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Abstract. This paper describes the design and evaluation of a coach that helps students
collaborate while solving Entity Relationship modeling problems in a computer-mediated
learning environment (COLER). Unlike previous work generally emphasizing dialogue analysis
or expert models, this work evaluates a new approach to supporting collaboration that identifies
learning opportunities based on differences between problem solutions and tracking levels of
participation. The contribution made by these and other knowledge sources in the generation of
collaboration advice was evaluated by comparing expert rankings of advice to the software
coach's rankings, and by identifying the advice that would be lost if each respective knowledge
source were removed. Results show that good quality advice can be obtained through these
knowledge sources, although other knowledge sources may fill in gaps relative to the expert's
performance. This work demonstrates how intelligent agents can produce reasonable
collaboration advice in domains for which structured problem solutions exist by using a few
basic knowledge sources, and illustrates several methods of evaluating the knowledge and
reasoning of complex knowledge-based systems.
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INTRODUCTION

Computer-mediated collaborative distance learning environments are receiving increasing
attention due to the development of the World Wide Web (WWW) and the reported positive
outcomes of collaborative learning studies in the classroom (Gokhale, 1995; Slavin, 1995;
Johnson & Johnson, 1994). The WWW enables the development of these applications since
Web-based systems can be accessed easily from any computer in the world. However, applying
collaborative learning techniques in synchronous distance learning environments brings
difficulties to facilitators, who have to monitor and guide participants in the application of
collaborative skills. It is very hard for a human facilitator to track many teams working at
different times with members located in different places. Therefore, there is growing interest in
developing intelligent systems that support this facilitation process. Our work seeks to provide
this support through the design and implementation of a computer coach that facilitates effective
collaborative learning interactions.

The main problems a collaboration coach has to solve are similar to the ones for individual
coaching: when to intervene and what to say. Yet designing a coach that supports students’
collaboration is a new challenge, since most prior work on coaching has focused on expert and
student modeling (Katz & O’Donell, 1999). In contrast, a collaboration coach has to monitor not
only one student’s activities, but also the teammates' activities, and should encourage
interactions that influence individual learning and the development of collaborative skills, such
as giving and receiving help and feedback, and identifying and resolving conflicts or
disagreements (Dillenbourg et al, 1996; Johnson et al, 1991; Webb & Palincsar, 1996).

Several computer-mediated collaborative learning environments have been developed to
support collaborative interaction. Jermann et al. (2001) present a brief overview of many of
these systems. Some systems, such as DEGREE (Barros & Verdejo, 2000), offer collaboration
advice in asynchronous learning environments by asking students to select a type of
contribution from a list and later rate the collaboration in several dimensions in order to provide
students with hints to improve their interaction. Some systems have been designed to encourage
participation and facilitate group discussion with intelligent support, such as C-CHENE (Baker
& Lund, 1996), the Group Leader Tutor (McManus and Aiken, 1995), iDCLE’s Expert System
Coordinator (Okamoto, Inaba & Hasaba, 1995), and BetterBlether (Robertson et al, 1998). All
of these systems use restricted menu-driven or sentence-opener interfaces in order to understand
students’ interaction, and give guidance based on an ideal model of dialogue. Dialogue-based
support provides several advantages, such as potential applicability to any subject matter area,
automated interpretation of students’ interactions, and restriction of discussion moves and
learning interactions to those believed to be productive for learning. However, systems that
require use of devices such as sentence openers present some disadvantages such as restricting
the type of communicative acts, slowing the communication process, and misinterpreting
students’ dialogue when students use the interface buttons incorrectly. It would be advantageous
to increase the repertoire of ways to provide automated support. One example is using action-
based collaboration analysis (Mühlenbrock & Hoppe, 1999), which monitors and analyzes
moves of multiple users within a shared workspace. Another example is GRACILE (Ayala &
Yano, 1996) which gives help based on Vygostky’s concept of the zone of proximal
development.

Our work seeks to facilitate effective collaborative learning interactions with minimal
reliance on restricted communication devices such as sentence openers. We focus particularly
on helping students to recognize and resolve conflicts between their problem solutions, because
(as we discuss later) these kinds of collaborative interactions are expected to lead to learning.

In this paper, we evaluate the feasibility of generating advice based primarily on comparing
students' individual and group solutions and on tracking student participation (contributions to
the group diagram). The approach taken is close in spirit to the action-based analysis of
Mühlenbrock & Hoppe (1999). Our approach differs in that we monitor individual work in
private workspaces as well as the shared workspace to identify conflicts. Other studies have
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used automated coaches to give advice when a student’s solution differs from an expert’s
solution (Burton & Brown, 1982; Paolucci, et al., 1996). In contrast, our work evaluates the
possibility of giving advice without comparing student work with an expert solution. We
excluded discourse models and expert solutions as a research strategy, in order to evaluate the
value of the knowledge sources on which we focus. This strategy should not be interpreted as a
denial of the importance of these other knowledge sources.

The remainder of the paper is organized as follows. First we introduce the domain of Entity
Relationship modeling and COLER, the learning environment within which the studies were
undertaken. Then we describe the architecture of COLER’s coach, and detail its algorithms for
recognizing differences between solutions, monitoring participation, and generating and
selecting advice. The remainder of the paper focuses on our extensive evaluations of the quality
of COLER’s advice and the roles of the knowledge sources in generating this advice.

COLER

Entity-Relationship (ER) Modeling (Chen, 1976) is one of the most commonly used data
modeling formalisms for conceptual database design, a collaborative task in which analysts and
database users participate to produce a conceptual schema (Batini, et al., 1992; Gordon & Hall,
1998). The performance of the final database system depends highly on the correct design of the
conceptual schema, yet data modeling is a difficult task for novices (Batra & Antony, 1994;
Shanks, 1996). The ER model is a diagram composed of a set of basic elements called entities,
attributes and relationships. An example of a simple ER diagram, in the original Chen notation,
that keeps track of employees and projects is shown in Figure 1. In this example, the Employee
and Project entities are related by a many to many relationship called “works-on,” and have the
attributes indicated in ellipses. The ER diagram notation used in this research is essentially
based on the Chen formalism (only binary relationships are permitted). However, IDEF1X
notation (Bruce, 1992) is used to represent entities’ attributes in more compact diagrams.

N MEmployee works 
on Project

SSN

Name
Hours

Number

Description
 

Figure 1. Example Entity-Relationship Diagram using Chen Notation

COLER (COllaborative Learning environment for Entity-Relationship modeling) is a Web-
based collaborative learning environment in which students can solve ER modeling problems
while working synchronously in small groups at a distance. A personal coach was implemented
and included for each student within COLER, as
shown in Figure 2. Each coach analyzes the state of
interaction and guides the participant by
recommending actions student might take to
improve their interaction. COLER has been
classified as a coaching or advising system
according to the categorization presented by
Jermann et al. (2001).

COLER provides four different modes of
operation according to the type of user (student or
professor) and the selected type of session
(individual or group). Before students can work in
a COLER collaborative session, the instructor must
perform several setup functions, such as defining Figure 2. COLER Personal Agents
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teams (name and members) and creating the HTML pages of the database problems to solve.
Additionally, the instructor must define the glossary of words for each problem, as well as
review/update the value (weight) of typical differences between ER diagrams to indicate which
ones are worth discussing. After the instructor has finished all setup activities, students can
launch COLER and log into the system. During the collaborative session, instructors can
observe students’ individual and group progress and give students private or public advice.

