• Different sensors, platforms, requirements

© 2005 by Carnegie Mellon University 251

In 1993, Cummins had a problem
Six engine projects were underway
Another 12 were planned.

Each project had complete control over its development
process, architecture, even choice of language. Two were
trying to use O-O methods.

Ron Temple (VP in charge) realized that he would need
another 40 engineers to handle the new projects -- out of
the question.

This was no way to do business.

© 2005 by Carnegie Mellon University 252

What Cummins did
In May, 1994 Temple halted all the projects.

He split the leading project.
• One half built core assets -- generic software,

documentation, and other assets that every product
could use

• Other half became pilot project for using the core
assets to turn out a product

In early 1995, the product was launched on time (relative
to re-vamped schedule) with high quality.

Others followed.

© 2005 by Carnegie Mellon University 253

Cummins’ results

Achieved a product family capability with a breathtaking
capacity for variation, or customization
• 9 basic engine types
• 4-18 cylinders
• 3.9 - 164 liter displacement
• 12 kinds of electronic control modules
• 5 kinds of microprocessors
• 10 kinds of fuel systems
• diesel fuel or natural gas

Highly parameterized code. 300 parameters are
available for setting by the customer after delivery.

© 2005 by Carnegie Mellon University 254

Cummins’ results by the numbers -1

• 20 product groups launched, which account for over
1000 separate engine applications

• 75% of all software, on average, comes from core
assets

• Product cycle time has plummeted. Time to first engine
start went from 250 person-months to a few person-
months. One prototype was bulit over a weekend.

• Software quality is at an all-time high, which Cummins
attributes to product line approach.

© 2005 by Carnegie Mellon University 255

Cummins’ results by the numbers -2

• Customer satisfaction is high. Productivity gains
enables new features to be developed (more than 200
to date)

• Projects are more successful. Before product line
approach, 3 of 10 were on track, 4 were failing, and 3
were on the edge. Now, 15 of 15 are on track.

• Widespread feeling that developers are more portable,
and hence more valuable.

© 2005 by Carnegie Mellon University 256

Cummins’ results by the numbers -3

Supported Components 1992 1993 1994 1995 1996 1997 1998

==
Electronic control
modules (ECMs) 3 3 4 5 5 11 12

Fuel systems 2 2 3 5 5 10 11

Engines 3 3 5 5 12 16 17

Features * ECM 60 80 180 370 1100 2200 2400

Achieving this flexibility without the product line approach would
have required 3.6 times the staff Cummins has.

© 2005 by Carnegie Mellon University 257

Cummins’ results by the numbers -4

Today’s largest teams are smaller than yesterday’s
smallest teams. Two-person teams are not unusual.

Cummins management has a history of embracing
change, but carefully targeted change.
• They estimate that process improvement alone has

brought a benefit/cost ratio of 2:1 to 3:1.
• They estimate that the product line approach has

brought a benefit/cost ratio of 10:1.

Product line approach let them quickly enter and then
dominate the industrial diesel engine market.

© 2005 by Carnegie Mellon University 258

Salion, Inc.
A small organization: 21 people

Maker of software for suppliers who sell complex products via proposals.

• Salion Revenue Process Manager—helps suppliers manage
opportunities. It contains a workflow engine and Web-based
communication tools to help a supplier organization manage the
collaboration of design and pricing. It keeps track of a proposal’s status
and assists in the assembly of the final document.

• Salion Knowledge Manager—helps triage and analyze requests for
proposals (RFPs), with decision support capabilities and analysis of bid
performance, win/loss rates, and pricing. Helps choose the best
candidates from among all the available opportunities. The Knowledge
Manager uses historical information to prioritize opportunities and
improve response rates.

• Salion Business Link—extends collaboration between the supplier and
the customer, and between the supplier and subsuppliers.

