
UNIVERSIDAD NACIONAL DEL CENTRO DE LA PROVINCIA DE BUENOS AIRES

FACULTAD DE CIENCIAS EXACTAS

DOCTORADO EN CIENCIAS DE LA COMPUTACIÓN

An Approach to Ease the Gridification
of Conventional Applications

by

Cristian Maximiliano Mateos Diaz

A thesis report submitted in partial fullfilment

of the requirements for the degree of

Doctor in Computer Science

Dr. Marcelo Campo

Advisor

Dr. Alejandro Zunino

Co-advisor

Tandil, October 2007

ii

UNIVERSIDAD NACIONAL DEL CENTRO DE LA PROVINCIA DE BUENOS AIRES

FACULTAD DE CIENCIAS EXACTAS

DOCTORADO EN CIENCIAS DE LA COMPUTACIÓN

Un Enfoque para Facilitar la Gridificación
de Aplicaciones Convencionales

por

Cristian Maximiliano Mateos Diaz

Tesis sometida a evaluación como requisito parcial

para la obtención del grado de

Doctor en Ciencias de la Computación

Dr. Marcelo Campo

Director

Dr. Alejandro Zunino

Co-director

Tandil, Octubre de 2007

Abstract

The Grid shows itself as a globally distributed computing environment in which hardware and

software resources from disparate sites are virtualized to provide applications with vast capabil-

ities through a myriad of services. Just like an electrical infrastructure, which usually spreads

over several cities to transparently convey and deliver electricity, the Grid aims at offering a

powerful yet easy-to-use computing infrastructure to which applications can be easily “plugged”

and efficiently executed by leveraging the various resources hosted at different administration

domains. In fact, the term “Grid” comes from a widely-known analogy with the electrical power

grid infrastructure, since researchers expect that applications will benefit from Grid resources

as transparently and pervasively as electricity is now consumed by users.

The extremely heterogeneous, complex nature inherent to the Grid has now put on the agenda of

the Grid research community the need for new techniques to easily gridify software that has not

been at first thought to be deployed on Grid settings. Examples of this kind of software include

desktop applications, legacy code and standard Web applications. As a consequence, Grid

researchers are currently investigating appropriate ways of transforming non-Grid applications

to effectively and efficiently benefit from Grid services. In this sense, a number of methods

and tools have been recently proposed in a serious attempt to help reality to catch up with the

ambitious goal of porting applications to the Grid with very little or zero effort.

However, the sad part of the story is that plugging applications to the Grid is still very difficult,

since current toolkits for Grid development force developers to take into account many details

when adapting applications to run on the Grid. On one hand, toolkits demands the developer to

manually modify and restructure applications so they can use a particular programming API for

accessing Grid services or are compliant to a certain application structure. As a consequence,

benefiting from the Grid is just circumscribed to application developers having experience and

knowledge on the art of Grid programming. Similarly, toolkits either lack of proper mechanisms

to tune their applications once these are ported to the Grid, or provide tuning mechanisms that

require solid knowledge on the application execution support being used. On the other hand,

many approaches are based on low-level, non-widely employed technologies. This fact clearly

compromises cross-platform interoperability of Grid applications, which in turn represents a step

back in the adoption of the Grid Computing paradigm as the basis for global collaboration.

iii

iv

This work describes a novel approach called GRATIS that addresses these problems in the con-

text of service-oriented Grids. Current middlewares and toolkits demand the developer to know

in advance many platform-related details before an application can efficiently take advantage of

Grid services and applications. Consequently, the main goal of GRATIS is to make the task of

porting applications to the Grid easier and, at the same time, provide facilities to easily deal

with efficiency issues when gridifying applications. Therefore, the thesis outlined in this doc-

ument shows that it is possible to code Grid applications by keeping oneself away from most

Grid-related details, and effectively tune these applications without knowing too much about

Grid technologies and still achieving acceptable levels of performance. In order to achieve these

goals, the proposed solution adopts a non-intrusive approach to gridification promoting sepa-

ration of concerns between application logic and Grid behavior, this latter representing access

to Grid services and functionality for efficiently running gridified applications. The approach is

focused on reducing the effort to add Grid concerns to the application logic.

To experimentally validate GRATIS, some applications were developed and comparisons with

other tools for gridifying applications were performed. The experiments show that GRATIS

effectively reduces the gridification effort, produces Grid-enabled applications that are isolated

from Grid-related functionality, and allows applications to achieve levels of efficiency that are

very competitive with respect to existing approaches.

Keywords: Grid Computing, gridification, service-oriented Grids, dependency injection

Resumen

La Grid es un ambiente de computación masivamente distribuido en donde los recursos de

hardware y software se virtualizan con el fin de dotar a las aplicaciones de vastas capacidades

de ejecución a través de una infinidad de servicios. Al igual que las infraestructuras eléctricas,

que a menudo se expanden a través de varias ciudades para transportar electricidad de forma

transparente, la Grid apunta a ofrecer una infraestructura de computación poderosa pero fácil

de usar a la cual puedan ”enchufarse”aplicaciones, haciendo éstas uso de los recursos disponibles

en diferentes dominios administrativos para ejecutar eficientemente. De hecho, el término ”Grid”

tiene precisamente su origen a partir de una analoǵıa con la infraestructura de enerǵıa eléctrica

(en inglés conocida como ”the power grid”), dado que los investigadores esperan que en un futuro

las aplicaciones se beneficien de los recursos de la Grid de forma tan transparente y ubicua como

las personas consumen hoy en d́ıa la corriente eléctrica.

La naturaleza extremadamente heterogénea y compleja de la Grid ha motivado a la comunidad

cient́ıfica a destinar esfuerzos al desarrollo de nuevas técnicas que permitan de forma fácil grid-

ificar software que no ha sido iniciamente pensado para ejecutar en ambientes Grid. Ejemplos

de este tipo de software son las aplicaciones de escritorio, código legado y aplicaciones Web. En

consecuencia, muchos de los investigadores del área de Grid Computing se encuentran abocados

a la búsqueda de métodos apropiados para transformar aplicaciones convencionales a aplica-

ciones que sean capaces de utilizar los servicios de la Grid de forma eficiente. En este sentido,

se han propuesto recientemente un gran número de métodos y herramientas que esencialmente

buscan alcanzar el ambicioso objetivo de portar aplicaciones a la Grid con muy poco o incluso

ningún esfuerzo.

Sin embargo, la parte triste de la historia es que enchufar aplicaciones a la Grid es aún muy

dif́ıcil, dado que los toolkits propuestos para desarrollo Grid fuerzan a los usuarios a tener en

cuenta muchos detalles al momento de adaptar aplicaciones para ejecutar en la Grid. Por un

lado, los toolkits requieren la modificación y/o reestructuración manual de las aplicaciones para

usar una API de programación particular de acceso a servicios Grid o responder a una estruc-

tura de aplicación predeterminada. A ráız de esto, el beneficiarse de la Grid queda circunscripto

sólo a aquellos desarrolladores que poseen experiencia y conocimiento en programación Grid.

Similarmente, dichos toolkits o bien carecen de mecanismos para mejorar la performance de

v

vi

las aplicaciones gridificadas, o proveen mecanismos que requieren un conocimiento sólido en el

soporte de tiempo de ejecución Grid por parte del usuario. Por otra parte, muchos enfoques

se basan en tecnoloǵıas propietarias y no estándares. Esto condiciona enormemente la interop-

erabilidad entre diferentes aplicaciones y plataformas Grid, lo que a su vez representa un paso

hacia atrás en la adopción del paradigma de Grid Computing como soporte a las necesidades de

la colaboración global.

El presente trabajo describe un enfoque denominado GRATIS para resolver los problemas men-

cionados anteriormente en el contexto de las Grids orientadas a servicios. Las plataformas y

toolkits actuales requieren que los desarrolladores conozcan de antemano muchos detalles rela-

cionados con el soporte ejecución antes de poder aprovechar efectivamente los servicios de la

Grid. En consecuencia, el principal objetivo de GRATIS es facilitar la tarea de adaptación de

aplicaciones a la Grid y, al mismo tiempo, proveer mecanismos para hacer que las aplicaciones

gridificadas ejecuten de forma eficiente. En tal sentido, la tesis descrita a lo largo de este docu-

mento muestra que es posible codificar aplicaciones Grid aislándose de la mayoŕıa de los detalles

relacionados con la puesta en marcha de una aplicación Grid, y adaptar dichas aplicaciones sin

conocer demasiado acerca de la estructura interna de la Grid y aún aśı alcanzar niveles aceptables

de performance. Para lograr los objetivos planteados, la solución propuesta adopta un enfoque

de gridificación no intrusivo, es decir, promoviendo la separación entre la lógica de aplicación y

el comportamiento Grid, éste último representando tanto acceso a servicios Grid como también

funcionalidad para ejecución eficiente de aplicaciones gridificadas. En dicho sentido, el enfoque

apunta a reducir el esfuerzo de adicionar comportamiento Grid a la lógica de aplicación.

Para validar experimentalmente GRATIS, se desarrollaron algunas aplicaciones y se llevaron

a cabo comparaciones con otras herramientas para la gridificación de aplicaciones. De los ex-

perimentos surje que GRATIS reduce de forma efectiva el esfuerzo de gridificación, produce

aplicaciones Grid cuyo código está aislado de la funcionalidad propia de la Grid, y permite a

las aplicaciones alcanzar niveles de performance muy competitivos con respecto a los logrados

mediante enfoques existentes.

Palabras clave: Grid Computing, gridificación, Grids orientadas a servicios, inyección de de-

pendencias

Acknowledgements

There are many people I would like to thank for supporting and helping me over the course of

this work. Without them, the present thesis would not have been possible.

First at all, I am deeply grateful to my advisors Marcelo Campo and Alejandro Zunino for their

guidance, encouragement and patience, and for sharing with me the experience and knowledge

they have about how to do research. I also thank Marcelo for their wisdom and their priceless

advising that greatly helped me during not only my academic formation but also in some of the

most challenging parts of my life.

I sincerely thank the National Council of Scientific and Technical Research (CONICET) for the

financial support for this work.

I thank all the members of the ISISTAN for their valuable help, suggestions and thoughts. I also

thank the undergraduate students who contributed in the implementation and evaluation of the

software, including Esteban Pamio, Juan Manuel Rodriguez, Franco Scavuzzo and Guillermo

Zunino.

I also want to thank Andrea and our little daughter Bianca, and my parents, for the unconditional

love they gave over all these years, and for relentlessly help me keep myself a little in this world,

at least from time to time, during the process of writing this thesis.