Figure 3: COLER Collaborative Student Interface

COLER’s student group interface is shown in Figure 3. The problem description window
(upper center) presents an entity-relationship modeling problem. Students construct their
individual solutions in the private workspace (upper right). They use the shared workspace
(lower center) to collaboratively construct ER diagrams while communicating largely via the
chat window (lower right). They can use a HELP button (upper left) to get information about
Entity-Relationship Modeling. A team panel (middle left) shows the teammates already
connected. Only one student, the one who has the pencil, can update the shared workspace at a
given time. The floor control panel (bottom left) provides two buttons to control this
workspace: ASK/TAKE PENCIL and LEAVE PENCIL. Additionally, this panel shows the name of
the student who has the control of this area and the students waiting for a turn. An opinion panel
(middle right) contains two areas. The upper area contains three buttons that enable students
express their opinion regarding the last object added to the shared area: OK: Total Agreement,
NOT: Total or Partial Disagreement, and ?: Not sure, Uncertainty. When a button is selected,
students have the option of annotating their selection with a justification. Opinion button
selections are displayed in the chat area (along with any optional justifications) in order to
correlate these opinion-expressing actions with the chronology of the chat discourse. The
bottom area within this panel shows a persistent summary of the teammates' opinions on a
current issue by showing the teammates’ name in the box below the opinion button the
teammate selected (OK, NOT, ?). A personal coach (upper left) gives advice in the chat area
based on students’ participation and group diagram construction. Although several suggestions
may be computed at a certain time, only one is shown in the chat area. The others may be
obtained by pressing the SUGGESTIONS button, which is disabled if the coach does not have any
advice to offer.
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COLER is designed for sessions in which students first solve problems individually and
then join into small groups to develop group solutions. The private workspace enables students
to try solutions without feeling they are being watched. When all of the students have indicated
readiness to work in the group, the shared workspace is activated, and they can begin to place
components of their solutions in the workspace. This may be done either with COPY/PASTE

from private workspaces or by making new structures in the shared workspace. Entities and
attributes must be named with words in the Glossary of the selected problem to make students
aware of the necessity of a common data dictionary and to make it easier for the coach to
compare their solutions. The system doesn't attempt to do natural language understanding.
Instead, students can type what they want, but if a word used is not in the glossary they are
prompted to check the glossary and pick a synonym from there. After each change to the
workspace, the changed object is highlighted in yellow. Then students are required to express
their opinions using the O K/NOT/?  buttons before making subsequent use of the shared
workspace.

The initial problem solving helps to ensure individual participation and provides
differences between students’ solutions that form the basis for discussion. Students’ initial
solutions also provide the coach with useful information to identify learning opportunities.
Previous approaches to support collaboration, such as the ones presented by Greer et al (1998)
and Hoppe (1995), use a similar approach, assessing individual student models or profiles to
inform group learning situations. Based on this information, they are able to suggest partners for
a team or students who can help with a specific problem.

COLER’s implementation is based on an open architecture for intelligent collaborative
learning systems designed by Suthers & Jones (1997) and originally used for the
implementation of the Belvedere software for collaborative critical inquiry (Suthers, et al.
2001). COLER’s architecture is shown in Figure 4. The light objects indicate modules that are
Belvedere extensions. The dark objects are new modules.

The COLER architecture includes Java 1.1 applets that are in charge of the different
functions of the system, such as chat, floor control, voting, private and shared ER modeling. It
uses Belvedere’s diagrammatic classes and components for networking. The COLER database
was constructed by extending the Belvedere database, using the Mini SQL 2.0.1 database
management system from Hughes Technologies1. COLER's applets as well as the personal
coach communicate with an mSQL database server via a JDBC "Object Request Broker." This
broker also informs the Connection Manager of user changes.

T h e  C o n n e c t i o n
Manager is a process on the
server that keeps track of the
clients using any diagram. It
informs other clients via
their Listener sockets of the
changes to their diagram for
“what you see is what I see”
updating of the shared
workspace, chat window,
and opinion and team
panels. Each student’s client
contains a personal coach.
This personal coach is a
Java thread that monitors
participation, identifies and
eva lua tes  d i f fe rences
between diagrams and
encourages students to
discuss them.

                                                       
1 http://www.Hughes.com.au

Figure 4: COLER Architecture
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COLER'S COACH

According to Collins, Brown & Holum (1991), coaching is a technique in which the instructor
observes students and provides hints, help and feedback while they try to complete a task. Since
students often miss learning opportunities and get stuck on a certain level of proficiency, a
coach can make students aware of further possibilities, provide unobtrusive assistance and
create potential learning experiences that will improve individual’s development. Burton &
Brown (1982) developed the first computer coach by implementing an “issues and examples”
paradigm in the WEST system, in which students learn by playing the children’s board game
called “How the West Was Won.” In this paradigm a Differential Modeling technique is applied
to identify differences between student and expert models and to find aspects of the domain of
pedagogical interest to the system to tutor. The pedagogical agents defined by Gordon & Hall
(1998) in an Entity-Relationship Modeling Virtual Learning Environment (ERM-VLE) are
another example of domain-specific coaching. In this system learners receive immediate
feedback about the correct steps they should take in their search for a solution.

COLER’s coach is a pedagogical agent to facilitate collaboration. It does not tutor Entity
Relationship modeling, but encourages students to discuss and participate during collaborative
problem solving. The coach is implemented as a personal assistant for each student. It has the
capability to perform specific tasks autonomously.

Motivations for the Coach

The coach’s goal is to promote group-learning interactions and maintain balanced participation.
The design of the coach was based on socio-cognitive and cognitive dissonance theories.
According to the socio-cognitive conflict theory (Doise & Mugny, 1984) students learn from
disagreements when they identify and resolve conflicts in their viewpoints, present alternatives,
and request and give explanations. Cognitive dissonance theory (Festinger, 1957) states that the
existence of disagreement among members of a group produces cognitive dissonance in the
individual, who experiences pressure to reduce this dissonance, leading the individual to a
process of social communication and revision of her position. The value of the disagreement
depends less on the correctness of the opposing position than on the attention, thought processes
and learning activities it induces.

Figure 5: COLER Personal Coach as a black box

The coach helps to prevent missed opportunities for collaborative learning (Baker &
Bielaczyc, 1995) by monitoring students’ participation and recognizing differences between
students’ individual and group solutions. When relevant opportunities for learning are found,
the coach tries to guide students to practice collaborative skills, providing advice such as
encouraging students to participate and to discuss their differences. A general description of the
coach is given in Figure 5, where the coach is represented as a black box.

Coach's Architecture

The current version of the personal coach is implemented as a local component of the COLER
application. The coach relies completely on information that is local to the application. There is
no direct communication between different students’ personal coaching agents, although group
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Personal and Teammates' actions
 in the learning environment
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     Discussion
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     Self-Reflection
     ER Reviewing
Assign control to a Teammate

Intelligent Processing:
Detection of Learning and
Participation Opportunities
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parameters are accessible through the local copy of the shared working environment. Local
information is sufficient for each personal coach to detect differences between the group and the
individual solution, monitor participation and provide personal guidance. There is no central
guidance in the version reported here: each agent acts independently.

Figure 6. Coach Architecture

The coach involves different modules that cooperate in the solution of the main problem:
when and what advice to give (Figure 6). The Diagram Analyzer is a simple module that
identifies participation opportunities based on the detection of problems in the quality of the ER
group diagram. It recognizes some common errors in the group ER diagram based on their
structural and categorical characteristics. Detection of these problems was included to see how
they could be used to encourage students’ participation. The Difference Recognizer detects
opportunities for students to collaborate by finding significant differences between individual
and group ER diagrams. The Difference Recognizer can either find differences specifically
related to the currently added object, or find all “extra work” that the student can contribute to
the group. The Participation Monitor attends to the activity in the group diagram. If nobody has
worked in the group diagram for a period of time, it reports this event. It also monitors whether
each student is participating too much or too little. The Diagram Analyzer, Difference
Recognizer and Participation Monitor communicate their results to the Collaboration
Supervisor via a shared memory. The Collaboration Supervisor maintains an internal model of
the environment, which includes the current group and individual diagrams, “the coached
student” and team members’ levels of participation, advice types, advice patterns and advice
history, current received and given feedback, session phase and session start time. The
Collaboration Supervisor operates in two phases: Advice Generation and Advice Selection. The
Advice Generator computes the set of appropriate advice for a given situation using an
AND/OR decision tree, while the Advice Selector chooses the most appropriate advice from
this set based on control strategies. These processes are described in detail below. The
Communications Module is in charge of getting real time information from the environment and
communicating a coach’s advice when it is required. This module enables the reactive capability
of the coach.

