
©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho1Ontological Engineering

Table of Contents

1. What is an ontology?

1.1 The Role of Ontologies in the Semantic Web

1.2 Theoretical Foundations of Ontologies

2. How can we build ontologies? Methods, techniques and methodologies

3. How can we implement ontologies? Ontology languages

4. How can we use ontologies? Reasoners and ontology APIs

5. How can we build Semantic Web applications?

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho2Ontological Engineering

How can we implement ontologies?
Ontology languages

Asunción Gómez-Pérez
Mariano Fernández-López

Oscar Corcho
asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk

Grupo de Ontologías
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho3Ontological Engineering

Main References

Gómez-Pérez, A.; Fernández-López, M.; Corcho, O. Ontological Engineering. Springer Verlag. 2003

Baader F, McGuinness D, Nardi D, Patel-Schneider P (2003)
The Description Logic Handbook: Theory, implementation and applications.
Cambridge University Press, Cambridge, United Kingdom

http://knowledgeweb.semanticweb.org

Research deliverables
Industry deliverables

Dean M, Schreiber G (2004) OWL Web Ontology Language Reference. W3C Recommendation. http://www.w3.org/TR/owl-ref/
Brickley D, Guha RV (2004) RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation.

http://www.w3.org/TR/PR-rdf-schema
Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation.

http://www.w3.org/TR/REC-rdf-syntax/

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho4Ontological Engineering

Acknowledgements

• Asunción Gómez-Pérez and Mariano Fernández-López
– Most of the slides have been done jointly with them

• Sean Bechhoffer (University of Manchester)
– Tableaux reasoning
– Examples about reasoning

• CO-ODE people (University of Manchester)
– http://www.co-ode.org/
– Some RDF, RDFS and OWL descriptions
– Use of reasoners
– Protégé-OWL tutorial

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho5Ontological Engineering

Table of Contents

1. Knowledge Representation Formalisms

2. Frames and semantic networks: RDF and RDF Schema

2.1 RDF and RDF Schema primitives

2.2 Formalisation with RDF(S)

3. Description Logic: OWL

3.1 OWL primitives and DL syntax

3.2 Formalisation with OWL

3.3 The Protégé-OWL plug-in

3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho6Ontological Engineering

Language
Ontolingua/KIF
OKBC
OCML
LOOM
FLogic
SHOE
XOL
OIL
DAML+OIL
OML/CKML
RDF(S)
OWL

KR Formalisms

Formalism

Frames

Description Logic

Semantic Nets

Conceptual Graphs

First order Logic

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho7Ontological Engineering

Ontology language evolution

DL languages

Frames+FOL

Markup languages

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho8Ontological Engineering

Ontology Languages (I)

Traditional ontology languages

Ontolingua/KIF

OKBC

OCML

LOOM

FLogic

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho9Ontological Engineering

Ontology Languages (II)

Ontology markup languages
Standards & Recommendations of W3C

XML RDF(S)
Ontology specification languages

SHOE XOL
OIL
DAML+OIL
OWL

XML

RDF

OIL DAML+OIL

XOLSHOE
(XML)

HTML

SHOE
(HTML)

RDFS

OWL

RDF(S)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho10Ontological Engineering

Table of Contents

1. Knowledge Representation Formalisms

2. Frames and semantic networks: RDF and RDF Schema

2.1 RDF and RDF Schema primitives

2.2 Formalisation with RDF(S)

3. Description Logic: OWL

3.1 OWL primitives and DL syntax

3.2 Formalisation with OWL

3.3 The Protégé-OWL plug-in

3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho11Ontological Engineering

RDF: Resource Description Framework

• W3C recommendation (http://www.w3.org/RDF)
• RDF is graphical formalism (+ XML syntax + semantics)

– for representing metadata
– for describing the semantics of information in a machine- accessible way

• RDF is a basic ontology language
– Resources are described in terms of properties and property values using RDF

statements.
– Statements are represented as triples, consisting of a subject, predicate and object.

[S, P, O]

Oscar AsunhasColleague

Mariano http://www.fi.upm.es/

hasColleague
hasHomePage

“Oscar Corcho García”
hasName

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho12Ontological Engineering

RDF and URIs

• RDF uses URIRefs (Unique Resource Identifiers References) to
identify resources.

