LOGICA RELACIONAL: FORMULAS

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

LOGICA RELACIONAL: EXPRESIONES

expr ::= expr + expr (union) | expr & expr (intersection) | expr - expr (difference) | \sim expr (transpose) | expr.expr (navigation) | +expr (transitive closure) | $\{v: t/\text{form}\}$ (set former) | Var

LOGICA RELACIONAL: SEMANTICA DE LAS FORMULAS

 $M: \text{form} \to env \to Boolean$

 $env = (var + type) \rightarrow value$ $value = (atom \times \cdots \times atom) +$ $(atom \rightarrow value)$

```
\begin{split} M[a \ in \ b]e &= X[a]e \subseteq X[b]e\\ M[!F]e &= \neg M[F]e\\ M[F\&\&G]e &= M[F]e \land M[G]e\\ M[F \mid\mid G]e &= M[F]e \lor M[G]e\\ M[all \ v : t/F] &= \\ & \bigwedge \{M[F](e \oplus v \mapsto \{x\})/x \in e(t)\}\\ M[some \ v : t/F] &= \\ & \bigvee \{M[F](e \oplus v \mapsto \{x\})/x \in e(t)\} \end{split}
```

LOGICA RELACIONAL: SEMANTICA DE LAS EXPRESIONES

 $X: \exp r \to env \to value$

$$\begin{split} X[a+b]e &= X[a]e \cup X[b]e\\ X[a\&b]e &= X[a]e \cap X[b]e\\ X[a-b]e &= X[a]e \setminus X[b]e\\ X[\sim a]e &= \{\langle x, y \rangle : \langle y, x \rangle \in X[a]e \}\\ X[\sim a]e &= \{\langle x, y \rangle : \langle y, x \rangle \in X[a]e \}\\ X[a.b]e &= X[a]e; X[b]e\\ X[+a]e &= \text{the smallest } r \text{ such that}\\ r;r \subseteq r \text{ and } X[a]e \subseteq r\\ X[\{v:t/F\}]e &= \\ \{x \in e(t)/M[F](e \oplus v \mapsto \{x\})\}\\ X[v]e &= e(v)\\ X[a[v]]e &= \{\langle y_1, \dots, y_n \rangle / \\ \exists x. \langle x, y_1, \dots, y_n \rangle \in e(a) \land \langle x \rangle \in e(v) \end{split}$$

EL LENGUAJE DE ESPECIFICACION ALLOY

Lenguaje de especificacion cuyo lenguaje y semantica estan basados en la logica relacional.

Provee mecanismos para definir tipos similar a las clases de los lenguajes orientados a objetos.

Permite introducir axiomas y operaciones que determinan el modelo formal.

ALLOY: EJEMPLOS: GRAFOS

sig Nodo { }

sig Grafo {
 nodos : set Nodo
 arcos : nodos -> nodos

ALLOY: EJEMPLOS: GRAFOS CONEXOS

module grafosconexos

sig Nodo { }

one sig Grafo { nodos : set Nodo, arcos : nodos -> nodos

```
fact conexo {
all disj n1, n2 : Grafo.nodos | n2 in n1.(^(Grafo.arcos + ~(Grafo.arcos)))
```

assert noTieneAislado{all n : Grafo.nodos | some n.(Grafo.arcos) || some n.(~(Grafo.arcos))} check noTieneAislado for 5

ALLOY: EJEMPLOS: GRAFOS ACICLICOS

module grafoaciclico

sig Nodo { }

one sig Grafo { nodos : set Nodo, arcos : nodos -> nodos

```
}
```

fact acyclic { no ^(Grafo.arcos) & iden

ALLOY: EJEMPLOS: GRAFOS ACICLICOS DIRIGIDOS

module grafoaciclicodirigido

sig Nodo { }

one sig Grafo { nodos : set Nodo, arcos : nodos -> nodos

fact acyclic { no ^(Grafo.arcos) & iden

```
fact hasRoot {
    one n : Grafo.nodos | n.(*(Grafo.arcos)) = Grafo.nodos
}
```