Each one of COLER's reasoning modules contributes distinct expertise, and is
implemented as a Java thread. Coach-applet communication, as well as inter-applet
communication, is implemented in two different forms: (1) using static variables stored in the
shared working memory and (2) direct communication between applet instances. The types of
messages they use in the communication are presented in Figure 7.
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Figure 7. Communication between COLER coach Modules

The reasoning modules have different temporal extents and communicate in different ways.
The Collaboration Supervisor is active during the complete group session. It starts the
Participation Monitor when an “InitGroupSession” message is received from the
Team/FloorControl Applet, and asks it to initialize some variables, such as the coached student,
team members, individual and group diagrams, and timer for group work. The Participation
Monitor thread stays alive until the session ends, so it is able to respond to specific requests
from the Collaboration Supervisor at a given time, such as checking the coached student’s
consecutive contributions or setting the timer for the control of the group area. In contrast, the
Difference Recognizer and the Diagram Analyzer are created only when the Collaboration
Supervisor wants to detect specific learning opportunities for discussion or participation. When
these modules finish their work, they store their results in a shared memory and are disposed.
The Collaboration Supervisor can use this information later. The Participation Monitor also
communicates its findings to the Collaboration Supervisor via the shared memory. Findings
include whether students have been working on the group diagram (HaveWorked), whether a
student has had the pencil too long (TooMuchTime) and students' participation status (various
parameters to be discussed below). The shared memory enables the Collaboration Supervisor to
check for the occurrence of a specific situation at a given time and to reason about it when such
a situation occurs.

COLER works by detecting learning opportunities and deciding whether and how to
respond to these opportunities by coaching collaboration. COLER recognizes learning
opportunities by (1) evaluating a number of syntactic dissimilarities between individual and
group ER diagrams and by (2) tracking participation in the group workspace. COLER coaches
collaboration by (3) generating a set of advice and (4) selecting the advice to give based on
control strategies. The following four sections describe these different types of knowledge and
their use in the coach's reasoning.

RECOGNIZING DIFFERENCES BETWEEN SOLUTIONS

Difference detection, one of the basic points of this work, is carried out by the Difference
Recognizer module (see Figures 6 and 7). The detection of conflicts to monitor the state of
collaborative interaction has also been considered by Tedesco and Self (2000). Their focus was
on detecting meta-cognitive conflicts in structured dialogue-oriented systems. Our focus is on
detecting differences in structured representations, such as Entity Relationship (ER) diagrams.



9

COLER mainly recognizes differences by identifying a number of syntactic dissimilarities
between individual and group ER diagrams. Only significant differences are detected, that is,
ones that are semantically interesting. In order to have a reasonable basis of comparison
between diagrams, a glossary of nouns was defined according to the problem being solved. This
kind of knowledge is described below.

Knowledge: Significant Differences and Glossary

The Difference Recognizer uses a set of “Significant differences” that were defined based on
four different information sources: (1) domain expert suggestions obtained by personal meetings
with our colleague, Dr. Icaza of ITESM; (2) the first author's previous experience in teaching
data modeling; (3) analysis of 13 students’ solutions for a specific ER problem provided by the
domain expert; and (4) common errors in ER modeling reported in the literature (Batra &
Antony, 1994; Shanks, 1996). The significant differences considered in this research are
presented in Table 1. A weight was assigned to each one of these differences depending on its
impact. This weight is used to decide when to give advice.

Table 1: Significant Differences in ER Data Modeling

Difference Type Weight
Missing entity 0.7
Extra entity 0.7
Missing relationship 0.7
Extra relationship 0.7
Missing key attribute 0.6
Difference in cardinality 0.5
Difference in existence 0.5
Attribute in different place 0.45
Missing attribute in relationship 0.4
Extra attribute in relationship 0.4
Missing attribute in entity 0.3
Extra attribute in entity 0.3
Difference in key 0.35
Difference in number of relationships 0.3
Difference in entity type (strong/weak) 0.2
Difference in existence of relationship’s name 0.2
Difference in relationship’s name 0.1
Attribute not identified as key 0.1

A glossary of terms was defined to enable difference detection. The glossary includes the
names of entities, attributes and instances mentioned in the database problem, as well as some
names that might correspond to students’ mistakes. The glossary database contains the singular
form of the nouns used in the problem scenario, their plural form, a synonym, and abbreviation.
The singular form of the name is used to match entities and attributes. Relationships’ names are
not included in the glossary because students might use a large number of different names to
indicate the same action, so they are not useful to match objects. Relationships instead are
matched using dynamically generated internal names constructed from the associated entities
(e.g. Employee+Project). A problem’s glossary should be created for each ER problem based on
the significant nouns mentioned in the problem description.

Reasoning: Diagram Matching

The Difference Recognizer undertakes subgraph matching between the private and group ER
diagrams for the purpose of identifying differences. This matching is made tractable by using
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the names in the glossary. The Difference Recognizer consists of three main methods: Compute
Entity Differences, Compute Relationship Differences and Find Additional Individual Work2.
Matching can either find differences specifically related to the currently added object (e.g.
missing entity, extra attribute), or find all “extra work” that the student can contribute to the
group. For each discrepancy detected, several information items are registered, such as the
object involved, the type of difference, the user to whom this difference is against and additional
information needed for particular types of differences when it is required. The Difference
Recognizer module could be used for other purposes, e.g. to compare an expert diagram with
individual and group solutions to detect misconceptions.

Example: Difference Recognition

We now introduce an example that will be used throughout the paper. Consider a three-student
team, George, Frank and David, who are using COLER to construct an ER model to solve a
research center database problem. George’s ER diagram and the diagram being constructed by
the group are shown in Figure 8 and Figure 9. Differences found between these two ER
diagrams are shown in Table 2. This table indicates the node participating in the difference, the
difference description and its weight. Besides the differences between these two existing
diagrams, the extra objects George could add are also computed and presented in Table 3.

MONITORING PARTICIPATION

The Participation Monitor (see Figures 6 and 7) attends to the activity in the group diagram. It
detects time-triggered events, such as inactivity in the group area or the coached student having
control of the group area for a long time (pencil handling). Group diagram events, such as
addition of an object to the group diagram, are also detected so it can monitor whether each
student is participating too much or too little. The knowledge that this module uses is described
below.

Knowledge: Strategic Parameters

Much of COLER's strategic reasoning is controlled by parameters that can be adjusted as
needed to suit different problem domains or instructor's preferences. In this section we introduce
6 parameters pertaining to student participation and classified in three categories: Participation
Balance (3 parameters), Progress on Task (1 parameter) and Waiting for Feedback (2
parameters). Examples will be provided after the parameters have been described.

Participation Balance

Three parameters control the desired balance in participation (activity in the workspace):
MaximumStandardDeviation, MaximumConsecutiveContributions, and MinimumListenAdvice.
COLER uses these parameters to monitor group’s dynamics concerning the participation
balance. The MaximumStandardDeviation (MSD) is used to determine the desired level of
participation of each student compared with his/her teammates. If the value of this parameter is
high, e.g. MSD > 1.4, the coach will encourage students to participate only when there is a large
difference in their participation level. On the other hand, if this value is too small (MSD < 0.5),
the coach will interrupt students almost after every action they do.
MaximumConsecutiveContributions indicates the maximum number of consecutive
contributions that the coached student can do before COLER suggests that he/she let others
participate. MinimumListenAdvice indicates the minimum number of “listen” advice (e.g. LO:
Listen to Others, LP: Let others Participate) that the coach should use to encourage the coached
student let others participate before the coach takes the control of the group area from him/her.

