Table of Contents

1. What is an ontology?
Unit 1 1.1 The Role of Ontologies in the Semantic Web

1.2 Theoretical Foundations of Ontologies

Unit 2 2. How can we build ontologies? Methods, techniques and methodologies
Unit 3 3. How can we implement ontologies? Ontology languages
Unit 4 4. How can we use ontologies? Reasoners and ontology APIs
Unit 5 5. How can we build Semantic Web applications?
A=
Ontological Engineering 1 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

I\-‘L&\ICHLE ER v\\'m{.\‘ 7 15)
: S ¢’,¢)

-
o <
7y e &

LAB1O

How can we implement ontologies?
Ontology languages

Asuncion Géomez-Pérez
Mariano Ferniandez-Lépez
Oscar Corcho

asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk
Grupo de Ontologias
Laboratorio de Inteligencia Artificial
Facultad de Informética
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

Ontology
Ontological Engineering 2 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Main References

Gomez-Pérez, A.; Fernandez-Lopez, M.; Corcho, O. Ontological Engineering. Springer Verlag. 2003

Q Baader F, McGuinness D, Nardi D, Patel-Schneider P (2003)

The Description Logic Handbook: Theory, impl. ion and applications.

Cambridge University Press, Cambridge, United Kingdom

@q http://knowledgeweb.semanticweb.org

Q Research deliverables
Industry deliverables

Dean M, Schreiber G (2004) OWL Web Ontology Language Reference. W3C Recommendation. http://www.w3.org/TR/owl-ref/
Brickley D, Guha RV (2004) RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation.
ﬁq http://'www.w3.0rg/TR/PR-rdf-schema
Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation.
http://www.w3.0rg/TR/REC-rdf-syntax/

& Ontological Engineering 3 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Acknowledgements

* Asuncion Gémez-Pérez and Mariano Ferniandez-Lépez
— Most of the slides have been done jointly with them

* Sean Bechhoffer (University of Manchester)
— Tableaux reasoning
— Examples about reasoning

* CO-ODE people (University of Manchester)
— http://www.co-ode.org/
— Some RDF, RDFS and OWL descriptions
— Use of reasoners
— Protégé-OWL tutorial

Ontology
Ontological Engineering 4 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Table of Contents

Knowledge Representation Formalisms

Frames and semantic networks: RDF and RDF Schema
2.1 RDF and RDF Schema primitives

2.2 Formalisation with RDF(S)

Description Logic: OWL

3.1 OWL primitives and DL syntax

3.2 Formalisation with OWL

3.3 The Protégé-OWL plug-in

3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

Ontology
m Ontological Engineering

5 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Language

Ontolingua/KIF

KR Formalisms

Formalism

OKBC
OCML
LOOM
FLogic
SHOE
XOL
OIL

RDF(S)
OWL

DAMLA+OIL

—(_ Semantic Nets

Ontology
m Ontological Engineering

N

©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Ontology language evolution

Ontology
Ontological Engineering 7 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Ontology Languages (I)

Traditional ontology languages

Ontolingua/KIF
OKBC
OCML
OKBC
LOOM Protocol
FLogic T i .
rFy - i) ‘\‘
CyeL Ontolingua LOOM OCML FLogie

Frame Ontology

OKBC Ontology |
KIF

Ontology
Ontological Engineering 8 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Ontology Languages (II)
Ontology markup languages
Standards & Recommendations of W3C
XML RDF(S)
Ontology specification languages
SHOE XOL
OIL
DAML+OIL
r -
OWL TR DL || OWL
RDFS
RDEF(S)
HO -3
;ETM; x =] RDF
‘ HTML ‘ ‘ XML
Oitology
g Ontological Engineering 9 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho
Table of Contents

1. Knowledge Representation Formalisms
2. Frames and semantic networks: RDF and RDF Schema
2.1 RDF and RDF Schema primitives
2.2 Formalisation with RDF(S)
3. Description Logic: OWL
3.1 OWL primitives and DL syntax
3.2 Formalisation with OWL
3.3 The Protégé-OWL plug-in
3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

intology
Ontological Engineering 10 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

RDF: Resource Description Framework

* W3C recommendation (http://www.w3.org/RDF)
* RDF is graphical formalism (+ XML syntax + semantics)

— for representing metadata
for describing the semantics of information in a machine- accessible way

* RDF is a basic ontology language
Resources are described in terms of properties and property values using RDF

statements.
Statements are represented as triples, consisting of a subject, predicate and object.

[S,P, 0]

“Oscar Corcho Garcia”
hasName

hasColleague
Oscar g > Asun

hasHomePage

hasColleague

Mariano http://www.fi.upm.es/

Ontology
Ontological Engineering 11 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

RDF and URIs

* RDF uses URIRefs (Unique Resource Identifiers References) to

identify resources.
— A URIRef consists of a URI and an optional Fragment Identifier separated from the
URI by the hash symbol #.
— Examples
* http://www.co-ode.org/people#hasColleague
* coode:hasColleague

* A set of URIRefs is known as a vocabulary
— E.g., the RDF Vocabulary
* The set of URIRefs used in describing the RDF concepts: rdf:Property, rdf:Resource,
rdf:type, etc.
— The RDFS Vocabulary
* The set of URIRefs used in describing the RDF Schema language: rdfs:Class,
rdfs:domain, etc.
— The ‘Pizza Ontology’ Vocabulary
« pz:hasTopping, pz:Pizza, pz:VegetarianPizza, etc.

Ontology
Ontological Engineering 12 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

RDF Serialisation

<?xml wversion="1.0"?>
<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http: //www.w3.org/2000/01/rdf -schemaf "
xmlns:coode="http://www.co-ode.org/pecpled”
xml :base="http://www.co-ode.org/pecple”>
<rdf:Description rdf:ID="mh">
<coode:hasHomepage rdf:regeurce="http://www.es.man.ae.uk/~horridgm"/>

<ooode:hasMame>Matthew Horridge</coode:hasName>
</rdf:Description>
<rdf:Description zdf:ID="nd">
<coode :hasName>Nick Dr d</coode:h
<ooodehasColleage rdf:ressurse="§mh' />
</rdf:Description>
</xdf :RDF>

<?xml version="1.0"?>
<rdf :RDF
xmlns:coode="http://www.co-ode .org/pecple#”
xmlns:rdf="http://www.w3.org/1999,/02/22-rdf -syntax-na#"
=ml tbase="file: /Users/matthavhorridge /Desktop/Teat. pdfn>
<rdf:Deseription rdf:about="http://www.co-ode.org/pecple#nd”>
<ooode :hasName>Nick Drummend</cocode:hasName>
<ooode :hasColleage>
<rdf :Description rdf:about="http://www.co-ode.org/pecple#mh">
<ooode:hasName>Matthew Horridge</coode:hasName>
<coode:hasHomepage rdf:resource="http://www.cs.man.ac.uk/~horridgm"/>
</rdf:Description>
</ecoode:hasColleage>
</rdf :Desaription>
</rdf :RDF>

g Ontological Engineering 13 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

