Introduction to Learning Classifier Systems

Dr. J. Bacardit, Dr. N. Krasnogor G53BIO - Bioinformatics

Outline

- Introduction
- Machine Learning & Classification
- Paradigms of LCS
- Knowledge representations
- Real-world examples
- Recent trends
- Summary

Introduction

- Learning Classifier Systems (LCS) are one of the major families of techniques that apply evolutionary computation to machine learning tasks
 - **Machine learning**: How to construct programs that automatically learn from experience [Mitchell, 1997]
- LCS are almost as ancient as GAs, Holland made one of the first proposals

Introduction

Paradigms of LCS

- The Pittsburgh approach [Smith, 80]
- The Michigan approach [Holland & Reitman, 78]
- The Iterative Rule Learning approach [Venturini, 93]
- Knowledge representations
 - All the initial approaches were rule-based
 - In recent years several knowledge representations have been used in the LCS field: decision trees, synthetic prototypes, etc.

- A more formal definition of machine learning and some examples [Mitchell, 1997]
 - A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*
 - How does this definition translate to real life?

- A checkers learning problem
 - Task *T*: playing checkers
 - Performance measure P: percent of games won against opponents
 - Training experience *E*: playing practice games against itself

- A handwriting recognition learning problem
 - Task *T*: recognizing and classifying handwritten words withing images
 - Performance measure P: percent of words correctly identified
 - Training experience *E*: a database of handwritten words with given classifications

A robot driving learning problem

- Task *T*: driving on public four-lane highways using vision sensors
- Performance measure P: average distance traveled before an error (as judged by human overseer)
- Training experience *E*: a sequence of images and steering commands recorded while observing a human driver

 Classification task: Learning how to label correctly new instances from a domain based on a set of previously labeled instances

- Instance: individual, independent example of the domain that has to be learned
- Instances have regular structure:
 - Fixed number of attributes: features that characterize an instance
 - A class: a label belonging to a finite and discrete domain
- Attributes can be of diverse type
 - Nominal: discrete and finite variable
 - Integer
 - o Continuous

 Goal of classification is to learn how to predict the class of an instance from its attributes

Instance: (X,Y||Colour)

1: If (X<0.25 and Y>0.75) or
(X>0.75 and Y<0.25) then $\rightarrow +$ 2: If (X>0.75 and Y>0.75) then $\rightarrow +$ 3: If (X<0.25 and Y<0.25) then $\rightarrow +$ 4: If (X \in [0,25,0,50] and
Y \in [0.25,0.50]) then $\rightarrow +$ 4': Everything else

- Paradigms of LCS
 - The Pittsburgh approach [Smith, 80]
 - The Michigan approach [Holland & Reitman, 78]
 - The Iterative Rule Learning approach [Venturini, 93]

The Pittsburgh approach

- This approach is the closest one to the standard concept of GA
- Each individual is a complete solution to the classification problem
- Traditionally this means that each individual is a variable-length set of rules
- GABIL [De Jong & Spears, 93] is a wellknown representative of this approach

- Pittsburgh approach
 - More than one rule could be used to classify a given instance
 - Match process: deciding which rule is used in these cases
 - An usual approach is that individuals are interpreted as a decision list [Rivest, 87]: an ordered rule set

1 2 3 4 5 6 7 8

Instance 1 matches rules 2, 3 and 7 \rightarrow Rule 2 will be used Instance 2 matches rules 1 and 8 \rightarrow Rule 1 will be used Instance 3 matches rule 8 \rightarrow Rule 8 will be used Instance 4 matches no rules \rightarrow Instance 4 will not be classified

• Mutation operator: classic GA mutation of bit inversion

- Pittsburgh approach
 - Evaluation process of an individual:
 - NumExamples=0
 - CorrectExamples=0
 - **For** each example in training set
 - NumExamples++
 - Determine first rule that matches training example
 - If class of rule is the same as class of instance
 - CorrectExamples++
 - Fitness=(CorrectExamples/NumExamples)²

- In the other two approaches each individual is a rule
- What happens usually in the evolutionary process of a GA?
 - All individuals converge towards a single solution
- Our solution is a set of rules. Therefore we need some mechanism to guarantee that we generate all of them.
- Each approach uses a different method for that

The Michigan approach

- Each individual (classifier) is a single rule
- The whole population cooperates to solve the classification problem
- A reinforcement learning system is used to identify the good rules
- A GA is used to explore the search space for more rules
- XCS [Wilson, 95] is the most well-known Michigan LCS

The Michigan approach

- What is Reinforcement Learning?
 - "a way of programming agents by reward and punishment without needing to specify how the task is to be achieved" [Kaelbling, Littman, & Moore, 96]
 - Rules will be evaluated example by example, receiving a positive/negative reward
 - Rule fitness will be update incrementally with this reward
 - After enough trials, good rules should have high fitness

Working cycle

The Iterative Rule Learning approach

- Each individual is a single rule
- Individuals compete as in a standard GA
 → A single GA run generates one rule
- The GA is run iteratively to learn all rules that solve the problem
- Instances already covered by previous rules are removed from the training set of the next iteration