                                                       
2 These methods were implemented by Vincent Trifot and Justin Peltier as part of a student project.
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Table 2: Differences between example ER diagrams

Node Difference Weight
RESEARCHER Missing attribute in entity: tel-office 0.7
CENTER+PROJECT Difference in relationship's name: controls VS controls 0.1
CENTER+RESEARCHER Difference in number of relationships 0.3
PROJECT+RESEARCHER Difference in cardinality: N:M VS 1:N

Difference in relationship's name: participate VS
participates

0.5
0.1

Table 3: George's Additional Work

Node Difference Weight
REPORT Extra Entity 0.7
PROJECT + REPORT (generates) Extra Relationship 0.7
CENTER + ITESM (has) Extra Relationship 0.7
CENTER + RESEARCHER (manages) Extra Relationship 0.7
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Progress on Task

TimeoutNoAction is a parameter that was defined to encourage students to devote adequate
time to the task of constructing the shared solution. TimeOutNoAction refers to the maximum
period of inactivity in the group diagram that COLER waits before suggesting that the coached
student take an action in the group workspace. Every time an action is performed in the group
diagram (e.g. add, delete, change object), a timeout is set to verify that students are not just
chatting for a long time, but are also working on the construction of the group diagram. This
parameter should be defined in accordance with the total time assigned to the group session. If
TimeOutNoAction is too small, the coach will constantly pressure students to work in the group
area, with almost no time to discuss anything. If this value is too large, the student might not
realize how the time is going and spend a lot of time chatting without any alert message from
COLER.

Waiting for Feedback

Two parameters, TimeoutTeammateAction and TimeoutMyStudentAction, were defined to
enable COLER decide whether to say or not something regarding to the use of the opinion
buttons. A “Give Feedback” suggestion is considered when a teammate has performed an action
in the shared area (add, delete, update), the TimeoutTeammateAction time has passed and the
coached student has not pressed any opinion button ("OK," "not OK," or "unsure"). When the
TimoutMyStudentAction time has passed and the coached student has not received any feedback
from his/her teammates after his/her contribution, an “Ask For Feedback” suggestion is
considered.

Reasoning: Monitoring Participation

The Participation Monitor tracks the coached student's number of specific contributions (SCi),
incrementing the value each time the student adds something to the shared area. In this version
of the coach, only the add object action to the group diagram is counted as a contribution.
Future versions of the Participation Monitor could consider updating and deleting actions as
contributions, by assigning them different weights. To evaluate participation, a Standard
Deviation (SD) is computed based on students’ contributions. If the standard deviation exceeds
the threshold of the MaximumStandardDeviation (MSD), explained previously, the monitor
assumes there is a problem in participation and individual students are checked:

Ó
Ì
Ï >

=
otherwisefalse     

 MSDSD true      
  on(PIParticipatiProblemInP )

The participation status of each student is computed by the following equation. If the difference
between a given student's contributions and the mean exceeds the MaximumStandardDeviation,
it is assumed that the student is part of the problem, as follows:

† 

ParticipationStatusStudenti =

TooMuch :            PIP Ÿ   (SCi - Mean >  MSD) 
NotEnough :         PIP Ÿ  (Mean - SCi >  MSD)
Acceptable :          otherwise

Ï 

Ì 
Ô 

Ó 
Ô 

where SCi = Number of contributions of Student i in the group diagram

Time triggered events, in contrast, are not related to a specific event, but they are detected
by a processing cycle. In this cycle, the Participation Monitor first initializes the lastActionTime
and controlTakenTime variables to null, to indicate students have not started working in the
group diagram and have not taken the pencil. Then it initializes a Contribution table to register
each team member’s contribution to the group diagram. In each cycle, after waiting some time,
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if nobody has worked in the group diagram for the time specified in TimeoutNoAction, the
monitor computes the participation status of the coached student and indicates this event by
changing the value of the variable HaveWorked in the shared memory. A similar process is
followed to change the variable TooMuchTime, to indicate a student has had the pencil for a
long time.

Example: Monitoring Participation

Following the example presented previously, the following parameter values associated with the
Participation Monitor were defined:

• MaximumStandardDeviation: 1.2

• MaximumConsecutiveContributions: 3

• MinimumListenAdvice: 3

• TimeoutNoAction: 240,000 milliseconds = 4 minutes

• TimeoutTeammateAction: 60,000 miliseconds = l minute

• TimeoutMyStudentAction: 60,000 miliseconds = 1 minute

The contributions to the group diagram presented in the above example were as follows: David
5, Frank 1, and George 1. Based on these values, George’s coach computes the participation’s
mean and standard deviation:

• Mean = 2.333

• StandardDeviation = 1.8856

Since the StandardDeviation, 1.8856, is greater than the MaximumStandardDeviation (1.2),
then, it is concluded that a problem in participation exists (PIP = true). Therefore, George's
agent needs to determine whether George, its coached student, is part of the problem. George’s
agent computes ParticipationStatusStudent for George using the formula given above. His
participation status is computed as “NotEnough” since these conditions are satisfied, as shown
below:

ParticipationStatusStudentGeorge = “NotEnough,” since
PIP Ÿ (Mean - SCGeorge > MaximumStandardDeviation)
=  True Ÿ (2.333 - 1 > 1.2) = True Ÿ (1.333 > 1.2) = True

GENERATING ADVICE

The Advice Generation phase of the Collaboration Supervisor Module (see Figure 6) uses
event-driven inference to detect learning opportunities for discussion and participation and to
generate advice appropriate for those opportunities. An event is evaluated using an AND/OR
decision tree. The generation of the advice requires knowledge that is described below, before
detailing this event-driven reasoning.

Knowledge: Advice Categories and Strategic Knowledge

The knowledge for advice generation includes the advice itself along with strategic knowledge
used to determine when different categories of advice are relevant. This strategic knowledge,
such as session phases and discussion encouragement intensity, is an integral part of the advice
generation process. A detailed description of the advice categories and types, as well as of the
strategic knowledge follows.
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Table 4: Coach Advice Types

Advice Category Advice Type
Abbreviation

Advice Type Description

ED Express Disagreement
AE Ask for Explanation
AJ Ask for Justification
GE Give Explanation
GJ Give Justification
EU Express Uncertainty
AA Analyzing Alternatives

Discussion

RA Reflect with teammates about...
GC General Contribution
SC Specific Contribution
CT Continue working on Task
GP Explain, in general, the importance of participation
LO Listen to Others
LP Let Others Participate
IP Invite others to Participate

LM Listen to Others, Mandatory

Participation

LC Ask a teammate to let you contribute
AF Ask for FeedbackFeedback
GF Give Feedback

Self-Reflection CD Check Own Discrepancies
ER Entity-Relationship Modeling: Connect a disconnected

Entity, draw a relationship, add an entity or attribute,
define a key.

ER Modeling

RW Review Work Completeness
IW  Individual WelcomeWelcome
GW  Group Welcome
IG  Individual GoodbyeGoodbye
GG  Group Goodbye

Advice Categories and Types

COLER's advice is expressed as suggestions or questions that try to encourage students to
discuss and participate. They are not imperative, so students should feel free to follow the
advice or discard it when they believe it to be inappropriate. Advice types and categories were
defined based on the collaborative learning literature and “Wizard of Oz” studies in which the
human expert coached through the chat interface: see Constantino-González (2000).

The present version of COLER (Table 4) includes seven advice categories. The first two
categories, Discussion (in chat) and Participation (in the group workspace), are the main
categories related to coaching collaboration. Feedback messages are related to student’s
pressing of COLER opinion buttons. The ER Modeling category includes suggestions related to
some common errors in the domain. The Self-Reflection category consists of suggestions to
think about a problem or situation. COLER also uses welcoming and goodbye messages.

Types of advice were defined and classified within these categories (Table 4). For each
advice type, several advice templates were defined using different wording to provide linguistic
variety. The templates can be contextualized by binding variables from the current situation,
including the student’s name ($MyStudentName), the object’s type ($ObjectType), the object’s
name ($ObjectName), and the problem type. An example template (translated from the Spanish)
follows:
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$MyStudentName, $ObjectName $ObjectType proposed in the diagram is different from
what you’ve got. If you do not agree with this, you should express and justify your
viewpoint.

Collaborative Session Phases

The group session was divided into several phases, according to the progress in the construction
of the group diagram (number of objects) and the elapsed time (Figure 10). Depending on the
session phase, advice patterns with different semantics are defined, so it is possible to give more
appropriate suggestions according to the current phase. During the collaborative session,
students have a time limit to work and learn together and to generate a group solution. Eight
phases were defined for the group session: “Init,” “Waiting,” “Ready,” “Started,” “Middle,”
“Verification,” “FinishingTime” and “End.” (These and other constant values will be quoted in
the discussion to distinguish them from parameters and variables.)