– A URIRef consists of a URI and an optional Fragment Identifier separated from the
URI by the hash symbol #.

– Examples
• http://www.co-ode.org/people#hasColleague
• coode:hasColleague

• A set of URIRefs is known as a vocabulary
– E.g., the RDF Vocabulary

• The set of URIRefs used in describing the RDF concepts: rdf:Property, rdf:Resource,
rdf:type, etc.

– The RDFS Vocabulary
• The set of URIRefs used in describing the RDF Schema language: rdfs:Class,

rdfs:domain, etc.
– The ‘Pizza Ontology’ Vocabulary

• pz:hasTopping, pz:Pizza, pz:VegetarianPizza, etc.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho13Ontological Engineering

RDF Serialisation

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho14Ontological Engineering

RDFS: RDF Schema

• W3C Recommendation
• RDF Schema extends RDF to enable talking about classes of resources, and the

properties to be used with them.
– Class definition: rdfs:Class, rdfs:subClassOf
– Property definition: rdfs:subPropertyOf, rdfs:range, rdfs:domain
– Other primitives: rdfs:comment, rdfs:label, rdfs:seeAlso, rdfs:isDefinedBy

• RDF Schema provides the means to describe application specific RDF
vocabularies.

• RDFS vocabulary adds constraints on models, e.g.:
– ∀x,y,z type(x,y) and subClassOf(y,z) → type(x,z)

ex:Person

rdf:type

ex:Oscar

ex:Animal
rdfs:subClassOf

ex:Person

ex:Animalrdf:type

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho15Ontological Engineering

RDF(S) limitations

• RDFS too weak to describe resources in sufficient detail
– No localised range and domain constraints

• Can’t say that the range of hasChild is person when applied to persons and elephant when applied to
elephants

– No existence/cardinality constraints
• Can’t say that all instances of person have a mother that is also a person, or that persons have exactly 2

parents

– No transitive, inverse or symmetrical properties
• Can’t say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is

symmetrical

– …

• Difficult to provide reasoning support
– No “native” reasoners for non-standard semantics
– May be possible to reason via FO axiomatisation

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho16Ontological Engineering

Exercise

•Objective
• Understand the features of RDF(S) for implementing ontologies, including its limitations
• Get used to the graph and XML syntax of RDF(S)

•Tasks
• Take ontologies described in the previous day and create their graphs

• First only include the vocabulary from the domain
• Then include references to the RDF and RDFS vocabularies

• Serialise part of the graph in the XML syntax

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho17Ontological Engineering

Table of Contents

1. Knowledge Representation Formalisms

2. Frames and semantic networks: RDF and RDF Schema

2.1 RDF and RDF Schema primitives

2.2 Formalisation with RDF(S)

3. Description Logic: OWL

3.1 OWL primitives and DL syntax

3.2 Formalisation with OWL.

3.3 The Protégé-OWL plug-in

3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho18Ontological Engineering

OWL

Web Ontology Language

Built on top of RDF(S) and renaming DAML+OIL primitives

3 layers:
-OWL Lite: a small subset, easier for frame-based tools to transition to, easier
reasoning
-OWL DL: description logic, decidable reasoning
-OWL Full: RDF extension, allows metaclasses

Several syntaxes:
-Abstract syntax: easier to read and write manually, closely corresponds to DL
-RDF/XML: OWL can be parsed as an RDF document, more verbose

Dean M, Schreiber G. The OWL Web Ontology Language. W3C Recommendation. February 2004.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho19Ontological Engineering

OWL and Description Logic

• A family of logic based Knowledge Representation formalisms
– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts (classes), roles (relationships) and

individuals
• Specific languages characterised by the constructors and axioms used to assert knowledge

about classes, roles and individuals.
• Example: ALC (the least expressive language in DL that is propositionally closed)

– Constructors: boolean (and, or, not)
– Role restrictions

• Distinguished by:
– Formal semantics (typically model theoretic)

• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key problems
• Implemented systems (highly optimised)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho20Ontological Engineering

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ´ Human u Male

Happy-Father ´ Man u 9 has-child
Female u …

John : Happy-Father

hJohn, Maryi : has-child

John: 6 1 has-child

In
fe

re
n

ce
 S

y
st

e
m

In
te

rf
a
ce

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho21Ontological Engineering

DL constructors

≥3 hasChild, ≤1 hasMother
{Colombia, Argentina, México, ...} MercoSur countries

hasChild- (hasParent)
≤2 hasChild.Female, ≥1 hasParent.Male

Other:

