
Logica Relacional:
Formulas

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.



Logica Relacional:
Expresiones

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.



Logica Relacional:
Semantica de las Formulas

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.



Logica Relacional:
Semantica de las Expresiones

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}
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The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · ·× atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t/F ] =∧

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨

{M [F ](e⊕ v*→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \ X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e⊕ v*→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows2:

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes) and behaviour (operations or methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.



El Lenguaje de 
Especificacion Alloy

Lenguaje de especificacion cuyo lenguaje y 
semantica estan basados en la logica 
relacional.

Provee mecanismos para definir tipos similar 
a las clases de los lenguajes orientados a 
objetos.

Permite introducir axiomas y operaciones que 
determinan el modelo formal.



Alloy: Ejemplos: 
Grafos

sig Nodo { }

sig Grafo {
nodos : set Nodo
arcos : nodos -> nodos
}



Alloy: Ejemplos: 
Grafos Conexos

module grafosconexos

sig Nodo { }

one sig Grafo {
 nodos : set Nodo,
 arcos : nodos -> nodos
}

fact conexo {
 all disj n1, n2 : Grafo.nodos | n2 in n1.(^(Grafo.arcos + ~(Grafo.arcos)))
}

assert noTieneAislado{all n : Grafo.nodos | some n.(Grafo.arcos) || some n.(~(Grafo.arcos))}

check noTieneAislado for 5



Alloy: Ejemplos: 
Grafos Aciclicos

module grafoaciclico

sig Nodo { }

one sig Grafo {
 nodos : set Nodo,
 arcos : nodos -> nodos
}

fact acyclic {
 no ^(Grafo.arcos) & iden
}



Alloy: Ejemplos: 
Grafos Aciclicos Dirigidos

module grafoaciclicodirigido

sig Nodo { }

one sig Grafo {
 nodos : set Nodo,
 arcos : nodos -> nodos
}

fact acyclic {
 no ^(Grafo.arcos) & iden
}

fact hasRoot {
 one n : Grafo.nodos | n.(*(Grafo.arcos)) = Grafo.nodos
}

pred conexo() {
 all disj n1, n2 : Grafo.nodos | n2 in n1.(^(Grafo.arcos + ~
(Grafo.arcos)))
}

assert DAGConexo {conexo()}

check DAGConexo for 8



Alloy: Ejemplos:
Listas encadenadas

module listaSimplementeEncadenada

sig Data {}

sig List {
 first : lone Data,
 next : lone List
}

one sig Empty extends List {}

fact emptyIsEmpty {no Empty.first && no Empty.next}

fact allToEmpty {all l : List | Empty in l.*next}

assert acyclic {all l : List | l not in  l.(^next)}

check acyclic for 7



Como obtener Alloy?

http://alloy.mit.edu

Disponible para numerosas plataformas.



Fundamentos de 
DynAlloy: Logica Dinamica

Logica que permite modelar evolucion de los 
estados.

Permite modelar propiedades de la ejecucion 
de programas secuenciales no-deterministicos.



Sintaxis de la Logica 
Dinamica

5.4 A short case study
In this section we will develop a short case-study to show

how this proof method is used. As an instance of (12), let us
consider a system whose cache agrees with main memory in
all non-dirty addresses. A consistency criterion of the cache
with main memory is that after finitely many executions of
SysWrite or Flush, the resulting system must still satisfy the
invariant DirtyInv. This property is specified in DynAlloy by:

all s : System |
DirtyInv(s)

{(SysWrite(s) + Flush(s))∗}
DirtyInv(s) .

(14)

Notice also that if after finitely many executions of SysWrite
and Flush we flush all the dirty addresses in the cache to
main memory, the resulting cache should fully agree with
main memory. In order to specify this property we need
to specify the function that flushes all the dirty cache ad-
dresses. The specification is as follows:

s = s0

{DSFlush(s : System)}

s.cache.dirty = ∅ ∧
s.cache.map = s0.cache.map −

s0.cache.map[s0.cache.dirty] ∧
s.main.map = s0.main.map ++

s0.cache.map[s0.cache.dirty]

We specify the property establishing the agreement of the
cache with main memory as follows:

FullyAgree(s : System)

⇐⇒ s.cache.map in s.main.map .