pred conexo() {
 all disj n1, n2 : Grafo.nodos | n2 in n1.(^(Grafo.arcos + ~
 (Grafo.arcos)))

assert DAGConexo {conexo()}

check DAGConexo for 8

ALLOY: EJEMPLOS: LISTAS ENCADENADAS

module listaSimplementeEncadenada

sig Data {}

sig List { first : lone Data, next : lone List

one sig Empty extends List {}

fact emptyIsEmpty {no Empty.first && no Empty.next}

fact allToEmpty {all l : List | Empty in l.*next}

assert acyclic {all l : List | l not in l.(^next)}

check acyclic for 7

COMO OBTENER ALLOY?

<u>http://alloy.mit.edu</u>

Disponible para numerosas plataformas.

FUNDAMENTOS DE DYNÁLLOY: LOGICA DINAMICA

Logica que permite modelar evolucion de los estados.

Permite modelar propiedades de la ejecucion de programas secuenciales no-deterministicos.

SINTAXIS DE LA LOGICA DINAMICA

```
action ::= a_1, \ldots a_k (atomic actions)

| skip

| action + action (nondeterministic choice)

| action; action (sequential composition)

| action^* (finite iteration)

| dform? (test)
```

```
expr ::= var
| f(expr_1, \dots, expr_k) (f \in F with arity k)
```

```
dform ::= p(\exp_1, \dots, \exp_n) (p \in P with arity n)

| !dform (negation)

| dform && dform (conjunction)

| dform || dform (disjunction)

| all v : type | dform (universal)

| some v : type | dform (existential)

| [action]dform (box)
```

SEMANTICA DE LA LOGICA DINAMICA

 $Q: \text{form} \to ST \to Boolean$ $P: \text{action} \to \mathcal{P}\left(ST \times ST\right)$ $Z: \text{expr} \to ST \to \mathbf{s}$

 $\begin{array}{l} Q[p(t_1,\ldots,t_n)]\mu = (Z[t_1]\mu,\ldots,Z[t_n]\mu) \in env(p) \text{ (atomic formula)} \\ Q[!F]\mu = \neg Q[F]\mu \\ Q[F\&\&G]\mu = Q[F]\mu \land Q[G]\mu \\ Q[F \mid\mid G]\mu = Q[F]\mu \lor Q[G]\mu \\ Q[all \ v:t \ \mid \ F]\mu = \bigwedge \{Q[F](\mu \oplus v \mapsto x) \mid x \in env(t)\} \\ Q[some \ v:t \ \mid \ F]\mu = \bigvee \{Q[F](\mu \oplus v \mapsto x) \mid x \in env(t)\} \\ Q[\ a]F \]\mu = \bigwedge \{Q[F]\nu \mid \langle \mu, \nu \rangle \in P(a)\} \end{array}$

P[a] = env(a) (atomic action) $P[skip] = \{ \langle \mu, \mu \rangle : \mu \in ST \}$ $P[a+b] = P[a] \cup P[b]$ $P[a;b] = P[a] \circ P[b]$ $P[a^*] = (P[a])^*$ $P[\alpha?] = \{ \langle \mu, \mu \rangle : Q[\alpha]\mu \}$

 $Z[v]\mu = \mu(v)$ $Z[f(t_1, \dots, t_k)]\mu = env(f)(Z[t_1]\mu, \dots, Z[t_k]\mu)$

EJEMPLO DE ESPECIFICACION EN LOGICA DINAMICA

all $x : Nat | x = x0 \Rightarrow [A(x)](x = x0+1)$

(x=x0 & y=y0) => [Swap(x,y)](x=y0 & y=x0)

(x=x0 & y=y0) => [Swap(x,y); Swap(x,y)](x=x0 & y=y0)

PROGRAMAS VIA ACCIONES

Programa atomico via accion atomica (por ejemplo +1, o Swap)

P1; P2 ---> T(P1); T(P2)

```
if C then P1 else P2 fi ---> C? ; T(P1) + (!C)? ; T(P2)
```

```
while C do P ---> (C? ; T(P))* ; (!C)?
```

ASERCIONES DE CORRECCION PARCIAL

pre => [P]post

La formula es satisfecha for aquellos estados que satisfacen "pre", y para los cuales todo estado alacanzable por P satisface "post".