Concrete datatypes: hasAge.(<21)

Transitive roles: hasChild* (descendant)

Role composition: hasParent o hasBrother (uncle)

OWL is SHOIN(D+)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho22Ontological Engineering

OWL as a Description Logic language. Class constructors

• XML Schema datatypes are treated as classes
– ∀hasAge.nonNegativeInteger

• Nesting of constructors can be arbitrarily complex
– Person ∧ ∀hasChild.(Doctor ∨ ∃hasChild.Doctor)

• Lots of redundancy, e.g., use negations to transform and to or and
exists to forall

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho23Ontological Engineering

OWL Axioms

• Axioms (mostly) reducible to inclusion (v)
– C ≡ D iff both C ⊆ D and D ⊆ C
– C disjoint D iff C ⊆ ¬D

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho24Ontological Engineering

Class taxonomy of the OWL KR ontology

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho25Ontological Engineering

Property list of the OWL KR ontology

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho26Ontological Engineering

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho27Ontological Engineering

DC ⊆

R
SR ⊆

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho28Ontological Engineering

CR.∀
CR.∃

nR≤

nR≥
nR=

DC ∩

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho29Ontological Engineering

Existential and Universal Restrictions

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho30Ontological Engineering

DC ≡
SR ≡

Abox

1−R

⊥
Τ

R)(+

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho31Ontological Engineering

DC ∪
C¬

}{x

⊆⊥∩DC

}.{xR∃

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho32Ontological Engineering

hasValue and oneOf

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho33Ontological Engineering

OWL Example

Develop a sample ontology in the domain of people, pets, vehicles, and newspapers

- Practice with DL syntax, OWL abstract syntax and OWL RDF/XML syntax

- Understand the basic primitives of OWL Lite and OWL DL

- Understand the basic reasoning mechanisms of OWL DL (tomorrow)

Subsumption

Automatic classification: an ontology built collaboratively

Instance classification

Detecting redundancy

Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho34Ontological Engineering

Some basic DL modelling guidelines

• X must be Y, X is an Y that... X ⊆ Y

• X is exactly Y, X is the Y that... X ≡ Y

• X is not Y X ⊆ ¬Y

• X and Y are disjoint X ∩ Y ⊆ ⊥

• X is Y or Z X ⊆Y∪Z

• X is Y for which property P has
only instances of Z as values X ⊆ Y ∩ (∀P.Z)

• X is Y for which property P has at
least an instance of Z as a value X ⊆ Y ∩ (∃P.Z)

• X is Y for which property P has at
most 2 values X ⊆ Y∩ (≤ 2.P)

• Individual X is a Y X∈Y

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho35Ontological Engineering

Chunk 1. Formalize in DL, and then in OWL DL

1. Concept definitions:
Grass and trees must be plants. Leaves are parts of a tree but there are other parts of a tree
that are not leaves. A dog must eat bones, at least. A sheep is an animal that must only eat
grass. A giraffe is an animal that must only eat leaves. A mad cow is a cow that eats brains
that can be part of a sheep.

2. Restrictions:
Animals or part of animals are disjoint with plants or parts of plants.

3. Properties:
Eats is applied to animals. Its inverse is eaten_by.

4. Individuals:
Tom.
Flossie is a cow.
Rex is a dog and is a pet of Mick.
Fido is a dog.
Tibbs is a cat.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho36Ontological Engineering

Chunk 2. Formalize in DL, and then in OWL DL

1. Concept definitions:
Bicycles, buses, cars, lorries, trucks and vans are vehicles. There are several types of
companies: bus companies and haulage companies.
An elderly person must be adult. A kid is (exactly) a person who is young. A man is a person
who is male and is adult. A woman is a person who is female and is adult. A grown up is a
person who is an adult. And old lady is a person who is elderly and female. Old ladies
must have some animal as pets and all their pets are cats.

