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Objective

• Investigate protein Contact Number prediction

• Compare a range of

– Representations from abstract to intermediate to real proteins

– Machine Learning algorithms

– Experimental Parameters 
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Protein Structure Prediction

• Prediction of protein 3D 

structures

– Fundamental

– Difficult

– Unsolved

• Popular approaches 

– 1) Predict specific attributes

– 2) Simplify representations

– 3) Combine these to make 

overall predictions

Staphylococcus aureus

virulence regulatory protein
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1) Specific Attributes

• Secondary structure

• Solvent accessibility

• Disulfide (cysteine) bridges

• Coordination number (CN)

– Functional sites in proteins 

are pockets of residues

– Active sites contain buried 

residues � high CN

– CN studies relevant to 

understanding protein 

function
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Residues Contacts

• For residue r, CN is the number of residues in contact with it

• Threshold distance

• Related to contact map (CM) prediction
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2) Simplified Models

• Simplifications

– Only Residues  (Cα or Cβ

atoms) cf. all atoms

– Fewer residue types

Focus on physical/chemical 
properties 

hydrophobic-polar (HP) 
models

• Reduce spatial degrees of 
freedom

– Restrict locations to lattice

2D triangular, square etc

3D diamond, face cantered 
cubic etc
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Our Approach

• Use a Real Valued CN definition

• Frame prediction as a Classification Problem

• Compare several ML tool

– Learning Classifier Systems (LCS)

– Decision Trees

– Naïve Bayes

• Investigate 3 levels of “simplification“

1. Model proteins 2 letter HP alphabet on 3D cubic lattice

2. Real proteins2 letter HP alphabet

3. Real proteins20 letter AA type alphabet 

– Explore effects of experimental parameters

• Window size

• Number of classes
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Real Valued CN Definition 

• Cβ atoms, distance cut off dc10Ǻ

• Smooth boundary using sigmoid function

CN of residue ith protein chain p is: 

– where rij is distance between Cβ atoms of ith and jth residues

– w determines sharpness of boundary of sphere (we use w=3)

• Minimum chain separation of 2 residues

• Kinjo et al. 2005
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Real-Valued CN � Class

• Frame problem as a classification problem

• Real-valued CN � Discrete Classes (similar to “bining”)

– Group instances with similar CN

– Choose class boundaries � uniform number of instances

– Defining these globally for all 20 residue types
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Learning Classifier Systems (LCS)

• Rule-based ML systems 

• Use EC as search mechanism

• GAssist (Bacardit, 2004)

– Pittsburgh Genetic Based Machine Learning system 

– Descendant of GABIL

– Generates accurate, compact, highly interpretable solutions

• Applies near-standard GA

• Evolves individuals representing complete problem solutions

• Individuals are ordered, variable-length rule sets
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GAssist LCS 

• Use special fitness function

– Minimum Description Length (MDL)

Balance complexity and accuracy of rule set

• Uses windowing scheme

– Incremental Learning with Alternating Strata (ILAS)

Reduces run-time, especially with very large dataset

• Attribute representations

– Nominal: GABIL rule-based knowledge representation

– Real: Adaptive discretization intervals (ADI) 
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Learning Classifier Systems

• Match process

– Individuals are interpreted as a decision list [Rivest, 87]: an ordered rule 

set

– At the end of the rule set there is an static and explicit default rule

– The class of the default rule will not be used by the other classes, 

reducing the search space

1 2 3 4 5 6 7 8
Instance 1 matches rules 2, 3 and 7 � Rule 2 will be used
Instance 2 matches rules 1 and 8 � Rule 1 will be used
Instance 3 matches rule 8 � Rule 8 will be used
Instance 4 matches no rules � Instance 4 will be 
classified by the default rule
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Experimentation design

• We have to transform the data into a regular structure so that it can be processed by 
standard machine learning techniques

• Each residue is characterized by several features. We use one (i.e., the AA type) or more 
of them as input information and one of them as target (CN)
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Learning Classifier Systems

• Recombination operators

– Crossover operator

– Mutation operator: classic GA mutation of bit inversion

Parents Offspring
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Classification approach

Unsupervised discretization methods: 

• Uniform Frequency (UF)

• Uniform Length (UL)

UL

UF
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Learning Classifier Systems

• Costly evaluation process if dataset is big

• Computational cost is alleviated by using a windowing mechanism called ILAS

• This mechanism also introduces some generalization pressure

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations

0 Iter



18

Comparison of ML Algorithms

• Compare 3 ML Algorithms:

– GAssist: LCS

– C4.5: rule induction system

– Naive Bayes: Bayesian learning algorithm

• Performance Evaluation

– Student t-tests of mean prediction accuracies

– Confidence interval 95%
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Datasets

• Lattice-HP 

– Bill Hart's Tortilla Benchmark Collection 

– 15 structures on simple cubic lattice (CN=6)

• Real Proteins

– Selected from PDB

– Same dataset and training/test partitions as Kinjo et al 2005

– Total of 1050 protein chains
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Experimental Framework 

• Two datasets in this study

– 3D HP lattice model dataset 

– Data set of real proteins
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HP Abstraction of Real Proteins Residues 

• Assigning each real residue and H/P value

• Used assignments of Broome and Hecht (2000)

– “Octanol : Water Partitioning” & “Binary Genetic Code” agreement

• Residue distributions � baseline for prediction algorithms
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Residue Distributions: Lattice HP

• Lattice-HP 

– High CN � more H residues: core of buried hydrophobic residues

– Low CN � more P residues

HP models optimized on basis of hydrophobicity …
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Residue Distributions: Real-HP

