
1

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho1Ontological EngineeringCopyright © 2005, The University of Manchester

Table of Contents

1. What is an ontology?

1.1 The Role of Ontologies in the Semantic Web

1.2 Theoretical Foundations of Ontologies

2. How can we build ontologies? Methods, techniques and methodologies

3. How can we implement ontologies? Ontology languages

4. How can we use ontologies? Reasoners and ontology APIs

5. How can we build Semantic Web applications?

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho2Ontological EngineeringCopyright © 2005, The University of Manchester

How can we implement ontologies?
Reasoners and Ontology APIs

Asunción Gómez-Pérez
Mariano Fernández-López

Oscar Corcho
asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk

Grupo de Ontologías
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

2

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho3Ontological EngineeringCopyright © 2005, The University of Manchester

Main References

Gómez-Pérez, A.; Fernández-López, M.; Corcho, O. Ontological Engineering. Springer Verlag. 2003

http://jena.sourceforge.net/

http://www.dl.kr.org/

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho4Ontological EngineeringCopyright © 2005, The University of Manchester

Acknowledgements

• Asunción Gómez-Pérez and Mariano Fernández-López
– Most of the slides have been done jointly with them

• Nick Drummond and Matthew Horridge (University of
Manchester)
– Reasoning with OWL ontologies

• Kim, Hyun-joo (ISLAB, Hanyang University), Jing
deng (University of Colorado), Philip McCarthy (IBM
DeveloperWorks)
– Jena 2

3

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho5Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– Consistency checking

• Disjointness
• Restrictions

– Primitive and Defined classes
– Polyhierarchies (multiple classifications)

• Untangling
– Alternative definitions for a class (Vegetarian Pizzas: only vegetarian

toppings, no meat or fish toppings or not a MeatyPizza?)
• Union classes and covering axioms

– The Open World Assumption (closure)
• Negation in OWL

– Elephant Traps – Common modelling errors
• Functional properties
• Intersection classes
• Universal restrictions

• Using an ontology API to deal with OWL ontologies

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho6Ontological EngineeringCopyright © 2005, The University of Manchester

Our Domain and Our Application

• Pizzas selected as a domain for several reasons:
– They are fun and fairly neutral
– They are internationally known
– They are highly compositional
– They have a natural limit to their scope

• Application
– The PizzaFinder

• www.co-ode.org/downloads/pizzafinder/

4

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho7Ontological EngineeringCopyright © 2005, The University of Manchester

Starting with a Pizza Ontology...

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho8Ontological EngineeringCopyright © 2005, The University of Manchester

Consistency Checking

• We’ve just created a class that doesn’t really make sense
– What is a MeatyVegetableTopping? What is a MadCow?

• We’d like to be able to check the logical consistency of our model
– This is one of the tasks that can be done by a Reasoner/Classifier

• Protégé-OWL supports the use of reasoners implementing the DIG
interface

– The reasoner is independent of the ontology editor
– We can choose an implementation depending on our needs (eg some

may be more optimised for speed/memory, others may have more
features)

• These reasoners typically set up a service running locally or on a
remote server

– Protégé-OWL can only connect to reasoners over an http://
connection

5

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho9Ontological EngineeringCopyright © 2005, The University of Manchester

Accessing the Reasoner

Classify taxonomy
(and check consistency)

Just check consistency
(for efficiency)

Compute inferred types
(for individuals)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho10Ontological EngineeringCopyright © 2005, The University of Manchester

Check consistency

6

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho11Ontological EngineeringCopyright © 2005, The University of Manchester

Disjointness

• OWL assumes that classes overlap

MeatTopping VegetableTopping

= individual

► This means an individual could be both a MeatTopping and a
VegetableTopping at the same time

► We want to state this is not the case

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho12Ontological EngineeringCopyright © 2005, The University of Manchester

Disjointness

• If we state that classes are disjoint

MeatTopping VegetableTopping

= individual

► This means an individual cannot be both a MeatTopping and
a VegetableTopping at the same time

► We must do this explicitly in the interface

7

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho13Ontological EngineeringCopyright © 2005, The University of Manchester

ClassesTab: Disjoints Widget

Add siblings as disjoint
Add new disjoint Remove disjoint siblings

List of disjoint classes

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho14Ontological EngineeringCopyright © 2005, The University of Manchester

Check consistency

8

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho15Ontological EngineeringCopyright © 2005, The University of Manchester

Why is MeatyVegetableTopping Inconsistent?