2. Restrictions:
Youngs are not adults, and adults are not youngs.

3. Properties:
Has mother and has father are subproperties of has parent.

4. Individuals:
Kevin is a person.
Fred is a person who has a pet called Tibbs.
Joe is a person who has at most one pet. He has a pet called Fido.
Minnie is a female, elderly, who has a pet called Tom.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho37Ontological Engineering

Chunk 3. Formalize in DL, and then in OWL DL

1. Concept definitions:
A magazine is a publication. Broadsheets and tabloids are newspapers. A quality broadsheet
is a type of broadsheet. A red top is a type of tabloid. A newspaper is a publication that must
be either a broadsheet or a tabloid.
White van mans must read only tabloids.

2. Restrictions:
Tabloids are not broadsheets, and broadsheets are not tabloids.

3. Properties:
The only things that can be read are publications.

4. Individuals:
Daily Mirror
The Guardian and The Times are broadsheets
The Sun is a tabloid

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho38Ontological Engineering

Chunk 4. Formalize in DL, and then in OWL DL

1. Concept definitions:
A pet is a pet of something. An animal must eat something. A vegetarian is an animal
that does not eat animals nor parts of animals. Ducks, cats and tigers are animals.
An animal lover is a person who has at least three pets. A pet owner is a person who
has animal pets. A cat liker is a person who likes cats. A cat owner is a person who has
cat pets. A dog liker is a person who likes dogs. A dog owner is a person who has dog pets.

2. Restrictions:
Dogs are not cats, and cats are not dogs.

3. Properties:
Has pet is defined between persons and animals. Its inverse is is_pet_of.

4. Individuals:
Dewey, Huey, and Louie are ducks.
Fluffy is a tiger.
Walt is a person who has pets called Huey, Louie and Dewey.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho39Ontological Engineering

Chunk 5. Formalize in DL, and then in OWL DL

1. Concept definitions
A driver must be adult. A driver is a person who drives vehicles. A lorry driver is a person who
drives lorries. A haulage worker is who works for a haulage company or for part of
a haulage company. A haulage truck driver is a person who drives trucks ans works for part of
a haulage company. A van driver is a person who drives vans. A bus driver is a person who
drives buses. A white van man is a man who drives white things and vans.

2. Restrictions:
--

3. Properties:
The service number is an integer property with no restricted domain

4. Individuals:
Q123ABC is a van and a white thing.
The42 is a bus whose service number is 42.
Mick is a male who read Daily Mirror and drives Q123ABC.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho40Ontological Engineering

Chunk 1. Formalisation in DL

⊆⊥∃∪∩∃∪

∃∩∃∩≡
∀∩⊆
∀∩⊆

∃⊆
∃⊆

⊆
⊆

).().(

)..(
.

.
.

.

plantpartOfplantanimalpartOfanimal

sheeppartOfbraineatscowmadCow
leafeatsanimalgiraffe

grasseatsanimalsheep
boneeatsdog

treepartOfleaf
planttree

plantgrass

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho41Ontological Engineering

Chunk 2. Formalisation in DL

hasParenthasFather
hasParenthasMother

adultyoung

cathasPetanimalhasPetoldLady
elderlyfemalepersonoldLady

adultpersongrownUp
adultfemalepersonwoman

adultmalepersonman
youngpersonkid

adultpersonelderly
companypanyhaulageComcompanybusCompany

vehicletruckvehiclelorryvehiclecarvehiclebusvehiclebicycle

⊆
⊆

⊆⊥∩

∀∩∃⊆
∩∩≡

∩≡
∩∩≡

∩∩≡
∩≡

∩⊆
⊆⊆

⊆⊆⊆⊆⊆

..

;
;;;;

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho42Ontological Engineering

Chunk 3. Formalisation in DL

⊆⊥∩

∀⊆
∪∩⊆

⊆
⊆

⊆
⊆

⊆

broadsheettabloid

tabloidreadsnwhiteVanMa
tabloidbroadsheetnpublicationewspaper

tabloidredTop
broadsheetadsheetqualityBro

newspapertabloid
newspaperbroadsheet

npublicatiomagazine

.
)(

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho43Ontological Engineering

Chunk 4. Formalisation in DL

⊆⊥∩

∃∩≡∃∩≡
∃∩≡∃∩≡

∃∩≡
≥∩≡

⊆⊆⊆
∃¬∀∩¬∀∩≡

Τ∃⊆
Τ∃≡

catdog

doghasPetpersondogOwnerdoglikespersondogLike
cathasPetpersoncatOwnercatlikespersoncatLike

animalhasPetpersonpetOwner
hasPetpersonranimalLove

animaltigeranimalcatanimalduck
animalpartOfeatsanimaleatsanimalvegetarian

eatsanimal
isPetOfpet

.;.
.;.