© 2005 by Carnegie Mellon University 259

A specialized but important market
“It should take us one day or less to turn a quote around.
For some reason, it takes five weeks. This process is out
of control.” —Director of Engineering, Tier 1 automotive
supplier

“We recently rushed a late quote out the door that we
thought we had priced with a ‘nice margin.’ In reality, the
quote was for a part that we had been selling at twice the
price we quoted. Luckily, our customer only asked for one
year of retroactive rebates.” —Director of Sales, Tier 1
automotive supplier

© 2005 by Carnegie Mellon University 260

A specialized but important market
“We just spent $100,000 on an opportunity that we had no
chance of winning. We bid on the same business two
years ago and our price was 50% too high. We have no
way to capture or analyze our historical sales and bidding
performance, so we make the same mistakes over and
over.”—Tier 2 automotive supplier

“We spent $600,000 in overnight shipping costs last
year.”—Tier 1 automotive supplier

© 2005 by Carnegie Mellon University 261

Variabilities
Customers run different combinations of products

Installation options:
• Run on customer’s hardware (installed)
• Run on Salion’s dedicated hardware (hosted)
• Run on Salion’s shared hardware

Each customer will have a unique workflow, a unique set of input screens
and other user-interface concerns, and a unique set of reports they want
to generate.

Each customer will have unique “bulk load” requirements, involving the
transformation of existing data and databases into forms compatible with
Salion’s products.

An automotive industry trade group has defined a business-to-business
transaction framework encompassing some 120 standard objects to be
used to transfer information from organization to organization. Not every
customer will want to make use of all 120 objects.

© 2005 by Carnegie Mellon University 262

How Salion builds its product line
First produced a “standard” product as its entry into the
market.

That product formed the basis for Salion’s software
product line and the basis for each new customer-specific
product it fielded.

The standard product was more than an engineering
model from which “real” systems were produced; it was
also sold.

Typical product: 40 modules, 150K SLOC

© 2005 by Carnegie Mellon University 263

Customization vs. configuration
Salion builds subsequent products by
• customizing elements of the “standard” product.
• configuring elements of the “standard” product.

Early on, Salion tried to make many elements configurable
• Forms manager
• Customized reports manager

Results were wasted effort, wrong guesses, and bloated
software. Now, Salion customizes these aspects.

Tool support plays an important role in managing these
variations:
• 3,333 files for 3 products
• 88 files represent variations

© 2005 by Carnegie Mellon University 264

Salion’s product line benefits
Seven developers produce and support sophisticated, highly
secure, high-availability, COTS-intensive systems

As of report time, Salion had produced its 12th 30-day release,
all of which were on schedule.

Building the standard product took 190 person-months.
• Building the first customer product took just 15 person-

months with 97% reuse.
• Building the second product took 30% less effort.

Salion’s approach gives it superb position to answer investors
question “How are you going to scale?”
• Normal answser: Re-write product to make robust, increase

development staff, bring on QA staff
• Salion’s answer: Nothing. We can scale right now, as we

are.

© 2005 by Carnegie Mellon University 265

CelsiusTech: Ship System 2000
A family of 55 ship systems

Integration test of 1-1.5 million
SLOC requires 1-2 people

Rehosting to a new platform/OS
takes 3 months

Cost and schedule targets are
predictably met

Performance/distribution behavior
are known in advance

Customer satisfaction is high
Hardware-to-software cost ratio

changed from 35:65 to 80:20

© 2005 by Carnegie Mellon University 266

National Reconnaissance Office /
Raytheon: Control Channel Toolkit
Ground-based spacecraft
command and control systems

Increased quality by 10X
Incremental build time

reduced from months
to weeks

Software productivity
increased by 7X

Development time and costs
decreased by 50%

Decreased product risk

© 2005 by Carnegie Mellon University 267

Market Maker GmbH: MERGER
Internet-based stock market
software

Each product “uniquely”
configured

Three days to put up
a customized system

© 2005 by Carnegie Mellon University 268

Hewlett Packard

Printer systems
• 2-7x cycle time improvement (some 10x)
• Sample Project

–shipped 5x number of products
–that were 4x as complex
–and had 3x the number of features
–with 4x products shipped/person

© 2005 by Carnegie Mellon University 269

Nokia Mobile Phones
Product lines with 25-30 new products
per year

Across products there are
• varying number of keys
• varying display sizes
• varying sets of features
• 58 languages supported
• 130 countries served
• multiple protocols
• needs for backwards compatibility
• configurable features
• needs for product behavior
change after release

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

270

Pittsburgh, PA 15213-3890

1

Carnegie Mellon University
Software Engineering Institute

Software Product Lines: Software Product Lines:
Introduction and Introduction and
Basic ConceptsBasic Concepts

© 2005 by Carnegie Mellon University 271

Business Success Requires Software
Prowess

Software pervades every sector.
Software has become the bottom line for many
organizations who never envisioned themselves
in the software business.