Cristian Mateos Diaz

vii

viii

Contents

Abstract iii

Resumen v

Acknowledgements vii

List of Figures xvii

Table Index xix

Algorithm Index xxi

Acronyms xxiii

1 Introduction 1

1.1 Motivation . 2

1.2 The Thesis . 5

1.2.1 GRATIS: Injecting Grid services into conventional applications 6

1.3 Contributions . 9

1.4 Organization of this work . 9

2 Background 11

2.1 Grid Basics: A Roadmap . 11

2.1.1 The Grid: A Definition . 13

2.1.2 The power grid analogy . 14

ix

x CONTENTS

2.2 Service-Oriented Grids . 18

2.2.1 Web Services standards . 18

2.2.1.1 SOAP . 19

2.2.1.2 WSDL . 20

2.2.1.3 UDDI . 21

2.2.2 WSRF . 22

2.2.2.1 WSRF Core Specifications . 23

2.2.3 OGSA . 24

2.3 Gridification Technologies: Origins and Evolution 26

2.4 Conclusions . 29

3 Related Work 31

3.1 Gridification Projects . 31

3.1.1 GEMLCA . 32

3.1.2 GrADS . 34

3.1.3 GRASG . 35

3.1.4 GridAspecting . 36

3.1.5 GriddLeS . 37

3.1.6 Ninf-G . 38

3.1.7 PAGIS . 40

3.1.8 ProActive . 41

3.1.9 Satin . 42

3.1.10 XCAT . 44

3.2 A Taxonomy of Gridification Approaches . 45

3.2.1 Application Reengineering . 45

3.2.2 Compilation Unit Modification . 48

3.2.3 Gridification Granularity . 50

3.2.4 Resource Harvesting . 53

3.3 Discussion . 55

3.4 Conclusions . 57

CONTENTS xi

4 The GRATIS Approach 59

4.1 Aims and Scope . 60

4.2 Dependency Injection . 64

4.2.1 Non-DI Applications: An Example . 64

4.2.2 A DI-based Solution . 65

4.3 Gridifying Applications with JGRIM . 68

4.3.1 Mobile Grid Services . 69

4.3.2 JGRIM Application Anatomy . 70

4.3.3 Grid Service Injection . 72

4.3.3.1 The Service Discovery/Invocation m-Component 72

4.3.3.2 The Policy m-Component . 74

4.3.3.3 The Parallelization m-Component 76

4.3.3.4 The Itinerary m-Component . 77

4.3.4 An Example: The k-Nearest Neighbor Classifier 78

4.3.4.1 Parallelization . 81

4.3.4.2 Policy Management . 82

4.4 Conclusions . 85

5 GRIM 87

5.1 Overview of GRIM . 87

5.2 GRIM runtime support . 89

5.2.1 Resource binding . 91

5.2.1.1 Accessing resources . 92

5.2.1.2 Middleware-level policies . 95

5.2.1.3 Agent-level policies . 96

5.3 Conclusions . 99

6 The JGRIM middleware 101

6.1 The JGRIM Platform . 101

6.2 The JGRIM Runtime System . 102

6.2.1 The Service Discovery/Invocation Subsystem 104

6.2.2 The Policy Subsystem . 107

xii CONTENTS

6.2.2.1 Profiling . 111

6.2.3 The Mobility Subsystem . 112

6.2.4 The Parallelization Subsystem . 114

6.2.4.1 The Ibis Execution Bean . 117

6.2.4.2 The Ibis Server . 119

6.3 Conclusions . 122

7 Experimental Results 123

7.1 The Grid Setting . 123

7.2 The k-NN Clustering Algorithm . 125

7.2.1 Gridification Effort . 127

7.2.1.1 Ibis . 129

7.2.1.2 ProActive . 131

7.2.1.3 JGRIM . 133

7.2.1.4 Discussion . 136

7.2.2 Performance Analysis . 140

7.2.2.1 Comparison of TET . 140

7.2.2.2 Comparison of network traffic and packets 144

7.3 Panoramic Image Restoration . 146

7.3.1 Gridification Effort . 148

7.3.2 Performance Analysis . 154

7.3.2.1 Comparison of TET . 155

7.3.2.2 Comparison of network traffic and packets 158

7.4 Conclusions . 160

8 Conclusions and future work 163

8.1 Contributions . 164

8.2 Limitations . 165

8.3 Future work . 166

8.3.1 Enhancement of the Parallelization Support 166

8.3.2 Decentralized Mechanisms for Service Discovery 167

8.3.3 Ease of Deployment . 167

CONTENTS xiii

8.3.4 Language Independence . 168

8.3.5 Security . 168

8.3.6 Integration with Mobile Devices . 169

8.3.7 Semantic Grids . 169

8.4 Final remarks . 170

A Source Code of the k-NN Application 171

A.1 Original . 171

A.2 Ibis . 172

A.3 JGRIM . 174

A.4 ProActive . 178

B Source Code of the Restoration Application 183

B.1 Original . 183

B.2 Ibis . 186

B.3 JGRIM . 189

B.4 ProActive . 193

C Result Tables of the k-NN Application 197

C.1 Ibis . 197

C.1.1 Total Execution Time (milliseconds) . 197

C.1.2 Network Traffic (bytes) . 198

C.1.3 TCP Packets . 198

C.2 JGRIM . 199

C.2.1 Total Execution Time (milliseconds) . 199

C.2.2 Network Traffic (bytes) . 200

C.2.3 TCP Packets . 200

C.3 JGRIM (caching policy) . 201

C.3.1 Total Execution Time (milliseconds) . 201

C.3.2 Network Traffic (bytes) . 201

C.3.3 TCP Packets . 202

C.4 ProActive . 202

xiv CONTENTS

C.4.1 Total Execution Time (seconds) . 202

C.4.2 Network Traffic (bytes) . 203

C.4.3 TCP Packets . 204

D Result Tables of the Restoration Application 205

D.1 Ibis . 205

D.1.1 Total Execution Time (milliseconds) . 205

D.1.2 Network Traffic (bytes) . 206

D.1.3 TCP Packets . 206

D.2 JGRIM . 207

D.2.1 Total Execution Time (milliseconds) . 207

D.2.2 Network Traffic (bytes) . 208

D.2.3 TCP Packets . 208

D.3 JGRIM (move policy) . 209

D.3.1 Total Execution Time (milliseconds) . 209

D.3.2 Network Traffic (bytes) . 209

D.3.3 TCP Packets . 210

D.4 ProActive . 210

D.4.1 Total Execution Time (seconds) . 210

D.4.2 Network Traffic (bytes) . 211

D.4.3 TCP Packets . 212

Bibliography 213

List of Figures

1.1 Overview of GRATIS . 7

2.1 The evolution of Grid technologies (adapted from (Foster and Kesselman, 2003a)) 13

2.2 The Grid software stack (Foster and Kesselman, 2003a) 15

2.3 The Web Services model (Kreger, 2001) . 19

2.4 Example showing the elements of a WSDL definition 21

2.5 WSRF-enabled Web Services: operational components 23

2.6 The core elements of OGSA . 25

2.7 Origins and evolution of gridification technologies 27

2.8 One-step and two-step gridification in a nutshell 28

3.1 Overview of GEMLCA . 32

3.2 GRASG architecture . 35

3.3 GridFiles: file request redirection . 38

3.4 Ninf-G architecture . 39

3.5 Gridifying applications with Ninf-G: typical scenarios 39

3.6 Overview of metalevel programming . 41

3.7 XCAT application managers . 44

3.8 Application reengineering taxonomy . 47

3.9 Compilation unit modification taxonomy . 48

3.10 Gridification granularity taxonomy . 51

3.11 Resource harvesting taxonomy . 53

xv

xvi LIST OF FIGURES

4.1 The GRATIS approach: a layered view . 61

4.2 Component dependencies and Grid service injection 63

4.3 Class diagrams for the book listing application 68

4.4 JGRIM: Gridifying applications . 70

4.5 Elements of an MGS . 72

4.6 Dependencies, policies and JGRIM m-components 73

4.7 Dependencies and service discovery/invocation m-components in JGRIM 74

4.8 The Parallelization m-Component . 77

4.9 Parallelization of the sameClass operation: sequence diagram 83

5.1 The GRIM model: core concepts . 88

5.2 Logical networks in GRIM . 90

5.3 Overview of the execution model of GRIM . 91

5.4 Forms of mobility in GRIM: agent, resource and control flow migration 93

5.5 GRIM resource taxonomy . 95

5.6 A-policies vs m-policies . 97

6.1 Overview of the JGRIM platform . 102

6.2 Architecture of the JGRIM runtime system . 103

6.3 Class design of the Service Discovery/Invocation subsystem 106

6.4 Classes materializing the inspection of UDDI registries 108

6.5 Class design of the Policy subsystem . 109

6.6 Class design of the Mobility subsystem . 112

6.7 Initiating, suspending and resuming agent execution: sequence diagram 114

6.8 JGRIM hosts and Ibis networks . 121

6.9 Execution of self-dependency methods as Ibis applications 122

7.1 Network topology used for the experiments . 124

7.2 TLOC after gridification . 129

7.3 Source code overhead introduced by the gridification process 130

7.4 Class diagram of the Ibis version of the k-NN application 131

7.5 Class diagram of the ProActive version of the k-NN application 133

LIST OF FIGURES xvii

7.6 Class diagram of the JGRIM version of the k-NN application 134

7.7 Gridification effort for the k-NN application . 139

7.8 TET (min) of the k-NN application . 141

7.9 Speedup introduced by the gridified versions of the k-NN application with respect

to the original implementation . 143

7.10 Total traffic (GB) generated by each variant of the k-NN application 145

7.11 Amount of TCP packets transmitted by Grid machines during each test battery 146

7.12 Overview of the panoramic image restoration process 147

7.13 Class diagram of the restoration application . 148

7.14 Gridification effort for the restoration application 153

7.15 TET (min) of the restoration application . 156

7.16 Throughput (KB/min) of the restoration application 157

7.17 Speedup introduced by the gridified versions of the restoration application with

respect to the original implementation . 158

7.18 Total traffic (MB) generated during the entire experiment 159

7.19 Total traffic (MB) generated during the entire experiment 160

xviii LIST OF FIGURES

Table Index

3.1 Summary of gridification tools . 46

3.2 Comparison between gridification tools leveraging both Grid resources and appli-

cations . 55

3.3 Summary of gridification approaches . 56

4.1 Aspects that can be controlled through policies, according to different dependency

types . 75

5.1 Strong vs weak agent migration . 94

7.1 CPU and memory specifications of the Grid machines 125

7.2 A sample dataset with four training instances . 126

7.3 Gridification of the k-NN algorithm: code metrics 129

7.4 Characteristics of the k-NN implementations upon execution on the Grid setting 137

7.5 Gridification of the restoration application: code metrics 149

7.6 Characteristics of the restoration applications upon execution on the Grid setting 152

7.7 Restoration application: network benchmark . 154

7.8 Restoration application: performance benchmark 155

7.9 Total execution times and throughput of the original restoration application . . . 155

xix

xx TABLE INDEX

List of Algorithms

1 The k-nearest neighbor algorithm . 126

xxi

xxii LIST OF ALGORITHMS

Acronyms

AMWAT AppLeS Master-Worker Application Template

AOP Aspect-Oriented Programming

API Application Program Interface

B2B Business-to-Business

CCA Common Component Architecture

CERN European Organization for Nuclear Research

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CRS Cluster-aware Random Stealing

CoG Commodity Grid

DI Dependency Injection

DS Data Service

FTP File Transfer Protocol

GAF Grid Application Framework

GAT Grid Application Toolkit

GEMLCA Grid Execution Management for Legacy Code Architecture

GNS GriddLeS Name Server

GRAM Grid Resource Allocation Manager

GRASG Gridifying and Running Applications on Service-oriented Grids

xxiii

xxiv LIST OF ALGORITHMS

GRATIS GRidifying Applications by Transparent Injection of Services

GRIM Generalized Reactive Intelligent Mobility

GrADS Grid Application Development Software

GriddLeS Grid Enabling Legacy Software

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS Secure HTTP

IDL Interface Definition Language

IP Internet Protocol

IS Information Service

JES Job Execution Service

JVM Java Virtual Machine

MGS Mobile Grid Services

MPI Message Passing Interface

MW Master-Worker

NAICS North American Industry Classification System

NFS Network File System

NTP Network Time Protocol

NWS Network Weather Service

LCID Legacy Code Interface Description

OGSA Open Grid Services Architecture

P2P Peer to Peer

PC Personal Computer

PDA Personal Digital Assistant

PNS Protocol Name Servers

PVM Parallel Virtual Machine

QoS Quality of Service

LIST OF ALGORITHMS xxv

RASS Resource Allocation and Scheduling Service

RMI Remote Method Invocation

RMF Reactive Mobility by Failure

RPC Remote Procedure Call

SAGA Simple API for Grid Applications

SETI Search for Extraterrestial Intelligence

SIDL Scientific Interface Definition Language

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Service-Oriented Architecture Protocol

SRS Stop Restart Software

TCP Transport Control Protocol

UDDI Universal Description, Discovery, and Integration

UML Unified Modeling Language

UNSPSC Universal Standard Products and Services Codes

URI Uniform Resource Identifier

URL Uniform Resource Locator

VO Virtual Organization

VPN Virtual Private Network

W3C World Wide Web

WSDL Web Service Definition Language

WSIF Web Services Invocation Framework

WSRF Web Services Resource Framework

XML Extended Markup Language

xxvi LIST OF ALGORITHMS

Chapter 1
Introduction

Grid Computing is a new paradigm for distributed computing that is based on the idea of

arranging the hardware and software resources of computers in a network to execute complex

applications. Typically, these applications are intended to solve many scientific or technical

problems that require by nature a large number of resources, such as CPU cycles and memory,

network bandwidth, data, applications, services, and so on. Such an arrangement of distributed

resources is usually called a Grid (Foster, 2003).

Grids are essentially pervasive computing environments whose objective is to provide secure and

coordinated computational resource sharing between administrative boundaries. The widely

accepted definition for the notion of “Grid” was first proposed in (Foster, 2002), and states

that a Grid is a system that (a) “coordinates resources that are not subject to centralized

control” by bringing together resources from different control domains, (b) “uses standard, open,

general-purpose protocols and interfaces” to effectively address issues such as authentication,

authorization, resource discovery, and resource access, and (c) “delivers nontrivial qualities of

service” by combining resources from distributed sources to meet complex user demands.