Once “DSFlush” and “FullyAgree” have been specified,
the property is specified in DynAlloy by:

all s : System |
DirtyInv(s)

{(SysWrite(s) + Flush(s))∗ ;DSFlush(s)}
FullyAgree(s) .

(15)
Now, it only remains to apply function MT to formula

(15) and feed the Alloy analyzer with the resulting formula.

6. ACOMPLETECALCULUSFORDYNAMIC

ALLOY
In this section we present a complete calculus for reason-

ing about properties specified in DynAlloy. Recalling Fig. 1,
in this Section we deal with the portion reproduced in Fig. 8.

The formalism FDL (Fork Dynamic Logic) can be suc-
cinctly described as first-order dynamic logic over the equa-
tional theory of fork algebras. The reason for using dynamic
logic is that there is a close relationship between this logic
and partial correctness assertions. In Section 6.1 we present
the syntax and semantics of first-order dynamic logic. In
Section 6.2, dynamic logic is extended with fork algebras.
We then extend function RL &→ FRL so that it also trans-
lates partial correctness assertions. Finally, in Section 6.3
we present a complete calculus for FDL.

DynAlloy FDL!is interpreted

Figure 8: Relationships among the formalisms Dy-
nAlloy and FDL.

6.1 Dynamic Logic
Dynamic logic is a formalism for reasoning about pro-

grams. From a set of atomic actions (usually assignments of
terms to variables), and using appropriate combinators, it is
possible to build complex actions. The logic then allows us
to state properties of these actions, which may hold or not in
a given structure. Actions can change (as usually programs
do), the values of variables. We will assume that each action
reads and/or modifies the value of finitely many variables.
When compared with classical first–order logic, the essential
difference is the dynamic content of dynamic logic, which is
clear in the notion of satisfiability. While satisfiability in
classical first–order logic depends on the values of variables
in one valuation (state), in dynamic logic it is necessary to
consider two valuations in order to reflect the change of val-
ues of program variables; one valuation holds the values of
variables before the action is performed, and another holds
the values of variables after the action is executed.

Along the section we will assume a fixed (but arbitrary)
finite signature Σ = 〈 s, A, F, P 〉, where s is a sort, A =
{ a1, . . . , ak } is the set of atomic action symbols, F is the
set of function symbols, and P is the set of atomic predicate
symbols. Atomic actions contain input and output formal
parameters. These parameters are later instantiated with
actual variables when actions are used in a specification.

The sets of programs and formulae on Σ are mutually
defined in Fig. 9.

action ::= a1, . . . ak (atomic actions)
| skip
| action+action (nondeterministic choice)
| action;action (sequential composition)
| action∗ (finite iteration)
| dform? (test)

expr ::= var
| f(expr1, . . . , exprk) (f ∈ F with arity k)

dform ::= p(expr1, . . . , exprn) (p ∈ P with arity n)
| !dform (negation)
| dform && dform (conjunction)
| dform || dform (disjunction)
| all v : type | dform (universal)
| some v : type | dform (existential)
| [action]dform (box)

Figure 9: Syntax of dynamic logic

As is standard in dynamic logic, states are valuations of
the program variables (the actual parameters for actions).
The environment env assigns a domain s to sort s in which
program variables take values. The set of states is denoted
by ST . For each action symbol a ∈ A, env yields a binary re-
lation on the set of states, that is, a subset of ST ×ST . The
environment maps function symbols to concrete functions,
and predicate symbols to relations of the corresponding ar-
ity. The semantics of the logic is given in Fig. 10.



