The GAssist Pittsburgh Learning Classifier System

Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

Outline

- GAssist applied to bioinformatics
- Summary and future directions

Objectives of GAssist

- GAssist [Bacardit, 04] is a Pittsburgh Approach Learning Classifier System evolving variable-length rule sets
- The research done on this system has three objectives
 - Generation of compact and accurate solutions
 - Run-time reduction
 - Representations for real valued attributes

Objectives of GAssist

- Representations for real valued attributes
 - GAssist should be applicable to a range of problems as broad as possible
 - This means that it should be able to handle continuous attributes
 - Achieved by the The Adaptive Discretization Intervals (ADI) rule representation

- GAssist has been applied to protein domains
- Proteins are biological molecules of primary importance to the functioning of living organisms
- Proteins are constructed as a chains of amino acid residues
- This chain folds to create a 3D structure

- It is relatively easy to know the primary sequence of a protein, but much more difficult to know its 3D structure
- Can we predict the 3D structure of a protein from its primary sequence? → Protein Structure Prediction (PSP)
- PSP problem is divided in several sub problems. We focus on Coordination Number (CN) prediction

Primary Structure = Sequence

MKYNNHDKIRDFIIIEAYMFRFKKKVKPEVDMTIKEFILLTY LFHQQENTLPFKKIVSDLCYKQSDLVQHIKVLVKHSYISKV RSKIDERNTYISISEEQREKIAERVTLFDQIIKQFNLADQSE SQMIPKDSKEFLNLMMYTMYFKNIIKKHLTLSFVEFTILAIIT SQNKNIVLLKDLIETIHHKYPQTVRALNNLKKQGYLIKERS TEDERKILIHMDDAQQDHAEQLLAQVNQLLADKDHLHLVF E

Secondary Structure

Global Interactions

- Coordination Number (CN) prediction
 - Two residues of a chain are said to be in contact if their distance is less than a certain threshold
 - **CN of a residue :** number of contacts that a certain residue has

- Kinjo et al.'s definition of CN
 - Distance between two residues is defined as the distance between their C_{β} atoms (C_{α} for Glycine)
 - Uses a smooth definition of contact based on a sigmoid function instead of the usual crisp definition
 - Discards local contacts

$$O_i^p = \sum_{j:|j-i|>2} \frac{1}{1 + exp(w(r_{ij} - d_c))}$$

- Classification approach
 - We need to convert the real-valued CN into a finite set of categories
 - We have tested two criteria based on the two usual unsupervised discretization methods: Uniform Frequency (UF) and Uniform Length (UL)

Protein dataset

- Used the same set used by Kinjo et al.
- o 1050 protein chains
- o 259768 residues
- Ten lists of the chains are available, first 950 chains in each list are for training, the rest for tests (10xbootstrap)

- We have to transform the data into a regular structure so that it can be processed by standard machine learning techniques
- Each residue is characterized by several features.
 We use one (i.e., the AA type) or more of them as input information and one of them as target (CN)

$$\begin{array}{c} R_{i-1}, R_{i}, R_{i+1} \rightarrow CN_{i} \\ R_{i}, R_{i+1}, R_{i+2} \rightarrow CN_{i+1} \\ R_{i+1}, R_{i+2}, R_{i+3} \rightarrow CN_{i+2} \end{array}$$

Input information

- 3 types of input information
 - Base information: The AA type of the residues included in the window around the target
 - Global protein information
 - Aim: providing information about the average CN of the protein chain
 - 1st version: 21 attributes: length of the protein and frequency of appearance of the 20 AA types
 - 2nd version: 1 attribute: predicted ave. CN using the 21 att. defined above as input
 - Predicted SS of the residues included in the window

Summary of results

- All datasets using UL class definition have better performance than their UF equivalent (7-12% dif.)
- PredSS gives a 2-3% performance boost
- Global protein information gives a 1.5-2% performance boost

- Interpretability analysis of GAssist
 - Example of a rule set for the CN1-UL-2 classes dataset
 - 1. If $AA_{-4} \notin \{X\}$ and $AA_{-3} \notin \{D, E, Q\}$ and $AA_{-1} \notin \{D, E, Q\}$ and $AA \in \{A, C, F, I, L, M, V, W\}$ and $AA_1 \notin \{D, E, P\}$ and $AA_2 \notin \{X\}$ and $AA_3 \notin \{D, E, K, P, X\}$ and $AA_4 \notin \{E, K, P, Q, R, W, X\}$ then class is 1
 - 2. Default class is 0
 - All AA types associated to the central residue are hydrophobic (core of a protein)
 - D, E consistently do not appear in the predicates. They are negatively charges residues (surface of a protein)

Future directions

- Assessing the added value of the class definitions
- Testing other types of input information
- Extending the interpretability analysis
- Improving GAssist
 - With purely ML techniques
 - Feeding back information from the interpretability analysis to bias the search

Summary and future directions

- GAssist produces very compact but accurate rule sets
- This is done by combining the techniques described briefly in this presentation

Summary and future directions

Future directions

- Smart recombination operators
- Develop theoretical models for all the components of the system