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Objectives of GAssist

� GAssist [Bacardit, 04] is a Pittsburgh Approach 
Learning Classifier System evolving variable-length 
rule sets

� The research done on this system has three 
objectives
� Generation of compact and accurate solutions

� Run-time reduction

� Representations for real valued attributes



Objectives of GAssist

� Representations for real valued 
attributes
� GAssist should be applicable to a range 

of problems as broad as possible

� This means that it should be able to 
handle continuous attributes

� Achieved by the The Adaptive 
Discretization Intervals (ADI) rule 
representation



GAssist applied to 

Bioinformatics

� GAssist has been applied to protein 

domains

� Proteins are biological molecules of primary 

importance to the functioning of living 

organisms

� Proteins are constructed as a chains of 

amino acid residues

� This chain folds to create a 3D structure



GAssist applied to 

Bioinformatics

� It is relatively easy to know the primary 

sequence of a protein, but much more 

difficult to know its 3D structure

� Can we predict the 3D structure of a protein 

from its primary sequence? � Protein 

Structure Prediction (PSP)

� PSP problem is divided in several sub 

problems. We focus on Coordination 

Number (CN) prediction



GAssist applied to 

Bioinformatics
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GAssist applied to 

Bioinformatics

� Coordination Number (CN) prediction

� Two residues of a chain are said to be in 

contact if their distance is less than a certain 
threshold

� CN of a residue : number of contacts that a 
certain residue has



GAssist applied to 

Bioinformatics

� Kinjo et al.’s definition of CN

� Distance between two residues is defined as the 

distance between their Cβ atoms (Cα for Glycine)

� Uses a smooth definition of contact based on a 

sigmoid function instead of the usual crisp 
definition

� Discards local contacts



GAssist applied to 

Bioinformatics

� Classification approach

� We need to convert the real-valued CN into a 

finite set of categories

� We have tested two criteria based on the two 

usual unsupervised discretization methods: 
Uniform Frequency (UF) and Uniform Length 

(UL)

UL

UF



GAssist applied to 

Bioinformatics

� Protein dataset

� Used the same set used by Kinjo et al.

� 1050 protein chains

� 259768 residues

� Ten lists of the chains are available, first 

950 chains in each list are for training, 

the rest for tests (10xbootstrap)



GAssist applied to 

Bioinformatics

� We have to transform the data into a regular 
structure so that it can be processed by standard 

machine learning techniques

� Each residue is characterized by several features. 

We use one (i.e., the AA type) or more of them as 

input information and one of them as target (CN)
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GAssist applied to 

Bioinformatics

� Input information
� 3 types of input information

� Base information: The AA type of the residues 
included in the window around the target

� Global protein information

� Aim: providing information about the average CN of the 
protein chain

� 1st version: 21 attributes: length of the protein and 
frequency of appearance of the 20 AA types

� 2nd version: 1 attribute: predicted ave. CN using the 21 
att. defined above as input

� Predicted SS of the residues included in the window



GAssist applied to 

Bioinformatics

� Summary of results

� All datasets using UL class definition 

have better performance than their UF 

equivalent (7-12% dif.)

� PredSS gives a 2-3% performance boost

� Global protein information gives a 1.5-2% 

performance boost



GAssist applied to 

Bioinformatics

� Interpretability analysis of GAssist
� Example of a rule set for the CN1-UL-2 classes 

dataset

� All AA types associated to the central residue 
are hydrophobic (core of a protein)

� D, E consistently do not appear in the 
predicates. They are negatively charges 
residues (surface of a protein)



GAssist applied to 

Bioinformatics

� Future directions
� Assessing the added value of the class 

definitions

� Testing other types of input information

� Extending the interpretability analysis

� Improving GAssist
� With purely ML techniques

� Feeding back information from the 
interpretability analysis to bias the search



Summary and future directions

� GAssist produces very compact but 
accurate rule sets

� This is done by combining the 
techniques described briefly in this 
presentation



Summary and future directions

� Future directions

� Smart recombination operators

� Develop theoretical models for all the 

components of the system