Semantica de la 
Logica Dinamica

Q : form → ST → Boolean
P : action → P (ST × ST)
Z : expr → ST → s

Q[p(t1, . . . , tn)]µ = (Z[t1]µ, . . . , Z[tn]µ) ∈ env(p) (atomic formula)
Q[!F ]µ = ¬Q[F ]µ
Q[F&&G]µ = Q[F ]µ ∧Q[G]µ
Q[F || G]µ = Q[F ]µ ∨Q[G]µ
Q[all v : t | F ]µ =

∧
{Q[F ](µ⊕ v'→x) | x ∈ env(t)}

Q[some v : t | F ]µ =
∨
{Q[F ](µ⊕ v'→x) | x ∈ env(t)}

Q[ [a]F ]µ =
∧
{Q[F ]ν | 〈µ, ν〉 ∈ P (a)}

P [a] = env(a) (atomic action)
P [skip] = { 〈µ, µ〉 : µ ∈ ST }
P [a + b] = P [a] ∪ P [b]
P [a ;b] = P [a]◦P [b]
P [a∗] = (P [a])∗

P [α?] = { 〈µ, µ〉 : Q[α]µ }

Z[v]µ = µ(v)
Z[f(t1, . . . , tk)]µ = env(f)(Z[t1]µ, . . . , Z[tk]µ)

Figure 10: Semantics of dynamic logic

6.2 FDL: Dynamic Logic over Fork Algebras
In Section 6.1 we introduced first-order dynamic logic.

As with classical first-order logic, it is possible to extend
the language of dynamic logic by adding new symbols, and
also to add new axioms giving meaning to these. In or-
der to define FDL, we include in the set of function sym-
bols of signature Σ the set of constants { 0, 1, Id }, the set
of unary symbols

{ –, ,̆ ∗
}
, and the set of binary symbols

{ + , · , ; , ∇ }. The only predicate we will consider is equal-
ity. Since these signatures include all operation symbols
from fork algebras, they will be called fork signatures. Once
FDL is defined, the main result in this section (Thm. 6.4)
is an interpretation of DynAlloy into FDL. That is, we will
present a semantics–preserving mapping from DynAlloy for-
mulas to FDL formulas. This will allow us, in Section 6.3,
to present a complete calculus for FDL, that can be used for
proving DynAlloy theorems.

Remark 1. Notice that FDL atomic formulae are equal-
ities between fork algebra terms, and thus, for atomic for-
mulae, function Q from Fig. 10 and function N from Fig. 3
agree.

We will call theories containing the identities (axioms)
specifying the class of fork algebras FDL theories. By work-
ing with FDL theories we intend to describe structures for
dynamic logic whose domains are sets of binary relations.
This is indeed the case as it is shown in the following theo-
rem.

Theorem 6.1. Let Σ be a fork signature, and Ψ be a FDL
theory. For each model A for Ψ there exists a model B for
Ψ, isomorphic to A, in which the domain s is a set of binary
relations.

Proof. Let us consider the reduct A of the model A,
obtained by keeping A’s domain and the fork algebra opera-
tions. A is a structure of the form

〈
A, + , · , –, 0, 1, ; , ,̆ Id, ∇

〉

in which the semantics of action, function and predicate
symbols is given through an environment env . Since Ψ is a
FDL theory (and therefore satisfies the axioms for fork al-
gebras), A is a fork algebra. Thus, by [13][14, Thm. 4.2], A
is isomorphic to a proper fork algebra with domain B. Let

h : A → B be the isomorphism. In order to define the model
B we will define an environment env ′ for action, function
and predicate symbols as follows:

– Actions: 〈s, s′〉 ∈ env ′(a) ⇐⇒
〈
h−1(s), h−1(s′)

〉
∈

env(a), where for a state s, h−1(s) is the state satisfy-
ing (h−1(s))(v) = h−1(s(v)).

– Functions: [env ′(f)] (b) = h
(
[env(f)] (h−1(b))

)
.

– Predicates: b ∈ env ′(p) ⇐⇒ h−1(b) ∈ env(p).

By construction, B is isomorphic to A.

The previous theorem is essential, and its proof (which
uses [14, Thm. 4.2]), heavily relies on the use of fork algebras
rather than plain relation algebras [39]. A model for a FDL
theory Ψ is a structure satisfying all the formulae in Ψ.
Such a structure can, or cannot, have binary relations in
its domain. Theorem 6.1 shows that models whose domains
are not a set of binary relations are isomorphic to models in
which the domain is a set of binary relations. This allows
us to look at specifications in FDL, and interpret them as
properties predicating about binary relations.