RDFS: RDF Schema

* W3C Recommendation
* RDF Schema extends RDF to enable talking about classes of resources, and the
properties to be used with them.
— Class definition: rdfs:Class, rdfs:subClassOf
— Property definition: rdfs:subPropertyOf, rdfs:range, rdfs:domain
— Other primitives: rdfs:comment, rdfs:label, rdfs:seeAlso, rdfs:isDefinedBy
* RDF Schema provides the means to describe application specific RDF
vocabularies.
* RDFS vocabulary adds constraints on models, e.g.:
- VX,y,z type(x,y) and subClassOf(y,z) — type(x,z)

ex:Person > ex:Animal
rdfs:subClassOf

ex:Person

rdf:type

ex:Oscar > ex:Animal

Ontology
Ontological Engineering 14 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

RDF(S) limitations

¢ RDFS too weak to describe resources in sufficient detail

— No localised range and domain constraints

« Can’t say that the range of hasChild is person when applied to persons and elephant when applied to
elephants

— No existence/cardinality constraints

« Can’tsay that all instances of person have a mother that is also a person, or that persons have exactly 2
parents

— No transitive, inverse or symmetrical properties

« Can’t say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is
symmetrical

» Difficult to provide reasoning support

— No “native” reasoners for non-standard semantics

— May be possible to reason via FO axiomatisation

Ontology
Ontological Engineering 15 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Exercise

*Objective
« Understand the features of RDF(S) for implementing ontologies, including its limitations
* Get used to the graph and XML syntax of RDF(S)
*Tasks
» Take ontologies described in the previous day and create their graphs
« First only include the vocabulary from the domain
* Then include references to the RDF and RDFS vocabularies
« Serialise part of the graph in the XML syntax

Ontology
Ontological Engineering 16 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Table of Contents

1. Knowledge Representation Formalisms
2. Frames and semantic networks: RDF and RDF Schema
2.1 RDF and RDF Schema primitives
2.2 Formalisation with RDF(S)
3. Description Logic: OWL
3.1 OWL primitives and DL syntax
3.2 Formalisation with OWL.
3.3 The Protégé-OWL plug-in
3.4 Reasoning with OWL. Tableaux algorithms

3.5 When to use a reasoner

Ontology
Ontological Engineering 17 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

OWL

Web Ontology Language
Built on top of RDF(S) and renaming DAMLAOIL primitives

3 layers:

-OWL Lite: a small subset, easier for frame-based tools to transition to, easier
reasoning

-OWL DL: description logic, decidable reasoning

-OWL Full: RDF extension, allows metaclasses

Several syntaxes:

-Abstract syntax: easier to read and write manually, closely corresponds to DL
-RDF/XML: OWL can be parsed as an RDF document, more verbose

Q Dean M, Schreiber G. The OWL Web Ontology Language. W3C Recommendation. February 2004.

Ontology
Ontological Engineering 18 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

OWL and Description Logic

* A family of logic based Knowledge Representation formalisms
— Descendants of semantic networks and KL-ONE
— Describe domain in terms of concepts (classes), roles (relationships) and
individuals

* Specific languages characterised by the constructors and axioms used to assert knowledge
about classes, roles and individuals.

» Example: ALC (the least expressive language in DL that is propositionally closed)
— Constructors: boolean (and, or, not)
— Role restrictions

* Distinguished by:
— Formal semantics (typically model theoretic)
* Decidable fragments of FOL
+ Closely related to Propositional Modal & Dynamic Logics
— Provision of inference services
* Sound and complete decision procedures for key problems
» Implemented systems (highly optimised)

Ontology
Ontological Engineering 19 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

DL Architecture

Ontology
Ontological Engineering 20 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

DL constructors

Construct Syntax Language
Concept A
Role name R .
Intersection CnD Flo
Value restriction VYR.C FL AL
Limited existential quantification | 4 R ‘
Lop or Universal T s
Bottom L
Atomic negation —A
Negation™ - C C
Union CubD L
Existential restriction 1R.C E
Number restrictions (znR) (£nR) N —>
Nominals 1a ... 8, o -
Role hierarchy H
Inverse role I —
Qualified number restriction (znR.C) (£nR.O) Q —

2 Names previously used for Description Logics were terminological knowledge representation

lang . concepl languages. term subsumption languages, and KL-ONE-based knowledge
representation | ages.

B In this table. we use A to refer o atomic concepts {coneepts that are the basis for building other
concepts). C and D to any concept definition, R to atomie roles and S to role delinitions. FL 1s used for
structural DL languages and AL for attributive languages (Baader et al . 2003}

S 1s the name used lor the language ALCg., which is composed of ALC plus transitive roles

ALC and ALCUE are equivalent languages. since umon {U) and existential restriction (E) can be

represented using negation (C)

OWL is SHOIN(D+)

>3 hasChild, <1 hasMother
{Colombia, Argentina, México, ...} & MercoSur countries

hasChild (hasParent)
<2 hasChild.Female, >1 hasParent.Male

Other:
Concrete datatypes: hasAge.(<21)
Transitive roles: hasChild* (descendant)

Role iti hasParent o (uncle)

intology
m Ontological Engineering 21 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL as a Description Logic language. Class constructors

Constructor DL Syntax Example

Modal Syntax

intersectionOf Cin...NCy, | HumanmMale CiN...ANCy
unionOf Ciu...uC, | DoctoruLawyer |C1V...VCy

complementOf -C -Male

-C

oneOf {Z1}U...U{zn} | {iohn}u{mary} |az1V...Vay
allValuesFrom vP.C YhasChild.Doctor | [P]C
someValuesFrom JpP.C JhasChild.Lawyer | (P)C
maxCardinality <nP <lhasChild [Plpt1
minCardinality >nP >2hasChild (P)p

* XML Schema datatypes are treated as classes
— VhasAge.nonNegativelnteger

* Nesting of constructors can be arbitrarily complex

— Person A VhasChild.(Doctor v JhasChild.Doctor)

* Lots of redundancy, e.g., use negations to transform and to or and

exists to forall

intology
m Ontological Engineering 22 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Axioms