• We have asserted that a MeatyVegetableTopping is a subclass of
two classes we have stated are disjoint

• The disjoint means nothing can be a MeatTopping and a
VegetableTopping at the same time

• This means that MeatyVegetableTopping can never contain any
individuals
– The class is therefore inconsistent
– This is what we expect!

• It can be useful to create classes we expect to be inconsistent to
“test” your model – often we refer to these classes as “probes”
– generally it is a good idea to document them as such to avoid
later confusion

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho16Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– Consistency checking

•Disjointness
•Restrictions

– Primitive and Defined classes
– Polyhierarchies (multiple classifications)

•Untangling
– Alternative definitions for a class (Vegetarian Pizzas: only vegetarian

toppings, no meat or fish toppings or not a MeatyPizza?)
•Union classes and covering axioms

–The Open World Assumption (closure)
•Negation in OWL

– Elephant Traps – Common modelling errors
•Functional properties
•Intersection classes
•Universal restrictions

• Using an ontology API to deal with OWL ontologies

9

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho17Ontological EngineeringCopyright © 2005, The University of Manchester

What are we missing?

• This is not a semantically rich model
• Apart from “is kind of” (subsumption) and “is not kind

of” (disjoint), we currently don’t have any other
information of interest

• We want to say more about Pizza Individuals, such as
their relationship with other Individuals

Pizza PizzaTopping

= individual

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho18Ontological EngineeringCopyright © 2005, The University of Manchester

Properties Tab: Property Browser

Note that Properties can be in a
hierarchy, although we are not going
to be using this feature today

10

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho19Ontological EngineeringCopyright © 2005, The University of Manchester

Creating Properties

not used today:
- New Datatype Property (String, int, etc)

New Object Property:
Associates an individual to another individual

Delete Property

- New Annotation Properties for metadata

- New SubProperty – ie create “under” the
current selection

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho20Ontological EngineeringCopyright © 2005, The University of Manchester

Creating Properties. Naming conventions

• Use camelNotation
– Lowercase letter to begin

• Create properties using 2 standard naming patterns:
– has… (eg hasColour)
– is…Of (eg isTeacherOf) or other suffixes (eg …In …To)

• Advantages:
– It is easier to find properties
– It is easier for tools to generate a more readable form

(see tooltips on the classes in the hierarchy later)
– Inverses properties typically follow this pattern

eg hasPart, isPartOf

11

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho21Ontological EngineeringCopyright © 2005, The University of Manchester

Class Restrictions: Associating Properties with Classes

• Property that we want to use to describe Pizza
individuals
– hasTopping

• Steps
– Go back to the Pizza class and add some further information
– Use the Conditions widget
– Conditions can be any kind of Class

• Named superclasses (already added)
• Class restrictions of type “Anonymous Class”

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho22Ontological EngineeringCopyright © 2005, The University of Manchester

Conditions Widget

Conditions asserted by the ontology engineer

Add different types of condition

Definition
of the class
(later)

Description
of the class

Conditions inherited from superclasses

12

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho23Ontological EngineeringCopyright © 2005, The University of Manchester

Conditions Types
Logical (Anonymous) Classes

Add Named Superclass
Create Restriction (next)

Create Class Expression

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho24Ontological EngineeringCopyright © 2005, The University of Manchester

Creating Restrictions

Restriction
Type

Restricted Property

Filler
Expression

Syntax
check

Expression
Construct
Palette

13

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho25Ontological EngineeringCopyright © 2005, The University of Manchester

What does this mean?