We will end this section by presenting the extension of
function RL (→ FRL to partial correctness assertions. The
extension, which is defined as RL (→ FRL for the remaining
formula patterns, is denoted by DynAlloy (→ FDL. Then,

DynAlloy (→ FDL (α{p}β) =

RL (→ FRL(α) =⇒ [p] RL (→ FRL(β) .

In the following paragraphs we present a theorem describ-
ing the relationship established by the translation, between
the formalisms DynAlloy and FDL.

Lemma 6.2. Let α be a DynAlloy formula. Let e be a Dy-
nAlloy environment, and A the function that assigns meaning
to atomic actions. Then, there exists a FDL environment ê
such that

M [α]e = Q[DynAlloy (→ FDL(α)]ê .

Proof. Let environment ê be defined by:

• for each variable v denoting a n-ary relation c, we
define ê(v) = c (the binary encoding of relation c,
cf. 4.1.2),

• for each atomic action symbol a, we define

ê(a) =
{ 〈

e′1, e
′
2

〉
: 〈e1, e2〉 ∈ A(a)

}
,

where e′1, e
′
2 are defined from e1 and e2 as in Thm. 4.1.

The proof proceeds now by induction on the structure of
formula α. For the sake of simplicity we will present the
proof for atomic formulas and partial correctness assertions.

Let α be atomic, i.e., α = t1 in t2.

M [t1 in t2]e
= {by Thm. 4.2}

N [RL (→ FRL(t1 in t2)]e
′

= {because no actions occur in α}
N [RL (→ FRL(t1 in t2)]ê

= {by Remark 1}
Q[RL (→ FRL(t1 in t2)]ê

= {because α is a RL formula }
Q[DynAlloy (→ FDL(t1 in t2)]ê .



Ejemplo de Especificacion 
en Logica Dinamica

all x : Nat | x = x0 => [A(x)](x = x0+1)

(x=x0 && y=y0) => [Swap(x,y)](x=y0 && y=x0)

(x=x0 && y=y0) => [Swap(x,y) ; Swap(x,y)](x=x0 && y=y0)



Programas via 
Acciones

Programa atomico via accion atomica (por 
ejemplo +1, o Swap)

P1 ; P2 ---> T(P1) ; T(P2)

if C then P1 else P2 fi ---> C? ; T(P1)  +  (!C)? ; T(P2)

while C do P ---> (C? ; T(P))* ; (!C)?



Aserciones de 
Correccion Parcial

pre => [P]post

La formula es satisfecha for aquellos estados que 
satisfacen “pre”, y para los cuales todo estado 
alacanzable por P satisface “post”.

pre(s)

P
P

P

post(s1)

post(s2)

!post(s3)



Como analizar aserciones 
de correccion parcial?

Mediante el calculo de la precondicion mas 
debil de un programa.

Permite caracterizar los estados que 
satisfacen la asercion en logica de primer 
orden.



Calculo de la 
Precondicion mas Debil
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The main rationale behind our technique for the analysis of DynAlloy specifica-
tions is the translation of partial correctness assertions to first-order Alloy formulas,
using weakest liberal preconditions [Dijkstra and Scholten 1990]. The generated Al-
loy formulas, which may be large and quite difficult to understand, are not visible
to the end user, who only accesses the declarative DynAlloy specification.

We define below a function

wlp : program × formula → formula

that computes the weakest liberal precondition of a formula according to a program
(composite action). We will in general use names x1, x2 . . . for program variables,
and will use names x′1, x

′
2, . . . for the value of program variables after action exe-

cution. We will denote by α|vx the substitution of all free occurrences of variable x
by the fresh variable v in formula α.