Axiom DL Syntax | Example

subClassOf CiC 0Oy Human C Animal N Biped
equivalentClass Cr=0Cy Man = Human N Male
disjointwith Cy CE=Cy | Male C —Female
samelndividualAs {z1} = {zo} | {President Bush} = {G_W Bush}
differentFrom {z1} C ~{zo} | {iohn} C ~{peter}
subPropertyOf PICPh hasDaughter C hasChild
equivalentProperty Pi=p cost = price

inverseOf Pi=Py hasChild = hasParent™
transitiveProperty PtCP | ancestort C ancestor
functionalProperty TCELIP T C <1lhasMother
inverseFunctionalProperty | TLC <1P~ | T C <1hasSSN™

e Axioms (mostly) reducible to inclusion (V)
— C=DiffbothCcDandDcC
— Cdisjoint D iff C < =D

ntoiogy
m Ontological Engineering

©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

rdfs Resonce

|
rdfs Class

——

owl:Class owl:DeprecatedClass

|
owl:Restriction

1f Property

Class taxonomy of the OWL KR ontology

owl:Thing
owl:Nothing
owl:Ontology
owl:DataRange
owl: AllDifferent

ropert; peFrop

owl: OhjeciProperty

owl:TransitiveProperty owl: Symme tricProperty

ntoiogy
m Ontological Engineering

©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Property list of the OWL KR ontology

___ Property name range
owlintersectionOf owlClass rdf'List
owlunionDf owl:Class rdf'List
owlcomplernentOf owl:Class owl:Class
owloneCf owl:Class rdf List
owlionProperty owlRestriction rdf Property
owl:allValuesFromm owl:Bestriction rdfs Class
owlhasValue owl Bestriction nof specified
owlsoteV aluesFrom owl:Bestriction rdfs Class

xednonbe gatrvelnteger
owlminCardinality owl Festriction WL Lite: {01}
OWL DL/Full: {0, M}
xed:none gatrvelnte ger
owlmaxCardinality owl Festriction WL Lite: {01}
OWL DL/Full: {0, H}
sed:none gattvelnte ger
owlicardinality owl Restriction WL Lite: {01}
OWL DL/Full: {0, H}
owlinverseOf owlOhject Property owl:Ohject Property
owlsamelbs owl:Thing owl:Thing
owlecuivalentClass owl:Class owl:Class
owlequivalentProperty wdf Property rdf Property
owlsamelndrridualts owl: Thing owl: Thing
owldifferentFrom owl: Thing owl: Thing
owldisjointWith owlClass owlClass
owldistinchlerdbers owlATDifferent rdf'List
owlsersioninio not specified nof specified
owlpriorYersion owl:Ontology owl:Ontology
owlincormpatibleWith owl:Ontology owl:Ontology
owlbackwardCorpatibleWith owl:Ontology owl:Ontology
owlimports owl:Ontology owl:Ontology
Ontalogy
g Ontological Engineering 25 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

OWL DL
Class expressions alewed in:

WL Line

)

lass sfentifiers and propenty resar

Ontology
Ontological Engineering

| ‘0omez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL DL
Class expressions alewed in:

Vahses are st restricted (0 M) c_="vu| Carda

owiDutaRange, rfList, rdf s, o

fs r.m;! rdfsubClasrOf
f, uivalent Cla: abiesFrom, owl scene’
v mareCardinality, owl cardmality

, rdfsel

(vl s V')
vl onaClf)

R

cprecaiedChass,

s SRS

RDF(S)

rdf‘Propa‘ty

rdfs:subPropeatyOf

rdfs:domain

rdfsrange Conly with class identifiers and named datatypes)
rdfs:icomrment, rdfslabel, rdfs:sesdlso, rdfsisDefinedBy
rdfz:subClassOfaly with class identifiers and property restrictions)

rf

IDifferent, owt distinctMembers

vt TRyt
rf doeien
rdfsras

s b Cluss O {omdy with clicrs identif

! \CgD

¢ with class sdentifiers and property restrictins),
),

tFrten (doal diierart Mavidual Fross),

and propety restncsons)

©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

[owL oL

Clase eepressaons af
Whars dee st

owl DutaFimge, 1

ol e

OWL Lite

owlOntology (davnl: Ontologrl,
owlversionlnfo (dawl versionfnfo),
owlimpaorts (dernl imparts),

W owlbackowardCompatibleWith,
owlincommpatibleWith, owlprior Version,
owlDeprecatedClass,
owlDeprecatedProperty

owlClass (daral: Class)

UWI:RESMCHUthmf. coplicti S nR

owlonProperty (dawlg
owlallValuesFrom class identifiers and named datatypes),
owlsomeValuesFrom i ass) (only with class identifiers and named datatyp }e%

owlminCardinality () ‘rinCardinglity, restricted to {0,1 >
owltnaxCardinality (n

owlcardinality wwmmed to {0, 1})

owlittersectionOf (Wﬁﬁfs and property restrictions) — nR

with clags sdentifien

‘ ‘ @Asunci()gmg—-}%rug Fernandez-Lopez, O. Corcho

Existential and Universal Restrictions

hasColleague Lecturer

Ontology
Ontological Engineering

hasColleague Professor

Lecturer

Professor

aw disjoudW th (s digoreifith)

OWL DL]

Class expressons allowed in rifs doman, rdfs rarge, rdfe subClassOf

Vabses . A TS vl ObiectProperty (deaml: Object Property),

oW DitaFige, sefList, pdf fre, séfrest, edsid owl Datatyp eProperty (dawnl: Datatype Property), (+) R
awihas Vi (dond s i) owl TransitiveProperty (.

e . b contg et (i complem) owl SytnmetricProperty,

owlFunctionalProperty (dearal: UhigueFroperty),

OWL Lie

ot Cntology (danl: Criology).
ewtversmlngs (ded vy,
ol mrperts (daml mmports),

et bt lowar dCompatib €W ith,

ot intampatibleWith, owd pnorVersicn,
owt DeprecatedClass,

owt DeprecatadPripeaty

o Class (il Clans),

et Restnetion (ol Restriction),
erwbaProperty (dal crProperty),

MaLVahnF(Wn Gl foClan) (ondy with chass el ad named datl

fom el named

m-n:v:mm_q[m mmCrdmalny. rerrizted to (0.1]),
ntemeCardnaliy (deml s Cindmality, sestrcled b (1))
ewbeadmality (doa cordimaliyy, rrwicted ta (0.1))

owt intersectioniOn (uady Witk Class 10eaters and prOpety restrc

ewt ObjrctPropaty (doml ObjectProperty).

owt Datatyp cPropety (daml DofafypeProperty),
ot Transtiv eProperty (dad. TramsnveFroperty),
owt SymenencProgety.
m}“mmn-'wly[dw UhiguaProperty).