• We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

► “If an individual is a member of this class, it is necessary that it
has at least one hasBase relationship with an individual from the
class PizzaBase”

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

► “Every individual of the Pizza class must have at least one base
from the class PizzaBase”

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho26Ontological EngineeringCopyright © 2005, The University of Manchester

What does this mean?

• We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

► “There can be no individual, that is a member of this class, that
does not have at least one hasBase relationship with an
individual from the class PizzaBase”

14

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho27Ontological EngineeringCopyright © 2005, The University of Manchester

∃ hasBase
PizzaBase

Why?

• We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

PizzaBase
hasBase

hasBase

hasBase

hasBase

hasBase
hasBase

Each Restriction or Class Expression describes the set of all individuals
that satisfy the condition

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho28Ontological EngineeringCopyright © 2005, The University of Manchester

Pizza

Why? Necessary conditions

• We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

► Each necessary condition on a class is a superclass of that class

PizzaBase
hasBase

hasBase

hasBase

hasBase

hasBase

hasBase

∃ hasBase
PizzaBase

► ie The restriction ∃ hasBase PizzaBase is a superclass of Pizza

► As Pizza is a subclass of the restriction, all Pizzas must satisfy
the restriction that they have at least one base from PizzaBase

15

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho29Ontological EngineeringCopyright © 2005, The University of Manchester

Define Cheesey Pizza and Classify

Define a Cheesey Pizza, as a Pizza
that has some cheese on it

Use the reasoner to help us produce a polyhierarchy
without having to assert multiple parents

• Usual steps
– Create primitive classes and then migrate them to

defined classes
– All the defined pizzas will be direct subclasses of

Pizza
– So, we create a CheesyPizza Class (do not make it

disjoint) and add a restriction:
“Every CheeseyPizza must have at least one
CheeseTopping”

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho30Ontological EngineeringCopyright © 2005, The University of Manchester

Creating a CheeseyPizza

• Classifying shows that we currently don’t have enough
information to do any classification

• We then move the conditions from the Necessary block
to the Necessary & Sufficient block which changes the
meaning

• And classify again…

16

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho31Ontological EngineeringCopyright © 2005, The University of Manchester

Classify

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho32Ontological EngineeringCopyright © 2005, The University of Manchester

Reasoner Classification

• The reasoner has been able to infer that anything that is a Pizza
that has at least one topping from CheeseTopping is a CheeseyPizza

The inferred hierarchy is
updated to reflect this and
moved classes are
highlighted in blue

17

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho33Ontological EngineeringCopyright © 2005, The University of Manchester

Why?
Necessary & Sufficient Conditions

► Each set of necessary & sufficient conditions is an Equivalent
Class

CheeseyPizza is equivalent to the intersection of Pizza and ∃ hasTopping
CheeseTopping
Classes, all of whose individuals fit this definition are found to be subclasses of
CheeseyPizza, or are subsumed by CheeseyPizza

Pizza
∃ hasTopping

CheeseTopping

CheeseyPizza

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho34Ontological EngineeringCopyright © 2005, The University of Manchester

Primitive Classes

• All classes in our ontology so far are Primitive
• We describe primitive pizzas
• Primitive Class = only Necessary Conditions
• They are marked as plain orange circles in the class hierarchy

We condone
building a
disjoint tree of
primitive
classes

18

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho35Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– Consistency checking

•Disjointness
•Restrictions

– Primitive and Defined classes
– Polyhierarchies (multiple classifications)

•Untangling
– Alternative definitions for a class (Vegetarian Pizzas: only vegetarian

toppings, no meat or fish toppings or not a MeatyPizza?)
•Union classes and covering axioms

–The Open World Assumption (closure)
•Negation in OWL

– Elephant Traps – Common modelling errors
•Functional properties
•Intersection classes
•Universal restrictions