Looking back into the history, the first attempts to establish Grid settings were focused on

providing infrastructures to support compute-intensive, large-scale applications by linking su-

percomputers (Foster et al., 2001). At that time, a Grid was conceived as a network linking

together a number of very powerful, dedicated computers to harness their total processing capa-

bilities. With the inception of Internet standards such as Internet Protocol (IP) and Transport

Control Protocol (TCP) in the 1990s, and the great popularity they gained thereafter, a new

phase of the evolution of Grids known as Volunteer Computing (Sarmenta and Hirano, 1999)

was born. Basically, Volunteer Computing promotes the creation of Internet-wide Grids in which

thousands of people share the unused processor cycles of their desktop computers.

A good example of such a system is the SETI@home project (Anderson et al., 2002), where

users can sign up to have their PC process radio signals from the outer space, thus helping

in a global search for the existence of life forms elsewhere in the universe. A portion of the

signal data is sent from a server to a computer over the Internet and then locally processed by

1

2 CHAPTER 1. INTRODUCTION

a software that executes when the computer is idle (i.e. running the screensaver). Finally, the

results are sent back to the SETI@home servers. Other examples of initiatives by which users

around the world can donate CPU power to academic research and public-interest projects are

Distributed.NET (Distributed.net, 1997) and Folding@home (Folding@home, 2000).

A more contemporary, service-oriented view of Grids came into existence with the introduction of

the first Grid runtime systems. Examples of popular platforms for Grid application development

and execution are Legion (Natrajan et al., 2002), Condor (Thain et al., 2003) and Globus (Fos-

ter, 2005). In short, the aim of these platforms is to provide developers with an Application

Program Interface (API) implementing services by which Grid resources can be accessed and ef-

ficiently consumed from within applications. Meanwhile, many well-established standardization

forums such as the Open Grid Forum and the OASIS Consortium were producing the first global

standards for the Grid. Results of these efforts include Open Grid Services Architecture (OGSA)

(OGSA-WG, 2005), a service-oriented Grid reference architecture, and Web Services Resource

Framework (WSRF) (OASIS Consortium, 2006), a standard for describing and consuming Grid

resources by means of Web Service technologies (Vaughan-Nichols, 2002).

Nowadays, research in the Grid community is tending to strongly follow the vision that originally

gave birth to the term “Grid” (Stockinger, 2007). Basically, the term was originated from an

analogy with the electrical power grid, because the long-term goal of Grid Computing is, besides

virtualizing resources and providing powerful computational environments, letting applications

access Grid resources as easy and pervasively as electrical power is now consumed by appliances

from wall sockets (Chetty and Buyya, 2002; Taylor, 2005). In other words, the idea is to provide

applications with much better execution capabilities, and at the same time to hide the inherent

complexity of Grid infrastructures as much as possible from the application developer.

From a software development perspective, a major goal of Grid Computing is to allow pro-

grammers to easily code applications (i.e. the “appliances”) and deploy them on a Grid setting

(i.e. “plug them”), thus delegating to the Grid the responsibility for locating and utilizing the

resources that are necessary to efficiently execute applications. Even much more interesting, it

would be better to allow any existing application to be straightforwardly plugged onto the Grid.

Unfortunately, the envisioned analogy between computer Grids and electrical power grids does

not fully hold yet. The reason for this to happen is that porting or “gridifying” an application

still requires the developer to be actively involved in rewriting and restructuring the application

code and/or performing deployment tasks in order to Grid-enabling the application. Therefore,

the use of Grids remains circumscribed only to those users and programmers who have a solid

knowledge on Grid technologies.

1.1 Motivation

Unlike the electrical power grid, which can be easily used in a plug and play fashion, the Grid is

very complex to use (Chetty and Buyya, 2002). Certainly, plugging applications to effortlessly

1.1. MOTIVATION 3

benefit from Grid resources is still far from being as easy as connecting a toaster, a television

or even a personal computer to the electrical power grid. The cause for which this has been

historically so difficult is twofold:

• Interfacing the Grid by means of programming APIs. Many Grid toolkits are

mostly oriented towards providing APIs for accessing Grid resources and implementing

Grid applications from scratch. As a consequence, the application logic turns out to be

mixed up with API code for using Grid services, thus making maintainability, out-of-the-

box testing, legibility, and portability to different Grid platforms very hard. Besides, these

toolkits not only require developers to adapt their applications to the API being used, but

also force them to learn yet another programming API. This hinders the adoption of these

technologies by novice Grid developers. A number of toolkits following this approach can

be found in the literature, such as the Java Commodity Grid (CoG) Kit (Globus Alliance,

2006), the Grid Application Framework (GAF) (IBM alphaWorks, 2004) and the Simple

API for Grid Applications (SAGA)(Goodale et al., 2006), just to name a few.

Moreover, integrating legacy source code onto the Grid demands in many cases to rewrite/-

restructure significant portions of the application in order to use Grid APIs. This problem

is partially addressed by tools that take applications in their binary form, along with some

user-provided configuration (e.g., input/output parameters and resource requirements),

and wrap the executable code with a software entity (e.g. a Web Service) that isolates the

complex details of the underlying Grid. Examples of such tools are GriddLes (Kommineni

and Abramson, 2005), GEMLCA (Delaittre et al., 2005) and GRASG (Ho et al., 2006).

However, this approach results in extremely coarse-grained Grid applications, thus users

generally cannot control the execution of their applications in a fine-grained manner to

make better use of Grid resources, such as parallelizing certain parts of an application or

distributing the execution of single application components. Overall, this represents a clear

tradeoff between ease of gridification versus flexibility to configure the runtime aspects of

a gridified application.

• Using programming models that call for application restructuring. Many Grid

technologies assume a rather hard-to-use programming model such as message passing or

remote procedure call such as MPICH-G2 (Karonis et al., 2003) and GridRPC (Nakada

et al., 2005). Similarly, Grid frameworks such as Master-Worker (MW) (Goux et al., 2000)

and JaSkel (Ferreira et al., 2006) prescribe programming models based on templates, that

is, recurring design patterns commonly found in Grid applications. Though appropriate for

taking advantage of distributed and parallel execution, applications developed under these

models must be manually partitioned into individual communicating components. The

developer is responsible for explicitly managing non-functional aspects of the application

such as parallelism, coordination and location of these components. As a consequence,

the developer is not just focused on implementing the logic of his application, but also

on coding/adapting it in such a way it is compliant to the framework being used. Note

4 CHAPTER 1. INTRODUCTION

that, depending on the complexity of the framework, this may be a difficult task for

unskilled developers and may require a significant amount of redesign when gridifying

existing applications.

On the other hand, application components resulted from using these programming models

usually talk through ad-hoc, non-interoperable protocols and mechanisms. This fact limits

the potential of these solutions as the basis for future Grid technology, which clearly will

need to be highly interoperable to meet the needs of global enterprises. Here, Web Services

technologies play a fundamental role (Atkinson et al., 2005), since they help in providing

a satisfactory solution to the problem of heterogeneous systems integration, which will be

a fundamental requirement of almost every Grid-based application in the near future.

Approaches falling in either of the two above categories share a common goal: they are focused

on offering programming abstractions rather than gridification facilities. Broadly, “gridification”

can be defined as the process of transforming an ordinary application to run on the Grid (Mateos

et al., 2007a). An ordinary application is a software that has not been at first thought to be

deployed on Grid settings, such as desktop applications or legacy code. In order to perform

gridification, it is clear that a conventional application that a user may have written needs to be

adapted (configured, modified or restructured) in order to access and use Grid resources. This

is similar –to a certain extent– to the process of adapting an application to run as a client/-

server Web application. In both cases, users have to invest some effort into transforming their

applications to run in the new environment. Since the Grid is very complex, the big challenge

is therefore to keep this effort as low as possible and, ideally, make it disappear.

As Grid technologies tend more and more to converge with SOAs (Service-Oriented Architec-

ture) (Atkinson et al., 2005), the problem of gridification reduces to that of lessening the effort

of seamlessly using Grid services. As a consequence, Grid researchers are currently engaged in

finding appropriate ways of transforming conventional user applications to effectively and effi-

ciently take benefit from Grid services. However, efforts towards this end are immature from the

point of view of software gridification, and are inspired by the idea of “applications are coded

for the Grid”, which means developers must keep in mind many Grid-related implementation

details when gridifying their applications. Mostly, developers are forced not only to employ pro-

gramming models and middleware-level abstractions that potentially differ from the ones used

in the original application, but also to manually manage the tasks of accessing and interacting

with Grid services.

It is therefore crucial for gridification to become a reality that Grid technologies follow a different

approach in which applications are easily adapted to run on the Grid rather than coded for the

Grid. Specifically, the integrity of the application logic must be preserved, in the sense developers

should only be focused first on coding the pure functional behavior of their applications, and

be able to non-intrusively add Grid behavior to them afterwards (i.e. access to Grid services).

Even when gridification might require users to alter the code or structure of their applications,

modifications should be minimal. As will be explained, the idea is to transparently “inject”

1.2. THE THESIS 5

Grid services into the application upon gridification, rather than having to explicitly alter the

application logic to use external services.

1.2 The Thesis

Taking into account the problems discussed above, it is clear that there is a need for a new

approach that is capable of effectively coping with these issues. In this sense, this work describes

an approach whose utmost goal is to provide better support –in terms of simplicity– for gridifying

ordinary applications. It is worth noting that the solution proposed in this thesis does not

attempt to provide a method to gridify any kind of application, but a method oriented towards

the gridification of component-based applications, that is, applications where building blocks

are described by and interact through well-defined interfaces. Similarly, the solution does not

target all types of Grid, but only service-oriented Grids, in which their capabilities are accessible

through a set of services.

The approach described in this work seeks to significantly ease the task of porting software to

the Grid, but without negatively affecting the performance of the resulting applications. In this

sense, the main hypothesis of this dissertation is that it is possible to have little gridification effort

and at the same time producing Grid-aware applications whose performance is competitive with

regard to the performance levels achieved by applications gridified under existing approaches.

In other words, the hypothesis states that low gridification effort and good levels of performance

can coexist.

In order to materialize the approach and set the basis for experimental evaluation, a gridification

tool based on the Java language have been implemented. On one hand, the component-based

paradigm is a very popular programming style among Java developers. In addition, given the

widely adoption of the Java language, the tool can benefit a large percentage of today’s Java

applications. On the other hand, Java has been widely recognized as a suitable language for

distributed programming mainly because of its ”write once, run anywhere” philosophy that

promotes platform independence, which is a crucial feature given the extremely heterogeneous

nature of Grids.

Basically, the thesis described throughout this document provides answers to the following ques-

tions:

• It is possible to add Grid-dependent behavior to a conventional application in a non--

invasive way, that is, allowing developers to effectively access Grid services and external

applications from within an ordinary application while keeping the requirement of modi-

fying source code or redesigning the application very low?

• Is there a way to Grid-enable an existing application by leveraging the functionality and

abstractions of existing Grid programming APIs without explicitly using these facilities in

the code implementing the application logic?

6 CHAPTER 1. INTRODUCTION

• What is the appropriate standard granularity for gridified applications so they can be

efficiently executed on the Grid, and how to combine this granularity with easy-to-use, non-

intrusive mechanisms to manually adjust the application granularity to achieve acceptable

performance levels with respect to existing approaches to gridification?

To overcome these issues, a new gridification method called GRidifying Applications by Trans-

parent Injection of Services (GRATIS) have been developed. Central to GRATIS is the concept

of Dependency Injection (DI) (Johnson, 2005), a notion similar to the Inversion of Control

capability that can be found in object-oriented frameworks.

In DI, components providing certain services are transparently injected into components that

require these services as needed. GRATIS exploits this concept by allowing developers to inject

Grid metaservices (e.g. service discovery and invocation, mobility, parallelism, etc.) into their

ordinary applications with little effort. In essence, JGRIM aims at dealing with the “ease of

gridification versus flexible tuning” tradeoff discussed previously by minimizing the requirement

of source code modification when porting conventional applications to the Grid, and at the same

time providing easy-to-use mechanisms to effectively tune Grid applications that do not intrude

on the original version of the application code.

GRATIS follows the so-called two-step gridification methodology (Mateos et al., 2007a), in which

developers are allowed to focus first on implementing, testing and optimizing the functional code

of their applications, and then to Grid-enable them. Additionally, GRATIS promotes separation

between application logic and Grid behavior by non-invasively injecting all Grid-related services

needed by the application at gridification time.