operty epenyh .
mmmnmpmy owlinverseOf

o Thing (daval. Thimg) owlequivalentClass
et Hotheng (ol Mothing)

ot imerse0f (daal T O,
owteqamalens Churs (don) soneClamsAs) (caly with
omtequmslmPropernty (denl uonePropeny,
ot sameds (dov! equivalent To),

ot samelndvidal Az,

i
owt ALDifTerent, cwt distectMembers

owlInverseFunctionalProperty (dawal: UhaenbiguousFroperiy),
owl AnnotationProperty

owl Thing (W T

owlNothing (“M@—j_

R—l
C=D

Cinver,

i ;Wwd ety res&gms)
owlequivalentProperty () opertpAs),

owlsamels (damil equivdentTo),
" owlsamelndividual s,

owl differentFrom (dam! differentIndividu gl From),
i owl: AllDifferent, owldistinctblembers

Abox

ROF(5)

rdfPropety

rdfs nchPropaty(f

rdfy desrien

rp——
sifs libel, rdf seelsn,

i Ffe nehClareCd (osiy with clhies identifiers and propety Tetmcsens)
L]
0

©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL DL
Class expressons allowed in rifs doman, rdfs rarge, rdfe subClassOf
I,

Vabars wd (0 My

oW DataRargge, rdf List, rdf first, rifrest, rdfral

o hasVabue [l s s}

ol oneD (e

awluniosOf (daml wraionCr), owl complametOf (dawl complemerCy)
aw disjoudW th (s digoreifith) o

Class expressions allowed in: rdfs:domain, rdfs:range, rdfesubClassOf

owlintersectionOf, owlequivalent Clazs, owlallValuesFrom, owl someWaluesFromy
WValues are not restricted (0. My i owlmin Cardinality, owlmaxCardinality, owlcardinality

o

ow|

ow|

o

o

ow|

ol

ow|

owlDataRange, rdfList, rdf first, rdfirest, rdfinil 3 E { x }

o .
ow|

ow|

ol

ow|

ow|

ow|

o=

owlhasValue (W — {x }

oWl 0neO f (o

o
owlunionOf (dWlmmtOf T — —/ C
owldisjointWith % '

T o W) — (/' U l)

owt imwerse0f (ol mwTsa),

orwbequimalentChass (don saneCTazsAs) (only with class sdentifbers and peop tics),

g ' “CNnDcl

afs subPropatyl)
rdfs 2
b rrruod du
i dahel, rdlfs sewAlsn,
i Py pubCaesOf (cedy with elkes identifiers and peopety restricsons)
L]
"

©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

hasValue and oneOf

hasColleague = Matthew Person

To specify an enumerated
Spain class, the individuals that are
Germany members of the class are listed

France inside curly brackets {...}

[taly
{Spain Germany France ltaly}

E o HolidayDestinations
Ontological Engineering

OWL Example

Develop a pl tology in the d in of people, pets, vehicles, and newspapers
- Practice with DL syntax, OWL abstract syntax and OWL RDF/XML syntax
- Understand the basic primitives of OWL Lite and OWL DL
- Understand the basic reasoning mechanisms of OWL DL (tomorrow)
Subsumption
Automatic classification: an ontology built collaboratively
Instance classification

Detecting redundancy

Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)

Ontology
Ontological Engineering 33

©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Some basic DL modelling guidelines

* Xis Y for which property P has
only instances of Z as values

* Xis Y for which property P has at
least an instance of Z as a value

* Xis Y for which property P has at
most 2 values

* Individual XisaY

* X mustbeY,XisanY that.. 2> XcY

* Xisexactly Y, X is the Y that... >X=Y

+ XisnotY >Xc-Y

* XandY are disjoint >XNnYcl
e XisYorZ > XcYUZ

>XcYN(VYP.Z)

>XcYn@PZ)

> XcYn(£2.P)

> XeY

Ontology
Ontological Engineering

©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Chunk 1. Formalize in DL, and then in OWL DL

1. Concept definitions:
Grass and trees must be plants. Leaves are parts of a tree but there are other parts of a tree
that are not leaves. A dog must eat bones, at least. A sheep is an animal that must only eat
grass. A giraffe is an animal that must only eat leaves. A mad cow is a cow that eats brains
that can be part of a sheep.

2. Restrictions:
Animals or part of animals are disjoint with plants or parts of plants.

3. Properties:
Eats is applied to animals. Its inverse is eaten_by.

4. Individuals:
Tom.
Flossie is a cow.
Rex is a dog and is a pet of Mick.
Fido is a dog.
Tibbs is a cat.

intology
Ontological Engineering 35 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Chunk 2. Formalize in DL, and then in OWL DL

1. Concept definitions:
Bicycles, buses, cars, lorries, trucks and vans are vehicles. There are several types of
companies: bus companies and haulage companies.
An elderly person must be adult. A kid is (exactly) a person who is young. A man is a person
who is male and is adult. A woman is a person who is female and is adult. A grown up is a
person who is an adult. And old lady is a person who is elderly and female. Old ladies
must have some animal as pets and all their pets are cats.

2. Restrictions:
Youngs are not adults, and adults are not youngs.

3. Properties:
Has mother and has father are subproperties of has parent.

4. Individuals:
Kevin is a person.
Fred is a person who has a pet called Tibbs.
Joe is a person who has at most one pet. He has a pet called Fido.
Minnie is a female, elderly, who has a pet called Tom.

intology
Ontological Engineering 36 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Chunk 3. Formalize in DL, and then in OWL DL

1. Concept definitions:
A magazine is a publication. Broadsheets and tabloids are newspapers. A quality broadsheet
is a type of broadsheet. A red top is a type of tabloid. A newspaper is a publication that must
be either a broadsheet or a tabloid.
‘White van mans must read only tabloids.

2. Restrictions:
Tabloids are not broadsheets, and broadsheets are not tabloids.

3. Properties:
The only things that can be read are publications.

4. Individuals:

Daily Mirror
The Guardian and The Times are broadsheets
The Sun is a tabloid
Ontalogy
Ontological Engineering 37 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Chunk 4. Formalize in DL, and then in OWL DL

1. Concept definitions:
A pet is a pet of something. An animal must eat something. A vegetarian is an animal
that does not eat animals nor parts of animals. Ducks, cats and tigers are animals.
An animal lover is a person who has at least three pets. A pet owner is a person who
has animal pets. A cat liker is a person who likes cats. A cat owner is a person who has
cat pets. A dog liker is a person who likes dogs. A dog owner is a person who has dog pets.

