

OWL as a Description Logic language. Class constructors

Constructor	DL Syntax	Example	Modal Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \lor \ldots \lor C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}	$x_1 \lor \ldots \lor x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	[P]C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≤1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	≥2hasChild	$\langle P \rangle_n$
	1	1	

• XML Schema datatypes are treated as classes

- $\quad \forall has Age. non Negative Integer$
- Nesting of constructors can be arbitrarily complex
 Person ∧ ∀hasChild.(Doctor ∨ ∃hasChild.Doctor)
- Lots of redundancy, e.g., use negations to transform and to or and exists to forall

Property name	domain	range
owl:intersectionOf	owl:Class	rdf:List
owl:unionOf	owl:Class	rdf:List
owl:complementOf	owl:Class	owl:Class
owl:oneOf	owl:Class	rdf:List
owl:onProperty	owl:Restriction	rdf:Property
owl:allValuesFrom	owl:Restriction	rdfs:Class
owl:hasValue	owl:Restriction	not specified
owl:someValuesFrom	owl:Restriction	rdfs:Class
owl:minCardinality	owl:Restriction	xsd:nonNegativeInteger OWL Lite: {0,1} OWL DL/Full: {0,,N}
owl:maxCardinality	owl:Restriction	xsd:nonNegativeInteger OWL Lite: {0,1} OWL DL/Full: {0,,N}
owl:cardinality	owl:Restriction	xsd:nonNegativeInteger OWL Lite: {0,1} OWL DL/Full: {0,,N}
owl:inverseOf	owl:ObjectProperty	owl:ObjectProperty
owl:sameAs	owl:Thing	owl:Thing
owl:equivalentClass	owl:Class	owl:Class
owl:equivalentProperty	rdf:Property	rdf:Property
owl:sameIndividualAs	owl:Thing	owl:Thing
owl:differentFrom	owl:Thing	owl:Thing
owl:disjointWith	owl:Class	owl:Class
owl:distinctMembers	owl:AllDifferent	rdf:List
owl:versionInfo	not specified	not specified
owl:priorVersion	owl:Ontology	owl:Ontology
owl:incompatibleWith	owl:Ontology	owl:Ontology
owl:backwardCompatibleWith	owl:Ontology	owl:Ontology
owl:imports	owl:Ontology	owl:Ontology

	OWL.DL rdfs-domain, rdfs-rauge, rdfs-robClaseOf owf_attercectineOf0.wdf.equivalentClass, owf.allValuesFrom, owf.someValuesFrom Values are not restricted (0 LV) as: owf.nmmClassinality, owf.nmmClassinality, owf.allValuesFrom, owf.someValuesFrom owf.hmvLabue_(damt_has:Falue) owf.nmvLabue_(damt_has:Falue)
	OW1. Line contrology (dam) Chetology). cont Chetology (dam) Chetology). control chetology (dam) Chetology). cont Import (dam) Chetology). control chetology (dam) Chetology). cont Import (dam) Chetology). control chetology (dam) Chetology). cont Import (dam) Chetology). control chetology (dam) Chetology (dam) Chetology (dam). cont Import (dam) Chetology (dam) Chetology (dam) Chetology (dam) Chetology (dam) Chetology (dam). control chetology (dam) Chetology (dam) Chetology (dam). cont Import (dam) Chetology (dam) Chet
	<pre>vertices and gener centreming, out call oper (and confragency), out call oper (and confragency), out can (also in Collas) (call with class identifiers and named datatypes), out into Caldmahr (class in Acculat) (call with class identifiers and named datatypes), out into Caldmahr (class into Call with), restricted to (0,1)), out into Caldmahr (class identifiers and property restrictions) out into Caldmahr (class identifiers and property restrictions) out into Call coll class identifiers and property restrictions)</pre>
	one copier supers yours to construction (for the second se
	contNothing (dam).Notheng) contInversion((dam).Notheng) eventprovementCost (dam).insex-Dependy.As), contexprovementCost (dam).insex-Dependy.As), continuentActive (quarkientTo), contInternetTo(dam).insex-Dependy.As), contInternetTo(dam).insex-Dependy.As), contInternetTo(dam).insex-DependentAs), contInternetTo(dam).insex-DependentAs), contInternetTo(dam).insex-DependentAs), contInternetTo(dam).insex-DependentAs), contInternetTo(dam).insex-DependentAs), contInternetTo(dam).insex-DependentAs),
Ontology Engineer Optologing Engineering	RDF(5) rdFropenty rdfs:rdproperty rdfs:rdpr
Children Engineering	- onzer crez, w. remandez-Lopez, O. Corcho