The next subsection presents further details on the approach to gridification described in this

thesis.

1.2.1 GRATIS: Injecting Grid services into conventional applications

The goal of DI is to achieve higher levels of decoupling in component-based applications by

having the components described through public interfaces, and removing dependencies between

components by delegating the responsibility for component instance creation and linking to a

DI container. In this way, components only know each other’s public interfaces, and it is up to

the DI container to create and set (i.e. “inject”) to a client component an instance of another

component implementing a certain interface upon invocations on that interface. By drawing a

parallel with service-oriented software (Huhns and Singh, 2005), the former component can be

thought as a client requesting services, whereas the latter as one representative or proxy of a

concrete provider for these services. In this context, the container could be the runtime system

that binds clients to service providers. For instance, an application component requesting a

certain service may be transparently bound to a Web Service providing the necessary functional

capabilities.

1.2. THE THESIS 7

Grid−a ware applications

that access Grid services

through specialized

components or

m−co mponents

Component−o riented

applications that request

functionality through

well−d efined interfaces

Existing Grid services

for job submission,

efficient and

robust execution,

and data transfer

CPU, bandwidth,

storage, and so on

Application

layer

Middleware

layer

Basic Service

layer

Resource

layer

Ordinary
application

Ordinary
application

Ordinary
application

. . .

Job
Migration

Data
Transfer

Parallelization
Resource
Discovery

Execution
Management &

Monitoring

Gridification

Service
Discovery

Service
Invocation

Application
Tuning

Grid−aware application

Globus ProActive Ibis. . .

. . .

Figure 1.1: Overview of GRATIS

DI is indeed an effective way to achieve loose coupling between application components. The

pattern results in very decoupled components, since the glue or boilerplate code for linking them

together is not explicitly declared by the developer (Johnson, 2005). A crucial implication of

the DI concept to the GRATIS approach is that dependencies can be managed by a software

layer (e.g. a middleware or a runtime platform) to add Grid behavior to ordinary applications.

In this sense, GRATIS essentially builds upon DI to transparently add Grid functionality such

as service discovery and service invocation to conventional applications. In addition, due to the

fact that performance is a fundamental requirement of most Grid applications, GRATIS also

uses DI to inject tuning services such as parallelization and mobility to applications.

Figure 1.1 depicts an overview of GRATIS. As illustrated, GRATIS sits on top of existing

Grid infrastructures by adding a middleware layer that enables component-based applications

to seamlessly and transparently use Grid services. Basically, GRATIS can be seen as a stack

composed four layers at which a different type of service provisioning is carried out:

• Resource layer, which just represents the physical infrastructure of a Grid, given by its

resources and the necessary low-level protocols and contracts to interact with them.

8 CHAPTER 1. INTRODUCTION

• Basic Service layer, which provides sophisticated services to applications (e.g. load bal-

ancing, parallelization, brokering, security, etc.) by means of existing Grid platforms and

resource management systems such as Globus or Condor. Basically, this is precisely the

service layer that commonly serves as the Grid entry point for gridification under most of

the existing approaches.

• Middleware layer, which hosts a number of metaservices that act as a glue between appli-

cations and the Grid. A metaservice is a representative of a set of interrelated concrete

services, that is, those providing similar Grid functionality. Examples of metaservices

include service and application discovery, service invocation and application tuning. Fur-

thermore, tuning metaservices are strongly inspired on the notion of policies (Zunino et al.,

2005a), that is, non-intrusive mechanisms by which developers can customize the way Grid

services are accessed.

• Application layer, which is composed of component-based ordinary applications in which

components are described through a clear interface to their operations. After gridifica-

tion, operation requests originated at the application level are transparently handled by

metaservices, which are basically in charge of dealing with service discovery and interaction

within the Grid.

To validate the approach, the middleware layer mentioned above has been implemented as a

Java-based toolkit called JGRIM (Mateos et al., 2008). JGRIM provides abstractions to make

gridification easier, letting developers to focus on the development and testing of application logic

without worrying about common Grid-related implementation details such as resource discovery,

Grid service invocation and communication protocols. In other words, the goal of JGRIM is to

permit applications to discover and efficiently use the vast amount of services offered by a Grid

without the need to explicitly provide code for either finding or invoking these services from

within the application logic.

The runtime support of JGRIM is a materialization of Generalised Reactive Intelligent Mobility

(GRIM) (Mateos et al., 2005; Mateos et al., 2007b), a generic agent execution model that allows

developers to easily manage mobility of agents and resources. Grid applications in JGRIM

(i.e. a gridified application) are application-level mobile entities called Mobile Grid Services

(MGS) which interact with other MGSs and have injected Grid services to perform mobility,

execution and resource brokering. An MGS comprises the logic (what the service does), and

the Grid-dependent behavior, which is configured separately from the logic and glued to the

MGS at deployment time. Essentially, the gridification process of JGRIM is intended to work

by semi-automatically transforming ordinary applications to MGSs.

Mobile agents have been recognized as a good alternative for materializing Grid middleware

services and applications (Di Martino and Rana, 2004; Fukuda et al., 2006). Basically, a mobile

agent is a software that can migrate within the nodes of a network to perform tasks by locally

interacting with computer resources (Tripathi et al., 2002). Mobile agents have some properties

1.3. CONTRIBUTIONS 9

that make them suitable for exploiting the resources of the Grid, because they add mobility to the

rest of the properties of software agents, which may potentially cause performance improvements

when interacting with remote resources, and are by nature location-aware, which allows them

to behave according to the execution context (e.g. available resources) where they run. Another

important advantages of mobile agents is that they can work without maintaining a connection

to their owner user/application, and allow developers to implement very robust and scalable

distributed applications (Lange and Oshima, 1999).

1.3 Contributions

This work introduces two important contributions to the area of Grid Computing, namely:

• A novel approach to gridification called GRATIS, by which ordinary applications can be

ported to a Grid setting with minimum effort, and still be able to achieve competitive levels

of performance by means of policies. GRATIS combines the advantages of both compo-

nent and service-oriented programming paradigms in terms of loose coupling, modularity

and interoperability, and the benefits of dependency injection, which allows to furnish con-

ventional applications with Grid services without the need for source code modification.

Furthermore, GRATIS goes beyond portability of applications to a Grid, since it promotes

the complete separation of application logic from the code that depends on the actual

environment where applications execute and interact.

• The JGRIM middleware, which is a materialization of the GRATIS approach in the context

of Java, a language that has been widely recognized as an excellent choice for implement-

ing distributed applications. JGRIM provides several metaservices to easily discover and

utilize the services offered by existing Grid middlewares and other applications, and also

metaservices to improve the performance of gridified applications. JGRIM shows that it

is possible to greatly simplify gridification while not negatively affecting the application

performance with respect to toolkits based on a programmatic approach to gridification.

Besides, as JGRIM applications are mobile entities, the middleware is also suitable to

implement efficient and modular mobile Grid applications.

1.4 Organization of this work

The rest of the document is organized as described next. Chapter 2 provides a conceptual back-

ground on the Grid Computing paradigm, describes the architecture of the Grid, and discusses

current standards and technologies materializing this architecture. In addition, the chapter intro-

duces the concept of gridification, and discusses in detail how it has influenced the development

of Grid technologies.

10 CHAPTER 1. INTRODUCTION

Chapter 3 describes and analyzes the most relevant related work. It includes several taxonomies

in order to help in categorizing the existing approaches to gridification with respect to various

important aspects of the problem. The chapter ends by presenting a detailed comparison of

these approaches and highlighting their drawbacks. The contents of the chapter are for the most

part derived from (Mateos et al., 2007a).

Chapter 4 presents GRidifying Applications by Transparent Injection of Services (GRATIS),

an approach to gridification that allows developers to port their applications to the Grid with

minimum effort, and easily address performance issues once they are gridified. The chapter is

partially derived from (Mateos et al., 2008).

Chapter 5 describes Generalised Reactive Intelligent Mobility (GRIM), a conceptual framework

that models common interactions between mobile applications and resources in distributed sys-

tems. This chapter is partially derived from (Mateos et al., 2007b), (Mateos et al., 2005)

and (Mateos et al., 2007c). Basically, GRIM is materialized by the gridification tool that is

described in Chapter 6.

Chapter 6 discusses relevant aspects related to the design and implementation of JGRIM, a

GRIM-based middleware that supports the GRATIS approach for gridifying component-based

Java applications. Specifically, the chapter focuses on explaining the implemented mechanisms

to enable the injection of Grid services to conventional applications.

Chapter 7 details the gridification of two existing applications with JGRIM, and reports an

experimental evaluation between this latter and other two platforms for Grid development named

Ibis and ProActive. The goal of the experiments is to evaluate both the gridification effort and

performance issues. Appendixes A and B contains the implementation code used during the

experimentation. Appendixes C and D contains the data tables associated to the experiments.

Chapter 8 summarizes the contributions of the thesis to the area of Grid Computing, its limita-

tions, and some perspectives for future research.

Chapter 2
Background

The term “Grid” was created to denote a powerful and globally distributed computing environ-

ment whose purpose is to meet the increasing demands of advanced science and engineering.

Within the Grid, hardware and software resources are virtualized to transparently provide ap-

plications with vast amounts of resources. Just like the electrical power grid, the Grid aims at

offering a powerful yet easy-to-use computing infrastructure to which applications can be easily

“plugged” and efficiently executed.

However, given the extremely heterogeneous, complex nature inherent to the Grid, writing or

adapting applications to execute on the Grid is indeed a very difficult task. So comes the

challenge to provide appropriate methods to gridify applications, that is, semi-automatic and

automatic methods for transforming conventional applications to benefit from Grid resources.

Both, the evolution of the Grid as an infrastructure and the need to facilitate Grid application

programming, gave origin to novel concepts and technologies.

This chapter provides an overview of the purpose and architecture of the Grid, along with the

implementation technologies commonly found in today’s Grid systems and applications. The

next section presents the most widely accepted definition for the term “Grid”, and describes its

architecture. Then, Section 2.2 describes popular standards towards the materialization of this

architecture in the context of service-oriented Grids. Then, Section 2.3 explores the concept of

“gridification” from a technical point of view. Finally, Section 2.4 concludes the chapter.

2.1 Grid Basics: A Roadmap

The term ”Grid Computing” came into daily usage about ten years ago to describe a form

of distributed computing in which hardware and software resources from dispersed sites are

virtualized to provide applications with a single and powerful computing infrastructure (Foster

and Kesselman, 2003b). This infrastructure, known as the Grid1 (Foster, 2003), is a distributed

1Researchers commonly speak about “the Grid” as a single entity, albeit the underlying concept can be applied
to any Grid-like setting.

11

12 CHAPTER 2. BACKGROUND

computing environment whose objective is to provide secure and coordinated computational

resource sharing between organizations. Although simple conceptually, the idea is very difficult

to deal with in practice, since it is necessary to pay attention to a lot of details when building

either Grid settings or applications.

Within the Grid, the use of resources such as processing power, disk storage, applications and

data, often spread across different physical locations and administrative domains, is shared and

optimized through virtualization and collective management. Furthermore, sharing is necessarily

highly controlled. Resource providers and consumers must define clearly and carefully what is

shared, who is allowed to share, and the conditions under which sharing occurs. A set of

individuals and/or institutions defined by such sharing rules are usually referred as a Virtual

Organization (VO) (Foster et al., 2001).

Grid infrastructures were originally intended to support compute-intensive, large-scale scientific

problems and applications by linking supercomputing nodes (Foster et al., 2001). During the

first half of 1990s, the inception and increasing popularity of Internet standards gave birth to an

early phase of the Grid evolution later known as Volunteer Computing (Sarmenta and Hirano,

1999): users from all over the world are able to donate CPU cycles by running a free program

that downloads and analyzes scientific data while their PCs are idle (e.g. when the screensaver

is activated). Examples of these projects2 are Distributed.net (Distributed.net, 1997) (Internet’s

first general-purpose distributed computing project), Folding@home (Folding@home, 2000) (pro-

tein folding), SETI@home (Anderson et al., 2002) (search for extraterrestrial intelligence) and,

more recently, Evolution@home (evolutionary biology) (Loewe, 2007). Few years after the in-

troduction of Volunteer Computing, the first middlewares and resource management systems

for implementing Grid applications over the Internet appeared. Examples are Legion (Natrajan

et al., 2002), Condor (Epema et al., 1996; Thain et al., 2003) and Globus (Foster, 2005), this

latter baptized by Ian Foster as the “Linux of the Grid”. The evolution of Grid technologies is

depicted in Figure 2.1.