When an atomic action a specified as 〈pre, post〉(x) is used in a composite ac-
tion, formal parameters are substituted by actual parameters. Since we assume all
variables are input/output variables, actual parameters are variables, let us say, y.
In this situation, function wlp is defined as follows:

wlp[a(y), f ] = pre|y′

x =⇒ all n
(
post|n

x′ |y
′

x =⇒ f |n
y′

)
. (5)

A few points need to be explained about (5). First, we assume that free variables
in f are amongst y′, x0. Variables in x0 are generated by the translation function
pcat given in (7). Second, n is an array of new variables, one for each variable
modified by the action. Last, notice that the resulting formula has again its free
variables amongst y′, x0. This is also preserved in the remaining cases in the
definition of function wlp.

For the remaining action constructs, the definition of function wlp is the following:

wlp[g?, f ] = g =⇒ f
wlp[p1 + p2, f ] = wlp[p1, f ] ∧ wlp[p2, f ]
wlp[p1 ;p2, f ] = wlp[p1,wlp[p2, f ]]
wlp[p∗, f ] =

∧∞
i=0 wlp[pi, f ] .

Notice that wlp yields Alloy formulas in all these cases, except for the iteration
construct, where the resulting formula may be infinitary. In order to obtain an
Alloy formula, we can impose a bound on the depth of iterations. This is equivalent
to fixing a maximum length for traces. A function Bwlp (bounded weakest liberal
precondition) is then defined exactly as wlp, except for iteration, where it is defined
by:

Bwlp[p∗, f ] =
n∧

i=0

Bwlp[pi, f ] . (6)

In (6), n is the scope set for the depth of iterations.
We now define a function pcat that translates partial correctness assertions to

Alloy formulas. For a partial correctness assertion {α(y)} P (y) {β(y, y′)}

pcat ({α} P {β}) = ∀y
(
α =⇒

(
Bwlp

[
p, β|x0

y

])
|y
y′ |

y
x0

)
. (7)

Of course this analysis method where iteration is restricted to a fixed depth is
not complete, but clearly it is not meant to be; from the very beginning we placed
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function application. Recalling the definition of function Write, notice that there
is no actual change in the state of the system, since no variable actually changes
its value.

Dynamic logic [Harel et al. 2000] arose in the early ’70s, with the intention of
faithfully reflecting state change. Motivated by dynamic logic, we propose the use
of actions to model state change in Alloy, as described below.

What we would like to say about an action is how it transforms the system state
after its execution. A (now) traditional way of doing so is by using pre and post
condition assertions. An assertion of the form

{α}
A

{β}

affirms that whenever action A is executed on a state satisfying α, if it terminates,
it does so in a state satisfying β. This approach is particularly appropriate, since
behaviors described by functions are better viewed as the result of performing an
action on an input state. Thus, the definition of function Write could be expressed
as an action definition, of the following form:

{true}
Write(m : Memory,d : Data, a : Addr)
{m′.map = m.map ++ (a → d)} .

(3)

At first glance it is difficult to see the differences between (1) and (3), since
both formulas seem to provide the same information. The crucial differences are
reflected in the semantics, as well as in the fact that actions can be sequentially
composed, iterated or composed by nondeterministic choice, while Alloy functions,
in principle, cannot.

An immediately apparent difference between (1) and (3) is that action Write
does not involve the parameter m′, while function Write uses it. This is so because
we use the convention that m′ denotes the state of variable m after execution of
action Write. This time, “after” means that m′ gets its value in an environment
reachable through the execution of action Write (cf. Fig. 3). Since Write denotes a
binary relation on the set of environments, there is a precise notion of input/output
inducing a before/after relationship.

3.2 Syntax and Semantics of DynAlloy

The syntax of DynAlloy’s formulas extends the one presented in Fig. 1 with the
addition of the following clause for building partial correctness statements:

formula ::= . . . | {formula} program {formula}
“partial correctness”

The syntax for programs (cf. Fig. 2) is the class of regular programs defined in
[Harel et al. 2000], plus a new rule to allow for the construction of atomic actions
from their pre and post conditions. In the definition of atomic actions, x denotes
a sequence of formal parameters. Thus, it is to be expected that the precondition
is a formula whose free variables are within x, while postcondition variables might
also include primed versions of the formal parameters.
ACM Transactions on Software Engineering and Methodology, Vol. TBD, No. TDB, Month Year.
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program ::= 〈formula, formula〉(x) “atomic action”
| formula? “test”
| program + program “non-deterministic choice”
| program ;program “sequential composition”
| program∗ “iteration”