2. Restrictions:
Dogs are not cats, and cats are not dogs.

3. Properties:
Has pet is defined between persons and animals. Its inverse is is_pet_of.

4. Individuals:
Dewey, Huey, and Louie are ducks.
Fluffy is a tiger.
Walt is a person who has pets called Huey, Louie and Dewey.

intology
Ontological Engineering 38 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Chunk 5. Formalize in DL, and then in OWL DL

1. Concept definitions
A driver must be adult. A driver is a person who drives vehicles. A lorry driver is a person who
drives lorries. A haulage worker is who works for a haulage company or for part of
a haulage company. A haulage truck driver is a person who drives trucks ans works for part of
a haulage company. A van driver is a person who drives vans. A bus driver is a person who
drives buses. A white van man is a man who drives white things and vans.

2. Restrictions:

3. Properties:
The service number is an integer property with no restricted domain

4. Individuals:
Q123ABC is a van and a white thing.
The42 is a bus whose service number is 42.
Mick is a male who read Daily Mirror and drives Q123ABC.

Ontology
Ontological Engineering 39 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

Chunk 1. Formalisation in DL

grass C plant

tree C plant

leaf < ApartOf tree

dog < Jeats.bone

sheep < animal NV eats.grass

giraffe < animal "NV eats.leaf

madCow = cow M eats.(brain N IpartOf .sheep)

(animal O ApartOf .animal) N (plant U IpartOf .plant) L

Ontology
Ontological Engineering 40 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

Chunk 2. Formalisation in DL

bicycle c vehicle;bus < vehicle;car vehicle;lorry < vehicle;truck vehicle
busCompany c company; haulageCompany company

elderly c person M adult

kid = person N young

man = person N male N adult

woman = person N female M adult

grownUp = person N adult

oldLady = person N female M elderly

oldLady — FhasPet.animal "N~ hasPet.cat

young Nadult L

hasMother c hasParent

hasFather < hasParent

Ontology
Ontological Engineering 41 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Chunk 3. Formalisation in DL

magazine — publication

broadsheet newspaper

tabloid < newspaper

qualityBroadsheet — broadsheet

redTop c tabloid

newspaper < publication M (broadsheet U tabloid)
whiteVanMan C Vreads.tabloid

tabloid N broadsheet =L

Ontology
Ontological Engineering 42 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Chunk 4. Formalisation in DL

pet = JisPetOf T

animal < Jeats. T

vegetarian = animal NV eats.—animal NV eats. —~(IpartOf .animal)
duck < animal;cat < animal;tiger C animal

animalLover = person N (= 3hasPet)

petOwner = person N hasPet.animal

catLike = person M 3likes.cat;catOwner = person N 3hasPet.cat

dogLike = person M 3likes.dog;dogOwner = person N JhasPet.dog

dog Ncat L

Ontology
Ontological Engineering 43 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Chunk 5. Formalisation in DL

driver C adult
driver = person N 3drives.vehicle
lorryDriver = person N 3drives.lorry
haulageWorke = IworksFor.(haulageCompany O IpartOf .haulageCompany)
haulageTruckDriver = person M 3drives.truck N
IworksFor.(IpartOf .haulageCompany)
vanDriver = person M Adrives.van
busDriver = person M 3drives.bus

whiteVanMan = man N Adrives.(whiteThing M van)

Ontology
Ontological Engineering 44 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

OWL Example

Ontology
Ontological Engineering 45 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Protégé and the Protégé-OWL plug-in

» »
* http://protege.stanford.edu/ Pr (0 tege

* Developed by Stanford Medical Informatics

* Features
— Software
* Open source
* Supports development of plugins to allow backend / interface extensions
— Large user community (approx 30k)
— Knowledge representation formalism
» Core is based on Frames (object oriented) modelling

* Open architecture that allows other modelling languages to be built on top (e.g., Protégé-
OWL plug-in)

Ontology
Ontological Engineering 46 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Protégé-OWL

Ele L& Broect O Code Yindow Tooks Help

DEeE B0 wa % RED 5 B BE ar %
O ovamszes | W Propertes | Foms | @ ndviels | @ betadatn |
SURCLASS RELATIOISHIP 4| e} CLASS FOTOR C=0 T
For Froject: & pzzn For Class: @) GorgenzelaTopong (natance of owi Clasy)
nssercarrry O @ RS | (i kel it | e EIRY |
wtThing = :r.ammm [*] Property | Vialae _U"v]
¥ B Comaroncet wilty kel CobeturaDedogone pt
O cartry witsceommen jeni 21
B enlieom
¥ Brem
D creeseyizzn
O tmestinghizza
O MeatyPzza
B HamedPzza 5
O tenvegmmaniuza Asvmied Wifmred | Wroperics W o mom & @

© SpieyPazn Aswerted Conditions O
O SpieyizznEasenien s Toppngt
O Vegetorianfizza @ ChesssToppng
o D 3has
1O VegetmisrPzziounsient

» @ pozabase

¥ @ renalonn

¥ B CmnenToppng

0 Rellabadiczn & & el B hagSpiciness

i ChenseyVngrtabinToppng

i FourChaesnsTopping

:oemcm:'dean B Diepeirnn g a@dRe
GorgonzolaToppng ||| Parmesantoppng

@ Mezzarelalopping MozzoreloTopping

B PamesanToppng

v B Fhloprg
[T -
B MiardEnatoodTopping

] ® Lope View L) Properses View

Bogical Engineering 47 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Class Hierarchy
St e ——— Subsumption hierarchy

e @SB S0 Scture as asserted by the ontology engineer

ot Tring

T

v
seyFizz 3 ¥e SEE 35 5 EE ar \ =w
Bl G O m—
T EE |
> [——————
BORR [t LY]
= ol ——

O veporianPz Il

O veporianPz Il Cand |
= B Pzzaliace prs—— fdgm
» @ Pzsloe — ==
v @ vasbattion B v
¥ O spiciess ey

B

owl:Thing is the root class

h Ontological Engineering 48 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Class Editor

Class annotations (for class metadata)
Class name and documentation

N T L
: N T {4 protégé’
et - Fame i ——— |
L=} A caae
. s | e SR Y .
= " Properties

“available” to Class

Disjoints widget

" TR ——

7
Conditions Widget
Class-specific tools (find usage etc)

Ontology
Ontological Engineering 49 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Saving OWL Files

OWL = easy to make mistakes = save regularly

1. Select File = Save Project As D =
A dialog (as shown) will pop up

2. Select a file directly by clicking the button on the top right
You will notice that 2 files are created
.pprj — the project file

this just stores information about the GUI/
and the workspace

. s Pu.ielvej 0_beta'thyOrbologies'fr tf e Classes.
.owl — the OWL file - -
this is where your ontology is stored in fretFentinss e
RDF/OWL format LanDs0s _
] 7 concel
3. Select OK

Ontology
Ontological Engineering 50 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Loading OWL files

Create New Project

Creste from Existing Sources]