Init Waitingon line

Ready

Everybody
on line

StartednumObjects = 1

Middle

numObjects >= MO

Verification

numObjects >= VO

TimeFinishing

MO < numObjects < VO and
timeStatus = finishingTime

End

timeStatus = endTime timeStatus = endTime

numObjects >= VO

on line

numObjects: number of
objects in the group
diagram.
timeStatus: status according
to the elapsed time.
middleObjects (MO):
number of objects when the
session should be changed
to Middle.
verificationObjects (VO):
number of objects when the
session should be changed
to Verification

Figure 10: Group Session Phases

The collaborative session begins with the “Init” phase. When the student logs into the
collaborative session the phase is either changed to “Ready” if everybody is prepared, or
“Waiting” otherwise. The phase is changed from “Waiting” to “Ready” when everybody is on
line. Once in the “Ready” phase, the phase is set to “Start” after the first object is added to the
group diagram. How the sessions evolve from “Middle,” “Verification,” and “FinishingTime”
to “End” depends on five parameters that should be provided by the professor: two concerned
with time and three related to the contents of the group diagram.

Time-related parameters include the time in seconds the collaborative session will last
(TimeLimit) and the time in seconds for the reviewing period (TimeToReview), when the
session is close to finish. Using these parameters, it is possible to compute the timeStatus,
which, as illustrated in Figure 10, is required to compute the session phase:

† 

timeStatus =

WorkingTime :       PastTime £  TimeToReview
FinishingTime :     TimeToReview <  pastTime <  TimeLimit
EndTime :              PastTime ≥  TimeLimit

Ï 

Ì 
Ô 

Ó 
Ô 
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† 

where
pastTime =  CurrentTime -  InitTime
InitTime =  Session starting time
CurrentTime =  time when the formula is computed

Group diagram parameters include the expected number of objects of the problem group
solution (TotalObjects) and diagram construction milestones (MiddlePercentage and
VerificationPercentage). These latter indicate progress percentage in diagram construction.
MiddlePercentage (MP) indicates the percentage of TotalObjects when the session should be
changed to “Middle.” VerificationPercentage (VP) indicates the percentage of TotalObjects
when the session phase should be changed to “Verification.” Default values for these two
parameters are 30% and 90% respectively. These percentages are used to compute the
middleObjects and verificationObjects variables, which indicate the number of objects when the
session phase should be changed to “Middle” and “Verification” respectively.

Collaborative Session Phase Example

Continuing the description of the previous example the timeStatus and session phase are
computed using the values of the session phase parameters:

• TotalObjects (expected number of objects in the problem solution): 10

• TimeLimit : 90 minutes

• TimeToReview: 80 minutes

• MiddlePercentage: 30%

• VerificationPercentage: 90%

• pastTime: 50 minutes

• numObjects (total number of objects in the current group diagram): 7.

First, the timeStatus is determined as follows:

• Since pastTime < TimeToReview, timeStatus = “WorkingTime”

Next, the middleObjects (MO) and the verificationObjects (VO) are determined as follows:

• middleObjects = round (MiddlePercentage * TotalObjects) = round(30%*10) = 3

• verificationObjects = round (VerificationPercentage * TotalObjects) = round(90%*10)
= 9

In this specific example, the session state changes to “Middle” when the group diagram has 3
objects. It changes to “Verification” when the group diagram contains 9 objects.

Considering that the value for timeStatus is “WorkingTime” and that the group diagram is
not finished (middleObjects < numObjects < verificationObjects), then the value computed for
session is "Middle". This value is used to select the set of relevant advice for generation, as
described in the next section.

Discussion Encouragement Intensity

Advice is not necessarily given every time a difference is found, since not all differences have
the same importance. COLER uses three parameters to define the Discussion Encouragement
Intensity, i.e., the extent to which the coach encourages students to discuss their differences:
ThresholdImportantDifference (TID), ThresholdHighTotalWeight (THTW) and
ThresholdMediumTotalWeight (TMTW). They are considered in the decision of when to
interrupt students for discussion. The first one, ThresholdImportantDifference, is used when a
single difference exists. It indicates the value when a single difference is important. Its value
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ranges from 0 to 1. The last two, ThresholdHighTotalWeight and Threshold
MediumTotalWeight, are applied for multiple differences. ThresholdHighTotalWeight indicates
the sum of several differences that could be considered as high. ThresholdMediumTotalWeight
indicates the sum of several differences that could be considered as of medium importance.
These values should be greater than zero. The larger theses values, the less often discussion is
encouraged. The values defined for these parameters should be in concordance with the weights
defined for each type of difference in the model analyzed. The importance of multiple
differences (totalWeightImportance) can be computed using the following equation:

† 

totalWeightImportance =

Significant :             TW ≥  THTW
Medium :                 TMTW <  TW <  THTW    
Low :                       TW £  TMTW

Ï 

Ì 
Ô 

Ó 
Ô 

where 

        TW = Difference[i].weight
i=1

n

Â

        n =  Number of differences found at a given time

This value is used by the Advice Generator phase of the Collaboration Supervisor to decide
whether it is appropriate to give discussion advice.

Discussion Encouragement Intensity Example

To compute Discussion Encouragement Intensity in the previous example, the following values
were defined:

• TID (Threshold Important Difference): 0.6

• THTW (Threshold High Total Weight): 0.6

• TMTW (Threshold Medium Total Weight): 0.3

When the current object (Project+Researcher:participates) was added by Frank, the following
differences are computed by the Difference Recognizer:

Number Differences Weight
1 Difference in cardinality: N:M VS 1:N 0.5
2 Difference in relationship's name: participate VS participates 0.1

Then TW (totalWeight) was computed as follows:

TW = difference[1].weight + difference[2].weight = 0.5 + 0.1 = 0.6

Therefore, since TW >= THTW, it is concluded that

totalWeightImportance = “Significant”.

This value is used by the Advice Generator module of the coach, as explained in the following
section.

Reasoning: Event-Driven Application of AND/OR Decision Trees

The Advice Generation phase of the Collaboration Supervisor module uses event-driven
reasoning. Three main types of events are attended: (a) time-triggered events, such as inactivity
in the group diagram, (b) group and individual diagram events, for example, the addition,
change or removal of an object, and (c) voting events, such as the receiving and giving of
feedback. Given an event, the Collaboration Supervisor identifies the event type, analyzes the
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situation and then decides what kinds of
advice to give. The reasoning for each event
uses an AND/OR decision tree defined for
this event, as illustrated in Figure 11. A more
detailed description of how these events are
managed is given below.

Time-Triggered Events

Time-triggered events are followed by the
processing cycle shown in Figure 12. At the
beginning of the session, the Collaboration
Supervisor initializes the coach’s internal
model by setting values for initial data such
as individual and group diagrams, category
preferences, advice types, advice patterns, session phase and session start time. In each cycle,
reviewPhaseSession determines the current phase. If this phase corresponds to a group-learning
phase (e.g. “Ready,” “Started,” “Middle,” “Verification,” “FinishingTime”), the Collaboration
Supervisor checks students’ activity in the group area by accessing the corresponding variable
in the shared memory set by the Participation Monitor. If there has been inactivity in the group
diagram for a long time, then the Collaboration Supervisor, using the AND/OR tree for this
event, decides what advice to give. This cycle stops when the time available for the group
session ends, that is when the session phase is End.

Initialize-State();
repeat
sleep(t);
reviewPhaseSession();
if (isGroupLearningTime()) {
      checkHaveWorked();
} else if (phase == END_SESSION))
      finishSession();
end repeat

Figure 12. Collaboration Supervisor’s Processing Cycle for Time-triggered events

Diagram Events

Diagram events are generated when the coached student works on his/her individual diagram or
when he/she or a teammate works on the group diagram. When an object is added to the group
diagram, the coach updates its internal state by setting a timer for feedback and updating several
elements such as the corresponding diagram, the current object being analyzed and the student
executor of the action. Then, the AND/OR decision tree for this event is followed. When an
object is deleted or updated, the current version of the coach does not do any reasoning. It only
updates the corresponding diagram and the current node being analyzed. The same occurs when
these actions are made in the individual diagram.

