> Peter Siepmann¹, Christopher Martin², Natalio Krasnogor¹, Philip Moriarty²

Condensed Matter and Materials Physics 20th April, University of Exeter

School of Computer Science & IT¹ School of Physics & Astronomy²

Overview

Physical background

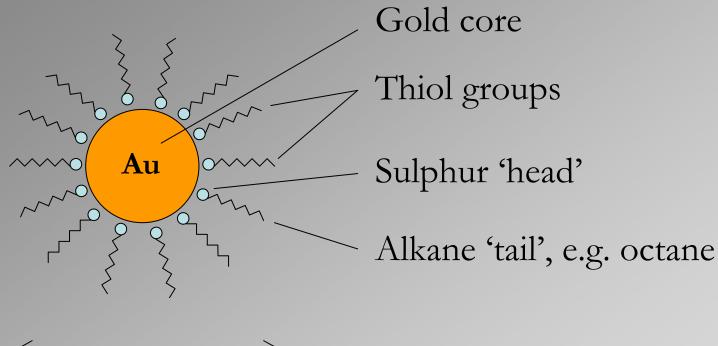
Nanoparticle simulation details

• A brief overview of Genetic Algorithms

Results from initial trials

Conclusions & further work

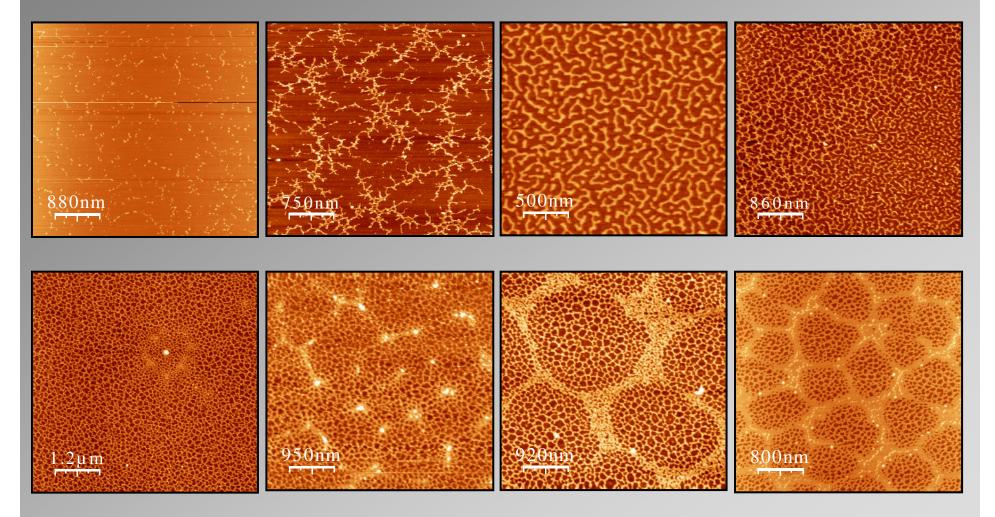
Thiol-passivated Au nanoparticles



~3nm

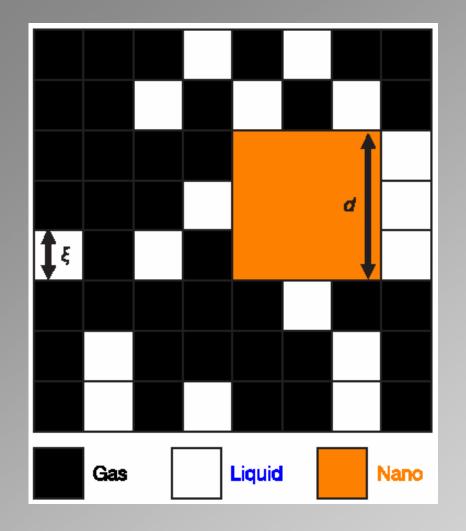
Dispersed in toluene, and spin cast onto native-oxide-terminated silicon