1. If you only have an OWL

Select a Project Type:

fII e. Pratégé Files (pont and pins)
: Protégé Database
i i OWL Database

- File=> New Project s

- Select OWL Files as the type

- Tick Create from existing sources
- Next to select the .owl file

2. Ifyou've got a valid project file*:
- File = Open Project
- select the .pprj file

ie one created on this version of Protégé - the s/w gets updated once every few

days, so don’t count on it unless you’ve created it recently— safest to build from
the .owl file if in doubt

Ontology
Ontological Engineering 51 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Example

Implement the previous sample ontology with the Protégé-OWL plug-in
- Practice with Protégé and the Protégé-OWL plug-in

- Develop parts of the previous ontology in groups, so that the ontologies can be integrated later

Ontology
Ontological Engineering 52 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Example

Ontology
Ontological Engineering 53 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Basic Inference Tasks

Subsumption — check knowledge is correct (captures intuitions)
— Does C subsume D w.r.t. ontology O? (in every model | of O, C' < D')
Equivalence — check knowledge is minimally redundant (no unintended
synonyms)
— Is C equivalent to D w.r.t. O? (in every model | of O, C'=D')
Consistency — check knowledge is meaningful (classes can have instances)
— Is C satisfiable w.r.t. O? (there exists some model | of O s.t. C' = @)

Instantiation and querying

— Is x an instance of C w.r.t. O? (in every model | of O, x! € C')
- Is (x,y) an instance of R w.r.t. O? (in every model | of O, (xLy") € R!)

All reducible to KB satisfiability or concept satisfiability w.r.t. a KB

Can be decided using highly optimised tableaux reasoners

Ontological Engineering 54 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Tableaux Algorithms

* Try to prove satisfiability of a knowledge base

* How do they work
— They try to build a model of input concept C
* Tree model property
— If there is a model, then there is a tree shaped model
+ If no tree model can be found, then input concept unsatisfiable
— Decompose C syntactically
» Work on concepts in negation normal form (De Morgan’s laws)
» Use of tableaux expansion rules
* If non-deterministic rules are applied, then there is search
— Stop (and backtrack) if clash
* E.g. A(x), ~A(x)
— Blocking (cycle check) ensures termination for more expressive logics

* The algorithm finishes when no more rules can be applied or a
conflict is detected

Ontology
Ontological Engineering 55 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Tableaux rules for ALC and for transitive roles

e {Ci My} = | 2e{C NGy (L Col)

re{C UCy, ...} | — e {C1LICy, C, L}
for C' e {C,Cy}
re {3R.C, ...} —7 re {3R.C, ...}

R

ye{C}

re {VR.C ...} —v e {YR.C. ...}

R R

Ull{} l/‘{('}

e {YR.C,.. } —y re {VR.C, ...}

R R

ye { . } Yy {”R(. }

Ontology
Ontological Engineering 56 ©Asuncion Gomez-Pérez, M. Fernandez-Lopez, O. Corcho

Tableaux examples and exercises

* Example
= AS.CTYS(=C U= FROCNYRAR.CY

« Exercise 1
— 3JR.(3R.D) A 3S.—D AVS.(3R.D)

« Exercise 2
— 3R.(CvD) A VR.-C A —3R.D

Ontology
Ontological Engineering 57 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Example

Develop a sample ontology in the domairrof people, pets, vehictes, and newspapers
- Understand the basic reasoning mechanisms of O DL
Subsumption
Automatic clagsification: an ontology built collaboratively
Instance’classification
etecting redundancy

ConsiStency checking: unsatisfiable restrictions in a Tbox (are the classescoherent?)

E Ontological Engineering 58 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcl

Oscar Corcho

Oscar Corcho

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C NVS.(=C LU -D) M 3IR.C NVYR.(3R.C)}

)

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C MVS.(=C LU -D)M3IR.CNVYR.(3R.C)}

)

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

)

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,¥S.(-C U -D),3R.C,YR.(3R.C)}

)

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,¥S.(-C U -D),3R.C,YR.(3R.C)}

S

L) = {C} (3

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,¥R.(3R.C)}

S

L) = {C} (3

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}

S

L(x)={C,-CU-D} @

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S

L(x)={C,-CU-D} @

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U -D),3R.C,YR.(3R.C)}
S

L(x) = {C, (~C U=D),~C} (7

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U -D),3R.C,YR.(3R.C)}
S

L(x)={C,(-CU-D),~C} @ clash

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S

L(x)={C,-CU-D} @

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U -D),3R.C,YR.(3R.C)}
S

L(2) = {C,(~C U =D),~D} (T

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}
S

L(2) = {C.(~CU=D),~D} (T

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}

S R

L(z) ={C,(~C U=D), D} (3 @) L) = {C}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U—-D),3R.C,YR.(3R.C)}

S R

L(z) ={C,(~C U=D), D} (3 @) L) = {C}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U—-D),3R.C,YR.(3R.C)}
S R

&(x) = {C, (~C U ~D),~D} (3} (V) L) = {C,3R.C,VR.(3R.C)}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(z) = {C, (~C U ~D),~D} (7} (V) L) = {C.3R.C,VR.(3R.C)}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(-~C U -D),3R.C,YR.(3R.C)}
S R

L(z) = {C, (~C U ~D),~D} (7} () £(y) = {C,3R.C,VR.GR.C)}

R
(L) = {0}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

&(x) = {C,(~C U ~D),~D} (3} () £(y) = {C,3R.C,VR.(3R.C)}

R
(L) = {0}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

&(x) = {C,(~C U ~D),~D} (3} () £(y) = {C,3R.C,VR.(3R.C)}

R

@é L(z) = {C,3R.C,YR.(3R.C)}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(x) = {C,(~C U ~D),~D} (7} () £(v) = {C.3R.C.VR.(3R.C)}

R

blocked @é L(z) ={C,3R.C,VR.(AR.C)}

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(x) = {C,(~C U ~D),~D} (7} () £(v) = {C.3R.C.VR.(3R.C)}

R

blocked é L(z) ={C,3R.C,VR.(AR.C)}

Concept is satisfiable: T corresponds to model

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)M3dR.CNVR.(3R.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S R

L(z) = {C,(~CU~D),~D} (7 - @ L(y) = {C,3R.C,VR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasonine with Expressive Descrintion L.ogics — p. 7/27

Tableaux examples and exercises

« Exa e
= AS. O -C U= NAdRCTOYR(AR.C)

« Exercise 1
— 3JR.(3R.D) A 3S.—D A¥S,(3R.D)

« Exercise 2
— 3R.(CvD) A VR.-C A —3R.D

E Ontological Engineering 57 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcl

OWL Example

Develop a 1 tology in the d in of people, pets, vehicles, and newspapers

F

- Understand the basic reasoning mechanisms of OWL DL
Subsumption
Automatic classification: an ontology built collaboratively
Instance classification
Detecting redundancy

Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)

Ontology
Ontological Engineering 58 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Oscar Corcho

Oscar Corcho

Interesting results (I). Automatic classification
IAnd old lady is a person who is elderly and female.