.
)3(

;;
).(..

.

.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho44Ontological Engineering

Chunk 5. Formalisation in DL

).(
.
.

)..(
.

)..(
.

.

vanwhiteThingdrivesmannwhiteVanMa
busdrivespersonbusDriver
vandrivespersonvanDriver

panyhaulageCompartOfworksFor
truckdrivespersonckDriverhaulageTru

panyhaulageCompartOfpanyhaulageComworksForkehaulageWor
lorrydrivespersonrlorryDrive

vehicledrivespersondriver
adultdriver

∩∃∩≡
∃∩≡
∃∩≡

∃∃
∩∃∩≡

∃∪∃≡
∃∩≡

∃∩≡
⊆

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho45Ontological Engineering

OWL Example

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho46Ontological Engineering

• http://protege.stanford.edu/

• Developed by Stanford Medical Informatics

• Features
– Software

• Open source
• Supports development of plugins to allow backend / interface extensions

– Large user community (approx 30k)
– Knowledge representation formalism

• Core is based on Frames (object oriented) modelling
• Open architecture that allows other modelling languages to be built on top (e.g., Protégé-

OWL plug-in)

Protégé and the Protégé-OWL plug-in

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho47Ontological Engineering

Protégé-OWL

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho48Ontological Engineering

Class Hierarchy

Subsumption hierarchy
Structure as asserted by the ontology engineer

owl:Thing is the root class

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho49Ontological Engineering

Class Editor

Class annotations (for class metadata)
Class name and documentation

Properties
“available” to Class

Disjoints widget

Conditions Widget
Class-specific tools (find usage etc)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho50Ontological Engineering

Saving OWL Files

1. Select File Save Project As
A dialog (as shown) will pop up

2. Select a file directly by clicking the button on the top right
You will notice that 2 files are created
.pprj – the project file

this just stores information about the GUI
and the workspace

.owl – the OWL file
this is where your ontology is stored in
RDF/OWL format

3. Select OK

OWL = easy to make mistakes = save regularly

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho51Ontological Engineering

Loading OWL files

1. If you only have an OWL
file:
- File New Project
- Select OWL Files as the type
- Tick Create from existing sources
- Next to select the .owl file

2. If you’ve got a valid project file*:
- File Open Project
- select the .pprj file

* ie one created on this version of Protégé - the s/w gets updated once every few
days, so don’t count on it unless you’ve created it recently– safest to build from
the .owl file if in doubt

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho52Ontological Engineering

OWL Example

Implement the previous sample ontology with the Protégé-OWL plug-in

- Practice with Protégé and the Protégé-OWL plug-in

- Develop parts of the previous ontology in groups, so that the ontologies can be integrated later

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho53Ontological Engineering

OWL Example

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho54Ontological Engineering

Basic Inference Tasks

• Subsumption – check knowledge is correct (captures intuitions)
– Does C subsume D w.r.t. ontology O? (in every model I of O, CI ⊆ DI)

• Equivalence – check knowledge is minimally redundant (no unintended
synonyms)

– Is C equivalent to D w.r.t. O? (in every model I of O, CI = DI)

• Consistency – check knowledge is meaningful (classes can have instances)
– Is C satisfiable w.r.t. O? (there exists some model I of O s.t. CI ≠ ∅)

• Instantiation and querying
– Is x an instance of C w.r.t. O? (in every model I of O, xI ∈ CI)
– Is (x,y) an instance of R w.r.t. O? (in every model I of O, (xI,yI) ∈ RI)

• All reducible to KB satisfiability or concept satisfiability w.r.t. a KB

• Can be decided using highly optimised tableaux reasoners

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho55Ontological Engineering

Tableaux Algorithms

• Try to prove satisfiability of a knowledge base
• How do they work

– They try to build a model of input concept C
• Tree model property

– If there is a model, then there is a tree shaped model
• If no tree model can be found, then input concept unsatisfiable

– Decompose C syntactically
• Work on concepts in negation normal form (De Morgan’s laws)
• Use of tableaux expansion rules
• If non-deterministic rules are applied, then there is search