Au nanoparticles: Morphology



AFM images taken by Matthew O. Blunt, Nottingham

Nanoparticle Simulations



Solvent is represented as a twodimensional lattice gas

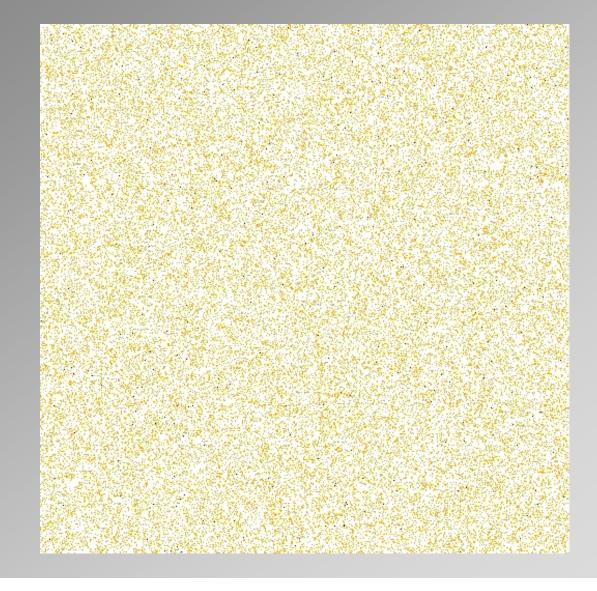
Each lattice site represents 1nm²

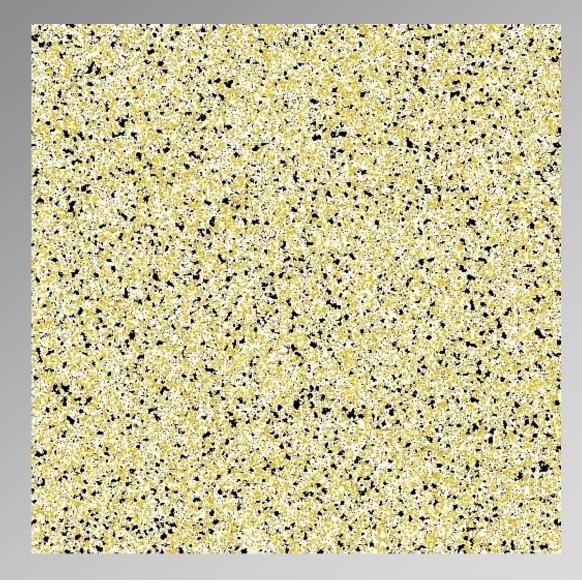
Nanoparticles are square, and occupy nine lattice sites

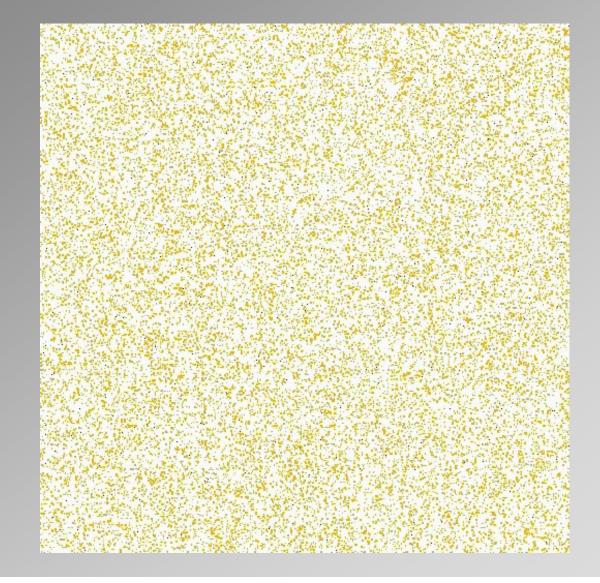
Based on the simulations of Rabani et al. (*Nature* **2003**, *426*, 271-274). Includes modifications to include next-nearest neighbours to remove anisotropy.

- The simulation proceeds by the Metropolis algorithm:
 - Each solvent cell is examined and an attempt is made to convert from liquid to vapour (or vice-versa) with an acceptance probability $p_{acc} = \min[1, \exp(-\Delta H/k_BT)]$
 - Similarly, the particles perform a random walk on wet areas of the substrate, but cannot move into dry areas.
 - The Hamiltonian from which ΔH is obtained is as follows:

$$H = -\varepsilon_l \sum_{\langle ij \rangle} l_i l_j - \varepsilon_n \sum_{\langle ij \rangle} n_i n_j - \varepsilon_{nl} \sum_{\langle ij \rangle} n_i l_j - \mu \sum_i l_i$$







A brief overview of Genetic Algorithms global optimum Motivation - optimisation problems - large search space - inspired by Darwinian evolution - area covered? - degree of order? - similarity to target pattern? 1.05 22 0.25 1.0 4.5 fitness function simulator fitness genotype

phenotype

The University of **Nottingham**

TIME

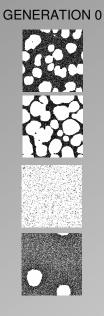
A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability



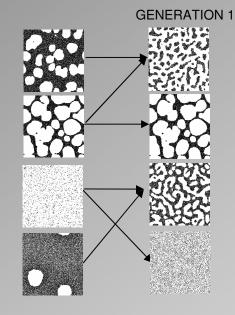
A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability



A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability

GENERATION 2

TIME

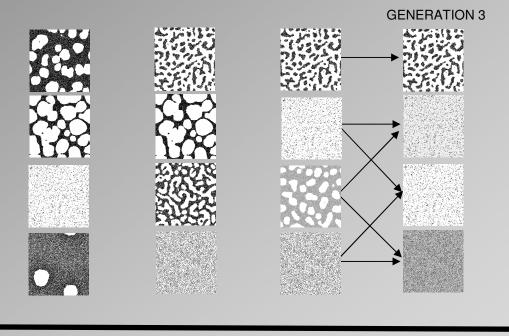
A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability



TIME

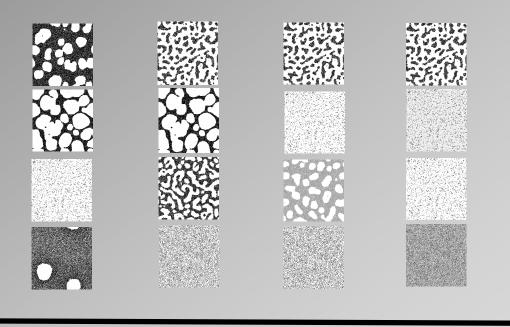
A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability



TIME

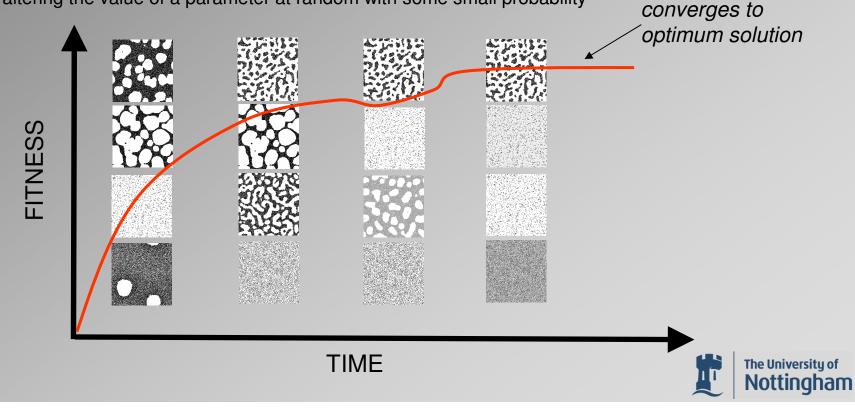
A brief overview of Genetic Algorithms

Evolution

Recombination (mating)
e.g. exchanging parameters
'combine the best bits of each parent'

- Mutation

e.g. altering the value of a parameter at random with some small probability



Evolving towards a target pattern

Fitness function:

"How similar is this pattern to the target pattern we are trying to recreate?"

How do we measure this?

The Universal Similarity Metric

is a measure of similarity between two given objects, o_1 and $o_2,$ in terms of information distance:

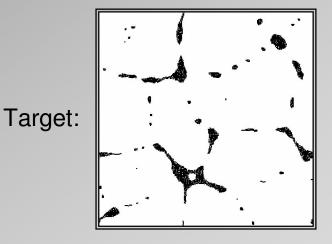
 $d(o_1, o_2) = \frac{\max\{K(o_1 | o_2), K(o_2 | o_1)\}}{\max\{K(o_1), K(o_2)\}}$