• Using an ontology API to deal with OWL ontologies

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho36Ontological EngineeringCopyright © 2005, The University of Manchester

Polyhierarchies

• By the end of this tutorial we intent to create a VegetarianPizza
• Some of our existing Pizzas should be types of VegetarianPizza
• However, they could also be types of SpicyPizza or CheeseyPizza

• We need to be able to give them multiple parents in a principled
way

• We could just assert multiple parents like we did with
MeatyVegetableTopping (without disjoints)

BUT…

19

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho37Ontological EngineeringCopyright © 2005, The University of Manchester

Asserted Polyhierarchies

We believe asserting polyhierarchies is bad

let the reasoner do it!

►We lose some encapsulation of knowledge
► Why is this class a subclass of that one?

►Difficult to maintain
► Adding new classes becomes difficult because all subclasses may

need to be updated
► Extracting from a graph is harder than from a tree

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho38Ontological EngineeringCopyright © 2005, The University of Manchester

Untangling

• We can see that certain Pizzas are now
classified under multiple parents

• MargheritaPizza can be found under
both NamedPizza and CheeseyPizza in
the inferred hierarchy

Mission Successful!

20

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho39Ontological EngineeringCopyright © 2005, The University of Manchester

Untangling

• However, our unclassified version of the ontology is a simple tree,
which is much easier to maintain

• We’ve now got a polyhierarchy without asserting multiple
superclass relationships

• Plus, we also know why certain pizzas have been classified as
CheeseyPizzas

• We don’t currently have many kinds of primitive pizza but its easy
to see that if we had, it would have been a substantial task to assert
CheeseyPizza as a parent of lots, if not all, of them

• And then do it all over again for other defined classes like
MeatyPizza or whatever

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho40Ontological EngineeringCopyright © 2005, The University of Manchester

Viewing polyhierarchies

• As we now have
multiple inheritance,
the tree view is less than
helpful in viewing our
“hierarchy”

21

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho41Ontological EngineeringCopyright © 2005, The University of Manchester

Viewing our Hierarchy Graphically

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho42Ontological EngineeringCopyright © 2005, The University of Manchester

OWLViz Tab

Polyhierarchy
tangle

View Inferred ModelView Asserted Model
Show All Classes

22

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho43Ontological EngineeringCopyright © 2005, The University of Manchester

Using OWLViz to untangle

• Asserted hierarchy
– It should be a tidy tree of disjoint primitives

• Inferred hierarchy
– Tangled

• By switching from the asserted to the inferred
hierarchy, it is easy to see the changes made by the
reasoner

• OWLViz can be used to spot
– Tangles in the primitive tree
– Disjoints (including inherited ones) are marked (with a ¬)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho44Ontological EngineeringCopyright © 2005, The University of Manchester

Defined Classes

• We’ve created a Defined Class, CheeseyPizza

– It has a definition. That is at least one Necessary and Sufficient
condition

– Classes, all of whose individuals satisfy this definition, can be inferred
to be subclasses

– Therefore, we can use it like a query to “collect” subclasses that
satisfy its conditions

– Reasoners can be used to organise the complexity of our hierarchy

• It’s marked with an equivalence symbol in the interface
• Defined classes are rarely disjoint

23

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho45Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– Consistency checking

•Disjointness
•Restrictions

– Primitive and Defined classes
– Polyhierarchies (multiple classifications)

•Untangling
– Alternative definitions for a class (Vegetarian Pizzas: only vegetarian

toppings, no meat or fish toppings or not a MeatyPizza?)
•Union classes and covering axioms

–The Open World Assumption (closure)
•Negation in OWL

– Elephant Traps – Common modelling errors
•Functional properties
•Intersection classes
•Universal restrictions

• Using an ontology API to deal with OWL ontologies

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho46Ontological EngineeringCopyright © 2005, The University of Manchester

Define a Vegetarian Pizza

• Not as easy as it looks…
• Define in words?