– Stop (and backtrack) if clash
• E.g. A(x), ¬A(x)

– Blocking (cycle check) ensures termination for more expressive logics

• The algorithm finishes when no more rules can be applied or a
conflict is detected

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho56Ontological Engineering

Tableaux rules for ALC and for transitive roles

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho57Ontological Engineering

Tableaux examples and exercises

• Example
– a

• Exercise 1
– ∃R.(∃R.D) ∧ ∃S.¬D ∧∀S.(∃R.D)

• Exercise 2
– ∃R.(C∨D) ∧ ∀R.¬C ∧ ¬∃R.D

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho58Ontological Engineering

OWL Example

Develop a sample ontology in the domain of people, pets, vehicles, and newspapers

- Understand the basic reasoning mechanisms of OWL DL

Subsumption

Automatic classification: an ontology built collaboratively

Instance classification

Detecting redundancy

Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)

Oscar Corcho

Oscar Corcho

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C, ∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C, ∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

clashL(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬D}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

xL(x) = {C, (¬C t ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

R

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho57Ontological Engineering

Tableaux examples and exercises

• Example
– a

• Exercise 1
– ∃R.(∃R.D) ∧ ∃S.¬D ∧∀S.(∃R.D)

• Exercise 2
– ∃R.(C∨D) ∧ ∀R.¬C ∧ ¬∃R.D

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho58Ontological Engineering

OWL Example

Develop a sample ontology in the domain of people, pets, vehicles, and newspapers

- Understand the basic reasoning mechanisms of OWL DL

Subsumption

Automatic classification: an ontology built collaboratively

Instance classification

Detecting redundancy

Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)

Oscar Corcho

Oscar Corcho

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho59Ontological Engineering

Interesting results (I). Automatic classification
And old lady is a person who is elderly and female.
Old ladies must have some animal as pets and all their pets are cats.

cathasPetanimalhasPetoldLady
elderlyfemalepersonoldLady
cathasPetpersoncatOwner

adultfemalepersonwoman
adultpersonelderly

..

.

∀∩∃⊆
∩∩≡

∃∩≡
∩∩≡

∩⊆

We obtain:
Old ladies must be women.
Every old lady must have a pet cat
Hence, every old lady must be a cat owner

catOwnerelderlywomanoldLady ∩∩⊆

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho60Ontological Engineering

Interesting results (II). Instance classification

A pet owner is a person who has animal pets
Old ladies must have some animal as pets and all their pets are cats.
Has pet has domain person and range animal
Minnie is a female, elderly, who has a pet called Tom.

),(

),(
..

.

TomMinniehasPet
elderlyfemaleMinnie
animalpersonhasPet

cathasPetanimalhasPetoldLady
animalhasPetpersonpetOwner

∩∈
⊆

∀∩∃⊆
∃∩≡

We obtain:
Minnie is a person
Hence, Minnie is an old lady
Hence, Tom is a cat

catTom
oldLadyMinnie
petOwnerMinnie

animalTompersonMinnie

∈
∈
∈

∈∈ ;

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho61Ontological Engineering

Interesting results (III). Instance classification and
redundancy detection

An animal lover is a person who has at least three pets
Walt is a person who has pets called Huey, Louie and Dewey.

),(
),(
),(

)3(

DeweyWalthasPet
LouieWalthasPet
HueyWalthasPet

personWalt
hasPetpersonranimalLove

∈
≥∩≡

We obtain:
Walt is an animal lover
Walt is a person is redundant

ranimalLoveWalt∈

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho62Ontological Engineering

Interesting results (IV). Instance classification
A van is a type of vehicle
A driver must be adult
A driver is a person who drives vehicles
A white van man is a man who drives vans and white things
White van mans must read only tabloids
Q123ABC is a white thing and a van
Mick is a male who reads Daily Mirror and drives Q123ABC

)123,(
),(

123
.

).(
.