Voting Events

Voting events include those actions related with the opinion panel. When a feedback is given or
received, the applet in charge of feedback monitoring asks the coach to check this action. The
Collaboration Supervisor then analyzes it and decides what advice to give if one is required.
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EventType 

  
Event 
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driven Reasoning 
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Or Tree) 

  
Advice Types 

  

Event   
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  RA 
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Figure 11. Advice Generation
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AND/OR Decision Trees

An AND/OR decision tree is associated with each event type. This tree generates different
advice types given an event type. Every branch of the tree represents a possible set of suggested
advice. Several suggestions might be generated for any given event because several leaves may
be reached at once via the “and” arc of the tree. Also, many of the leaves of each tree generate
multiple advice, and trees for different events may be invoked at the same time. An advice
selector will later choose the most appropriate advice from the ones generated.

The AND/OR decision tree describing the coach's reasoning for the “Node added in group
diagram” event is shown in Figure 13. Other AND/OR decision trees for other events such as
"Inactivity in group diagram" may be found in Constantino-González (2000). The tree shown
has two main "or" branches, depending on who performed the action.

If a teammate added the object (left hand branch of Figure 13), processes to evaluate (1)
participation, (2) feedback, and (3) discussion are executed (branches connected by an "and"
arc):

(1) If the Participation Monitor indicates that the coached student has not participated, the
coach generates advice shown in the leftmost sub-tree: General Contribution (GC), General
Participation (GP), Reflection About an issue (RA) and Specific Contribution (SC). Specific
Contribution suggestions are computed according to extra individual work done by the coached
student and identified by the Difference Recognizer. ER Modeling suggestions correspond to
syntax-based problems found in the group diagram by the Diagram Analyzer. They are
generated according to a sub-tree, not shown, attached at the @ in the left branch of Figure 13.

(2) Feedback evaluation simply checks whether the student has selected one of the
OK/NOT/? buttons.

Node
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Action

MyStudent
HasNot
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Problem
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Many
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AF
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already given
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HasNotGiven

ShouldGenerate
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Agreed /
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Disagreed/
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Exist
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Feedback
NotReceived
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True
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Figure 13. AND/OR Decision Tree for the “Node added in Group Diagram” event



20

(3) The discussion evaluation process takes into account the number and type of
differences found by the Difference Recognizer and the student’s participation computed by the
Participation Monitor. Discussion suggestions are generated by the evaluation of the differences
found, as shown in the large subtree in the center of the figure.

If the coached student was the one who added the object (right hand branch of Figure 13),
processes to evaluate (4) discrepancy checking, (5) received feedback and (6) participation are
executed:

(4) A suggestion to Check Discrepancies (CD) is generated based on an evaluation of the
differences found.

(5) If opinions from others (OK, NOT, ?) have not been received, then Ask for Feedback
(AF) is generated.

(6) If the Participation Monitor indicates that the coached student has done many
consecutive contributions, it generates advice from the following types: Listen to Others (LO),
Let Participate (LP), and Invite others to Participate (IP).

The diagram in Figure 13 also shows different situations in which chat information is
considered to decide the kind of advice to give (e.g. LO, IP, GE). This information is
specifically required in the process to decide whether discussion advice should be generated
when differences against the current object exist (3). Both the coached student’s chat messages
and his/her teammates’ messages are considered. Chat information includes who has chatted
and the chat messages’ length. See Constantino-González (2000) for further details of the
generation process.

The AND/OR decision trees used by the Advice Generator were represented directly in
Java code. A method was defined for each specific type of event such as adding a node,
giving/receiving feedback or not working for a period.

Example: AND/OR Decision Tree

Following the description of the previous example, the coach has already given several
messages that are saved in an advice history area: IndividualWelcome, GroupWelcome,
GeneralParticipation and AnalyzeAlternatives. An event has just occurred: Frank, George’s
teammate, has just added the Project+Researcher relationship (participates) to the group
diagram (shaded diamond, Figure 8). Even though George had some differences, he pressed the
OK button to indicate his agreement.

The Coach’s reasoning is based on the AND/OR decision tree presented in Figure 13.
Since the action was performed by a teammate (Frank), the left hand side of the tree is analyzed:
(1) George’s participation status is computed based on all the students’ contributions. As shown
previously, it is concluded that there is a problem in participation and the coached student
(George), who has one contribution, has not participated enough. Therefore, this branch of the
tree is analyzed and the following advice types are generated:

• GeneralContribution

• GeneralParticipation

• SpecificContribution(Report)

• SpecificContribution(Center+ITESM:has)

• SpecificContribution(Center+Researcher:manages)

• EntityRelationship(ITESM disconnected)

• EntityRelationship(Center,key)

From the SpecificContribution types (SC), an algorithm selects the two relationships as the best
ones. The SC(Center+ITESM:has) is randomly selected from the two relationships (e.g.
Center+ITESM:has, Center+Researcher:manages). (2) Since George has pressed the OK button
the feedback branches are not executed. (3) Differences are evaluated by comparing George’s
and the group’s diagrams. As a result, as explained before, the TW (TotalWeight) of the
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differences is 0.6. Since TW >=THTW, it is concluded that the coach should generate advice
from the discussion advice category. Then, considering that the feedback given was OK and
there was no extra evidence of disagreement, the advice types generated are AskForExplanation,
AnalyzeAlternatives, ExpressUncertainty and ReflectAbout. Once this set of advice has been
generated, one must be selected. This process is explained below.

SELECTING ADVICE

Advice Selection is the second phase of the Collaboration Supervisor Module (see Figure 6).
Advice selection is sensitive to the relative importance of different forms of advice and to the
context of the advice (problem solving and advice giving history). Six control strategies were
specified to control selection and timing of advice: Preferences, Collaborative Session Phases,
Discussion Encouragement Intensity, Participation Balance, Time on Task and Waiting for
Feedback. Most of these strategies, except the first one, are employed to filter advice during the
generation process and have already been described in previous sections as strategic knowledge.
The control strategy that utilizes Advice Preferences in the selection process is described below.

Knowledge: Advice Preferences

Preferences are used to select the advice to give from among the candidate generated advice. A
preference is a predicate that compares two proposed advice and chooses one as being
preferable to the other in importance. Three kinds of preferences were defined: New Advice
(don't repeat advice type during the session), Many Instances (prefer advice of a type that
applies more than once) and Category preferences (e.g., for Discussion, Participation, or
Feedback advice). When the session starts default values are assigned to these preferences, such
as New (1), Many (2), and Category (3). The default order for category preferences is: Feedback
(F), Discussion (D), Participation (P), Self-Reflection (SR) and ER Modeling (ER). This
indicates that at the beginning suggestions to discuss are preferable to suggestions to participate.
However, the preferences in use can change during the group session according to the group’s
performance.

Reasoning: Advice Selection

The advice selection process involves two steps. First, select an advice pattern from the advice
types generated by each one of the leaves. Second, select an advice from the resultant advice
set.

The selection from the advice types generated by each leaf is implemented as follows.
First, for each advice type indicated by the AND/OR tree’s leaf, a list of advice instances is
generated according to the session phase and the advice templates defined for this advice type.
If the leaf includes several types of advice, the one that has been used just previously is
eliminated, implementing a preference to avoid giving the same kind of advice twice. If the leaf
contains only one advice type and this is the same as the last advice type given, this advice type
is selected only if a no-advice limit has been reached. This limit is defined by the parameter
MaximumNoAdvice, which represents the number of times that an advice could have been
given but was not because its type was the same as the type of the last advice given. After this
verification is done, an advice instance is randomly chosen from the list for each leaf node and
then contextualized by binding variables from the situation (e.g., $MyStudentName,
$ObjectType, and $ObjectName). Random selection from the list provides advice variety.