O1d ladies must have some animal as pets and all their pets are cats.
elderly c person M adult

woman = person N female N adult

catOwner = person N hasPet.cat

oldLady = personn female M elderly ol 'i‘,
[aid 1ay#1
oldLady < 3hasPet.animal "N hasPet.cat o Bl

We obtain: o
Old ladies must be women. = ’é‘%“;;‘,,
R —— Every old lady must have a pet cat —
s mE..::f;T" “ Hence, every old lady must be a cat owner

oldLady c woman N elderly N catOwner

& [E] emane #1
[E] o ay #1

=

Ontology
Ontological Engineering 59 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Interesting results (II). Instance classification

A pet owner is a person who has animal pets

O1d ladies must have some animal as pets and all their pets are cats.

[Has pet has domain person and range animal

[Minnie is a female, elderly, who has a pet called Tom.

petOwner = person N 3hasPet.animal

oldLady FhasPet.animal "\ ¥ hasPet.cat

hasPet < (person,animal)

Minnie € female N elderly

hasPet(Minnie, Tom) We obtain:
Minnie is a person
Hence, Minnie is an old lady
Hence, Tom is a cat

Minnie € person;Tom € animal
Minnie € petOwner
Minnie € oldLady

Tom € cat

Ontology
Ontological Engineering 60 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Interesting results (III). Instance classification and
redundancy detection

[An animal lover is a person who has at least three pets
[Walt is a person who has pets called Huey, Louie and Dewey.

animalLover = person N (= 3hasPet)
Walt € person

hasPet(Walt, Huey)

hasPet(Walt, Louie)

hasPet(Walt, Dewey)

We obtain:
Walt is an animal lover
Walt is a person is redundant

Walt € animalLover

Ontology
Ontological Engineering 61 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

Interesting results (IV). Instance classification

A van is a type of vehicle

A driver must be adult

A driver is a person who drives vehicles

A white van man is a man who drives vans and white things
[White van mans must read only tabloids

[Q123ABC is a white thing and a van

Mick is a male who reads Daily Mirror and drives Q123ABC

van C vehicle

driver C adult

driver = person N 3drives.vehicle

whiteVanMan = man N 3drives.(van N whiteThing)

whiteVanMan c Vreads.tabloid We obtain:
Mick is an adult

0123 4BC € whiteThing N van Mick is a white van man
Mick € male Daily Mirror is a tabloid
reads(Mick, DailyMirror) Mick e adult

drives(Mick,0123ABC) Mick € whiteVanMan

DailyMirror € tabloid

Ontology
Ontological Engineering 62 ©Asuncion Gomez-Pérez, M. Fernandez-Lépez, O. Corcho

Interesting results (V). Consistency checking

ICows are vegetarian.
A vegetarian is an animal that does not eat animals nor parts of animals.
A mad cow is a cow that eats brains that can be part of a sheep

cow C vegetarian
vegetarian = animal N Veats.—animal N
Veats—(3partOf .animal))
madCow = cow M Jeats.(brain U 3partOf .sheep)
(animal U IpartOf .animal) N (plant O IpartOf .plant) L

|E] wornan #1

We obtain:

Mad cow is unsatisfiable @ mad cow
[l cirafie #

i)
" sheep #1
brain #1 hone #1
& [E] company #1 brain #1
hus company #1 = campany #1
haulage company #1 bus company #1
dog #1 haulage company #1

=[] female #1

Ontology
Ontological Engineering 63 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Example

Ontology
Ontological Engineering 64 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

When to use a classifier

1. At author time (pre-coordination): As a compiler
- Ontologies will be delivered as “pre-coordinated” ontologies to be used without a reasoner

- To make extensions and additions quick, easy, and responsive, distribute developments,
empower users to make changes

- Part of an ontology life cycle

2. Atdelivery time (post-coordination): as a normalisation service

- Many fixed ontologies are too big and too small
. Too big to find things; too small to contain what you need
- Create them on the fly

- Part of an ontology service

3. Atapplication time (inference): as a reasoner
- Decision support, query optimisation, schema integration, etc.
- Part of a reasoning service

Ontology
Ontological Engineering 65 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

1. Pre-coordinated delivery: classifier as compiler

* Develop an ontology
— A classifier can be used to detect and correct inconsistencies

* Classify the ontology

. B 5 - inetod amntaolocs:
Commit classifier results to a pre-coording ST z (L rpsses
Subelast Ralatorabe D) ¥ | St i Ratatioratig [« N] H:"’ =l
Assrtid Hiorarchy = W R g wered Hierarchy 48
I=iowaThing | [owaThing |

@ () Domain_ssisy & () Domain,
@ () Prahe_Catgaries_for_demo_and_tes) | @ (L) Prabe
&) Vg Pari: & £ VaneParg

on wion
@ (C)ValueSelacior o (C)ValuaSalecior

¥
i5_tor_dirno_and_ta

Assert (“Commit”) changes L > |
inferred by classifier class] Changed superciassas I
|5 Aae_stennsis Addnd Disordor_of_FMA_Rart la]

LChmorse_vabve Ao Strathural_parns_of_hist =

| &) Cardiac_chamber Added Strachural_parts_of_hear :

i Disoedar_of FMA_hesrt Moved fram Digorder, Probe_Cabgories_for_demo_a..

49| CYHalt_heart Agdad Stnuctueal_parts_of_hast
it Disordir_of_CAnseal_heart

Added Chrical_parts_of_heart

e Deliver it
— In OWL-Lite or RDFS

* Use RDQL, SPARQL, or your favourite RDF(S) query tool

Ontology
Ontological Engineering 66 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

2. Post Coordination: classifier as a service

« Logic based ontologies act as a conceptual lego
— Modularisation/Normalisation is needed to make them easier to maintain

extremity

cell

expression

i

Bl

chronic
inflammation
acute . -
infection
abnormal
normal bacterial

| polymorphism

Ontology
Ontological Engineering 67 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Species
P Genes

Protein

Function

Gene in humans

Disease

Protein coded by
gene in humans

Function of
Protein coded by
gene in humans

Logical Constructs build Disease caused by abnormality in
complex concepts from Function of protein coded by
modularised primitives gene in humans

Ontology
Ontological Engineering 68 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Rationale for Normalisation/Modularisation

* Normalisation in order to make large ontologies easier to maintain
— Trees (classes have only one parent) are easier to maintain

— Directed Acyclic Graphs (classes can have several parents) can be derived with a
reasoner from the trees