Nowadays, Grid Computing is far from only attracting the scientific community. Organizations

of all types and sizes are becoming aware of the great opportunities this paradigm offers to

share and exploit computational resources such as information and services. In fact, a number

of projects have been actively working towards providing an infrastructure for commercial and

enterprise Grids settings (Chien et al., 2003; Levine and Wirt, 2003; Sun Microsystems, 2005).

Furthermore, many well-established standardization forums have produced the first global stan-

dards for the Grid. Recent results of these efforts include the OGSA (OGSA-WG, 2005), a

service-oriented Grid system architecture, and the WSRF (OASIS Consortium, 2006), a frame-

work for modeling and accessing Grid resources using Web services (Vaughan-Nichols, 2002).

2They are now not considered Grid systems but are classified as public distributed computing systems

2.1. GRID BASICS: A ROADMAP 13

In
c
re

a
s
e
d
 f
u
n
c
ti
o
n
a
lit

y
,

s
ta

n
d
a
rd

iz
a
ti
o
n
 a

n
d
 a

p
p
lic

a
b
ili

ty

1990 1995 2000 2005 onwards

Custom, ad−hoc
solutions

Globus Toolkit
− Internet standards
− Volunteer Computing

OGSA
− Real Grid standards
− Web Services, WSRF

Virtual Systems
− Collaborative research
− Commercial Grids

Figure 2.1: The evolution of Grid technologies (adapted from (Foster and Kesselman, 2003a))

2.1.1 The Grid: A Definition

Although many technological changes both in software and hardware have occurred since the

term “Grid” was first introduced, a recent survey (Stockinger, 2007) indicates that there are

hardly any significant disagreements within the Grid research community about the Grid vision.

This survey was conducted by collecting the opinions of more than 170 Grid researchers from

all over the world about how they define the Grid. Years ago, Ian Foster, considered by many

researchers to be the father of the Grid, proposed a checklist (Foster, 2002; Foster and Kesselman,

2003a) for determining whether a system is a Grid or not, which has been broadly accepted.

According to Foster, a Grid is a system that:

• Coordinates resources that are not subject to centralized control, since it integrates and co-

ordinates resources (and users) from different administrative domains by addressing issues

such as security, membership, policy, and so on. For example, administrative domains may

include the sales, marketing or management division of a company, the different faculties

within a single university, etc. Note that if this feature is not present, the system is clearly

not a Grid, but a local management system.

• Uses standard, open, general-purpose protocols and interfaces, since it is built upon multi-

purpose protocols and interfaces that address fundamental aspects such as authentication,

authorization, resources discovery and access, data movement, and so forth. It is very

important that these protocols and interfaces be standard and open, so as to create dis-

tributed systems that are compatible and interoperable. These principles can already be

found on the Internet, where the TCP/IP protocol suite, which deals with fundamen-

tal issues like connectivity and data transmission, is composed of a set of multipurpose,

14 CHAPTER 2. BACKGROUND

standard and open protocol specifications.

• Delivers nontrivial qualities of service, since it allows its software and hardware resources

to be used in such a way they are capable of delivering various qualities of service (e.g.

response time, throughput, reliability, robustness, etc.) to meet complex user requirements.

For example, analysis of the (possibly many) petabytes of data to be produced by future

high-energy physics experiments will require the coordination of hundreds of thousands

of processors and hundreds of terabytes of disk space for storing intermediate results. In

other words, qualities of service delivered by Grid systems are several orders of magnitude

better than that of the “best” modern computer cluster we might have heard about.

Likewise, the basic Grid idea has not changed considerably within the last ten years (Stockinger,

2007). The term “Grid” comes from an analogy with the electrical power grid. Essentially,

the Grid aims to let users access computational resources as transparently and pervasively as

electrical power is now consumed by appliances from a wall socket (Chetty and Buyya, 2002;

Taylor, 2005). Indeed, one of the goals of Grid computing is to allow software developers to

build an application (i.e. “the appliance”), deploy it on the Grid (i.e. “plug it”), and then let

the Grid to autonomously locate and utilize the necessary resources to execute the application.

Ideally, it would be better to take any existing application and put it to work on the Grid, thus

effortlessly taking advantage of Grid resources to improve performance. Sadly, the analogy does

not completely hold yet since it is hard to “gridify” an application without manually rewriting

or restructuring it to make it Grid-aware. Unlike the electrical power grid, which can be easily

used in a plug and play fashion, the Grid is rather complex to use (Chetty and Buyya, 2002).

2.1.2 The power grid analogy

A good starting point to better understand the analogy between the Grid and the electrical power

grid is GridCafé (CERN, 2007), a project from European Organization for Nuclear Research

(CERN)3 whose goal is to explain the basics of the Grid to a wider audience. Basically, Grid-

Café compares both infrastructures according to the three following features:

• Transparency : The electrical power grid is transparent because users do not know how

and from where the power they use is obtained. Specifically, power is generated in nu-

merous, geographically distributed power plants and then transparently distributed where

it is needed. The Grid is also transparent, since Grid users execute applications without

worrying about what kind or how many computational resources are used to perform the

computations, or where all these resources are located.

• Pervasiveness: Electricity is available almost everywhere. The power grid is in essence an

infrastructure that links together power plants by means of transmission stations, power

3The CERN is the world’s largest particle physics laboratory, which has recently become a host for Grid
Computing projects

2.1. GRID BASICS: A ROADMAP 15

stations, transformers and powerlines to bring electricity to homes. The Grid is also perva-

sive, since according to the Grid vision, computing resources and services will be accessible

not only from PCs but also from laptops and mobile devices. Consequently, reusing ex-

isting pervasive infrastructures (e.g. the Internet) and ubiquitous Web technologies such

as Web browsers, Java (Arnold and Gosling, 1996) and Web Services could be a big step

towards complete pervasiveness and therefore easy adoption of the Grid.

• Payment : Grid resources are essentially utilities, since they will be provided –just like

the electricity– on an on-demand and pay-per-use basis. The idea of billing users for the

actual use of resources on the Grid (e.g. CPU cycles, memory and disk storage, network

bandwidth, etc.) finds its roots in an old computational business model called Utility

Computing, also known as On-Demand Computing (Yeo et al., 2007). A good example of

a project actively working on utility-driven technologies for the Grid is Gridbus (GRIDS

Laboratory, 2007).

Another feature shared by power and computational grids not mentioned in the above list

is concerned with availability. While faults may be produced at single components of either

infrastructures, it is highly desirable that those faults do not become failures (i.e. visible to

users). The electrical power is (for the most part) always available even if there is a problem

somewhere. Similarly, the Grid is responsible for conveying computational power wherever and

whenever it is requested despite semi or complete reduction in the capabilities of its individual

hardware and software components.

While the power grid infrastructure links together transmission lines and underground cables to

provide users with electrical power, the Grid aims at using the Internet as the main carrier for

connecting mainframes, servers and even PCs to provide scientists and application developers

with a myriad of computational resources. From a software point of view, this support repre-

sents the bottommost layer of a software stack that is commonly used to describe the Grid in

architectural terms. This architecture is depicted in Figure 2.2.

Fabric
Hardware resources such as
computers, storage media,
networks and sensors

Resource and Connectivity
Secure access to
resources and services

Collective
Directory brokering,
diagnostics, and monitoring

User Applications Tools and applications

Figure 2.2: The Grid software stack (Foster and Kesselman, 2003a)

16 CHAPTER 2. BACKGROUND

The stack is composed of four layers: Fabric, Resource and Connectivity, Collective and User

Applications. Roughly, the Resource and Connectivity layer consists of a set of protocols capable

of being implemented on top of many resource types (e.g. TCP, Hyper Text Transfer Protocol

(HTTP)). Resource types are defined at the Fabric layer, which in turn are used to construct

metaservices at the Collective layer, and Grid applications at the User Applications layer. The

main characteristics of each layer are described next:

• Fabric: As mentioned above, this layer represents the physical infrastructure of the Grid,

including resources such as computing nodes and clusters, storage systems, communication

networks, database systems and sensors, which are accessed by means of Grid protocols.

Generally speaking, resources at this layer are entities that may be either physical (e.g.

disks, servers, PCs, etc.) or logical (e.g. a distributed file system, a computer cluster, etc.).

Interaction with logical resources may involve internal, technology-specific protocols (e.g.

Network File System (NFS) for distributed file access, middleware-specific job submission

protocols, etc.), but these are out of the scope of the protocols considered by the Grid

architecture as protocols for accessing Fabric resources.

• Resource and Connectivity : Defines protocols to handle all Grid specific transactions be-

tween different resources on the Grid. Protocols at this layer are further categorized as

connectivity-related protocols, which enable the secure exchange of data between Fabric

layer resources and perform user authentication, and resource-related protocols, which per-

mit authenticated users to securely negotiate access to, interact with, control and monitor

Fabric layer resources:

– Connectivity-related protocols: Enable the exchange of data between Fabric layer

resources. On top of the core communication services (transport, routing and nam-

ing), authentication protocols are used for verifying the identity of both users and

resources. At present, communication protocols are mainly derived from the TCP/IP

protocol stack. Similarly, many security mechanisms originally designed for the Inter-

net have been redefined/extended to be used in Grid settings. However, in the near

future, the changing nature of the Grid could demand the creation of a new brand of

protocols that take into account special communication and security requirements.

– Resource-related protocols: Having established identity, Grid users needs to interact

with resources and services. These protocols build on communication and authen-

tication protocols and define mechanisms to operate on individual resources. There

are two classes of resource-related protocols: information protocols, which are used

to gather information about the anatomy and state of a resource (e.g. processing

power and current average load of a computing node), and management protocols,

which are used to negotiate access to a shared resource. Management protocols usu-

ally prescribe mechanisms for specifying resource requirements (e.g. desired quality

of service) and the operations that can be performed on the resource (e.g. remote job

submission, disk space advanced reservation).

2.1. GRID BASICS: A ROADMAP 17

• Collective: The collective layer contains protocols and services associated with capturing

interactions across collections of resources. Functionality offered at this layer include:

– Directory services, which allow users to discover resources by their attributes (e.g.

type, availability, size, load, etc.). An example of such a kind of service is MDS-

2 (Czajkowski et al., 2001), an information and discovery service for the Grid which

is part of the Globus Toolkit.

– Coallocation, scheduling and brokering services, which allow users to request the al-

location of one or more resources and the scheduling of tasks on suitable resources.

Examples of these services are AppLeS (Berman et al., 2003) and Nimrod-G (Abram-

son et al., 2000).

– Monitoring and diagnosis services, which detect and handle failures, overloads, secu-

rity threats or attacks, and so on.

– Data replication services, which are in charge of optimal management of storage (and

to a lesser extent network and computing) resources to maximize data access perfor-

mance with respect to various metrics (e.g. response time, throughput, reliability,

etc.).

• User Applications: Each one of the previous layers expose well-defined protocols and APIs

that provide access to services for resource management, data access, resource discovery

and interaction, an so on. On the other hand, the User Application layer comprises the

applications that operate within a VO, which are built upon Grid services by means of

those APIs and protocols.

It is worth noting that some “applications” within the topmost layer may in turn be Grid

programming facilities such as frameworks and middlewares, exposing themselves protocols and

APIs upon which more complex applications (e.g. workflow systems) are created. In fact,

these facilities can be seen as the “wall socket” by which applications are connected to the

Grid. Application developers are likely to use high-level software tools that provide a convenient

programming environment and isolate the complexities of the Grid, rather than use Grid services

directly.

However, applications that have not been written to run on the Grid still have to be adapted

in order to use the functionality provided by Grid programming facilities. In other words, these

kind of applications need to be gridified so they can take advantage of Grid services and resources

through a specific middleware or framework. As a consequence, an extra development effort is

required from application programmers, which might not have the necessary skills or expertise

to port their applications to the Grid. To sum up, the foreseen goal of gridification is to let

conventional applications benefit from Grid services without requiring these applications to be

modified. The concept of gridification is discussed in Section 2.3.

The next section takes a closer look at Grid services focusing on its supporting technologies.

18 CHAPTER 2. BACKGROUND

2.2 Service-Oriented Grids

One of the most important technological changes that have occurred since the Grid Computing

paradigm was proposed is the wide acceptance of Web service technologies (Stockinger, 2007).