 $\begin{array}{c} & post(s1) \\ P & post(s2) \\ \end{array}$ pre(s)

COMO ANALIZAR ASERCIONES DE CORRECCION PARCIAL?

Mediante el calculo de la precondicion mas debil de un programa.

Permite caracterizar los estados que satisfacen la asercion en logica de primer orden.

CALCULO DE LA PRECONDICION MAS DEBIL

$$\begin{split} wlp[a(\overline{y}), f] &= pre|_{\overline{x}}^{\overline{y'}} \implies \text{all } \overline{n} \left(post|_{\overline{x'}}^{\overline{n}}|_{\overline{x'}}^{\overline{y'}} \implies f|_{\overline{y'}}^{\overline{n}} \right) \\ wlp[g?, f] &= g \implies f \\ wlp[p_1 + p_2, f] &= wlp[p_1, f] \wedge wlp[p_2, f] \\ wlp[p_1; p_2, f] &= wlp[p_1, wlp[p_2, f]] \\ wlp[p^*, f] &= \bigwedge_{i=0}^{\infty} wlp[p^i, f] . \end{split}$$

ENTONCES...

Una formula pre => [P]post es valida cuando

pre => wlp(P,post)

es valida.

DYNÁLLOY

Extension de Alloy para facilitar el analisis de propiedades de ejecuciones.

Mejor separacion de intereses que utilizando trazas directamente en la especificacion.

* El "DynAlloy Analyzer" permite analizar especificaciones DynAlloy automaticamente.

SINTAXIS DE DYNÁLLOY

 $formula ::= \dots | \{formula\} program \{formula\}$ "partial correctness"

SEMANTICA DE DYNÁLLOY

 $M[\{\alpha\}p\{\beta\}]e = M[\alpha]e \implies \forall e'(\langle e, e'\rangle \in P[p] \implies M[\beta]e')$

 $P: program \to \mathcal{P}(env \times env)$ $P[\langle pre, post \rangle] = A(\langle pre, post \rangle)$ $P[\alpha?] = \{ \langle e, e' \rangle : M[\alpha]e \land e = e' \}$ $P[p_1 + p_2] = P[p_1] \cup P[p_2]$ $P[p_1; p_2] = P[p_1]; P[p_2]$ $P[p^*] = P[p]^*$

EJEMPLO:

sig Addr { } sig Data { }

abstract sig Memory { addrs: set Addr, map: addrs \rightarrow lone Data

sig MainMemory extends Memory {}

sig Cache extends Memory { dirty: set addrs }

sig System { cache: Cache, main: MainMemory

EJEMPLO (CONTINUACION)

 $\{true\}$ Write(m : Memory, d : Data, a : Addr) $\{m'.map = m.map ++ (a \rightarrow d)\}.$

 $\{ true \}$

SysWrite(s: System)

{ some d: Data, a: $Addr \mid$ s'.cache = s.cache ++ (a \rightarrow d) and s'.cache.dirty = s.cache.dirty + a and s'.main = s.main }

 $\{ true \}$

SysFlush(s: System)

[some x: set s.cache.addrs |
s'.cache.map = s.cache.map - x→Data and
s'.cache.dirty = s.cache.dirty - x and
s'.main.map = s.main.map ++
{a: x, d: Data | d = s.cache.map[a]} }

EJEMPLO (CONTINUACION)

pred DirtyInv(s: System) {
 all a : !s.cache.dirty |
 s.cache.map[a] = s.main.map[a] }

{ DirtyInv(s) } (SysWrite(s) + SysFlush(s))* { DirtyInv(s') }