Peter Siepmann, Germán Terrazas, Natalio Krasnogor

School of Computer Science & IT University of Nottingham

Adaptive Computing in Design and Manufacture 25th April 2006 Bristol

Motivation

- automated design and optimisation of complex systems
 - cellular automata models
- how can we verify that our fitness function is robust?
- present a methodology for answering this question
 - supported by experimental illustration

Evolutionary design for the behaviour of cellular automaton-based complex systems Peter Siepmann, Germán Terrazas, Natalio Krasnogor

Introduction

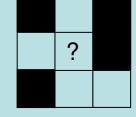
- Self-organising processes
- Modelled using cellular automata

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

Introduction

- Self-organising processes
- Modelled using **cellular automata**

- infinite, regular grid of cells

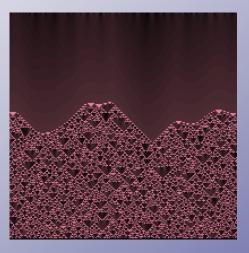

- each cell in one of a finite number of states

- at a given time, *t*, the state of a cell is a function of the states of its

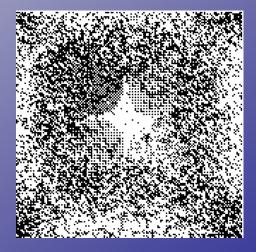
neighbourhood at time t-1.

Example

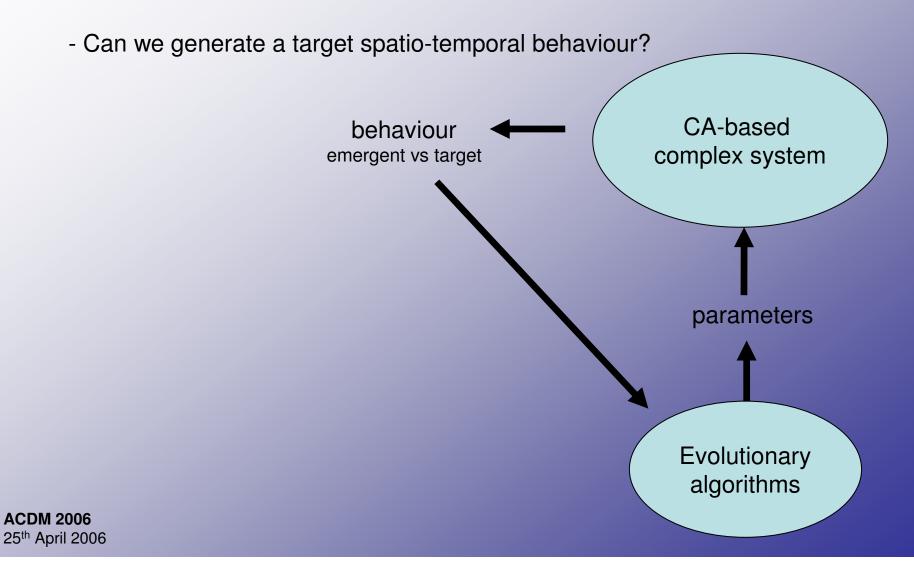
- infinite sheet of graph paper


- each square is either black or white
- in this case, neighbours of a cell are the eight squares touching it
- for each of the 2⁸ possible patterns, a rules table would state whether the center cell will be black or white on the next time step.

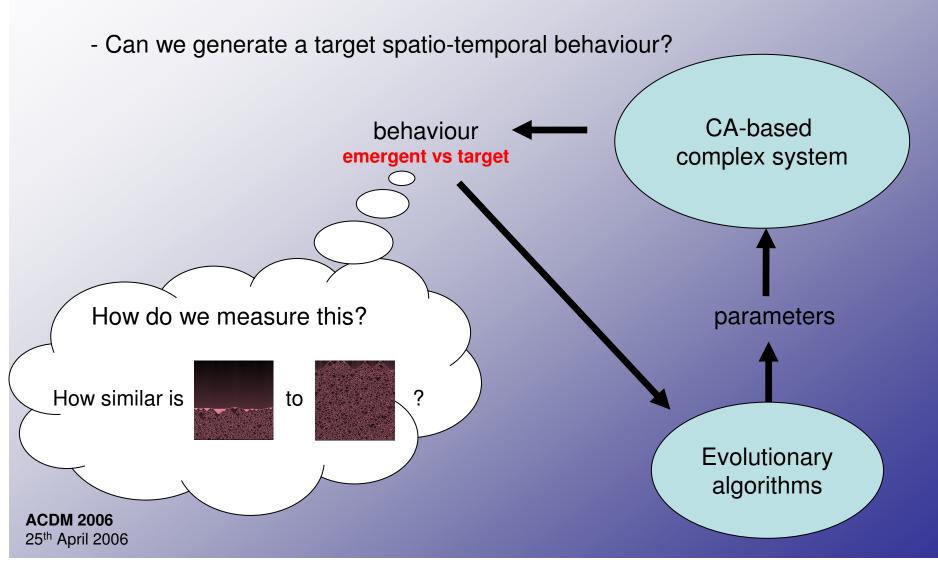
Peter Siepmann, Germán Terrazas, Natalio Krasnogor