Basically, a Web Service is a piece of functionality with a well-defined interface that can be

located and accessed by means of conventional Web protocols (Vaughan-Nichols, 2002; Curbera

et al., 2003; Martin, 2001). To date, Web Services have been successfully employed in contexts

such as Business-to-Business (B2B) and e-commerce applications. For example, many popular

Web sites such as Amazon4, eBay5 and Google6 offer Web Services for applications that expose

the same information and functionality a user can access by using a regular Web browser (e.g.

for performing a Google search, or buying a book in Amazon or eBay).

In the Grid arena, Web Services standards such as Service-Oriented Architecture Protocol

(SOAP) (W3C Consortium, 2007a), Web Service Definition Language (WSDL) (W3C Con-

sortium, 2007b) and Universal Description, Discovery, and Integration (UDDI) (OASIS Consor-

tium, 2004) have gained great popularity. Today, these standards play a fundamental role, since

they greatly help in providing a satisfactory solution to the problem of heterogeneous systems

integration, thus supplying the basis for future Grid technology which will clearly need to be

highly interoperable to meet the needs of global enterprises. In fact, the major Grid standard-

ization efforts such as OGSA (OGSA-WG, 2005) and the WSRF (OASIS Consortium, 2006)

heavily rely on Web Services technologies. In addition, Grid middlewares are evolving from

their pre-Web Service state to new versions based on Web Services (Atkinson et al., 2005). For

instance, research has been being done to integrate Condor with Web Services (Chapman et al.,

2004; Chapman et al., 2005), and Globus has recently embraced WSRF. In summary, the cur-

rent trend is to see the Grid as a provider of services –materialized as Web Services– on top of

which complex Grid applications can be constructed by invoking, composing and orchestrating

these services.

2.2.1 Web Services standards

Web Services have proven to be a suitable model to allow systematic interactions of distributed

applications and integration of legacy platforms and environments. The Web Services model

mostly relies on technologies based on Extended Markup Language (XML) (Bray et al., 2006),

a structured language that extends and formalizes Hyper Text Markup Language (HTML). In

this sense, the World Wide Web (W3C) Consortium has developed SOAP, a communication

protocol entirely based on XML. Nowadays, SOAP is widely used and is included in most

of the communication infrastructure proposed for integrating applications and Web Services.

In addition, languages for describing Web Services have been developed. The most notorious

example is WSDL, an XML-based language which allows developers to create service descriptions

4Amazon Bookstore: http://www.amazon.com/gp/aws/landing.html
5eBay: http://developer.ebay.com/DevProgram/index.asp
6Google Search Engine: http://code.google.com/apis/

2.2. SERVICE-ORIENTED GRIDS 19

as a set of operations over XML messages. From a WSDL specification, a program can discover

the specific services a Web site provides, and how to use and invoke these services.

As a complement to WSDL, UDDI has been proposed. UDDI provides mechanisms for searching

and publishing services written preferably in WSDL. UDDI is in essence a “store window” for

Web Services consumers: Web Service providers such as enterprises or organizations register

information about the services they offer, thus making this information available to potential

clients. The information stored into UDDI registries ranges from files describing services to

useful data (e-mail, Web pages, etc.) for contacting the associated provider.

The Web Services model is shown in Figure 2.3. Here, a Web Service is defined as an interface

describing a collection of operations that are network-accessible through standardized XML mes-

saging. WSDL is used to describe the software interface to the Web Service, and all interactions

between any pair of components are supported through SOAP.

Service
Requester

Provider
(WSDL)

Registry
(UDDI)

Find Publish

Bind

Service description

Web service

SOAP

Figure 2.3: The Web Services model (Kreger, 2001)

The model encompasses three classes of elements: service providers, service requesters and

service registries. A service provider creates a WSDL document describing its Web Service

and publishes this document to a service registry such as UDDI. A service requester can use

a registry to find a Web Service that matches its needs and retrieve the corresponding WSDL

document. Using the information provided by a WSDL document, a service requester invokes

the operations of the provider’s Web Service.

SOAP, WSDL and UDDI are described next.

2.2.1.1 SOAP

SOAP is a communication protocol for exchanging XML-based messages over computer net-

works, normally using HTTP or Secure HTTP (HTTPS). As explained, SOAP represents the

20 CHAPTER 2. BACKGROUND

foundation layer of the Web Services model, providing a basic messaging framework on which

clients and services can build on.

Although there are several types of messaging patterns in SOAP, the most common is Remote

Procedure Call (RPC), in which a client sends a request message to a server residing at a remote

location. Then, the server processes the message and sends a response message back to the

client. The RPC pattern is certainly not new, as it has been already implemented in distributed

technologies such as Remote Method Invocation (RMI) and Common Object Request Broker

Architecture (CORBA).

Since based on XML, SOAP messages can be read by humans, thus potentially simplifying de-

bugging. However, the verbose nature of XML can cause the protocol to render slow message

processing times and excessive usage of network bandwidth with respect to alternative represen-

tations for messages, such as binary formats. In any case, SOAP is versatile enough to leverage

ubiquitous transport protocols like TCP, File Transfer Protocol (FTP) and Simple Mail Transfer

Protocol (SMTP). Besides, using SOAP over HTTP allows for easier communication between

hosts that have connectivity restrictions (e.g. hosts behind proxies or firewalls) than previous

RPC-like technologies.

2.2.1.2 WSDL

WSDL is a standard for describing services and software components in a manner independent

of any particular programming language. A WSDL Web Service definition is a XML document

comprising a service description, which define the service interface, and implementation details,

which specifies how the interface maps to concrete communication protocols and endpoint ad-

dresses. By establishing this separation, WSDL allows to multiple bindings for the same service

interface. For example, a single service implementation might support bindings based on one or

more distributed communication protocols, and an locally optimized binding (e.g. inter-process

communication) for interactions between clients and services of the same host.

Figure 2.4 (a) illustrates the service description corresponding to a Web Service for retrieving files

(StorageService), whereas Figure 2.4 (b) shows its implementation details. The <portType>

element abstractly defines the Storage-Service interface by specifying a “getFile” operation. Op-

erations are specified by an <operation> element, which defines the messages used to implement

a specific interaction pattern (e.g. request-response, asynchronous, etc.) for the operation. In

our example, the “getFile” operation has an input message (getFileRequest) and output message

(getFileResponse), thus interaction between clients and service is synchronous.

The <message> element defines the messages used in either direction to implement an operation.

A message is composed of zero or more parts, which have an associated datatype. Both input

and output messages in our example define messages that are composed of a single string part.

2.2. SERVICE-ORIENTED GRIDS 21

<wsdl:definitions xmlns:tns="..." targetNamespace="...">
 <!−− Custom datatypes definitions −−>
 . . .
 <message name="getFileInfoRequest">
 <part name="filename" type="xsd:string">
 </message>

 <message name="getFileInfoResponse">
 <part name="info" type="xsd:string">
 </message>

 <portType name="StorageServicePort">
 <operation name="getFileInfo">
 <input message="getFileInfoRequest">
 <output message="getFileInfoResponse">
 </operation>
 </portType>
 . . .

(a) Service description

 . . .
 <binding name="StorageServiceSoapBinding"
 type="StorageServicePort">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation>
 <soap:operation
 soapAction="http://example.com/getFileInfo"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</wsdl:definitions>

(b) Implementation details

Figure 2.4: Example showing the elements of a WSDL definition

WSDL provides a set of built-in primitive datatypes, and also offers an extension mechanism

to create custom datatypes. From an object-oriented perspective, port types, operations and

messages can be thought as class interfaces, method and arguments, respectively.

Finally, binding details are specified within a <binding> element (see Figure 2.4 (b)), which

specifies the messaging and transport protocol, messaging style (document or RPC) and data--

encoding model (literal or SOAP-based) used to communicate messages. As the reader can see

from the figure, the “getFile” operation uses SOAP messaging over HTTP transport, document

messaging style and literal encoding.

2.2.1.3 UDDI

The UDDI specification is another important member of the group of related standards for Web

Services. UDDI defines methods for publishing and discovering Web-accessible services. Central

to UDDI is the concept of registry, which is a collection of one or more servers (or nodes) that

support the UDDI specification. Unlike registries, nodes usually perform a reduced set of the

functionality defined in the specification.

The purpose of UDDI registries is to maintain metadata about individual businesses and theirs

corresponding services. UDDI provide mechanisms to classify and catalog this information to

allow Web Services to be discovered and consumed by user applications and other services.

Roughly, a UDDI registry consists of the following components:

• “White pages”, which contain location and contact information about individual service

providers (e.g. address, zip code, email, Web page, etc.),

• “Yellow Pages”, which offer categorized views of published Web Services based on stan-

dard taxonomies and classification systems such as North American Industry Classification

22 CHAPTER 2. BACKGROUND

System (NAICS)7 or Universal Standard Products and Services Codes (UNSPSC)8, and

• “Green Pages”, which provide technical information about services exposed by providers,

such as security and transport protocols supported by a given Web Service, parameters

necessary to invoke or access the service, etc.

UDDI registries are accessed by client applications through the UDDI inquiry API, a standard

set of functions for inspecting registry entries which are currently available for a variety of

programming languages. In order to browse and query a registry, applications must firstly

obtain an authentication token for the registry. Authentication tokens protect the information

stored in UDDI registries by preventing malicious or unauthorized access.

2.2.2 WSRF

A major limitation of the Web Services model is that services are by itself stateless. In other

words, the model does not explicitly prescribe mechanisms to record the “conversation” between

a service requester and a Web Service. For example, an online airline reservation system that

provides Web Services for flight booking must maintain state information about flight status

and reservations made by specific customers. This fact clearly limits the potential of the model,

and puts an extra burden on developers, since both applications and services are responsible for

managing state information across invocations.

WSRF is a family of specifications for implementing stateful Web Services. WSRF provides

a set of standard operations that Web Services may implement to become stateful. These

operations allow individual services to be associated to one or more resources, whose solely

purpose is to store the state information corresponding to a single invocation from a specific

requester to a service. Each resource have a unique identifier (usually an Uniform Resource

Identifier (URI)). Whenever a client application wants to perform a stateful interaction with

a Web Service, the service is instructed to use a particular resource. Besides the notion of

explicit resource referencing, WSRF includes a standardized set of operations to query and

modify resource attributes. This support is mainly used by management and debugging tools

to visualize and to track the state of the resources associated to a Web Service.

Figure 2.5 illustrates the components that are involved in the interaction of a service requester

and a WSRF-enabled Web Service (labeled (1) in the figure). A Web Service is basically a

piece of functionality whose implementation is deployed within a runtime environment (2), such

as a Web server or a J2EE-compliant application server. This runtime environment hosts the

implementation code of the Web Service and dispatches all invocations to the service. The

7NAICS: www.census.gov/naics
8UNSPSC: http://www.unspsc.org

2.2. SERVICE-ORIENTED GRIDS 23

Service
requester

(5)

(4)
(6)

(2)

(1)

Service provider

(3)

Figure 2.5: WSRF-enabled Web Services: operational components

Web Service’s interface (3) describes –usually by means of WSDL– the service’s functionality in

terms of a set of operation that may be invoked by service requesters. The runtime environment

also provides a message processing facility (4) that can handle the communication between the

Web service and the requester (5). Most modern message processing facilities for Web Services

support the SOAP protocol. Finally, the Web Service implementation is responsible for receiving

a message, and processing the message, potentially interacting with stateful resources (6) and

other Web Services. Web Services may also play the role of a service requester, initiating

conversations with other Web Services.

2.2.2.1 WSRF Core Specifications

WSRF consists of a collection of four different specifications, which relate to a greater or lesser

extent to the management of WSRF-like resources:

• WS-ResourceProperties: As mentioned above, a resource is composed of zero or more prop-

erties. For example, a resource representing a flight reservation may have properties like

date, origin, destination and seat number. WS-ResourceProperties specifies how resource

properties are defined and accessed.

• WS-ResourceLifetime: In general, resources have non-trivial lifecycles. Namely, resources

can be created and destroyed at any time. The WS-ResourceLifetime provides basic mech-

anisms to manage the lifecycle of resources.

• WS-ServiceGroup: A ServiceGroup is a heterogeneous collection of Web Services. Ser-

viceGroups can be used to form a variety of collections of services or resources, including

registries of Web Services and their associated resources. The WS-ServiceGroup speci-

fication standardizes the way Service-Groups are managed, providing operations related

to group management (e.g. adding/removing members) and basic querying (e.g. find a

service that meets condition X).

• WS-BaseFaults: This specification simply aims at providing a standard, implementation-

neutral way of reporting faults produced during the invocation of a Web Service.