Г

OWL DL Class expressions allowed in: rdfs:domain, rdfs:range, rdfs:so	bClassOf	
owl intersectionOf, owl equival Values are not restricted (0. N) in: owlminCardinality, owlman2	entClass, owtallValuesFrom, owtsomeValuesFrom ardinality, owtcardinality	OWL Lite
wd DataRange, rdf List, rdf first, rdf rest, rdf reil		owl:Ontology (daml:Ontology)
with as Value (down box Koha)		owl version Info (dam) version Info)
wioneOf (dami:oneOf)		and increases (herebien entry)
owlunionOf (daml:unionQf), owlcomplementOf (daml:compleme owl disjointWith (daml:dtsjointWith)	#Q()	owimports (aami: imports),
OWL Lite		 owl:backwardCompatibleWith,
owt:Ontology (daval: Ontology),		owl:incompatibleWith, owl:priorVersion,
owi inports (davel imports),		ow1:DeprecatedClass
owtbackwardCompatibleWith,		owilD oprocesses and and a set
owiDeprecatedClass,		ownDeprecatedProperty
owtDeprecatedProperty		
owt Class (dami: Class),		
owinestriction (dami-Nestriction), owionProperty (dami-onProperty),		
owfallValuesFrom (daws' toClass) (only with class identifiers an	i named datatypes),	
owisomeValuesFrom (dami:hasClass) (only with class identifier owiminCardinality (dami:minCardinality: restricted to (0,1)).	s and named datatypes),	$\forall P C$
owimasCardinality (dawl maxCardinality; restricted to (0,1)),		
owiccardinality (acres/cardinality; restricted to (0,1))		
owtintersectionOf (only with class identifiers and property restri-		
owl:ObjectProperty (daml: ObjectProperty),		
owl DatatypeProperty (dami: DatatypeProperty), owl TransitiveProperty (dami: TransitiveProperty).		
owt SymmetricProperty,		
owlFunctionalProperty (daml: UniqueProperty), owlInverseFunctionalProperty (daml: UnambiguousProperty),		
owt:AnnotationProperty	owl:Class (daml:Class),	$\sim nR$
owt Thing (dan1: Thing)	owl:Restriction (daml: Repar	iction)
owtNothing (davs! Mothing)	owl:onProperty (daml:onPr	opersy),
owEinverseOf (daml:inverseOf),	owlallValuesFrom	(Class) (optimuth class identifiers and named datatynes)
owirequivalentClass (davnl:savecClassAs) (only with class identifi owirequivalentProperty (davnl:savePropertyAs),	out come Values From Carry	(all 1 due) (and units class identifiers and named dotations
owtsameAs (daml-equivalentTo),	ownsome valuesr rom (adm	(only with class further and harded datatypes
owisameinavidaalAs, owisdifferentFrom (dami: differentlindividualFrom),	owninincardinality (admin	$nin(aramativ)$, restricted to $\{0,1\}$, $\rightarrow nh$
owt AllDifferent, owt distinctMembers	ow1:maxCardinality (dank	maxCurramany, restricted to {0,1}),
RDF(S)	– owl:cardinality (<u>daml:cardi</u>	nality; restricted to (0,1))
rdfProperty		
rdfs.subPropertyUr rdfs.domain	owl intersection Of (and wi	th class identifiers and property restrictions) $\Gamma=\mu r$
rdfs range (only with class identifiers and named datatypes)		
rdis comment, rdis abei, rdis séeAlso, rdis isDefinédBy rdfs subClassOf (only with class identifiers and property restric	tions)	
		©Asunción Gómez-Perez, M. Fernández-López, O. Cor

