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Overview

• Physical background

• Nanoparticle simulation details

• A brief overview of Genetic Algorithms

• Results from initial trials

• Conclusions & further work
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Au

~3nm

Gold core

Thiol groups

Sulphur ‘head’

Alkane ‘tail’, e.g. octane

Dispersed in toluene, and spin cast

onto native-oxide-terminated silicon

Thiol-passivated Au nanoparticles
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AFM images taken by Matthew O. Blunt, Nottingham

Au nanoparticles: Morphology



Solvent is represented as a two-

dimensional lattice gas

Each lattice site represents 1nm2

Nanoparticles are square, and 

occupy nine lattice sites

Based on the simulations of Rabani et al. 

(Nature 2003, 426, 271-274).  Includes 

modifications to include next-nearest 

neighbours to remove anisotropy.
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Nanoparticle Simulations
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• The simulation proceeds by the Metropolis algorithm:

– Each solvent cell is examined and an attempt is made to 

convert from liquid to vapour (or vice-versa) with an 

acceptance probability pacc = min[1, exp(-∆∆∆∆H/kBT)]

– Similarly, the particles perform a random walk on wet areas 

of the substrate, but cannot move into dry areas.

– The Hamiltonian from which ∆∆∆∆H is obtained is as follows:

Nanoparticle Simulations
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Nanoparticle Simulations
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Nanoparticle Simulations
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Nanoparticle Simulations



Motivation

- optimisation problems

- large search space

- inspired by Darwinian evolution

global optimum

A brief overview of Genetic Algorithms
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fitness

- area covered?
- degree of order?
- similarity to target pattern?
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A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability

GENERATION 0



TIME

A Genetic Algorithm Approach to Guiding the Evolution of Self-Organised Nanostructured Systems

A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability

GENERATION 1



TIME

A Genetic Algorithm Approach to Guiding the Evolution of Self-Organised Nanostructured Systems

A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability

GENERATION 2



TIME

A Genetic Algorithm Approach to Guiding the Evolution of Self-Organised Nanostructured Systems

A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability

GENERATION 3



TIME

A Genetic Algorithm Approach to Guiding the Evolution of Self-Organised Nanostructured Systems

A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability



TIME

A Genetic Algorithm Approach to Guiding the Evolution of Self-Organised Nanostructured Systems

A brief overview of Genetic Algorithms

Evolution

- Recombination (mating)
e.g. exchanging parameters
‘combine the best bits of each parent’

- Mutation
e.g. altering the value of a parameter at random with some small probability
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Evolving towards a target pattern

Fitness function:

“How similar is this pattern to the target pattern we are trying to recreate?”

How do we measure this?

The Universal Similarity Metric

is a measure of similarity between two given objects, o1 and o2, in terms 

of information distance:

where K(o) is the Kolmogorov complexity:

K(o): The length of the shortest program for computing o by a 

Turing machine

K(o1|o2): How much (more) information is needed to produce 

object o1 if one already knows object o2

d(o1,o2) =   
max{K(o1 | o2),K(o2 | o1)}

max{K(o1),K(o2)}
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• Selected a target image from simulated data set

• Initialised GA

- Roulette Wheel selection

- Uniform crossover (probability 1)

- Random reset mutation (probability 0.3)

- Population size: 10

- Offspring: 5

- µ + λ replacement

• Ran the GA for 200 iterations

- on a single processor server, run time ≈ 5 days

- using Nottingham’s cluster (up to 1024 nodes), run time ≈ 12 hours

Target:

Evolving towards a target pattern (simulated)
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Evolving to a simulated target
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Evolving to a experimental target
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• we can evolve target simulated behaviour using a GA with the USM

• work continues to improve the evolution of experimental behaviour

• use of more introspective fitness functions
e.g. Minkowski functionals

- open ended (multiobjective) evolution

e.g. “evolve a pattern with as many large spots as 

possible in as ordered a fashion as possible”

• parameter investigations

- larger populations

• full fitness landscape analysis

Conclusions and further work
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