24 CHAPTER 2. BACKGROUND

These specifications are commonly used in conjunction with other Web Service specifications,

such as WS-Notification and WS-Addressing9. WS-Notification allows a Web Service to act as

a notification producer, and clients to be notification subscribers. As a consequence, subscribers

are notified whenever a change occurs in the Web Service (e.g. a property in a resource have

been modified). On the other hand, WS-Addressing provides mechanisms to easily reference

Web Services and its associated resources.

2.2.3 OGSA

OGSA is the most popular reference architecture for implementing Grid systems, which is fully

based on the principles of Service-Oriented Architecture (SOA) (Huhns and Singh, 2005). The

basic building brick of SOAs is the notion of service, that is, an entity that provides special

capabilities to its clients by exchanging messages. A service is defined by an interface that

contains one or more operations. This interface represents the “contract” to which clients agree

in order to interact with the service. Therefore, by clearly defining service interfaces, a great

degree of flexibility is achieved, specially on how services are implemented or where they are

located. As the reader can see, these principles also apply smoothly to the Web Services model, in

which standards are provided to specify both service interfaces (i.e. WSDL) and messaging (i.e.

SOAP), thus achieving interoperability. In essence, the aim of OGSA is to leverage the benefits

of both SOA and Web Services standards to simplify the development of highly decoupled,

interoperable, reusable Grid applications.

By hiding functionality behind a common message-oriented service interface, SOAs promotes

service virtualization (Foster et al., 2003), which is a fundamental requirement of Grid systems.

For example, a storage service might expose a “transfer file” operation to transfer data from one

Grid node to another. In this way, a user should be able to invoke this operation on a particular

instance of the storage service without knowing nothing about how that instance implements

the transfer file operation (e.g. the underlying transport protocol for transferring the file).

A simplified view of OGSA is shown in Figure 2.6. As depicted, OGSA is built on top of Web

Services standards, which provide the basis for interoperability and platform-independence across

a variety of different Grid environments. On top of those standards, WS-* specifications address

important issues related to basic service semantics such as service lifetime, fault management,

notification mechanisms, service identification, and so on. In this context, a Web Service that

adheres to WS-* standards is known as a Grid Service. Note that these elements can be viewed

as a reference materialization of the lowest layers of the Grid architecture presented in past

sections, in the sense that Grid services can be used to perform basic virtualization of Grid

resources.

9Hence the name of “WS-* standards” given to these family of specifications

2.2. SERVICE-ORIENTED GRIDS 25

Application−specific services

− Infrastructure services
− Execution management services
− Data services
− Resource Management services
− Security services
− Self−management services
− Information services

OGSA services

Grid services
(Web Services + WS−*)

Web Services

Hosting
environment

Transport
protocols

Application
layer

Middleware
layer

Infrastructure
layer

Figure 2.6: The core elements of OGSA

Grid services serve as the basement for the OGSA services. OGSA services are basically spe-

cialized Grid services that materialize behavior commonly found when building large-scale dis-

tributed systems. Examples are service discovery, authentication, quality of service and policy

agreement, resource monitoring, data integration and management, security, to name a few.

OGSA services can be seen as “metaservices” that materialize the middle layers of the Grid

architecture. Finally, on top of OGSA services, more complex, domain-specific services may be

built.

An interesting fact about the OGSA reference architecture is the way it has influenced the

development and evolution of service-oriented Grid technologies and standards. Almost all

specifications related to Web and Grid Services are in a constant process of revision and refine-

ment. In addition, the Grid research community is progressively acquiring better understanding

on what services a Grid should provide, and how these services should be materialized accord-

ing to current Grid standards. This translates into more and more sophisticated, reusable and

interoperable middleware Grid services for Grid application developers.

As a complement, many researchers have been also looking for pushing Grid technologies further

by following the opposite direction, namely providing toolkits, frameworks and programming

facilities to simplify the consumption of services from within user applications. The ultimate

goal of these technologies is to produce effective techniques and methods to allow application

developers to benefit from Grid resources without the need for either knowing details of the

Grid or modifying applications. Certainly, gridifying applications is a difficult and challenging

problem that has motivated a significant amount of research over the last years. In this sense,

the next section provides a brief overview of Grid technologies focused on providing solutions to

this problem.

26 CHAPTER 2. BACKGROUND

2.3 Gridification Technologies: Origins and Evolution

It is difficult to determine exactly when the term “gridification” was first introduced, but the

idea of achieving easy pluggability of ordinary applications into the Grid surely took a great

impulse at the time the analogy between electrical power grids and computational Grids was

established. Nowadays, the concept of gridification is widely recognized among the Grid research

community, and many researchers explicitly use the term “gridification” to refer to this idea (Ho

et al., 2003; Wang et al., 2004; Imade et al., 2004; Ho et al., 2006; Taffoni et al., 2007; Mateos

et al., 2008; Mateos et al., 2007a). The evolution of Grid technologies from the point of view of

gridification is presented in the next paragraphs.

The first attempts to achieve gridification began with the use of popular technologies tradi-

tionally employed in the area of Parallel and Distributed Computing such as Parallel Vir-

tual Machine (PVM) (Geist et al., 1994), Message Passing Interface (MPI) (Dongarra and

Walker, 1996) and RMI (Downing, 1998). Basically, the underlying programming models of

these technologies were reconsidered to be used in Grid settings, yielding as a result standard-

ized Grid programming APIs such as MPICH-G2 (Karonis et al., 2003) (message passing) and

GridRPC (Nakada et al., 2005) (remote procedure call). Grid applications developed under these

models are usually structured as “masters” and “workers” components communicating through

ad-hoc protocols and interaction mechanisms. For example, programmers must explicitly sup-

ply API code to either synchronously or asynchronously send/perform messages/calls within

these components. Developers are also responsible for managing parallelization and location

of application components. Specifically, aspects such as threading and resource management

(e.g. physical information about the nodes involved in a computation) are entirely handled by

programmers. As a consequence, at this stage there is not a clear idea of Grid resource virtual-

ization yet. Consequently, gridification was mainly concerned with manually taking advantage

of the Grid infrastructure, that is, the Fabric layer of the software stack in Figure 2.2.

The second phase of the evolution of gridification technologies involved the introduction of Grid

middlewares. Some of them were initially focused on providing services for automating the

scavenging of processing power, memory and storage resources (e.g. Condor, Legion), while

others aimed at raising the level of abstraction of Grid functionality by providing metaservices

(brokering, security, monitoring, etc.). A representative example of a middleware in this category

is Globus, which have become the de facto standard for building Grid applications. Overall,

users are now supplied with a concrete virtualization layer that isolates the complexities of the

Grid by means of services. In fact, technologies like MPICH-G2 and GridRPC are now seen

as middleware-level services for communication rather than Grid programming facilities per se.

Gridification is therefore conceived as the process of writing/modifying an application to utilize

the various services provided by a specific Grid middleware. As the reader can observe, the

main goal of gridification technologies at this stage is to materialize the middle layers of the

Grid software stack.

The step that followed the appearance of the first Grid middlewares was the introduction of

2.3. GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION 27

Grid programming toolkits and frameworks. In this step, the problem of writing applications

for the Grid received more attention and the community recognized common behavior shared by

different Grid applications. The idea behind these technologies is to provide generic APIs and

programming templates to unburden developers of the necessity to know the many particulari-

ties for contacting individual Grid services (e.g. protocols and endpoints), to capture common

patterns of service composition (e.g. secure data transfer), and to offer convenient program-

ming abstractions (e.g. master-worker templates). The most important contribution of these

solutions is to capture common Grid-dependent code and design in an application-independent

manner. These tools can be seen as an incomplete application implementing non-application

specific functionality, with hot-spots or slots where programmers should put application specific

functionality in order to build complete applications (Johnson, 1997; Codenie et al., 1997).

For example, the Java CoG Kit (Globus Alliance, 2006) provides an object-oriented, framework-

based interface to Globus-specific services. The Grid Application Toolkit Grid Application

Toolkit (GAT) (Allen et al., 2003; Allen et al., 2005) and SAGA (Goodale et al., 2006) are

similar to the Java CoG Kit but they offer APIs for using Grid services that are independent

of the underlying Grid middleware. With respect to template-based Grid frameworks, some

examples are MW (Goux et al., 2000), AppLeS Master-Worker Application Template (AMWAT)

(Berman et al., 2003) and JaSkel (Ferreira et al., 2006). All in all, the goal of these tools is to

make Grid programming easier. The conception of gridification at this phase does not change

too much from that of the previous one, but Grid programming is certainly done at a higher

level of abstraction. As a consequence, less design, code, effort and time is required when using

these tools.

G
ri
d
 a

w
a
re

n
e
s
s

(a
p
p
lic

a
ti
o
n
 d

e
v
e
lo

p
e
r)

Evolution of
gridification

technologies

Message pass−
ing and RPC
(MPICH−G2,

GridRPC)

today

Grid
middlewares

Grid toolkits
and

frameworks

Little/no Grid
resource

virtualization

Virtualization/
notion of

Grid service

Semi−automa−
tic methods

for gridification

High−level Grid
programming

models and APIs

Ideal tool/
method for

gridification?

Two−step
gridification
metodology

. . .

Figure 2.7: Origins and evolution of gridification technologies

28 CHAPTER 2. BACKGROUND

Up to this point, the most remarkable characteristic shared among the above technologies is

that gridification is done in a one-step process, that is, there is not a clear separation between

the tasks of writing the pure functional code of an application and adding it Grid concerns. The

Grid technology being used plays a central role during the entire Grid application development

process, since developers Grid-enable applications as they code them by keeping in mind a specific

Grid middleware, toolkit or framework. Therefore, technologies promoting one-step gridification

assume developers have a solid knowledge on Grid programming and runtime facilities.

Alternatively, there are a number of Grid projects promoting what it might be called a two-step

gridification methodology, which is intended to support users having little or even no background

on Grid technologies. Basically, the ultimate goal of this line of research is to come out with

methods that let developers to focus first on implementing and testing the pure functional code

of their applications, and then to semi-automatically Grid-enable them. Note that, besides hav-

ing potential benefits in terms of logic code stability, this methodology is suited for gridifying

applications that were not initially designed nor thought to run on the Grid. It is worth noting

that technologies under this gridification paradigm can be seen a complement to the ones previ-

ously described. In fact, active research is being done to develop more usable and intuitive Grid

programming models, toolkits and middlewares.

Application logic
implementation

Grid behavior
implementation

time

Application logic
implementation

Grid behavior
implementation

+ Grid
application

Grid
application

one−step
gridification

two−step
gridification+

Figure 2.8: One-step and two-step gridification in a nutshell

One-step and two-step gridification methodologies are illustrated in Figure 2.8 (above and below

the dashed line, respectively). One-step gridification suggests an overlapping between the tasks

of writing the application logic and supplying code for using Grid technologies. In contrast,

two-step gridification is based on making these tasks to be carried out sequentially.

Figure 2.7 shows how the evolution of Grid technologies have reduced the knowledge that is

necessary to gridify an application. As depicted in the figure, four separate phases in this

evolution can be identified. Transitions between two consecutive phases is given by a radical

2.4. CONCLUSIONS 29

change in the conception of the notion of gridification. At the first phase, “gridify” means to

manually use the Grid infrastructure. At the second phase, virtualization of Grid resources

through services is introduced; “gridify” refers to adapt applications to use Grid services. The

third phase witnessed the introduction of the first Grid development technologies materializing

common behavior of Grid applications, therefore gridification takes place at a higher level of

abstraction. Finally, the fourth phase incorporated the notion of two-step gridification: Grid

technologies recognized the need to provide methods to transform ordinary applications to Grid-

aware ones with little effort.

Certainly, the relation between the two axis is not linear, but it is descriptive enough to get an

idea about the consequences of gridification in the long term. As illustrated, the ideal method

for gridification would yield an hypothetical value for Grid awareness equals to zero, that is, the

situation in which developers can effectively exploit the Grid without explicitly using any Grid

technology in their code.

2.4 Conclusions

Grid Computing represents the next logical step in distributed computing. Although the concept

is fairly new, Grid standards and technologies have developed rapidly, and the paradigm is

steadily moving from the academia towards commercial adoption. The major purpose of a

Grid is to virtualize distributed resources such as processing power, storage systems, networking

facilities, and so on, to solve very complex problems in science, engineering and commerce.

As Grids evolve, some trends become evident, and the most remarkable is the convergence of

Grid technologies and SOAs. The envisioned result of this combination is a powerful comput-

ing infrastructure offering specialized, interoperable and reusable services to user applications.