– “a pizza with only vegetarian toppings”?
– “a pizza with no meat (or fish) toppings”?
– “a pizza that is not a MeatyPizza”?

• More than one way to model this

We’ll start with the first example

24

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho47Ontological EngineeringCopyright © 2005, The University of Manchester

Vegetarian Pizza = Pizza with only vegetarian toppings

• Requirements
– Create a vegetarian topping Union Class (aka disjunction)

– “Only” Universal Restriction

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho48Ontological EngineeringCopyright © 2005, The University of Manchester

Vegetarian Topping: Union Classes and Covering Axioms

• A U B includes
all individuals of class A and
all individuals from class B and
all individuals in the overlap
(if A and B are not disjoint)

• Covering axiom
– Union expression containing several covering classes
– A covering axiom in the Necessary & Sufficient Conditions of a class means:

the class cannot contain any instances other than those from the covering classes
– Note: If the covering classes are subclasses of the covered class, the covering axiom only

needs to be a Necessary condition
• It doesn’t harm to make it Necessary & Sufficient though – its just redundant

• Example: PizzaBase ≡ ThinAndCrispy U DeepPan
– The class PizzaBase is covered by ThinAndCrispy or DeepPan
– All PizzaBases must be ThinAndCrispy or DeepPan
– “There are no other types of PizzaBase”

A B

PizzaBase

DeepPan
ThinAndCrispy

25

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho49Ontological EngineeringCopyright © 2005, The University of Manchester

Define Vegetarian Pizza and Classify

Define a Vegetarian topping
and define Vegetarian Pizza

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho50Ontological EngineeringCopyright © 2005, The University of Manchester

VegetarianPizza Classification

• Nothing classifies under VegetarianPizza
– Actually, there is nothing wrong with our definition of

VegetarianPizza
– It is actually the descriptions of our Pizzas that are incomplete

• The reasoner has not got enough information to infer that any
Pizza is subsumed by VegetarianPizza

• This is because OWL makes the Open World Assumption
– In a closed world (like DBs), the information we have is everything

• A database, for example, returns a negative if it cannot find some data.
– In an open world, we assume there is always more information than is

stated
• The reasoner makes no assumption about the completeness of the information

it is given
• The reasoner cannot determine something does not hold unless it is explicitly

stated in the model

26

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho51Ontological EngineeringCopyright © 2005, The University of Manchester

Open World Assumption

• Typical pattern
– Several existential restrictions on a single property with different

fillers
• Example: primitive pizzas on hasTopping

• Must state whether a description is complete or not
– Incomplete:

• Existential restrictions should be paraphrased by “amongst other things…”
– Complete:

• Existential restrictions should be paraphrased by “and no other XXX”

• In our example:
– We need closure for the property hasToppings

• In the form of a Universal Restriction with a filler that is the Union of the
other fillers for that property

• Closure works along a single property

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho52Ontological EngineeringCopyright © 2005, The University of Manchester

Closure example: MargheritaPizza

• All MargheritaPizzas must have:
at least 1 topping from MozzarellaTopping and
at least 1 topping from TomatoTopping and
only toppings from MozzarellaTopping or TomatoTopping

• The last part is paraphrased into “no other toppings”
• The union closes the hasTopping property on MargheritaPizza

27

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho53Ontological EngineeringCopyright © 2005, The University of Manchester

Define Margherita Pizza and Classify

Define a Margherita pizza

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho54Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– Consistency checking

•Disjointness
•Restrictions

– Primitive and Defined classes
– Polyhierarchies (multiple classifications)

•Untangling
– Alternative definitions for a class (Vegetarian Pizzas: only vegetarian

toppings, no meat or fish toppings or not a MeatyPizza?)
•Union classes and covering axioms

–The Open World Assumption (closure)
•Negation in OWL

– Elephant Traps – Common modelling errors
•Functional properties
•Intersection classes
•Universal restrictions