* Objective: derive explicit distinctions between modules
— Primitives are opaque to the reasoner
 Information implicit in primitive names cannot contribute to modularisation
— Primitives are indivisible to both human and reasoner
* Each primitive should represent a single notion
— Therefore, each primitive must belong to exactly one module
+ If a primitive belongs to two modules, they are not modular.
+ If a primitive belongs to two modules, it probably conflates two notions

— Therefore concentrate on the “primitive skeleton” of the domain ontology

Ontology
Ontological Engineering 69 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Normalisation Criteria (I)

1. The skeleton should consist of disjoint trees

— Every primitive concept should have exactly one primitive parent
+ All multiple hierarchies are the result of inference by reasoner

2. No hidden changes in meaning
— Each branch should be homogeneous and logical (“Aristotelian™)
 Hierarchical principle should be subsumption
— Otherwise we are “lying to the logic”
 The criteria for differentiation should follow consistent principles in each branch
— Example of non-homogeneous taxonomy (from The Celestial Emporium of
Benevolent Knowledge, Borges)
* “On those remote pages it is written that animals are divided into:

— a. those that belong to the Emperor b. embalmed ones

— c. those that are trained d. suckling pigs

— e. mermaids f. fabulous ones

— g.stray dogs h. those that are included in this
classification

— 1. those that tremble as if they were mad j. innumerable ones

— k. those drawn with a very fine camel's hair brush 1. others

— m. those that have just broken a flower vase n. those that

resemble flies from a distance"

Ontology
Ontological Engineering 70 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Normalisation Criteria (II)

3. Distinguish “Self-standing” and “Refining” Concepts
— Self-standing concepts (person, idea, plant, committee, belief, etc.)
« Roughly Welty & Guarino’s “sortals”
— Refining concepts — depend on self-standing concepts (mild/moderate|severe, hot|cold, etc.)
+ Roughly Welty & Guarino’s non-sortals, Smith’s “fiat partitions”, Value Types for engineers

3a. Self-standing primitives should be globally disjoint & open
— Primitives are disjoint
« If primitives overlap, the overlap conceals implicit information
— Alist of self-standing primitives can never be guaranteed complete
« How many kinds of person? of plant? of committee? of belief?
+ Can’tinfer: Parent & —subl &...& —subn-1 - subn

3b. Refining primitives should be locally disjoint & closed
— Individual values must be disjoint, but can be hierarchical
* e.g. “very hot”, “moderately severe”
— Each list can be guaranteed to be complete
— “Value partitions” themselves need not be disjoint
* “being hot” is not disjoint from “being severe”

— Allowing Valuetypes to overlap is a useful trick, e.g. restriction has_state someValuesFrom
(severe and hot)

Ontology
Ontological Engineering 71 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Normalisation Criteria (I1I)

4. Axioms
— No axiom should denormalise the ontology
— No axiom should imply that a primitive is part of more than one branch of primitive
skeleton
+ Ifall primitives are disjoint, any such axioms will make that primitive unsatisfiable
* A partial test for normalisation:
— Create random conjunctions of primitives which do not subsume each other.
— Ifany are satisfiable, the ontology is not normalised

Ontology
Ontological Engineering 72 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Consequences

* All self-standing primitives are disjoint
* All multiple classification is inferred

* For any two primitive self-standing classes, either one subsumes the other
or they are disjoint

* Every self standing concept is part of exactly one primitive branch of the
skeleton

* Every self-standing concept has exactly one most specific primitive
ancestor

* Primitives introduced by a conjunction of one class and a boolean
combination of zero or more restrictions

— Tree subclass-of Plant and
restriction isMadeOf someValuesFrom Wood

— Resort subclass-of Accommodation
restriction isIntendedFor someValueFrom Holidays
* Use of axioms limited (outside of skeleton construction). The following are
a safe but not exhaustive guide:
— The right side of subclass axioms limited to restrictions
— Both sides of disjointness axioms limited to restrictions
— No equivalence axioms with primitives on either side

Ontology
Ontological Engineering 73 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Example (I)

* Build a simple tree

 Haemaglobinopathy (Diseases_linked _to_Genes) (Sickle_cell_disease

Bica_Breast_Cancer

* Let the classifier organise it
and check consistency (orsease),

Ontology
Ontological Engineering 74 ©Asuncion Gomez-Pérez, M. Ferndndez-Lopez, O. Corcho

Example (II)

* Add more abstractions if needed

/MI
(_b\sease_\\nked_ta_ahnarma_pmtem‘_?

[‘\‘B\seases_hnket_ta_ﬁenes‘

Diseases_irked_to_CFTR_jenes

 Let the classifier organise it again
and check consistency!!

(Breast_caneer)

-

& Ontological Engineering 75 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

3. Inference

* We have already seen some examples

— And we will see some more in session 4

& Ontological Engineering 76 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

Exercise

*Objective
« Apply design principles to normalise/modularise the OWL ontology developed in the
previous exercises
*Tasks
« Identify disjoint trees in the ontology developed.
« Distinguish self-standing and refining classes.
« Identify axioms.
* Go back to the first task if the ontology is not normalised yet.

Ontology
Ontological Engineering 77 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

OWL Classifier limitations

* Numbers and strings
— Simple concrete data types in spec
— User defined XML data types enmeshed in standards disputes

— No standard classifier deals with numeric ranges
* Although several experimental ones do

* is-part-of and has-part
— Totally doubly-linked structures scale horridly

* Handling of individuals
— Variable with different classifiers
— oneOf works badly with all classifiers at the moment

Ontology
Ontological Engineering 78 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

&

h IN VERITATE
G Meemras G

£AB1LO

How can we implement ontologies?
Ontology languages

Asuncion Gomez-Pérez
Mariano Fernandez-Lépez
Oscar Corcho

asun@fi.upm.es, mfernandez.eps@ceu.es, ocorcho@cs.man.ac.uk
Grupo de Ontologias
Laboratorio de Inteligencia Artificial
Facultad de Informética
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

Ontology
Ontological Engineering 79 ©Asuncion Gémez-Pérez, M. Fernandez-Lopez, O. Corcho

	03_TableauxExample.pdf
	Description Logic Reasoning
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems

	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics

	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details

	Tableaux Rules for alc
	Tableaux Rules for alc

	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles

	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example

	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques

	Implementing DL Systems
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations

	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm

	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation

	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking

	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping

	Research Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges

	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes

	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals

	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions

	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability

	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)

	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks

	Summary
	Summary
	Summary
	Summary
	Summary
	Summary

	Acknowledgements
	Acknowledgements
	Acknowledgements
	Acknowledgements

	Resources
	Select Bibliography
	Select Bibliography