• Real-HP

– High CN � more H: buried hydrophobic core 

– Low CN � ~Equal distribution of H and P in (exposed) classes

2H:1P ratio in HP assignments (above)
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Creating Instances

• Window sizes

– 1,2 and 3 residues each side of 
central residue (3 - 7 residue 
fragment)

• CN of central residue 

� Class of instance

– Lattice Models: 

Non-consecutive residues on lattice

– Real Proteins

Distance cut off 10Ǻ

• Instance Set divided randomly 

� 10 pairs of training and test sets

– Training == 950 proteins

– Testing == 100 

– similar to ten-fold cross-validation

XXXRTDC

XXRTDCY

XRTDCYG 

RTDCYGN 

TDCYGNV 

DCYGNVN 

CYGNVNR 

YGNVNRI 

GNVNRID 
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Estimation of Information Loss (1/2) 

• Two measures:

• Reducing alphabet and window size 

==> many copies of same instances 

==> inconsistent instances 

(Instances with equal input attributes (antecedent) but different class)
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Estimation of Information Loss (2/2)

(Normalized for different number of target states)

• Extreme case: s2, w1, Real-HP: 

– Any possible antecedent appears associated to both classes

– Proportions of two classes for each antecedent are different 

– System can still learn

• Real-HP dataset is highly redundant 

• w2/3 presents low redundancy and inconsistency rate ??????
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Results Overview: Lattice-HP 

• For all algorithms

– Increased number of states � decreased accuracy 

s2: ~80% � s5: ~51%

• For each state

– Increased window size � increased accuracy (~0.1%-~0.2%)

• Best predictions:

– s2: C4.5 w1 � 80% +/- 4.9

– s3: GAssist w2 � 67% +/- 4.1

– s5: GAssist w3 � 52.7% +/-5.3
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Results Overview: Real-HP 

• For all algorithms: 

Increase in number of states � decrease in accuracy 

s2: ~63% - ~64% � s5: ~29% - ~30%

• For each state:

Increased window size � increased accuracy (~1%)

• Best predictions:

– s2: GAssist & C4.5 w3 � 64.4% +/-0.5

– s3: C4.5 w2 � 45% +/-0.4

– s5: C4.5 w3 � 30.4% +/-0.5
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Results Overview: Real-AA

• For all algorithms:

Increase in number of states � decrease in accuracy  

s2: ~68% � s5: ~34%

• For each state:

Increased window size � increased accuracy (~0.5%)

• Best predictions:

– s2: Naive Bayes w3 � 68.8% +-0.3

– s3: Naive Bayes w3 � 50.7% +-0.3 

– s5: Naive Bayes w3 � 34.7% +-0.4
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Results: Lattice-HP 
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Results: Real Proteins
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Discussion (1/2)

• All algorithms performed at similar levels 

• No statistically significant differences

• Increasing number of classes (states) � reduced accuracy 

– Can be offset using larger window size

• Reduced spatial degrees of freedom (lattice) 

� improvement ~20%, s5

• Moving from 2 to 20 letter representation � 3-5% improvement

• Indicates hydrophobicity information is key determinant of CN

– Consistent with literature

• Shows studies of HP models are relevant in PSP

• LCS evolved rules from the HP representation are simpler
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Discussion (2/2)

• HP-alphabet (2 letters) rules: simpler & easier to understand – e.g.. rule 

set with 62.9% accuracy:

– X represents positions at end of chains

– Class assignment: 1=high, 0=low

• AA-alphabet (20 letters) rules: rule set with 67.7% accuracy:
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Related Work

• Kinjo et al 2005 s2,3,10 CN prediction

– Obtained higher accuracies

– Used non-standard accuracy measure & more input information 

Our aim was compare performance using simpler representations

Not trying for best accuracy

• Real Protein CN prediction by LCS compared with Kinjo Group 

predictions (papers accepted)

• Detailed studies of HP proteins CN and Residue Exposure prediction 

(paper accepted)
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Conclusions (1/2) 

• It is possible to predict CN (5 state, window size 3) using

– Lattice-HP model proteins ~52% 

– Real-HP representations ~30% 

– Real-AA representation ~32%

Reasonable since HP representation discards information

• Accuracy using 2 letter representation is close to 20 letter 

representation

– 64% vs 68% (s2)

– 45% vs 50% (s3)

– 30% vs 33% (s5)
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Conclusions (2/2)

• Indicates most information is contained in HP representation

• Hydrophobicity is a key determinant of CN

– Consistent with earlier studies

• Information inconsistency ratio 

– “Ambiguous antecedents” : “Consequent assignments”

– 2 letter representation has considerable inconsistency 

even for s=5 and larger windows

– Algorithms may learn from distributions inconsistencies
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Future Work

• Li et al 2005 

– Is there minimal residue alphabet for prediction?

– 10 letters may be sufficient

• Investigate other reduced letter alphabets 

• Quantify information loss in each

• Extend studies to prediction of other structural attributes

– Secondary structure, relative solvent accessibility

• Ultimately, determine utility of CN for designing prediction heuristics for 

Real proteins
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Questions???
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HP Models  

• 20 residue types reduced to 2 

– Non-polar or hydrophobic (H)

– Polar (P) or hydrophilic

• n residue protein represented by 

sequence s

• Sequence is mapped to a lattice

• Each residue in s occupies different 

lattice cell

• Mapping is required to be self-

avoiding

• Energy potential reflects propensity 

of H residues to form compact core

• Standard HP model

– HP and PP assigned energy 0

– HH contact assigned energy -1

• Optimal structures minimize energy 

potential
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