• Using an ontology API to deal with OWL ontologies

28

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho55Ontological EngineeringCopyright © 2005, The University of Manchester

ComplementOf Classes

►aka “Negation” “Not”

►Not Something

►¬ Something

owl:Thing
A

All individuals in
here are members
of ¬A

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho56Ontological EngineeringCopyright © 2005, The University of Manchester

ComplementOf Classes

• Commonly used to model 3 things:
– A is any C that is not B

– A does not have some relation with B

– A only has relations with things that are not B

29

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho57Ontological EngineeringCopyright © 2005, The University of Manchester

Define Vegetarian Pizza and Classify

Define a Vegetarian topping
using negation

“a pizza with no meat (or fish) toppings”?

“a pizza that is not a MeatyPizza”?

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho58Ontological EngineeringCopyright © 2005, The University of Manchester

Elephant Traps

• Common Errors in OWL generally include:
– Disjoint misuse

• Often used on defined classes by mistake
– Confusing AllValuesFrom and SomeValuesFrom

• Some doesn’t imply only, and only doesn’t imply some
– Forgetting to close class descriptions
– Incorrect expectations of Domain and Range defined for

properties
– Incorrect use of Functional Properties
– Using intersection (AND) instead of union (OR), where the

members of the intersection are disjoint
– Negation and Open World Assumption

30

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho59Ontological EngineeringCopyright © 2005, The University of Manchester

Property Characteristics

• Inverses
– If property p has inverse property q, and p relates A-B, then it

can be inferred q relates B-A

• Functional
– If property p relates A-B then all relations along p relate A-B

(m..1 relation)
(B could also be a datatype value)

• Inverse Functional
– The inverse of the property is functional

• Symmetric
– If a property relates A-B then it also relates B-A

• Transitive
– If a property relates A-B and B-C then it relates A-C

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho60Ontological EngineeringCopyright © 2005, The University of Manchester

Functional Properties

• An individual can only have relationships with at most one other individual along a
functional property

eg Setting hasBase to Functional means:
“Every Pizza can have at most one PizzaBase”

Description of DoubleBasePizza:

• The reasoner finds this inconsistent
• It looks like the interface is warning us that we can’t use the property more than

once, but actually…

31

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho61Ontological EngineeringCopyright © 2005, The University of Manchester

Trap: Functional Property Misuse

• If a property is functional and is used in several
Existential restrictions on a class, the reasoner will
infer that the filler classes must overlap

• If any of the fillers are disjoint from each other then
this cannot be the case and therefore causes an
inconsistency

• If they are not, no inconsistency is found

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho62Ontological EngineeringCopyright © 2005, The University of Manchester

Intersection

• People often ask what the difference is between
– 2 existential restrictions (which are, by default, in an

intersection in the interface)
– Using a single restriction with a filler containing both classes

=

32

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho63Ontological EngineeringCopyright © 2005, The University of Manchester

Trap: Intersection

There are 2 problems:
1. Often we paraphrase “AND” when we logically mean “OR”

The filler “CheeseTopping AND MeatTopping” cannot contain any
individuals as they are disjoint, and is therefore inconsistent

2. If we correct this to OR, it is still wrong as we’ve got a class description
that can be fulfilled by a Pizza with a single topping – either Cheese or
Meat. If we had 2 existential restrictions, there would have to be at least
2 (disjoint) toppings

≠

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho64Ontological EngineeringCopyright © 2005, The University of Manchester

Universal Restrictions

• Example
– “RealItalianPizzas only have bases that are ThinAndCrispy”
– A Universal Restriction is added just like an

Existential one, but the restriction type is different
– For now, this can be primitive – you can

make it defined if you like

33

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho65Ontological EngineeringCopyright © 2005, The University of Manchester

What does this mean?

► “If an individual is a member of this class, it is necessary that it
must only have a hasBase relationship with an individual from
the class ThinAndCrispy”

RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

►We have created a restriction: ∀ hasBase ThinAndCrispy on
Class RealItalianPizza as a necessary condition

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho66Ontological EngineeringCopyright © 2005, The University of Manchester

What does this mean?

