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Summary

• Simplified hydrophobic/polar (HP) lattice model proteins 

• Compare machine learning (ML) algorithms

• CN and RE prediction

• Explore Learning Classifier Systems (LCS)

• LCS apply Evolutionary Computation to Machine Learning problems
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Introduction

• Predicting structural properties of proteins from sequence 

– fundamental 

– important

• Rather than predicting the complete tertiary (native) structure we divide-
and-conquer and try to predict some attributes/properties of the native state

– residue exposure (RE)

– coordination number (CN)

• Simplified protein models (e.g. HP models)

• Represent sequence using two residue types

– hydrophobic and polar

• Restrict the residue locations to those of a lattice
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HP Models

• 20 amino acids reduced to two classes

– Non-polar (H) -- hydrophobic 

– Polar (P) -- hydrophilic 

• n amino acid protein represented by sequences 

• Sequence s is mapped to lattice

• Each residue in s occupies a different lattice cell

• Mapping is self-avoiding
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Lattices Geometries 

• 2D: triangular, square

• 3D: diamond, face centered cubic
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Energy Potentials

• HP model ==> hydrophobic amino acids have propensity to form 

hydrophobic core

• Standard HP model

– HP and PP assigned 0 

– HH contacts assigned -1

• Functional model protein (FMP)

– HP and PP receive a value of 1

– HH value of -1

• FMP must fold into unique native state 

• Dill's HP model sequences have variety of minimum energy states

• Native structure is required to have a binding pocket

– At least one hole in conformation

• Energy gap between minimum energy conformation and next excited state
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Definitions

• CN: number of non-contiguous residues within radius (r=1.0 lattice unit)

• RE: distance of residue from center

of mass of protein

CN=2

RE=3
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Questions 

1) Is it possible to predict, from sequence alone, which proteins will and will not 

fold? (remember discussion on degenerate sequences). This is the 

Fold/Non Fold prediction problem.

2) Is it possible to predict, from sequence alone, which residues have above or 

below average CN and RE? This is the relative CN/RE prediction problem.

3) Is it possible to predict, from sequence alone, the precise CN/RE states? 

This is the CN/RE prediction problem.

4) Are LCS a suitable tool for these tasks?
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Methodology

• Three datasets were employed 
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Experimental Design (1/2)

• 1) Calculate CN and RE from the existin data sets

• 2) Move fixed length window over sequence � attribute vectors

– Assigning class to each instance: 

• CN/RE value for central residue of window

• 3) Split instance sets into Training and Test sets

• 4) Apply machine learning tools to learn to predict classes in training set

• 5) Apply learning knowledge in Test Sets

• 6) Extract classification accuracies for each algorithm
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Experimental Design (2/2)

• 6) For non-deterministic algorithms (e.g. GAssist) iterate 10 times with 

different random number seeds

• 7) Calculate mean prediction accuracy

• 8) Perform student t-tests on mean prediction accuracies

– determine which algorithms significantly outperformed the others (using 

a confidence interval of 95 and Bonferroni correction for multiple pair-

wise comparisons)
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Instance Generation

• Windows generated 1,2,3 residues each side of central residue

• 3 class assignment schemes (Q2)

• Two State: Class 1 (high) or 2 (low): below or above average for

that protein

• Three State (Q3)

• 1 (low), 2 (intermediate) or 3 (high) for the lower, middle or upper 

third of the range respectively

• Five State (Q5)

• 1, 2, 3, 4 or 5 for the first, second through fifth portion of the range 

respectively
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Learning Classifier Systems

• Composed of rule learning algorithm

• Rule inference engine

• Balance multiple, potentially conflicting, constraints 

– e.g. formation of local structures vs global structures

• Produce high quality predictions

• Produce human understandable explanations of rules evolved
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GAssist LCS

• Pittsburgh learning classifier system 

• Standard Genetic Algorithm (GA) 

• Individuals represent complete problem solutions

• Individual consists of variable length rule set

• Rule-based knowledge representation of GABIL 

• Default parameters except for larger datasets (2DCNRE), 25 strata
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ML Algorithms

• GAssist LCS

• WEKA implementations

– Naive Bayes

– C4.5

– IBk (k=3)

– JRip
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GAssist Results Overview 

• Folding or non-folding prediction:

– Functional HP model proteins 

– 3D diamond lattice 

– ~88.3% accuracy

– Outperformed significantly three out of four other methods

• Contact Number/Residue Exposure prediction:

– HP model protein instances

– 2D square and 3D cubic lattices 

– ~27.8% - ~80.9%

– Level comparable to other ML technologies

– Outperforming significantly them in 24 out of 180 cases 

– Outperformed just six times
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Detailed Results

Fold Non-Fold Prediction

• Overall average and deviation of test accuracy

• GAssist best method on this dataset

• Outperformed significantly three of four other tested methods

Significantly outperformed
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Detailed Results: CN and RE 

3DHPCNRE, 2DHPCNRE

• GAssist performed at similar or better level than others ML Algorithms

• Significantly outperformed other methods 24 times 

• Outperformed in six tests
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Discussion

• GAssist equal or better than other methods

– Especially on fold/non fold dataset

• Out peformed significantly very few times

• CN easier to classify than RE

• 2D lattice data more difficult than 3D 
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In Particular

• 2D lattice

– CN ~65%, 71% and 59% for two, three and five states

– RE ~62%, 47% and 33% for two, three and five states

• 3D lattice

– CN ~80%, 67% and 52% for two, three and five states

– RE ~78%, 62% and 38%
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Rule Sets Details

• GAssist rule sets consist ~52.8, 9.6 and 3.5 rules: 3DFNF, 2DCNRE and 
3DCNRE

• A classifier with 3 rules for CN in 3D lattice (W=7):

– Remember that “X” = positions at the end of the chains, “H” = high CN, 
“L” = low CN

Achieves 87.3% accuracy for two state prediction Rule set only had three 
rules

• At most three of seven input attributes were expressed, that is, it ignores 
useless features � concise theory
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Rule Sets Details

• Rules are interpreted in order

• All examples not matched by first or second rules are assigned default class 

• Moving from highly abstract (s2) to more informative predictions (s5) more 
input data (larger windows) required to facilitate learning

• 3D structures on cubic lattice have less than 50 residues

==> training data has high proportion of exposed/low-CN residues

including hydrophobic residues -- more usually found buried

• Distribution of residues by class showed 2D square lattice structures bias in 
input data distributions is less pronounced
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Conclusions (1/2) 

• a) ~80% accuracy for Fold/Non-fold

• b) Can predict residues having above or below average CN and RE

•

• c) Can predicted detailed CN and RE 

• d) GAssist LCS performs at level comparable to other ML algorithms

• Algorithms based on orthogonal representations perform slightly better than 

those which are not

• Lattice structure models focus on essential details
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Conclusions (2/2)

• When moving from highly abstract predictions, e.g. above/below mean for a 

given attribute towards more detailed structural predictions, e.g. five state 

CN or RE � Accuracy is increased by increased window size

• This is related to the fact that:

– In real proteins only some contacts arise from local residue sequence

patterns (secondary structure contacts)

– Others arise from long-range global features of proteins 

– This may not be evident in short local sequence patterns
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Next 

• We extend these studies from HP model proteins, to HP representations of 

real proteins, to real proteins 