© 2005 by Carnegie Mellon University 272

Universal Business Goals
High quality

Quick time to market

Effective use of limited resources

Product alignment

Low cost production

Low cost maintenance

Mass customization

Mind share

 improved
 efficiency

 and
 productivity

© 2005 by Carnegie Mellon University 273

Software (System) Strategies

Process Improvement

Technology Innovation

Reuse

© 2005 by Carnegie Mellon University 274

Few Systems Are Unique

Most organizations produce families of
similar systems, differentiated by features.

© 2005 by Carnegie Mellon University 275

Reuse History

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

Focus was small-grained and opportunistic.
Results fell short of expectations.

© 2005 by Carnegie Mellon University 276

Imagine Strategic Reuse

strategic
reuse

business strategy
and

technical strategy

© 2005 by Carnegie Mellon University 277

Reuse History: From Ad-Hoc to
Systematic

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

2000’s
Software

Product Lines

© 2005 by Carnegie Mellon University 278

What is a Software Product Line?

A software product line is a set of software-
intensive systems sharing a common, managed
set of features that satisfy the specific needs of a
particular market segment or mission and that
are developed from a common set of core
assets in a prescribed way.

© 2005 by Carnegie Mellon University 279

Software Product Lines
Market strategy/

Application domain

Architecture

Components

pertain to

share an

are built from

is satisfied by

used to structure
Products

CORE
ASSETS

Product lines
• take economic advantage of commonality
• bound variability

© 2005 by Carnegie Mellon University 280

How Do Product Lines Help?
Product lines amortize the investment in these
and other core assets:

• requirements and requirements analysis
•domain model
•software architecture and design
•performance engineering
•documentation
• test plans, test cases, and data
•people: their knowledge and skills
•processes, methods, and tools
•budgets, schedules, and work plans
•components

product lines = strategic reuse

earlier life-
cycle
reuse

more
benefit

© 2005 by Carnegie Mellon University 281

Real World Motivation
Organizations use product line practices to:
• achieve large scale productivity gains
• improve time to market
• maintain market presence
• sustain unprecedented growth
• compensate for an inability to hire
• achieve systematic reuse goals
• improve product quality
• increase customer satisfaction
• enable mass customization
• get control of diverse product configurations

© 2005 by Carnegie Mellon University 282

The Key Concepts

Use of a
common

asset base
in production of a related

set of products

© 2005 by Carnegie Mellon University 283

The Key Concepts

Use of a
common

asset base
in production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

© 2005 by Carnegie Mellon University 284

Commercial Examples
Successful software product lines have been built for
families of
• Mobile phones
• Command and control ship systems
• Ground-based spacecraft systems
• Avionics systems
• Pagers
• Engine control systems
• Billing systems
• Web-based retail systems
• Printers
• Consumer electronic products
• Acquisition management enterprise systems

© 2005 by Carnegie Mellon University 285

Organizational Benefits
Improved productivity

by as much as 10x

Decreased time to market (to field, to launch...)
by as much as 10x

Decreased cost
by as much as 60%

Decreased labor needs
 by as much as 10X fewer software developers

Increased quality
by as much as 10X fewer defects

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

286

Pittsburgh, PA 15213-3890

1

Carnegie Mellon University
Software Engineering Institute

A Framework forA Framework for
Software Product Line Software Product Line
PracticePractice

© 2005 by Carnegie Mellon University 287

Product Line Practice

 But there are
 universal essential
activities and
practices.

Contexts for product
lines vary widely

• nature of products
• nature of market or
mission

• business goals
• organizational
infrastructure

• workforce distribution
• process discipline
• artifact maturity

© 2005 by Carnegie Mellon University 288

A Framework for Software Product
Line Practice
Three essential activities…
• core asset development
• product development
• management

…and the descriptions of the product line practice areas form
a conceptual framework for software product line practice.

This framework is evolving based on the experience and
information provided by the community.