DeepPan RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

► “No individual of the RealItalianPizza class can have a base
from a class other than ThinAndCrispy”

► NB. DeepPan and ThinAndCrispy are disjoint

hasBase

►We have created a restriction: ∀ hasBase ThinAndCrispy on
Class RealItalianPizza as a necessary condition

34

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho67Ontological EngineeringCopyright © 2005, The University of Manchester

Trap: Universal Restrictions

RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

► “If an individual is a member of this class, it is necessary that it
must only have a hasBase relationship with an individual from
the class ThinAndCrispy, or no hasBase relationship at all”

Trivially
satisfied

by this
individual

► Universal Restrictions by themselves do not state “at least one”

►If we had not already inherited: ∃ hasBase PizzaBase
from Class Pizza the following could hold

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho68Ontological EngineeringCopyright © 2005, The University of Manchester

Table of contents

• Reasoning with OWL ontologies
– ...

• Using an ontology API to deal with OWL ontologies
– General introduction and architecture
– Access to classes and properties
– Access to class hierarchies
– Access to instances
– Programmatic use of reasoners

35

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho69Ontological EngineeringCopyright © 2005, The University of Manchester

Introduction

• A Java Framework for RDF, DAML and OWL
• Developed by Brian McBride of HP Labs
• Derived from SiRPAC
• Can create, parse, navigate and search RDF, DAML

and OWL model
• Current Jena release: 2.3
• Available at http://jena.sourceforge.net

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho70Ontological EngineeringCopyright © 2005, The University of Manchester

Jena Architecture

Network API

Joseki

Readers

ARP

n-triple

N3

Inference

DAML APIRDFS API

Storages

Memory
Berkeley

DB
RDBMS

Ontology API

Query

SesameEngineRDQL Sesame

Writers

ARP

n-triple

N3

OWL API

36

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho71Ontological EngineeringCopyright © 2005, The University of Manchester

Jena API Structure

• Statement-Centric View
– Convenient for manipulating graphs as a whole

• Frame-Centric View
– Analogous to the OOP paradigm
– Convenient for navigating a graph or manipulating individual

resources

graph.add(graph1)
.add(graph2)
.add(graph3)
.write(outputStream);

article.getProperty(publishedIn)
.getObject()
.getProperty(DC.title)
.getString();

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho72Ontological EngineeringCopyright © 2005, The University of Manchester

Jena API Structure

37

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho73Ontological EngineeringCopyright © 2005, The University of Manchester

Ontology Instance Example

http://somewhere/JohnSmith

John Smith

John Smith

vcard:FN

vcard:Given vcard:Family

vcard:N

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho74Ontological EngineeringCopyright © 2005, The University of Manchester

<rdf:RDF
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#'
>
<rdf:Description rdf:nodeID='A0'>
<vcard:Given>John</vcard:Given>
<vcard:Family>Smith</vcard:Family>

</rdf:Description>
<rdf:Description rdf:about='http://somewhere/johnsmith'>
<vcard:FN>John Smith</vcard:FN>
<vcard:N rdf:nodeID='A0'/>

</rdf:Description>
</rdf:RDF>

RDF Ontology Instance

Model model = ModelFactory.createDefaultModel();
Resource jsmith =
model.createResource(“http://somewhere/johnsmith”)

.addProperty(VCARD.FN, “John Smith”)

.addProperty(VCARD.N, model.createResource()
.addProperty(VCARD.Given,”John”)
.addProperty(VCARD.Family, “Smith”));

model.write(new PrintWriter(System.out));

http://somewhere/JohnSmith

John Smith

John Smith

vcard:FN

vcard:Given vcard:Family

vcard:N

38

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho75Ontological EngineeringCopyright © 2005, The University of Manchester

Create resources

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho76Ontological EngineeringCopyright © 2005, The University of Manchester

Querying a model

39

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho77Ontological EngineeringCopyright © 2005, The University of Manchester

Using selectors to query a model

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho78Ontological EngineeringCopyright © 2005, The University of Manchester

Importing and persisting models

• Not all applications will start with an empty model.
– Commonly, a model will be populated from existing data at startup.