OWL Example	
Develop a sample ontology in the domain of people, pets, vehicles, and newspapers	
- Practice with DL syntax, OWL abstract syntax and OWL RDF/XML syntax	
- Understand the basic primitives of OWL Lite and OWL DL	
- Understand the basic reasoning mechanisms of OWL DL (tomorrow)	
Subsumption	
Automatic classification: an ontology built collaboratively	
Instance classification	
Detecting redundancy	
Consistency checking: unsatisfiable restrictions in a Tbox (are the classes coherent?)	
Infantory infantory Ontological Engineering 33 ©Asunción Gómez-Pérez, M. Fernández-López, O	. Corcho

Some basic DL modelling guidelines		
•	X must be Y, X is an Y that	→ X⊆Y
•	X is exactly Y, X is the Y that	$\rightarrow X = Y$
•	X is not Y	$\rightarrow X \subseteq \neg Y$
•	X and Y are disjoint	→ X ∩ Y ⊑⊥
•	X is Y or Z	→ X ⊆Y∪Z
•	X is Y for which property P has only instances of Z as values	$\Rightarrow X \subseteq Y \cap (\forall P.Z)$
•	X is Y for which property P has at least an instance of Z as a value	$\Rightarrow X \subseteq Y \cap (\exists P.Z)$
•	X is Y for which property P has at most 2 values	$\Rightarrow X \subseteq Y \cap (\leq 2.P)$
•	Individual X is a Y	→X∈Y

	Chunk 1. Formalize in DL	, and then in OWL DL
1	1. Concept definitions: Grass and trees must be plants. Leaves are p that are not leaves. A dog must eat bones, at grass. A giraffe is an animal that must only e that can be part of a sheep.	arts of a tree but there are other parts of a tree least. A sheep is an animal that must only eat at leaves. A mad cow is a cow that eats brains
2	2. Restrictions: Animals or part of animals are disjoint with	plants or parts of plants.
3	3. Properties: Eats is applied to animals. Its inverse is eater	ı_by.
2	4. Individuals: Tom. Flossie is a cow. Rex is a dog and is a pet of Mick. Fido is a dog. Tibbs is a cat.	
Ontolo Engine ingGro	ntalagy underson Ontological Engineering 35	©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho

	Chunk 2. Formalize in DL, and then in OWL DL
1. (Concept definitions:
	Bicycles, buses, cars, lorries, trucks and vans are vehicles. There are several types of companies: bus companies and haulage companies.
	An elderly person must be adult. A kid is (exactly) a person who is young. A man is a person who is male and is adult. A woman is a person who is female and is adult. A grown up is a
	person who is an adult. And old lady is a person who is elderly and female. Old ladies must have some animal as pets and all their pets are cats.
2. 1	Restrictions:
	Youngs are not adults, and adults are not youngs.
3. 1	Properties:
	Has mother and has father are subproperties of has parent.
4. I	ndividuals:
	Kevin is a person.
	Fred is a person who has a pet called Tibbs.
	Joe is a person who has at most one pet. He has a pet called Fido.
	Minnie is a female, elderly, who has a pet called Tom.

Г

	Chunk 3. Formalize in	n DL, and	l then in OWL DL
1.	. Concept definitions: A magazine is a publication. Broadshee is a type of broadsheet. A red top is a ty be either a broadsheet or a tabloid. White van mans must read only tabloid	ets and tabloid ype of tabloid ds.	ds are newspapers. A quality broadsheet . A newspaper is a publication that must
2.	. Restrictions: Tabloids are not broadsheets, and broa	adsheets are n	ot tabloids.
3.	. Properties: The only things that can be read are pu	ublications.	
4.	. Individuals: Daily Mirror The Guardian and The Times are broa The Sun is a tabloid	ndsheets	
Ontology Engineer ingGroup	Ontological Engineering	37	©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho

1. (Concept definitions:
	A pet is a pet of something. An animal must eat something. A vegetarian is an animal that does not eat animals nor parts of animals. Ducks, cats and tigers are animals. An animal lover is a person who has at least three pets. A pet owner is a person who has animal pets. A cat liker is a person who likes cats. A cat owner is a person who has cat pets. A dog liker is a person who likes dogs. A dog owner is a person who has dog pets.
2. 1	Restrictions:
	Dogs are not cats, and cats are not dogs.
3.1	Properties:
	Has pet is defined between persons and animals. Its inverse is is_pet_of.
4. 1	ndividuals:
	Dewey, Huey, and Louie are ducks.
	Fluffy is a tiger.
	Walt is a person who has pets called Huey, Louie and Dewey.