ABCQMickdrives
rDailyMirroMickreads

maleMick
vanwhiteThingABCQ

tabloidreadsnwhiteVanMa
whiteThingvandrivesmannwhiteVanMa

vehicledrivespersondriver
adultdriver

vehiclevan

∈
∩∈

∀⊆
∩∃∩≡

∃∩≡
⊆

⊆

We obtain:
Mick is an adult
Mick is a white van man
Daily Mirror is a tabloid

tabloidrDailyMirro
nwhiteVanMaMick

adultMick

∈
∈
∈

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho63Ontological Engineering

Interesting results (V). Consistency checking
Cows are vegetarian.
A vegetarian is an animal that does not eat animals nor parts of animals.
A mad cow is a cow that eats brains that can be part of a sheep

⊆⊥∃∪∩∃∪
∃∪∃∩≡

∃¬∀
∩¬∀∩≡

⊆

).().(
)..(

)).(.
.

plantpartOfplantanimalpartOfanimal
sheeppartOfbraineatscowmadCow

animalpartOfeats
animaleatsanimalvegetarian

vegetariancow

We obtain:
Mad cow is unsatisfiable

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho64Ontological Engineering

OWL Example

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho65Ontological Engineering

When to use a classifier

1. At author time (pre-coordination): As a compiler
– Ontologies will be delivered as “pre-coordinated” ontologies to be used without a reasoner
– To make extensions and additions quick, easy, and responsive, distribute developments,

empower users to make changes
– Part of an ontology life cycle

2. At delivery time (post-coordination): as a normalisation service
– Many fixed ontologies are too big and too small

• Too big to find things; too small to contain what you need
– Create them on the fly

– Part of an ontology service

3. At application time (inference): as a reasoner
– Decision support, query optimisation, schema integration, etc.
– Part of a reasoning service

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho66Ontological Engineering

1. Pre-coordinated delivery: classifier as compiler

• Develop an ontology
– A classifier can be used to detect and correct inconsistencies

• Classify the ontology
• Commit classifier results to a pre-coordinated ontology

• Deliver it
– In OWL-Lite or RDFS

• Use RDQL, SPARQL, or your favourite RDF(S) query tool

Assert (“Commit”) changes
inferred by classifier

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho67Ontological Engineering

2. Post Coordination: classifier as a service

• Logic based ontologies act as a conceptual lego
– Modularisation/Normalisation is needed to make them easier to maintain

hand

extremity

body

acute

chronic

abnormal
normal

ischaemic
deletion

bacterial
polymorphism

cell

protein

gene

infection
inflammation

Lung

expression

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho68Ontological Engineering

Logical Constructs build
complex concepts from
modularised primitives

GenesSpecies

Protein

Function

Disease

Protein coded by
gene in humans

Function of
Protein coded by
gene in humans

Disease caused by abnormality in
Function of protein coded by
gene in humans

Gene in humans

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho69Ontological Engineering

Rationale for Normalisation/Modularisation

• Normalisation in order to make large ontologies easier to maintain
– Trees (classes have only one parent) are easier to maintain
– Directed Acyclic Graphs (classes can have several parents) can be derived with a

reasoner from the trees

• Objective: derive explicit distinctions between modules
– Primitives are opaque to the reasoner

• Information implicit in primitive names cannot contribute to modularisation
– Primitives are indivisible to both human and reasoner

• Each primitive should represent a single notion
– Therefore, each primitive must belong to exactly one module

• If a primitive belongs to two modules, they are not modular.
• If a primitive belongs to two modules, it probably conflates two notions

– Therefore concentrate on the “primitive skeleton” of the domain ontology

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho70Ontological Engineering

Normalisation Criteria (I)

1. The skeleton should consist of disjoint trees
– Every primitive concept should have exactly one primitive parent

• All multiple hierarchies are the result of inference by reasoner

2. No hidden changes in meaning
– Each branch should be homogeneous and logical (“Aristotelian”)

• Hierarchical principle should be subsumption
– Otherwise we are “lying to the logic”

• The criteria for differentiation should follow consistent principles in each branch
– Example of non-homogeneous taxonomy (from The Celestial Emporium of

Benevolent Knowledge, Borges)
• “On those remote pages it is written that animals are divided into:

– a. those that belong to the Emperor b. embalmed ones
– c. those that are trained d. suckling pigs
– e. mermaids f. fabulous ones
– g. stray dogs h. those that are included in this

classification
– i. those that tremble as if they were mad j. innumerable ones
– k. those drawn with a very fine camel's hair brush l. others
– m. those that have just broken a flower vase n. those that

resemble flies from a distance"

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho71Ontological Engineering

Normalisation Criteria (II)

3. Distinguish “Self-standing” and “Refining” Concepts
– Self-standing concepts (person, idea, plant, committee, belief, etc.)