• Solutions
– 1. Use Model.write() to serialise the model to the filesystem, and

Model.read() to deserialise it on startup.
– 2. Use persistent models, which are continually and transparently

persisted to a backing store. The database engines currently
supported are PostgreSQL, Oracle, and MySQL.

• Steps (solution 2)
– Instantiate the MySQL driver class
– Create a DBConnection instance, with parameters:

• ID and password of the user to log in to the database as.
• Database URL, which contains the name of the MySQL database for Jena to

use, in the form "jdbc:mysql://localhost/dbname".
• Database type, which for MySQL is "MySQL".

– Use the DBConnection instance with Jena's ModelFactory to create
the database-backed model.

40

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho79Ontological EngineeringCopyright © 2005, The University of Manchester

Importing and persisting models

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho80Ontological EngineeringCopyright © 2005, The University of Manchester

OWL Models

• OWL ontologies are treated as a special type of RDF
models, OntModel.

• It's possible to add ontological statements to an existing
data model, or merge an ontology model with a data
model using Model.union().

41

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho81Ontological EngineeringCopyright © 2005, The University of Manchester

Using a reasoner with Jena

• Given an ontology and a model, Jena's inference engine (OWLReasoner)
can derive additional statements that the model doesn't express explicitly.

• Steps
– Get an OWLReasoner from the ReasonerRegistry.

ReasonerRegistry.getOWLReasoner() returns an OWL reasoner in its
standard configuration, which is fine for a simple case.

– Bind the reasoner to the ontology. This operation returns a reasoner ready to
apply the ontology's rules.

– Use the bound reasoner to create an InfModel from the WordNet model.
• The inference model can be treated just like any other Model instance.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho82Ontological EngineeringCopyright © 2005, The University of Manchester

RDQL
Syntax

• SELECT
– Specify the variable to be returned

• SELECT ?x, ?y
• FROM

– Indicates the RDF source to be queried
• FROM <doc.rdf>, <http://example.com/sample.rdf>,

• WHERE
– The most important part of the RDQL expression
– Indicate constraints that RDF triples (subject, predicate, object)

• WHERE (?x,<foo:has>,?y), (?y,<foo:color>,?z)
• AND

– Specifies the Boolean expressions
• AND ?z=="blue“

• USING
– declares all the namespaces

• USING foo for <http://foo.org/properties#>, col for
<http://props.com/catalog#>

SELECT vars
FROM documents
WHERE Expressions
AND Filters
USING Namespace declarations

42

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho83Ontological EngineeringCopyright © 2005, The University of Manchester

RDQL

• Jena's com.hp.hpl.jena.rdql package contains all of the
classes and interfaces needed to use RDQL.

• Steps
– Create an RDQL query as a String, and pass it to the

constructor of Query.
– It's usual to explicitly set the model to use as the source for the

query, unless otherwise specified with a FROM clause in the
RDQL itself.

– Once a Query is prepared, a QueryEngine can be created from
it, and the query executed.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho84Ontological EngineeringCopyright © 2005, The University of Manchester

RDQL

• QueryEngine.exec() returns an object that implements
java.util.Iterator. Its next() method returns
ResultBinding objects.

• All of the variables used in the query can be obtained
from the ResultBinding by name, regardless of whether
they were part of the SELECT clause.

43

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho85Ontological EngineeringCopyright © 2005, The University of Manchester

How can we implement ontologies?
Reasoners and Ontology APIs

Asunción Gómez-Pérez
Mariano Fernández-López

Oscar Corcho
asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk

Grupo de Ontologías
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