Version 4.0: Software Product Lines: Practices and Patterns

Version 4.2: http://www.sei.cmu.edu/plp/framework.html

© 2005 by Carnegie Mellon University 289

Information Sources

Collaborations
with customers

on actual product lines

Case studies,
experience reports,
and surveys

Workshops,
and
conferences

Applied research

© 2005 by Carnegie Mellon University 290

Three Essential Activities

Core Asset
Development

Management

Product
Development

© 2005 by Carnegie Mellon University 291

The Nature of the Essential Activities
All three activities are interrelated and highly iterative.

There is no “first” activity.
- In some contexts, existing products are mined for core

assets.
- In others, core assets may be developed or procured for

future use.

There is a strong feedback loop between the core assets and
the products.

Strong management at multiple levels is needed throughout.

© 2005 by Carnegie Mellon University 292

Management
Management at multiple levels plays a critical role in the
successful product line practice by

• achieving the right organizational structure
• allocating resources
• coordinating and supervising
• providing training
• rewarding employees appropriately
• developing and communicating an acquisition strategy
• managing external interfaces
• creating and implementing a product line adoption plan

© 2005 by Carnegie Mellon University 293

Managing a Software Product Line
Requires Leadership
A key role for a software product line manager is that of
champion.

The champion must
• set and maintain the vision
• ensure appropriate goals and measures are in place
• “sell” the product line up and down the chain
• sustain morale
• deflect potential derailments
• solicit feedback and continuously improve the approach

© 2005 by Carnegie Mellon University 294

Different Approaches - 1
Proactive: Develop the core assets first
• Develop the scope first and use it as a “mission”

statement.
• Products come to market quickly with minimum code-

writing.
• Requires upfront investment and predictive knowledge.

Reactive: Start with one or more products
• From these generate the product line core assets and

then future products; the scope evolves more
dramatically.

• Much lower cost of entry
• Architecture and other core assets must be robust,

extensible, and appropriate to future product line needs

© 2005 by Carnegie Mellon University 295

Different Approaches - 2
Incremental: Develop in stages with the plan from the
beginning to develop a product line.
• Develop part of the core asset base, including the

architecture and some of the components.
• Develop one or more products.
• Develop part of the rest of the core asset base.
• Develop more products.
• Evolve more of the core asset base.
• …..

© 2005 by Carnegie Mellon University 296

Driving the Essential Activities

Beneath the level of the essential activities are
essential practices that fall into practice areas.

A practice area is a body of work or a collection
of activities that an organization must master to
successfully carry out the essential work of a
product line.

© 2005 by Carnegie Mellon University 297

Product line experience yields
important lessons
Lessons in software engineering

• architectures for product lines
• testing variable architectures and components
• importance of having and capturing domain knowledge
• managing variations
• important of large, pre-integrated chunks

Lessons in technical/project management
• importance of configuration management, and why it’s harder for product

lines
• product line scoping: What’s in? What’s out?
• Tool support for product lines

Lessons in organizational management.
• People issues: how to bring about change, how to launch the effort
• Organizational structure: Who builds the core assets?
• Funding: How are the core assets paid for?
• Interacting with the customer has whole new dimension

© 2005 by Carnegie Mellon University 298

Framework

Essential Activities

Practice Areas

Software
Engineering

Technical
Management

Organizational
Management

Architecture Definition
Architecture Evaluation
Component Development
COTS Utilization
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding

Relevant Domains

Configuration Management
Data Collection, Metrics,

and Tracking
Make/Buy/Mine/Commission

Analysis
Process Definition
Scoping
Technical Planning
Technical Risk Management
Tool Support

Building a Business Case
Customer Interface Management
Implementing an Acquisition

Strategy
Funding
Launching and Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk Management
Structuring the Organization
Technology Forecasting
Training

Core Asset
Development

Product
Development

Management

© 2005 by Carnegie Mellon University 299

Relationships among Categories
of Practice Areas

Software
Engineering
Practice Areas

Organizational
Management
Practice Areas

manage and support enable and orchestrate

Technical
Management
Practice Areas

© 2005 by Carnegie Mellon University 300

Scoping

Scoping bounds a system or set of systems by
defining those behaviors or aspects that are in
and those that are out.