Fig. 2. Grammar for composite actions in DynAlloy

In Fig. 3 we extend the definition of function M to partial correctness assertions
and define the denotational semantics of programs as binary relations over env . The
definition of function M on a partial correctness assertion makes clear that we are
actually considering a partial correctness semantics. This follows from the fact that
we are not requesting environment e to belong to the domain of the relation P [p].
In order to provide semantics for atomic actions, we will assume that there is a
function A assigning, to each atomic action, a binary relation on the environments.
We define function A as follows:

A(〈pre, post〉) = { 〈e, e′〉 : M [pre]e ∧ M [post ]e′ } .

There is a subtle point in the definition of the semantics of atomic programs. While
actions may modify the value of all variables, we assume that those variables whose
primed versions do not occur in the post condition retain their corresponding input
values. Thus, the atomic action Write modifies the value of variable m, but a
and d keep their initial values. This allows us to use simpler formulas in pre
and post conditions. Notice that, since parallel composition of actions is not an
allowed action combinator, this assumption does not restrict the sound composition
of actions or programs. Although parallel composition is not available, one could
still define it by means of interleaving of atomic actions, via nondeterministic choice
and sequential composition, as usual in concurrent programming.

M [{α}p{β}]e = M [α]e =⇒ ∀e′
(〈

e, e′
〉
∈ P [p] =⇒ M [β]e′

)

P : program → P (env × env)

P [〈pre, post〉] = A(〈pre, post〉)
P [α?] = { 〈e, e′〉 : M [α]e ∧ e = e′ }
P [p1 + p2] = P [p1] ∪ P [p2]
P [p1 ;p2] = P [p1] ;P [p2]
P [p∗] = P [p]∗

Fig. 3. Semantics of DynAlloy.

3.3 Specifying Properties of Executions in Alloy and DynAlloy

Suppose that we want to specify that a given property P is invariant under se-
quences of applications of the operations “SysFlush” and “SysWrite”, from certain
initial state. A useful technique for stating the invariance of a property P consists
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incremental specification; once a component C together with programs regarding
this component are validated (this involves the analysis of execution traces), one
can build new components in terms of the defined one C, and new programs, in
which (some of) the programs corresponding to C are considered as atomic. Intu-
itively, this technique allows us to compress the size of the traces of new programs,
leading to the exploration of longer computations during the analysis, as we will
show.

The remainder of this paper is organized as follows. In Section 2 we summarize
the main characteristics of the Alloy specification language. In Section 3 we intro-
duce the reader to our extension of Alloy, the DynAlloy language. In Section 4 we
present the DynAlloy tool, the tool that extends the Alloy Analyzer with support
for actions, partial correctness assertions and their corresponding analysis. In Sec-
tion 5 we present the program atomization technique, and its impact on incremental
validation. In Section 6 we present the case-studies used to compare our approach
with standard Alloy’s, and their corresponding running times. Finally, in Section
7 we present our conclusions and proposals for further work.

2. THE ALLOY SPECIFICATION LANGUAGE

In this section, we introduce the reader to the Alloy specification language by means
of an example extracted from [Jackson et al. 2001]. This example serves as a means
for illustrating the standard features of the language and their associated semantics,
the shortcomings overcome by our alternative semantics, and will be used as a basis
for the properties of traces we will analyze.

Suppose we want to specify systems involving memories with cache. We might
recognize that, in order to specify memories, data types for data and addresses are
especially necessary. We can then start by indicating the existence of disjoint sets
(of atoms) for data and addresses, which in Alloy are specified using signatures:

sig Addr { } sig Data { }

These are basic signatures. We do not assume any special properties regarding the
structures of data and addresses.