Introduction

CA continuous


Turbulence

Gas Lattice


Peter Siepmann, Germán Terrazas, Natalio Krasnogor

Introduction

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

Introduction

Evolutionary design for the behaviour of cellular automaton-based complex systems Peter Siepmann, Germán Terrazas, Natalio Krasnogor

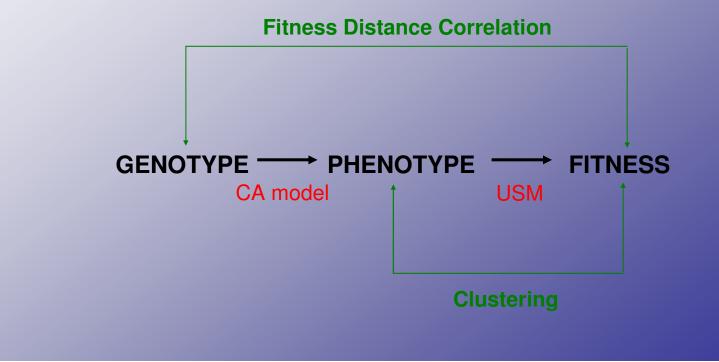
The Universal Similarity Metric (USM)

is a measure of similarity between two given objects in terms of information distance:

$$d(o_1, o_2) = \frac{\max\{K(o_1 | o_2), K(o_2 | o_1)\}}{\max\{K(o_1), K(o_2)\}}$$

where K(o) is the Kolmogorov complexity

Prior Kolmogorov complexity K(o): The length of the shortest program for computing o by a Turing machine


Conditional Kolmogorov complexity K(01|02):

How much (more) information is needed to produce object o1 if one already knows object o2 (as input)

The Universal Similarity Metric (USM)

- Is the USM a good objective function for evolving target spacio-temporal behaviour in a CA system?

- methodology for answering this question
- experimental results

Evolutionary design for the behaviour of cellular automaton-based complex systems Peter Siepmann, Germán Terrazas, Natalio Krasnogor

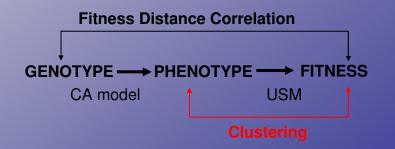
To be presented at the 7th International Conference of Adaptive Computing in Design and Manufacture, Bristol, April 2006

Data set

For each CA system:

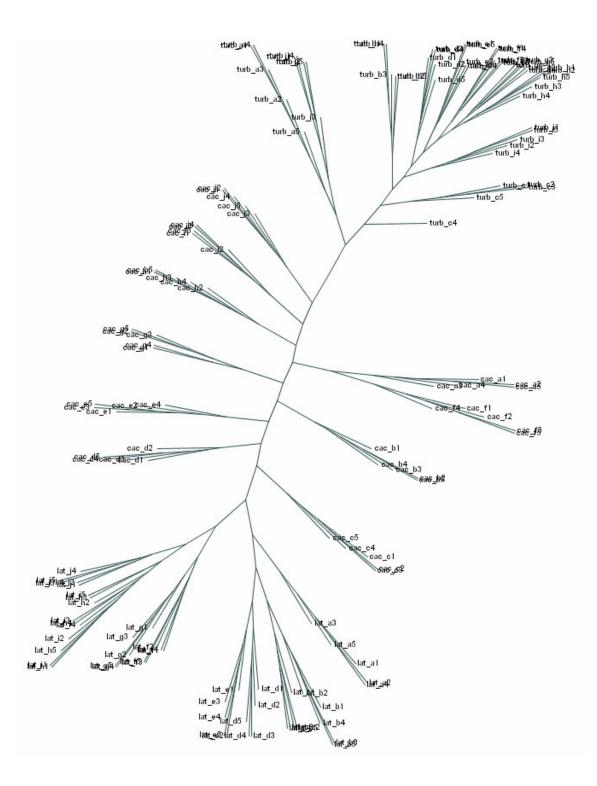
- Keep all but one parameter the same
- Produce 10 behaviour patterns through the variable parameter
- Repeat for other parameters