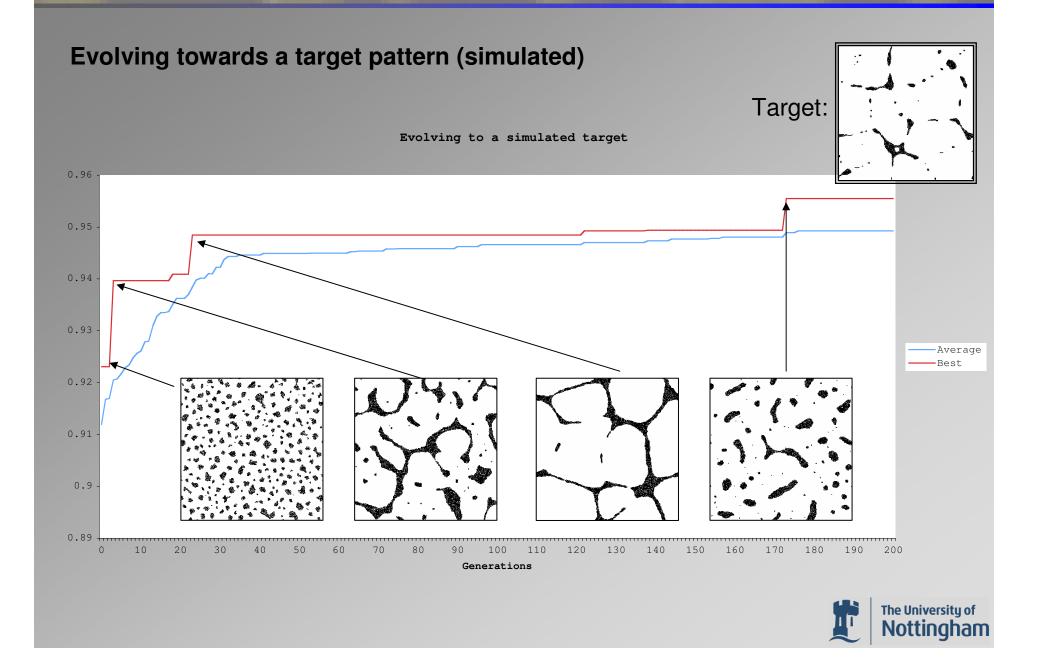
where K(0) is the Kolmogorov complexity:

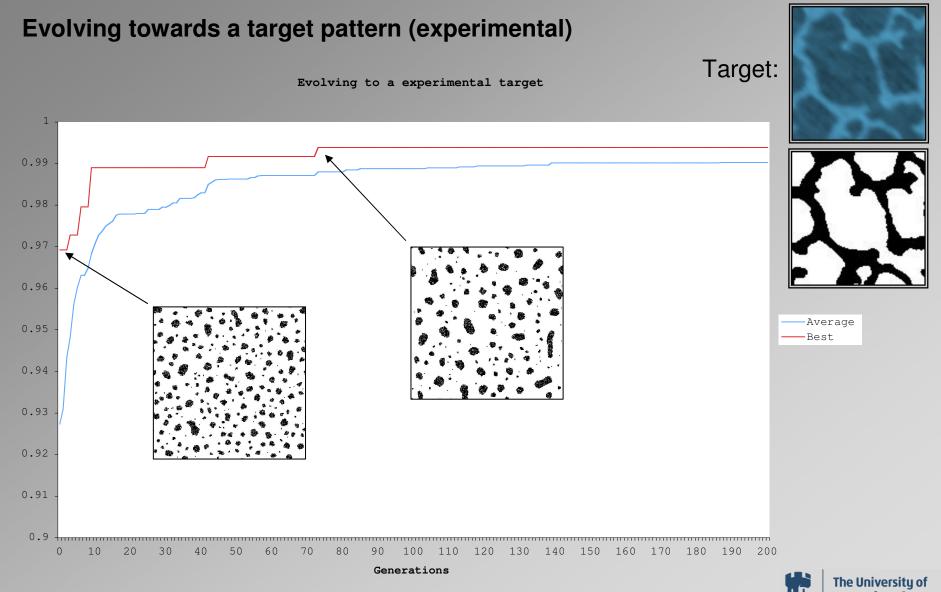
K(o): The length of the shortest program for computing o by a Turing machine K(o₁lo₂): How much (more) information is needed to produce object o_1 if one already knows object o_2

Evolving towards a target pattern (simulated)

- Selected a target image from simulated data set
- Initialised GA
 - Roulette Wheel selection
 - Uniform crossover (probability 1)
 - Random reset mutation (probability 0.3)
 - Population size: 10
 - Offspring: 5
 - μ + λ replacement
- Ran the GA for 200 iterations
 - on a single processor server, run time ≈ 5 days
 - using Nottingham's cluster (up to 1024 nodes), run time ≈ 12 hours







The University of Nottingham

Conclusions and further work

- we can evolve target simulated behaviour using a GA with the USM
- work continues to improve the evolution of experimental behaviour
- use of more introspective fitness functions *e.g. Minkowski functionals*
 - open ended (multiobjective) evolution
 - e.g. "evolve a pattern with as many large spots as possible in as ordered a fashion as possible"
- parameter investigations
 - larger populations
- full fitness landscape analysis

> Peter Siepmann¹, Christopher Martin², Natalio Krasnogor¹, Philip Moriarty²

Condensed Matter and Materials Physics 20th April, University of Exeter

School of Computer Science & IT¹ School of Physics & Astronomy²