All system development involves scoping; there
is no system for which everything is in.

In conventional development, scoping is usually
done informally (if at all), as a prelude to the
requirements engineering activity.

© 2005 by Carnegie Mellon University 301

Scoping: Aspects Peculiar to
Product Lines - 1
The overall goal is to define what’s in and what’s
out.

Scope definition lets you determine if a
proposed new product can be reasonably
developed as part of the existing (or planned)
product line.

We want to draw the boundary so the product
line is profitable.

© 2005 by Carnegie Mellon University 302

Scoping: Aspects Peculiar to
Product Lines - 2

Proper scoping is critical to a successful product
line:

• If the scope is too limited, there will be too few
products to justify the investment in the core
assets.

• If the scope is too large, the core assets will
need to be impossibly general.

• If the scope encompasses the wrong
products, the product line will not succeed.

© 2005 by Carnegie Mellon University 303

Scoping: Aspects Peculiar to
Product Lines - 3
The scope starts out broad and very general.

In a product line of Web software
• Browsers are definitely in.
• Aircraft flight simulators are definitely out.
• Email handlers are… well, we aren’t sure yet.

The scope grows more detailed as our knowledge increases
and the product line matures.

Initially, many possible systems will be “on the cusp,” meaning
their “in/out” decision must made on a case-by-case basis.
That’s healthy.

© 2005 by Carnegie Mellon University 304

Scope precision increases as we
learn more…up to a point.

a: space of all possible products
b: early, coarse-grained “in/out” decisions
c: product line scope with a healthy area of indecision
d: product line scope = product line requirements

If many products appear on the cusp over time, you need
to reactively adjust the scope.

 a. b. c. d.

© 2005 by Carnegie Mellon University 305

Proactively Adjusting the Scope -1

Companies highly skilled at product line
engineering routinely adjust their scope to take
advantage of opportunities that are in the
market.

CelsiusTech
• saw that air defense systems were just a short

distance away in the product space from ship
systems

• was able to enter the air defense market
quickly and effectively. Forty percent of its air
defense system was complete on day one.

© 2005 by Carnegie Mellon University 306

Pro-actively Adjusting the Scope -2

Cummins, Inc.
• developed a software product line for

automotive diesel engines
• saw a lucrative underutilized market nearby in

industrial diesel engines
• was able to quickly enter and dominate the

industrial diesel engine market
Motorola
• developed software product line for one-way

pagers
• saw nearby market for two-way pagers and

was able to use the same product line
architecture for both

© 2005 by Carnegie Mellon University 307

Key Themes Among Successful
Product Lines

Sophistication in the domain

A legacy base from which to build

Architectural excellence

Process maturity

Management commitment

Capacity for introspection

© 2005 by Carnegie Mellon University 308

Based on Our Experience
1. Product line business practices cannot be effected without

management commitment and involvement.
2. Organization size doesn’t matter.
3. Organizational culture plays a major role in adoption

success.
4. Organizations need support: guidance, diagnostics, methods,

and tools.
5. The lack of an architecture focus and/or talent can kill an

otherwise promising product line effort.
6. Process discipline is critical.
7. The community needs more quantitative data to support

product line adoption.
8. The cultural barriers and cost of adoption are major

impediments to widespread transition.
9. Software product line practice is at the “chasm.” (in Geoffrey

Moore’s terms: Crossing the Chasm)

© 2005 by Carnegie Mellon University 309

The Time is Right
Rapidly maturing, increasingly sophisticated software development
technologies including object technology, component technology,
standardization of commercial middleware.

A global realization of the importance of architecture

A universal recognition of the need for process discipline.

Role models and case studies that are emerging in the literature
and trade journals.

Conferences, workshops, and education programs that are now
including product lines in the agenda.

Company and inter-company product line initiatives.

Rising recognition of the amazing cost/performance savings that
are possible.

© 2005 by Carnegie Mellon University 310

Final Examination
1. Produce four six-part quality attribute scenarios that

express (one each):
- modifiability
- performance
- security
- availability

2. Produce a list of tactics to support usability.

3. Product a quality attribute utility tree for a system you
are familiar with. Try to include at least five quality
attributes. For each one, decompose it into quality
attribute concerns, and one or two scenarios each.