With data and addresses already defined, we can now specify what constitutes a
memory. A possible way of defining memories is by saying that a memory consists
of a set of addresses, and a (total) mapping from these addresses to data values. In
our case, we will use memories in order to model what is common to a cache and
a main memory, so the signature must be declared as abstract:

abstract sig Memory {
addrs: set Addr,
map: addrs -> lone Data

}

The modifier “lone” in the above definition indicates that “map” is functional and
total (for each element a of addrs, there exists exactly one element d in Data such
that map(a) = d).

Alloy allows for the definition of signatures as subsets of the set denoted by
another “parent” signature. This is done via what is called signature extension.
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For the example, one could define other (perhaps more complex) kinds of memories
as extensions of the Memory signature:

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}

As specified in these definitions, MainMemory and Cache are special kinds of mem-
ories. In caches, a subset of addrs is recognized as dirty.

A system might now be defined to be composed of a main memory and a cache:

sig System {
cache: Cache,
main: MainMemory

}

As the previous definitions show, signatures are used to define data domains and
their structure. The attributes of a signature denote relations. For instance, the
“addrs” attribute in signature Memory represents a binary relation, from memory
atoms to sets of atoms from Addr. Given a set m (not necessarily a singleton)
of Memory atoms, m.addrs denotes the relational image of m under the relation
denoted by addrs. This leads to a relational view of the dot notation, which is
simple and elegant, and preserves the intuitive navigational reading of dot, as in
object orientation. Signature extension, as we mentioned before, is interpreted as
inclusion of the set of atoms of the extending signature into the set of atoms of the
extended signature.

In Fig. 1, we present the grammar and semantics of Alloy’s relational logic, the
core logic on top of which all of Alloy’s syntax and semantics are defined. An
important difference with respect to previous versions of Alloy, as for instance the
one presented in [Jackson 2002a], is that expressions now range over relations of
arbitrary rank, instead of being restricted to binary relations. Composition of
binary relations is well understood; but for relations of higher rank, the following
definition for the composition of relations has to be considered:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :
∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

Operations for transitive closure and transposition are only defined for binary
relations. Thus, function X in Fig. 1 is partial.

2.1 Operations in a Model

So far, we have just shown how the structure of data domains can be specified in
Alloy. Of course, one would like to be able to define operations over the defined
domains. Following the style of Z specifications, operations in Alloy can be defined
as expressions, relating states from the state spaces described by the signature
definitions. Primed variables are used to denote the resulting values, although this
is just a convention, not reflected in the semantics.
ACM Transactions on Software Engineering and Methodology, Vol. TBD, No. TDB, Month Year.
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function application. Recalling the definition of function Write, notice that there
is no actual change in the state of the system, since no variable actually changes
its value.

Dynamic logic [Harel et al. 2000] arose in the early ’70s, with the intention of
faithfully reflecting state change. Motivated by dynamic logic, we propose the use
of actions to model state change in Alloy, as described below.

What we would like to say about an action is how it transforms the system state
after its execution. A (now) traditional way of doing so is by using pre and post
condition assertions. An assertion of the form

{α}
A

{β}

affirms that whenever action A is executed on a state satisfying α, if it terminates,
it does so in a state satisfying β. This approach is particularly appropriate, since
behaviors described by functions are better viewed as the result of performing an
action on an input state. Thus, the definition of function Write could be expressed
as an action definition, of the following form:

{true}
Write(m : Memory,d : Data, a : Addr)
{m′.map = m.map ++ (a → d)} .

(3)

At first glance it is difficult to see the differences between (1) and (3), since
both formulas seem to provide the same information. The crucial differences are
reflected in the semantics, as well as in the fact that actions can be sequentially
composed, iterated or composed by nondeterministic choice, while Alloy functions,
in principle, cannot.

An immediately apparent difference between (1) and (3) is that action Write
does not involve the parameter m′, while function Write uses it. This is so because
we use the convention that m′ denotes the state of variable m after execution of
action Write. This time, “after” means that m′ gets its value in an environment
reachable through the execution of action Write (cf. Fig. 3). Since Write denotes a
binary relation on the set of environments, there is a precise notion of input/output
inducing a before/after relationship.