• Roughly Welty & Guarino’s “sortals”
– Refining concepts – depend on self-standing concepts (mild|moderate|severe, hot|cold, etc.)

• Roughly Welty & Guarino’s non-sortals, Smith’s “fiat partitions”, Value Types for engineers

3a. Self-standing primitives should be globally disjoint & open
– Primitives are disjoint

• If primitives overlap, the overlap conceals implicit information
– A list of self-standing primitives can never be guaranteed complete

• How many kinds of person? of plant? of committee? of belief?
• Can’t infer: Parent & ¬sub1 &…& ¬subn-1 subn

3b. Refining primitives should be locally disjoint & closed
– Individual values must be disjoint, but can be hierarchical

• e.g. “very hot”, “moderately severe”
– Each list can be guaranteed to be complete
– “Value partitions” themselves need not be disjoint

• “being hot” is not disjoint from “being severe”
– Allowing Valuetypes to overlap is a useful trick, e.g. restriction has_state someValuesFrom

(severe and hot)

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho72Ontological Engineering

Normalisation Criteria (III)

4. Axioms
– No axiom should denormalise the ontology
– No axiom should imply that a primitive is part of more than one branch of primitive

skeleton
• If all primitives are disjoint, any such axioms will make that primitive unsatisfiable
• A partial test for normalisation:

– Create random conjunctions of primitives which do not subsume each other.
– If any are satisfiable, the ontology is not normalised

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho73Ontological Engineering

Consequences

• All self-standing primitives are disjoint
• All multiple classification is inferred
• For any two primitive self-standing classes, either one subsumes the other

or they are disjoint
• Every self standing concept is part of exactly one primitive branch of the

skeleton
• Every self-standing concept has exactly one most specific primitive

ancestor
• Primitives introduced by a conjunction of one class and a boolean

combination of zero or more restrictions
– Tree subclass-of Plant and

restriction isMadeOf someValuesFrom Wood
– Resort subclass-of Accommodation

restriction isIntendedFor someValueFrom Holidays

• Use of axioms limited (outside of skeleton construction). The following are
a safe but not exhaustive guide:

– The right side of subclass axioms limited to restrictions
– Both sides of disjointness axioms limited to restrictions
– No equivalence axioms with primitives on either side

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho74Ontological Engineering

Example (I)

• Build a simple tree

• Let the classifier organise it
and check consistency

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho75Ontological Engineering

Example (II)

• Add more abstractions if needed

• Let the classifier organise it again
and check consistency!!

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho76Ontological Engineering

3. Inference

• We have already seen some examples
– And we will see some more in session 4

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho77Ontological Engineering

Exercise

•Objective
• Apply design principles to normalise/modularise the OWL ontology developed in the
previous exercises

•Tasks
• Identify disjoint trees in the ontology developed.
• Distinguish self-standing and refining classes.
• Identify axioms.
• Go back to the first task if the ontology is not normalised yet.

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho78Ontological Engineering

OWL Classifier limitations

• Numbers and strings
– Simple concrete data types in spec
– User defined XML data types enmeshed in standards disputes
– No standard classifier deals with numeric ranges

• Although several experimental ones do

• is-part-of and has-part
– Totally doubly-linked structures scale horridly

• Handling of individuals
– Variable with different classifiers
– oneOf works badly with all classifiers at the moment

©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho79Ontological Engineering

How can we implement ontologies?
Ontology languages

Asunción Gómez-Pérez
Mariano Fernández-López

Oscar Corcho
asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk

Grupo de Ontologías
Laboratorio de Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

	03_TableauxExample.pdf
	Description Logic Reasoning
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems

	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics

	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details

	Tableaux Rules for alc
	Tableaux Rules for alc

	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles

	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example

	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques

	Implementing DL Systems
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations

	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm

	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation

	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking

	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping

	Research Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges

	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes

	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals

	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions

	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability

	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)

	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks

	Summary
	Summary
	Summary
	Summary
	Summary
	Summary

	Acknowledgements
	Acknowledgements
	Acknowledgements
	Acknowledgements

	Resources
	Select Bibliography
	Select Bibliography