Г

Chunk 5. For	malize in DL, and t	then in OWL DL
1. Concept definitions A driver must be adult. A c drives lorries. A haulage w a haulage company. A haul a haulage company. A van drives buses. A white van n	driver is a person who drives orker is who works for a hau lage truck driver is a person driver is a person who drives nan is a man who drives whit	vehicles. A lorry driver is a person who lage company or for part of who drives trucks ans works for part of s vans. A bus driver is a person who ie things and vans.
2. Restrictions:		
3. Properties:		
The service number is an in	nteger property with no restr	icted domain
4. Individuals:		
Q123ABC is a van and a w	hite thing.	
The42 is a bus whose service	ce number is 42.	
Mick is a male who read D	aily Mirror and drives Q123.	ABC.
Ontology Engineer IngFroup Ontological Engineering	39	©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho

40

Ontological Engineering

Ontological Engineering

$x \bullet \{C_1 \sqcap C_2, \ldots\}$	\rightarrow_{\sqcap}	$x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$x \bullet \{C_1 \sqcup C_2, \ldots\}$	\rightarrow_{\sqcup}	$x \bullet \{C_1 \sqcup C_2, C, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{ \exists R.C, \ldots \}$	→ <u>∃</u>	$\begin{array}{c} x \bullet \{ \exists R.C, \ldots \} \\ R \\ y \bullet \{C\} \end{array}$
$ \begin{array}{c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{\ldots\} \end{array} $	$\rightarrow \forall$	$ \begin{array}{c} x \bullet \{ \forall R.C, \ldots \} \\ R \\ y \bullet \{ C, \ldots \} \end{array} $
$\begin{array}{c} x \bullet \{ \forall R.C, \ldots \} \\ R \end{array}$	\rightarrow_{\forall_+}	$\begin{array}{c} x \bullet \{ \forall R.C, \ldots \} \\ R \end{array}$

$$\mathcal{L}(w) = \{ \exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where *R* is a **transitive** role

Concept is satisfiable: T corresponds to model

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where *R* is a **transitive** role

Concept is **satisfiable**: T corresponds to **model**

Interesting results (III). Instance classification and redundancy detection

An animal lover is a person who has at least th Walt is a person who has pets called Huey, Lo	ree pets uie and Dewey.	
animalLover $\equiv person \cap (\geq 3hasPet)$		
$Walt \in person$		
hasPet(Walt, Huey)		
hasPet(Walt,Louie)		
hasPet(Walt, Dewey)		
	We o	btain: Walt is an animal lover Walt is a person is redundant
		$Walt \in animalLover$
Butalogy Engineer Ontological Engineering	61	©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho

Normalisation Criteria (I)				
1.	The skeleton should consist of disjoint tr	·ees		
	- Every primitive concept should have exactly one	e primitive parent		
	• All multiple hierarchies are the result of inference	by reasoner		
2.	No hidden changes in meaning			
	 Each branch should be homogeneous and logica Hierarchical principle should be subsumption Otherwise we are "lying to the logic" The criteria for differentiation should follow const 	l ("Aristotelian")		
	 Example of non-homogeneous taxonomy (from Benevolent Knowledge, Borges) 	The Celestial Emporium of		
	"On those remote pages it is written that animals	are divided into:		
	 a. those that belong to the Emperor 	b. embalmed ones		
	 c. those that are trained 	d. suckling pigs		
	– e. mermaids f.	f. fabulous ones		
	 g. stray dogs h classification 	those that are included in this		
	 i. those that tremble as if they were mad 	j. innumerable ones		
	 k. those drawn with a very fine camel's hair 	brush 1. others		
	 m. those that have just broken a flower vase resemble flies from a distance" 	n. those that		

Exercise				
•Objective				
Apply design principles to normalise/modularise the OWL ontology developed in the provides excercises				
•Tasks				
 Identify disjoint trees in the ontology developed. Distinguish self-standing and refining classes. Identify axioms. Go back to the first task if the ontology is not normalised yet. 				
Intalogy Engineer IngFrag	77	©Asunción Gómez-Pérez, M. Fernández-López, O. Corcho		