3.2 Syntax and Semantics of DynAlloy

The syntax of DynAlloy’s formulas extends the one presented in Fig. 1 with the
addition of the following clause for building partial correctness statements:

formula ::= . . . | {formula} program {formula}
“partial correctness”

The syntax for programs (cf. Fig. 2) is the class of regular programs defined in
[Harel et al. 2000], plus a new rule to allow for the construction of atomic actions
from their pre and post conditions. In the definition of atomic actions, x denotes
a sequence of formal parameters. Thus, it is to be expected that the precondition
is a formula whose free variables are within x, while postcondition variables might
also include primed versions of the formal parameters.
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{ true }

SysWrite(s: System)

{ some d: Data, a: Addr |
s’.cache = s.cache ++ (a→ d) and
s’.cache.dirty = s.cache.dirty + a and
s’.main = s.main }

{ true }

SysFlush(s: System)

{ some x: set s.cache.addrs |
s’.cache.map = s.cache.map - x→Data and
s’.cache.dirty = s.cache.dirty - x and
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]} }

Notice that the previous specifications are as understandable as the ones given
in Alloy. Moreover, by using partial correctness statements on the set of regular
programs generated by the set of atomic actions {SysWrite,SysFlush }, we can
assert the invariance of a property P under finite applications of functions SysWrite
and SysFlush in a simple and elegant way, as follows:

{Init(s) ∧ P (s)}
(SysWrite(s) + SysFlush(s))∗

{P (s′)}
More generally, suppose now that we want to show that a property Q is invariant

under sequences of applications of arbitrary operations O1, . . . , Ok, starting from
states s described by a formula Init . The specification of this assertion in our
setting is done via the following formula:

{Init(x ) ∧Q(x)}
(O1(x) + · · · + Ok(x))∗ (4)

{Q(x′)}

Notice that there is no need to mention traces in the specification of the previous
properties. This is so due to the fact that finite traces get determined by the
semantics of reflexive-transitive closure.

3.4 Analysis of DynAlloy Specifications

Alloy’s design was deeply influenced by the intention of producing an automatically
analyzable language. While DynAlloy is, to our understanding, better suited than
Alloy for the specification of properties of executions, the use of ticks and traces as
defined in [Jackson et al. 2001] has as an advantage that it allows one to automati-
cally analyze properties of executions. Therefore, a question is immediately raised:
Can DynAlloy specifications be automatically analyzed, and if so, how efficiently?
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over, operations, represented by functions in Alloy, can be “attached” to signature
definitions, as in traditional object-oriented approaches. However, this is just a
convenient notation, and functions describe operations of the whole set of signa-
tures, i.e., the model. So, there is no notion similar to that of class, as a mechanism
for encapsulating data (attributes or fields) and behavior (operations or methods).

In order to illustrate a couple of further points, consider the following more
complex function definition:

pred SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}
There are two important issues exhibited in this function definition. First, function
SysWrite is defined in terms of the more primitive Write. Second, the use of Write
takes advantage of the hierarchy defined by signature extension: note that function
Write was defined for memories, and in SysWrite it is being “applied” to cache
memories.

As explained in [Jackson et al. 2001], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to have a realistic model
of memories with cache, since usually caches are smaller than main memories.
A (nondeterministic) operation that flushes information from the cache to main
memory can be specified in the following way:

pred SysFlush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of the above definition of function SysFlush, x->Data denotes the
set of all ordered pairs whose first elements fall into the set x, and whose second
elements range over Data.

Functions can also be used to represent special states. For instance, we can
characterize the states in which the cache lines not marked as dirty are consistent
with main memory:

pred DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(2)

In this context, the symbol “!” denotes negation, indicating in the above formula
that “a” ranges over atoms that are non dirty addresses.

2.2 Properties of a Model

As the reader might expect, a model can be enhanced by adding properties (axioms)
to it. These properties are written as logical formulas, much in the style of the
ACM Transactions on Software Engineering and Methodology, Vol. TBD, No. TDB, Month Year.

{ DirtyInv(s) }
(SysWrite(s) + SysFlush(s))*

{ DirtyInv(s’) }