EXAMPLE

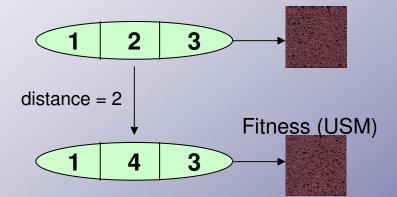

turb_c4 refers to the spacio-temporal pattern produced by the fourth variation in parameter c of a *Turbulence* CA system

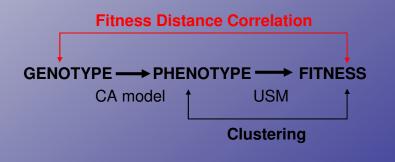
Evolutionary design for the behaviour of cellular automaton-based complex systems Peter Siepmann, Germán Terrazas, Natalio Krasnogor

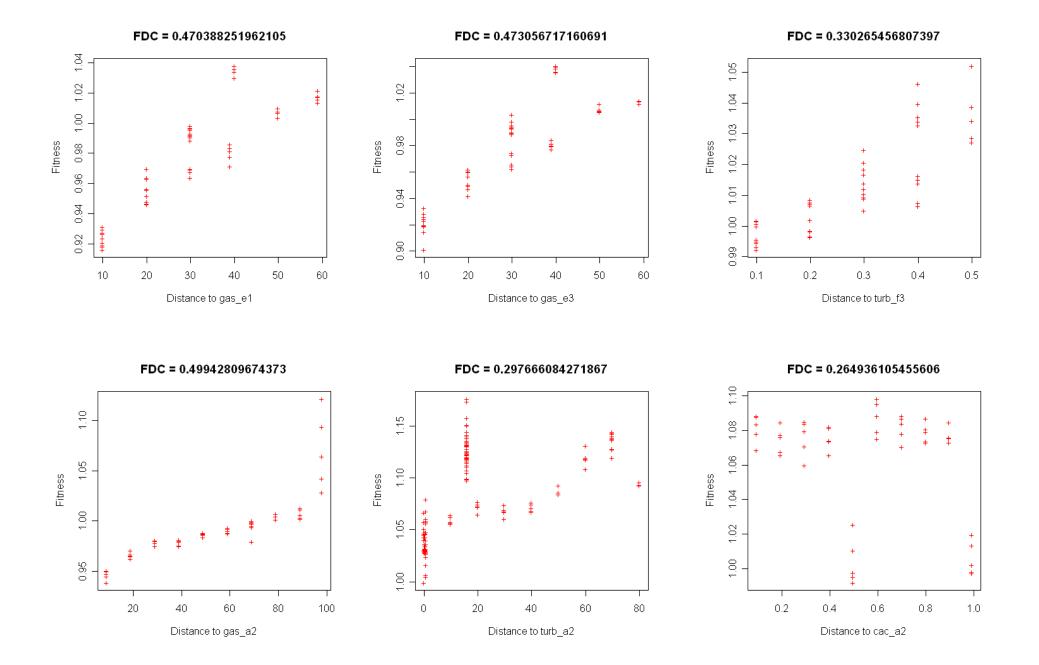
To be presented at the 7th International Conference of Adaptive Computing in Design and Manufacture, Bristol, April 2006


Clustering

- does the USM detect similarity of phenotype?
- calculate a similarity matrix filled with the results of the application of the USM to a set of objects
- during the clustering process, similar objects should be grouped together


ASAP Seminars 8th February 2006





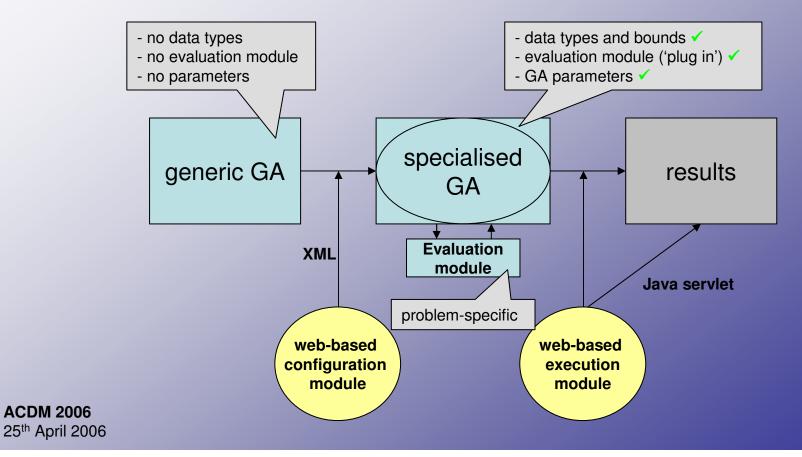
Fitness Distance Correlation

- correlation analyses of a given fitness function versus parametric (genotype) distance.
- larger numbers indicate the problem could be optimised by a GA
- numbers around zero [-0.15, 0.15] indicate bad correlation
- scatter plots are helpful