The second step, selection from the advice generated by all of the leaves, starts with a
revision of the category preferences, which may change depending on the group’s performance.
In the current version, only discussion and workspace participation preferences are
interchanged. If the group seems to need more participation advice, this category of advice is
promoted. Otherwise, discussion is encouraged. Finally, a preference-based sort algorithm
(Suthers, 1993) is run if needed to choose between multiple advice instances. This sort splits the
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advice into more preferred and less preferred based on the first preference, and does this
recursively on each partition with the remaining preferences, concatenating the results to yield a
sorted list. From the sorted list, the coach gives the more preferred advice. The others are stored
in a list to be given on demand.

Example: Application of Preferences

Recall that instances of advice types AnalyzeAlternatives, AskForExplanations,
EntityRelationship(Center, key), EntityRelationship(ITESM disconnected), ExpressUncertainty,
G e n e r a l C o n t r i b u t i o n ,  G e n e r a l P a r t i c i p a t i o n ,  R e f l e c t A b o u t ,  a n d
SpecificContribution(Center+ITESM:has) were generated in our example. As described
previously, advice selection starts by eliminating instances of the type of the last advice given
(e.g. AnalyzeAlternatives in this case), and then randomly selecting one advice type from each
leaf. Therefore, the result is as follows: ER: EntityRelationship(Center, key), GP:
GeneralParticipation, RA: ReflectAbout, and SC: SpecificContribution(Center+ITESM:has).
Examples of the advice patterns are shown below. Discussion advices (e.g. RA) are generated in
a general context, without mentioning the kind of difference detected.

GP: George, participation is a learning opportunity. I suggest that you leverage it. Come
on, participate! : )

SC: George, you could share your work with your teammates by adding
CENTER+ITESM relationship to the diagram.

ER: George, you could define the key of the CENTER entity.

RA: George, PROJECT+RESEARCHER relationship has been just added by Frank.
What do you think about it? Is it correct? I suggest that you discuss it with your
teammates.

Before this list is sorted according to the preferences, the ordering of category preferences are
evaluated to account for the current group dynamics. Since there is a problem in participation,
this kind of advice is preferred. Therefore, the Participation and Discussion preferences are
interchanged resulting in the following order: Feedback, Participation, Discussion,
SelfReflection and EntityRelationship.

Finally, the preferences-based sort is applied considering COLER preferences (New, Many
and Category). According to the “New” preference, the advice is partitioned into (SC, ER, RA)
and (GP) since GP is in the advice history. Then, the “Many” preference is applied without
producing any difference. Finally, these sublists are partitioned based on the ordered set of
“Category” preferences, according to the order: Feedback, Participation, Discussion,
SelfReflection, and EntityRelationship. As a result, concatenating all the sublists, the following
order is produced: SC, RA, ER, GP. The coach then gives the SC advice:

SC: George, you could share your work with your teammates by adding
CENTER+ITESM relationship to the diagram

The rest of advice patterns generated are stored for future use, being available for advice on
demand. They would be given in the following order:

RA: George, PROJECT+RESEARCHER relationship has been just added by Frank.
What do you think about it? Is it correct? I suggest that you discuss it with your
teammates.

ER: George, you could define the key of the CENTER entity.

GP: George, participation is a learning opportunity. I suggest that you leverage it. Come
on, participate! : )
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EVALUATION

The evaluation reported here assesses the quality of advice generation and selection algorithms,
and the contributions of knowledge sources in the generation of reasonable advice. Future
publications will report detailed evaluation of the relationship between group functioning and
COLER’s advice.

Summary of Method and Procedure

This laboratory evaluation of COLER involved participants who had taken or were taking a
database course. Our domain expert, a computer science professor, was also present in two
sessions. A pilot session was run to test COLER’s usability and functionality. Then, five
sessions were conducted to generate data and scenarios for the different types of evaluations. In
each of these sessions, three students were presented with a simple database design problem.
They first solved the problem individually, and then convened to construct a group solution.
Students and coach activities were recorded in a log file. The pilot study and the two sessions in
which the Expert was present were used for preliminary evaluation, detecting some problems in
COLER's user interface and coach algorithms. The last three sessions, in which the expert was
not present, were used to evaluate COLER’s algorithms and the quality of its advice, as
described below.

Documents for Expert Evaluation

For each student of each of the last three sessions, two documents were generated for the
Expert’s Evaluation: the Environment Document and the Advice Document. These documents
describe the chronological sequence of events of the collaborative session in reference to a
specific student, and the context of each event (current state of the environment). The
Environment document provided the expert with the same information that the computer coach
had during the collaborative session (e.g. group diagram, event type, voting response,
contributors of chat messages). After each event, a space was left for the Expert to indicate the
advice he would give, if any. The Advice document was used to evaluate COLER’s algorithms
and advice acceptability. For each event, the expert was asked to rank the suitability of all of
COLER’s advice types, and to indicate a cutoff of which advice was “Worth saying," “So-So”
and “Not Worth Saying,” all without knowing which COLER actually considered. Then a new
page showed and solicited comments on the advice types the coach actually generated, and on
the advice type selected. Subsequently, each student’s individual diagram and the chat transcript
of the collaborative session were printed and given to the human expert to evaluate whether his
advice would change if he could see more than the coach did. The advice generation algorithm
was evaluated by comparing COLER's generated advice to those generated by the expert, as
well as through the expert's ranking of all advice available to COLER. The advice selection
algorithm was evaluated by comparing COLER's ranking to the expert’s ranking.

Results

A number of advice instances were generated from each advice category: 34 were participation,
23 Discussion, 6 Self-Reflection/Discrepancy and 9 Feedback advice. Participation and
Discussion advice were given the most. Although Participation advice was the more used,
Discussion advice was also important since the participation advice “continue task” is usually
given to all group members at a similar time while discussion advice are usually given in
different situations.

Coverage of COLER's Knowledge Sources

The overall knowledge available to COLER was evaluated by comparing expert and COLER
advice for each situation, with 67% of the advice given by the expert not given by the coach
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(Figure 14). Thus, as expected the expert has a greater repertoire of advice, although COLER's
limited knowledge sources produced the same advice as the expert in 33% of the situations.
Figure 15 depicts the distribution of the missing advice: 69% would require new advice types
and new branches in the AND/OR decision tree (New), 21% involved situations already
considered in the AND/OR tree but requiring that new advice types be attached to them
(Considered), and 10% involved advice that COLER could give with minor adjustments to
parameters (Parametric).

According to the results, some existing advice types need to be extended to mention a
specific context, such as suggesting that students reflect on a specific difference or inviting
someone in particular to participate. The findings also suggested situations in which a new
“Self-Reflection” advice type could be given.

Expert's Advice

33%

67%

Both

Expert's Only

Figure 14. Expert’s Advice, Overall Results

Expert-only Advice
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69%

Considered

Parametric

New

Figure 15. Expert-only Advice

A new category of advice, “Social Interaction,” could be included to establish a closer
relationship between COLER coach and the student. This category could include different
advice types such as thanking the student for listening to advice, and otherwise commenting on
student actions. However, these kinds of messages are not closely related to the main objective
of the coach. Rather the coach is trying to assist students by helping them to visualize
differences and encouraging them to leverage learning opportunities provided by the online
group.

Quality of Generated Advice

Advice Generation was evaluated by using the expert's classification of the advice available to
COLER into “Worth saying,” “So-So” and “Not Worth Saying.” Results showed that 73% of
the advice generated by COLER was worth saying, 7% was “so-so” and 20% was not worth
saying (Figure 16). Some reasons for “Not Worth Saying” advice are change in conditions
making the advice obsolete and failure to match entities due to spelling errors and unidentified
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synonyms. Reviewing the conditions for each specific advice type before giving the advice
could solve the obsolescence problem. Spelling errors could be managed by diminishing the
importance of differences in relationship’s names for generating “Check Discrepancy” advice,
or by using a distance metric between the spellings. Also, some advice, such as "Analyze
Alternatives" and ER related advice were given in different situations than the Expert, so they
should be reviewed with the Expert in order to modify the corresponding AND/OR decision
tree. Results also indicated the need to define a new parameter that specifies the time the coach
should wait before suggesting that the coached student give an explanation when a NOT or ?
(not sure) feedback has been received and the coached student has not given any response.