Rule

set

Learning finished

- The Iterative Rule Learning approach
 - HIDER System [Aguilar, Riquelme & Toro, 03]
 - 1. Input: Examples
 - 2. RuleSet = \emptyset
 - 3. While |Examples| > 0
 - 1. Rule = Run GA with Examples
 - 2. RuleSet = RuleSet **U** Rule
 - 3. Examples = Examples \ Covered(Rule)
 - 4. EndWhile
 - 5. Output: RuleSet
 - Fitness uses accuracy + generality measure
 - Generality: rule covering as much examples as possible

- Knowledge representations
 - For nominal attributes
 - Ternary representation
 - GABIL representation
 - For real-valued attributes
 - Decision tree
 - Synthetic prototypes
 - Others

- Representation of XCS for binary problems: ternary representation
 - Ternary alphabet {0,1,#}
 - If $A_1=0$ and $A_2=1$ and A_3 is irrelevant \rightarrow class 0

- For non-binary nominal attributes:
 - {0,1, 2, ..., n,#}
- Crossover and mutation act as in a classic GA

- Representation of GABIL for nominal attributes
 - Predicate \rightarrow Class
 - Predicate: Conjunctive Normal Form (CNF) $(A_1 = V_1^{1} \vee ... \vee A_1 = V_1^{n}) \wedge ... \wedge (A_n = V_n^{2} \vee ... \vee A_n = V_n^{m})$
 - A_i : *ith a*ttribute
 - V_i^j : *jth v*alue of the *ith* attribute
 - The rules can be mapped into a binary string 1100|0010|1001|1
 - Usual crossover and mutation

- Representation of GABIL for nominal attributes
 - o 2 Variables:
 - Sky = {clear, partially cloudy, dark clouds}
 - Pressure = {Low, Medium, High}
 - 2 Classes: {no rain, rain}
 - Rule: If [sky is (partially cloudy or has dark clouds)] and [pressure is low] then predict rain
 - Genotype: "011|100|1"

- Representation of XCS for real-valued attributes: real-valued interval
 - o XCSR [Wilson, 99]
 - Interval is codified with two variables: center & spread: [center, spread] → [centerspread,center+spread]
 - Rule for the colours example:
 - [0.125,0.125]|[0.125,0.125]| +
 - Usual crossover
 - Mutation adds or substracts a small quantity from the genes

- Representation of XCS for real-valued attributes: real-valued interval
 - UBR [Stone & Bull, 03]
 - Interval is codified with two variables: lower & upper bound: [lower, upper]
 - The variable with lowest value is the lower bound, the variable with higher value is the upper bound
 - [0,0.25]|[0.25,0]| →

- Pittsburgh representations for real-valued attributes:
 - Rule-based: Adaptive Discretization Intervals (ADI) representation [Bacardit, 04]
 - Intervals in ADI are build using as possible bounds the cut-points proposed by a discretization algorithm
 - Search bias promotes maximally general intervals
 - Several discretization algorithms are used at the same time in order to choose correctly the appropriate method for each domain

- Pittsburgh representations for real-valued attributes:
 - o Decision trees [Llorà, 02]
 - Nodes in the trees can use orthogonal or oblique criteria

- Pittsburgh representations for real-valued attributes:
 - Orthogonal decision tree

- Pittsburgh representations for real-valued attributes
 - Synthetic prototypes [Llorà, 02]
 - Each individual is a set of synthetic instances
 - These instances are used as the core of a nearest-neighbor classifier

Pittsburgh representations for real-valued attributes

• Synthetic prototypes

Real-world applications

- Generating control rules for a fighter aircraft [Smith et. al., 00]
 - Using Michigan LCS
 - Learning aircraft maneuvers
 - Input information:
 - Airspeed, altitude, aircraft angle, …
 - Actions (classes):
 - Rudder angle and speed

Real-world applications

- Predicting the mill temperature (range of temperatures) in a aluminium plate mill [Browne & Bacardit, 04]
 - The Pittsburgh approach was used
 - A press is used to level raw aluminium into a thin sheet that can be coiled
 - The aluminium temperature should be within some operational limits
 - Temperature is predicted from around 60 input sensors

Real-world applications

- Medical domains: Generation of epidemiologic hypothesis [Holmes, 96]
 - Predicting if a pacient has a disease based on their degree of exposure to certain factors
 - In this domain the difference between false positives and false negatives is important

Recent trends

- Develop a theoretical framework of the behavior of each kind of LCS
 - These models are intended to allow the user to adjust the LCS in a principled way to guarantee success
 - Convert LCS into an engineering tool

Recent trends

- New kinds of knowledge representations, specially non-linear ones
 - Making sure that the representation has enough expressive power to model successfully the domain

Recent trends

- Development of exploration mechanism that can go beyond the classic crossover and mutation operators
 - It is known that these classic exploration mechanisms have limitations, specially in identifying the structure of the problem
 - If the algorithm learns this structure, it can explore more efficiently and find better solutions

Summary

- This talk was a brief overview of the Learning Classifier Systems area: EC techniques applied to Machine Learning
- Description of the three main paradigms
 - Pittsburgh
 - o Michigan
 - Iterative rule learning

Summary

- Description of several knowledge representations
 - o Rule based
 - Nominal attributes
 - Continuous attributes
 - Decision trees
 - Synthetic prototypes

Summary

Applications to real-world domains

- o Medical
- o Industrial
- Military
- Recent trends
 - Explore better
 - Model the problem better
 - Understand better