The Genetic Algorithm

Aim: to evolve a behaviour as similar as possible to some given target behaviour

Parameters	$i \in \Re$. $0 \le i \le 100$	initial turbulence				
Chromosome: i c r	$c \in \mathfrak{R}$. $0 \le i \le 1$	coupling strength				
Population size: 10	$r \in \Re$. $0 \le i \le 0.025$	roughness				
Offspring: 4						
Selection: roulette						
Recombination: uniform crossover (probability 1)						
Mutation: BCG (probability 0.6)	selects a value in a fixed distribution either side of current value					
Stopping condition: 200 generations						


Peter Siepmann, Germán Terrazas, Natalio Krasnogor

The Genetic Algorithm

Our GA platform

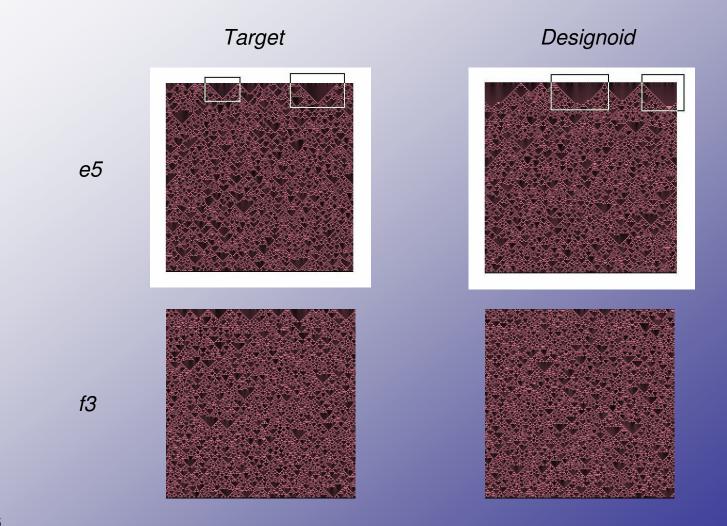
"we will implement an object-oriented, platform-independent, evolutionary engine (EE). The EE will have a user-friendly interface that will allow the various platform users to specify the platform with which the EE will interact"

Evolvable CHELLware grant application

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

The Genetic Algorithm

Measuring success


- Visual comparison
- USM
- Genotypic error

We define the error for each gene, $e(g) = \frac{abs(g_T - g_F)}{g_T}$ and the *average error* for a given individual, $E(F) = \frac{e(i_F) + e(c_F) + e(r_F)}{3}$

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

The Genetic Algorithm

Results

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

The Genetic Algorithm

Results

Target		Genotypic error				
	usm(F,T)	e(i)	<i>e</i> (<i>c</i>)	<i>e</i> (<i>r</i>)	E	
f2	0.95657	0.30659	0.01885	12.77470	4.36672	
f3	0.95608	0.35404	0.00426	10.40107	3.58646	

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

The Genetic Algorithm

Results

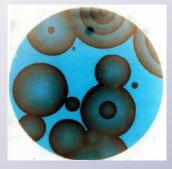
 Target
 Designoid

 Image: Designoid
 Image: Designoid

Target	usm(F,T)	e(i)	<i>e</i> (<i>c</i>)	<i>e</i> (<i>r</i>)	E
р	0.91980	0.26843	0.35314	0.05552	0.22569

Conclusions

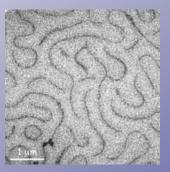
- using Fitness Distance Correlation and Clustering, we can show the USM to be an appropriate objective function in this domain.


- can we generate a target spatio-temporal behaviour in a CA system?

YES

- GA generates very convincing designoid patterns

Applications (in design and manufacture) and further work


- Many, many systems can be modelled using CAs
- Research into chemical 'design'

We are actively working towards these practical goals in the context of the EPSRC grant *CHELLnet* (EP/D023343/1), which comprises *Evolvable CHELLware* (EP/D021847/1), *vesiCHELL* (EP/D022304/1), *brainCHELL* (EP/D023645/1) and *wellCHELL* (EP/D023807/1).

e.g. designoid patterns in the BZ reaction

and self-organising nanostructured systems

Peter Siepmann, Germán Terrazas, Natalio Krasnogor

School of Computer Science & IT University of Nottingham

Adaptive Computing in Design and Manufacture 25th April 2006 Bristol