Generated Advice

73%

20%

7%

Worth Saying

So-So

Not Worth Saying

Figure 16. Generated Advice

Quality of Advice Ranking

The Advice Selection module was evaluated by analyzing events in which (1) several candidate
advice with different rankings exist, and (2) some advice was suggested by the Expert. To
evaluate the selection algorithm independently of the generation algorithm, a ranking of the
candidate advice generated by COLER for each situation was computed based on the Expert
ranking of all advice with respect to that situation. The disparity between COLER's and the
Expert’s ranking of this generated subset was measured using the Euclidian distance between
the individual ranks:
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=
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The COLER-Expert Euclidian distance dCE is the square root of the sum of squared differences
across a set of advice types, where n = the number of advice types generated by COLER, xCi is
the value of COLER’s rank for the ith advice type and xEi is the value of the Expert’s rank (of the
generated subset) for the same advice type. The COLER-Expert Euclidian distance is not a
measure of COLER’s advice quality, but a measure of the precision of the ranking assigned by
the Selection Algorithm to COLER’s advice types. Selection among several advice types was
needed only a few times in this study. There were 2.33 average selections per session, each
selecting between an average of 4.78 generated advice items. The Euclidian distance obtained
was 0.9, i.e., less than one disagreement in ranking per selection event. This seems adequate
although leaving room for minor improvements.

The limited number of selections per session is partially due to the fact that the advice
generation algorithm randomly selected an instance from the advice instances generated by each
leaf of the AND/OR tree. In retrospect we believe that a better design would allow the advice
selection preferences to consider all of the advice instances generated by the leaves, and apply
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random selection only when the set of most preferred advice instances contains more than one
element.

Role of Knowledge Sources

The contribution of each knowledge source in the generation of reasonable collaboration advice
was evaluated by "ablating" it analytically, i.e., identifying the advice that relied on the
knowledge source and hence would be lost if the knowledge source were removed. We focused
on the advice that the expert ranked as "reasonable." This analysis used the Environment and
Advice documents to identify the situations in which COLER gave advice and the rank the
expert assigned to this advice, and the AND/OR trees to identify the type of knowledge used in
each situation.
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Figure 17. Knowledge Contribution for Generation of Collaborative Advice

Figure 17 shows the contribution of knowledge sources to generation of advice judged by
the expert to be "reasonable" as follows: VT_WF: Voting Tracking and Waiting for Feedback
timeout (49%), PB: Participation Balance (48%), SD_PG: Significant Differences and Problem
Glossary (41%), TT: Time on Task (40%), CHT: Chat Tracking (37%), DI: Discussion
Encouragement Intensity (29%), CSP: Category and Sort Preferences (22%), PT: Pencil
Tracking (14%) and PERQ: Problems with ER diagram Quality (2%). Some knowledge sources
were used to generate different categories of advice (hence the percentages reported above sum
to greater than 100) while others were more marginal and only were used in a specific advice
category. For instance, knowledge of significant differences and glossary is used to produce
Discussion, Participation and Self-Reflection advice, while knowledge of participation balance,
time on task, pencil tracking and problems with ER diagram quality are used to generate only
Participation advice. Similarly, the generation of reasonable advice (e.g. Discussion and
Participation) in this study required the conjunction of several types of knowledge (e.g.
Significant Differences and Problem Glossary, Participation Balance) and confirmed the
hypothesis that knowledge on problem solving activity could be used to generate reasonable
collaboration advice. The knowledge about problems in quality of ER diagrams was used very
little in this study since the coach’s primary goal is promote discussion and participation instead
of teaching ER modeling.

CONCLUSIONS AND FUTURE WORK

This work is part of a research agenda that seeks to characterize the knowledge needed to
facilitate collaborative learning processes. The present focus has been on determining how
much leverage can be obtained by a basic ability to detect semantically interesting differences
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between representations of two problem solutions, together with simple tracking of individuals’
levels of participation (e.g. contributions in the shared Workspace) and feedback given (e.g.
opinion buttons). The study showed that reasonable collaboration advice can be generated
without the need for expert solutions or discourse understanding, although the addition of these
knowledge sources would improve the quality and range of advice generated and selected by the
system (at the cost of additional knowledge engineering and system complexity). Specifically,
73% of the advice given was considered to be reasonable by the expert, and 33% of COLER's
advice was the same as that which the expert would give. (It would be interesting to compare
this to the level of agreement between two human coaches.) These results indicate that COLER
is a viable advisor, albeit different in style from our expert. Response time should also be
considered: our expert pointed out that he came up with his advice after careful and time-
consuming study of the Environment and Advice documents while COLER generated advice
based on the same information in real time.

Although COLER is presently limited to Entity Relationship modeling, its long-term goal
is to support other domains in which problem solutions can be expressed in structured
representations that can be compared to identify significant differences, such as finite automata
modeling, object oriented modeling and systems dynamics. The following process would be
required to apply the coach’s design to other areas: (1) identifying how diagram objects can be
compared (e.g. lexical units in finite automata), (2) identifying the significant differences in the
domain (e.g. missing link, extra link, missing a node, extra node), (3) modifying the Difference
Recognizer accordingly, (4) adjusting the differences’ weights according to their relevance, (5)
reviewing participation and discussion parameter settings and (6) adjusting minor portions of
the Advice Generator. Several of the coach’s modules can be reused. Reusable modules include
the Participation Monitor, the Advice Selector and a fraction of the Advice Generator, such as
the AND/OR decision trees for the “Have not worked” event, and a section of the “Node added
to the group diagram” event. However, some of COLER’s reasoning modules should be
developed for each domain, such as the Difference Recognizer, the Diagram Analyzer and a
small fraction of the Advice Generator.

A secondary contribution of this work is to illustrate several useful evaluation
methodologies, including (1) evaluation of overall knowledge by comparing freely chosen
expert advice to advice generated by the system; (2) evaluation of advice generation and
selection by comparing generated and selected advice to an expert ranking of all advice
available to the system; (3) evaluation of advice selection by Euclidean distance between expert
and coach rankings; and (4) evaluation of the contribution of each knowledge source by
analytical ablation. Other evaluations reported elsewhere (Constantino-González & Suthers,
2001) or underway include student opinions, whether the advice was timed appropriately for the
group's collaborative activity, and whether students take the advice given. Overall, a mixture of
empirical and analytic methodologies is advocated to fully understand the design of complex
systems.

One limitation of this research is that only one expert evaluated the system. Therefore, we
plan to conduct more experiments in which several experts can evaluate the system, so a more
precise value of the coach’s advice accuracy and adequacy can be obtained.

In this work, a personal assistant in each client viewed a given student’s private workspace
and the shared workspace in order to help prevent missed opportunities for collaborative
learning. Future work may investigate a single global coach endowed with the ability to inspect
all students’ private workspaces as well as the shared workspace. Such a coach would be able to
identify conflicts between solutions in private workspaces and encourage the students to share
the relevant part of their solutions, thereby creating conflict opportunities for collaborative
learning. Little additional knowledge engineering would be required.

This work demonstrates the possibility of coordinating distributed agents via their shared
situation without explicit negotiation. Personal agents can then provide complementary advices.
For instance, while a personal coach says “<student>, why don’t you invite someone else to
contribute?” to the student who has participated too much, another personal coach would say
“<student>, contribute to the construction of the group diagram” to the one who has not
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participated. It would be interesting to investigate how much coordination is possible by
watching the same knowledge sources without explicit negotiation.

A greater investment in domain-specific knowledge would enable the coach to compare
student solutions to expert solutions in order to (a) guide advice selection (e.g., encourage
students to share solutions that are correct), and (b) comment directly on the correctness of
solutions in the manner of traditional intelligent tutoring systems or Web-based adaptive
systems, such as ELM-ART, an intelligent interactive educational system to support learning
programming in LISP presented by Weber & Brusilovsky (2001) or the German tutor presented
by Heift & Nicholson (2001). Other extensions that use models of discourse and natural
language understanding to track the extent to which students are discussing and resolving
differences in the chat medium can be envisioned.
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