
Automated Self-Assembly
Programming Paradigm:

Initial Investigation

Lin Li, Natalio Krasnogor, Jon Garibaldi

ASAP Group,

University of Nottingham.

{lxl, nxk, jmg}@cs.nott.ac.uk

Outline

� Brief introduction on self-assembly
and software self-assembly

� Automated self-assembly
programming paradigm using ideal
gas as a metaphor

� Experimental results and analysis

� Conclusion

What is self-assembly?

� definition:
� Self-assembly is a process in which a
disordered set of components self-organises
into a specific structure.

� Components interact with each other and
form the global structure without external
control.

� The final structure is 'encoded' in the
properties of components and their
interactions.

� advantages:
� Robust: replacement of failed components.

� Versatile: prone to alternative specification.

Examples of self-assembly
systems

� Amphiphilic molecules

� Formed by two ends with
opposite properties:

• Hydrophilic head: tend to be
close to small water molecules

• Hydrophobic end: tend to be
close to similar chains

� Amphiphilic molecules self-
assemble into a variety of
structures in water.

Examples of self-assembly
systems

G(blue, blue) > temp - -> tiles stick and
standstill

G(blue, red) <= temp -- > tiles do not stick

62

23

X

Stickiness

Temp = 4

62

23

X

62

23

X

�Wang tiles model

Automated Self-assembly
programming paradigm (ASAP2)

� Our automated self-assembly
programming paradigm (ASAP2) is
inspired by both natural and artificial self-
assembly systems.

� Software self-assembly system features:
� human-made software components
� software repositories
� interaction rules
� embodiment metaphor
� no external intervention or central control
mechanism

Software self-assembly in
relation to GP

� Genetic programming: One of the most
popular approaches to automated
program synthesis and has been applied
to wide range of problems.

� Software self-assembly seeks to provide
at least a complement but maybe an
alternative to genetic programming.

� GP uses natural selection as a metaphor.

This Research

� We aim at analysing the potential and
limitation of software self-assembly.

� In this talk, we aim to find out how
different environment settings affect an
unguided process of software self-
assembly.

� The embodiment we use is a metaphor
based on ideal gas theory.

Program gases

� Our software self-assembly system is
based on the theory of perfect gases.
� Manually decomposed software components
are placed into a container within which they
move randomly.

� The temperature (T), number of components
placed into the pool (n), and the size of the
pool (V) are free parameters of the model.

� Components move faster as temperature
increases.

� PV = nRT

Program gases

� What the metaphor does NOT capture:
� Software self-assembly may bind rather than
collide.

� The size of an assembled gas component
grows.

� In perfect gases, it is assumed that the
distance between molecules are much greater
than their sizes.

� We investigate to what extent the
equation for perfect gases holds for
program gases.

A parsing tree of a bubble
sort program

Components and ports

� Components are decomposed from a
selected program and stored into a
software repository.

� Each component has one input port and
can have several output ports.

� A port is used as a binding site.

� Each port has a type associated.

� An input port can only connect with an
output port of the same type.

Model descriptions

� ASAP2 starts by placing components retrieved
from the repository into the pool.

� Components move around in the pool randomly
with a probability which is a function of the
temperature.

� When two components are within certain
proximity and their types on the connecting
ports match, they self-assemble.

� Equilibrium is reached when there are no more
possible binding actions among components
left in the pool.

A gif animation of our
system

Experiment methods
� Moving probability of a component is
affected by temperature: p(M) = e-T

� Interaction distance between components
is affected by the size of the component
(i.e. the number of nodes in the tree).

� With three free parameters T, A and n, we
measure:
� pressure (P): number of hits on the wall

� time to equilibrium (t
ε
): time needed for the

system to reach equilibrium

� diversity of the self-assembled trees at
equilibrium (D

ε
): total number of different parse

tree classes.

Experiment methods

� Three standard sorting algorithms are
chosen as sources of software
components.

� For each of software component
repository, we run 20 replicas for each
(A, T, n) triplet.

� A ∈ {400, 500, 600, 700}, T ∈ {0.25,
0.5, …, 3.75, 4.0}, n ∈{1, 2, 3, 4, 8, 16,

24, 32}.

An example “forest” of
program trees

Experiment results (bubble
sort)

Experiment results (bubble
sort)

Experiment results (bubble
sort)

Experiment results (insertion
sort)

Experiment results (insertion
sort)

Experiment results (selection
sort)

Experiment results (selection
sort)

Experiment analysis
� As the equation of ideal gases suggests:

� Pressure increases when there is a rise in
temperature or number of components
placed into the pool.

� Pressure decreases when size of the pool
becomes larger.

� Self-assembly can be made more
efficient with:
� Greater number of components placed into
the pool.

� Smaller size of the pool.
� High temperature.

Experiment analysis

� Diversity of the generated programs are
mainly affected by number of components
placed into the pool.

Predictive formulae

� t
ε
(A,N) = (((7.05 * A) + 321.2) / N)
+(3.91 * A) – 593.71

black triangles:
experimental data;

red circles:
corresponding data
obtained using
predictive model.

Predictive formulae

� t
ε
(A,T) = (((5.22 * A) – 659.02) / T)
+(3.73 * A) – 416.11

black triangles:
experimental data;

red circles:
corresponding data
obtained using
predictive model.

Predictive formulae

� t
ε
(T, N) = ((1/T) + 1) * ((1726/N) +
637.33)

black triangles:
experimental data;

red circles:
corresponding data
obtained using
predictive model.

Predictive formulae

� D
ε
= 15*N + 16.6

Prediction model
assessment

Conclusion

� In this talk, we have:
� introduced an unguided software self-
assembly system.

� used kinetic theory on perfect gases as a
metaphor for embodying ASAP2.

� from the experiments, we measured efficiency
of software self-assembly and diversity of the
generated programs.

� obtained a suitable range of environment
settings.

� produced predictive equations for T
ε
and D

ε

� this prediction has not been done yet for GP.

Thank you!

Questions?

