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Objectives of GAssist

• Generation of compact and accurate solutions

– Allows the system to learn better

– Generate compact and interpretable solutions

– Avoid over-learning

– Achieved by:

• Explicit default rule mechanisms

• Initialization policies

• MDL-based fitness function



Objectives of GAssist

• Run-time reduction
– Genetic Algorithms and LCS in general are 

quite slow

– Moreover, our aim is to apply GAssist to hugh 
datasets

– We need some method to alleviate the 
computational cost of the system

– Achieved by a Windowing technique called 
ILAS



Framework and workflow

• Individuals are interpreted as a decision list: an 
ordered rule set

• The semantically correct crossover operator of 
GABIL is used

• The GABIL representation is used for nominal 
attributes

• C++ and Java versions of the system. Java 
version available at 
http://www.asap.cs.nott.ac.uk/~jqb/PSP/GAssist-Java.tar.gz



Framework and workflow

• Representation

– ADI representation

– Explicit default rule mechanism

• GA cycle

Evaluation Selection

Mutation Crossover

Initialization

Initialization

Policies

•MDL fitness function

•ILAS windowing

Tournament 

Selection

Standard 

operators



The ADI rule representation

• Handling real-valued attributes by using 
discretization
– Discretization: converting a continuous variable 

into a discrete variable with finite number of 
elements

– There is no discretization method suitable 
for all datasets, because each algorithm 
introduces bias

– Are all cut-points relevant?

– ADI representation handles these two 
issues



The ADI rule representation

• ADI knowledge representation is based on 

GABIL

– Predicate  → Class

– Predicate: Conjunctive Normal Form (CNF) (A1=V1
1
∨.. 

∨ A1=V1
n) ∧.....∧ (An=Vn

2
∨.. ∨ An=Vn

m)

• Ai : ith attribute

• Vi
j : jth value of the ith attribute

– The rules can be mapped into a binary string
1100|0010|1001|1



The ADI rule representation

• The ADI representation generates the semantic values of 

the attributes (intervals) through the evolutionary process 

of the GA

• These intervals are build over a set of base intervals 

generated by a discretization algorithm (called micro-

intervals).

• This discretization can be of any kind 

Micro-Interval

Interval

1 1 1 1 10 0 0 0 0 0 0

1



The ADI rule representation

• How these intervals are evolved?

– The intervals can split or merge

1 1 1 1 10 0 0 0 0 0 0
1

1 1 1 1 10 0 0 0 0 0 0
1

1

Split



The ADI rule representation

• How these intervals are evolved?

1 1 1 1 10 0 0 0 0 0 0
1

1 1 1 10 0 0 0 0 0 0
1

Merge



The ADI rule representation

• We have a predefined pool of discretization 

algorithms

• Initialization assigns randomly a discretizer to 

each attribute-term of each rule of each 

individual

• In this way, the system is not completely tied to 

the bias introduced by each single discretization 

algorithm



Generation of compact and accurate 

rule sets 

• The default rule mechanism
– When we encode this rule set as a decision list we 

can observe an interesting behavior: the emergent 
generation of a default rule

– Using a default rule can help generating a more 
compact rule set

• Easier to learn (smaller search space)

• Potentially less sensitive to overlearning

– To maximize this benefits, the knowledge 
representation is extended with an explicit default rule



Generation of compact and accurate 

rule sets 

• What class is assigned to the default rule?

– Simple policies such as using the 

majority/minority class are not robust enough

– We can combine the simple policies, but 

doubling the run-time

– Automatic determination of default class



Generation of compact and accurate 

rule sets 

• Automatic default class

– All default classes compete in the population

– A niching mechanism is used to guarantee a 

fair competition: different default classes 

might have different learning rate

– The niching mechanism is disabled when all 

niches are equally good (in accuracy)



Generation of compact and accurate 

rule sets 

• Initialization policy: covering operator

– Inspired in the covering operator of XCS 

– Each rule initialization samples an instance 

from the training set

– Two methods of sampling instances from the 

training set

• Uniform probability for each instance

• Class-wise sampling probability



Generation of compact and accurate 

rule sets 

• MDL-based fitness function

Sender Receiver

Instances + class Instances

How do we send the class
of each instance?

Theory description +

1) Sending the classes

2) Generating a theory
and sending it plus
its exceptions



Generation of compact and accurate 

rule sets 

• The solution that minimizes the length of sending 
the theory + its exceptions will be the best one

• MDL based fitness function is the minimization of 
the following formula:

• W is domain specific. In order to avoid a manual 
tuning we have also developed an adaptive 
heuristic process to tune this parameter

ELTLWMDL +⋅=



Generation of compact and accurate 

rule sets 

• TL depends on the knowledge representation used. We 
should not select the shortest theory length definition, 
but a definition that promotes well-generalized solutions

• This is the most interesting feature of this fitness 
function. We can explore more efficiently the search 
space by guiding the search based on the content of the 
individuals

• TL metric will promote
– Individuals with few rules

– Individuals with few expressed attributes



Run-time reduction

• A windowing mechanism named Incremental Learning 
with Alternating Strata (ILAS) is used

• The mechanism uses a different subset of training 
examples in each GA iteration

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations

0 Iter