However, the extremely high complexity inherent to this service infrastructure calls for not just

new Grid development tools but for novel methods to transparently consume Grid services from

within conventional applications.

Surprisingly, even though the Grid research community has been well aware of the existence of

the gridification problem from several years now, few publications are available on the subject

and, in those cases, only a small part of the problem is explored and analyzed (Mateos et al.,

2007a). Specifically, previous works towards better characterizing Grid technologies and their

relationship with the gridification problem are:

• (Bal et al., 2003), in which the authors point out the programming and deploying complex-

ity inherent to Grid Computing. They state there is a need for tools to allow application

developers to easily write and run Grid-enabled applications, and also identify a taxonomy

of Grid application-level tools that is representative enough for many projects in the Grid

community. This taxonomy distinguishes between two classes of application-level tools for

the Grid: programming models (i.e. tools that build on the Grid infrastructure and pro-

vide high-level programming abstractions) and execution environments (i.e. software tools

30 CHAPTER 2. BACKGROUND

into which users deploy their applications). However, the discussion is clearly focused on

illustrating how these models and environments can be used to develop Grid applications

from scratch, rather than gridify existing applications.

• (Kielmann et al., 2006), in which several functional and non-functional properties that a

Grid programming environment should have are identified, and some tools based on these

properties are reviewed. The survey concludes by deriving a generic architecture for build-

ing programming tools that are capable of addressing the whole set of properties, which

prescribes a component-based approach for materializing both the runtime environment

and the application layer of a Grid platform. As in the previous case, the work does not

discuss aspects related to gridification of existing applications either.

• A survey on technologies for wide-area distributed computing can be found in (Baker et al.,

2002), where the most predominant trends for accelerating Grid application programming

and deployment are identified. This work aims at providing an exhaustive list of Grid

Computing projects ranging from programming models and middlewares to application--

driven efforts, while our focus is exclusively on methods seeking to attain easy pluggability

of conventional applications into the Grid. A similar work is (Venugopal et al., 2006), in

which a thorough examination of technologies for the materialization of Data Grids –those

providing services and infrastructures to manage huge amounts of data– is presented.

The next chapter presents a taxonomic framework to help in gaining an insight on the various

dimensions of the gridification problem, and surveys the most relevant projects that attempt to

address this problem. This thesis provides an alternative approach for gridifying applications

that is based on two-step gridification. Consequently, the discussion will be strictly circumscribed

to those gridification methods that are aimed at producing Grid-aware applications by taking

as input existing ordinary applications.

Chapter 3
Related Work

The purpose of this chapter is to summarize the state of the art on Grid development approaches

focusing specifically on those that target easy gridification, that is, the process of adapting an

ordinary application to run on the Grid. It is worth mentioning that the discussion does not

exhaustively analyze the current technologies for implementing or deploying Grid applications.

Instead, this chapter examines existing techniques to gridify software that has not been at first

thought to be deployed on Grid settings, such as desktop applications or legacy code. In order

to limit the scope of the analysis, the discussion will focus our discussion on the amount of

effort each proposed approach demands from the user in terms of source code refactoring and

modification. As a complement, for each approach, the chapter will analyze the anatomy of

applications after gridification and the kind of Grid resources they are capable of transparently

leverage.

The rest of the chapter is organized as follows. The next section surveys some of the most

representative approaches for gridifying applications. Later, Section 3.2 summarizes the main

features of the surveyed approaches, and presents several taxonomies to capture the big picture of

the subject. Based on these taxonomies, Section 3.3 identifies common characteristics and trends.

Finally, Section 3.4 concludes by stating common problems among the proposed approaches,

which represent the motivation of the present thesis.

3.1 Gridification Projects

In light of the gridification problem, a number of studies have proposed solutions to port existing

software to the Grid. For example, (Ho et al., 2003) presents an approach to assist users in

gridifying complex engineering design problems, such as aerodynamic wing design. Similarly,

(Wang et al., 2004) introduces a scheme of gridification specially tailored to gridify scientific

legacy code. In addition, (Kolano, 2003) proposes an OGSA-compliant naturalization1 service

1The American Heritage Dictionary defines naturalization as “adapting or acclimating (a plant or an animal)
to a new environment; introducing and establishing as if native”.

31

32 CHAPTER 3. RELATED WORK

for the Globus platform that automatically detects and resolves software dependencies (e.g.

programs, system libraries, Java classes, among others) when running CPU-intensive jobs on

the Grid.

Although the above technologies explicitly address the problem of achieving easy gridification,

they belong to what it might be identified as early efforts in the development of true gridification

methods, which are characterized by solutions lacking generality and targeting a particular

application type or domain. Nonetheless, there are a number of projects attempting to provide

more generic, semi-automatic methods to gridify a broader range of Grid applications, mostly in

the form of sophisticated programming and runtime environments. In this sense, Sections 3.1.1

to 3.1.10 present some of these projects.

3.1.1 GEMLCA

Grid Execution Management for Legacy Code Architecture (GEMLCA) (Delaittre et al., 2005) is

a general architecture for transforming legacy applications to Grid services without the need for

code modification. GEMLCA let users to deploy a legacy program written in any programming

language as an OGSA-compliant service. The access point for a client to GEMLCA is a front-end

offering services for gridifying legacy applications, and also for invoking and checking the status

of running Grid services. An interesting feature of this front-end is that it is fully integrated

with the P-GRADE (Kacsuk and Sipos, 2005) workflow-oriented Grid portal, thus allowing the

creation of complex workflows where tasks are actually gridified legacy applications.

OGSA Container (Globus 3.X,
Globus 4.X, G−Lite, etc.)

Job Manager (e.g., Condor)

Compute
Servers

Grid Host
Environment

GEMLCA
Resource

Legacy code
process

Legacy
code job

Legacy
code job

Legacy
code job

. . .

GEMLCA ClientCommand−
line interfaces

Browser−
enabled portals

Figure 3.1: Overview of GEMLCA

3.1. GRIDIFICATION PROJECTS 33

GEMLCA aims at providing an infrastructure to deploy legacy applications as Grid services

without reengineering their source code. As depicted in Figure 3.1, GEMLCA is composed of

four layers:

• Compute Servers: Represents hardware resources such as PCs, servers and clusters on

which legacy applications in the form of binary executables are potentially available. Basi-

cally, the goal of GEMLCA is to make these applications accessible through Web Services-

enabled Grid services.

• Grid Host Environment : Implements a service-oriented Grid layer on top of a specific

OGSA-compliant Grid middleware. Current distributions of GEMLCA supports Globus

version 3.X and 4.X.

• GEMLCA Resource: Provides portal services for gridifying existing legacy applications.

• GEMLCA Client : This layer comprises the client-side software (i.e. command-line inter-

faces and browser-enabled portals) by which users may access GEMLCA services.

The gridification scheme of GEMLCA assumes that all legacy applications are binary executable

code compiled for a particular target platform and running on a Compute Server. The Resource

layer is responsible to hide the native nature of a legacy application by wrapping it with a

Grid service, and processing service requests coming from users. It is up to the user, however,

to describe the execution environment and the parameter information of the legacy application.

This is done by configuring an XML-based file called Legacy Code Interface Description (LCID),

which is used by the GEMLCA Resource layer to map Grid service requests to job submissions.

LCID files provide metadata about the application, such as its executable binary path, the job

manager and the minimum/maximum number of processors to be used, and parameter informa-

tion, given by the name, type (input or output), order, regular expressions for input validation,

and so forth. The following code presents the LCID file corresponding to the gridification of the

Unix mkdir command:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

< !DOCTYPE GLCEnvironment ”gemlcacon f ig . dtd ”>

<GLCEnvironment id=”mkdir ”

execu tab l e=”/bin /mkdir ” jobManager=”Condor ”

maximumJob=”5 ” minimumProcessors=”1 ”>

<Descr ip t i on>Unix mkdir command</ Desc r ip t i on>

<GLCParameters>

<Parameter name=”−p” fr iendlyName=”New f o l d e r ”

inputOutput=”Input ” order=”0 ” mandatory=”No”>

< i n i t i a lV a l u e />

</Parameter>

</GLCParameters>

</GLCEnvironment>

34 CHAPTER 3. RELATED WORK

As explained, the GEMLCA gridification process demands zero coding effort and little con-

figuration from the user. In spite of this fact, users not having an in-depth knowledge about

GEMLCA concepts may experience difficulties when manually specifying LCID files. In this

sense, the GEMLCA front-end also provides user-friendly Web interfaces to easily describe and

deploy legacy applications.

A more serious problem of GEMLCA is concerned with the anatomy of a gridified application.

GEMLCA applications are essentially an ordinary executable file wrapped with an OGSA service

interface. GEMLCA services serve request according to a very nongranular execution scheme

(i.e. running the same binary code on one or more processors) but no internal changes are made

in the wrapped applications. As a consequence, the parallelism cannot be controlled in a more

grained manner. For many applications, this capability is crucial to achieve good performance.

3.1.2 GrADS

Grid Application Development Software (GrADS) (Vadhiyar and Dongarra, 2005) is a perfor-

mance-oriented middleware whose goal is to optimize the execution of numerical applications

written in C on distributed heterogeneous environments. GrADS puts a strong emphasis on

application mobility and scheduling issues in order to optimize application performance and

resource usage. Platform-level mobility in GrADS is performed through the so-called Resched-

uler, which periodically evaluates the performance gains that potentially can be obtained by

migrating applications to underloaded resources. This mechanisms is known as opportunistic

migration.

Users wanting to execute an application contact the GrADS Application Manager. This, in turn,

contacts the Resource Selector, which accesses the Globus MDS-2 service to obtain the available

list of computing nodes and then uses the Network Weather Service (NWS) (Wolski et al., 1999)

to obtain the runtime information (CPU load, free memory and disk space, etc.) from each of

these nodes. This information, along with execution parameters and a user-generated execution

model for the application, is passed forth to the Performance Modeler, which evaluates whether

the discovered resources are enough to achieve good performance or not. If the evaluation yields

a positive result, the Application Launcher starts the execution of the application using Globus

job management services. Running jobs can be suspended or canceled at any time due to external

events, such as user intervention.

GrADS provides a user-level C library called Stop Restart Software (SRS) that offers applications

functionality for stopping at a certain point of their execution, restarting from a previous point

of execution, and performing variable checkpointing. To SRS-enable an ordinary application,

users have to manually insert instructions into the application source code in order to make

calls to the SRS library functions. Unfortunately, SRS is implemented on top of MPI, so it

can only be used in MPI-based applications. Nonetheless, as these applications are composed

of a number of independent, mobile communicating components, they are more granular, thus

3.1. GRIDIFICATION PROJECTS 35

potentially achieving better use of distributed resources than conventional GrADS applications,

that is, without using SRS.

3.1.3 GRASG

Gridifying and Running Applications on Service-oriented Grids (GRASG) (Ho et al., 2006) is a

framework for gridifying applications as Web Services with relatively little effort. Also, in order

to make better use of Grid resources, GRASG provides a scheduling mechanism that is able to

schedule jobs accessible through Web Services protocols. Basically, GRASG provides services

for job execution, monitoring and resource discovery that enhance those offered by Globus.

Resource layer

Data
Service

Site layer

External
Client

Information
Service

Resource
Allocation and

Scheduling
Service

Execute
job

Access
data

Resource
information

Resource
information

Grid
Resource

JES

Grid
Resource

JES

Grid
Resource

JES

Resource
information

sensor

Job submission

Figure 3.2: GRASG architecture

The architecture of GRASG is depicted in Figure 3.2. Its main components are four Web Ser-

vices named Information Service (IS), Resource Allocation and Scheduling Service (RASS), Job

Execution Service (JES), and Data Service (DS). Each Grid resource (i.e. a server) is equipped

with the so-called sensors and wrapped with a JES. Sensors are responsible for capturing and

publishing meta-information about their hosting resource (platform type, number of processors,

installed applications, workload, etc.), while JES services are responsible for job execution and

guaranteeing Quality of Service (QoS). More important, a JES wraps all the (gridified) appli-

cations installed on a server. External clients can execute gridified applications and “talk” to

GRASG components by means of SOAP (W3C Consortium, 2007a), a well-known protocol for

invoking Web Services.

The IS, RASS and DS services are placed on the Site layer, which sits on top of Grid resources.

The IS periodically collects information about the underlying resources from their associated

sensors, and use this information to satisfy resource requests originating either at the RASS or

36 CHAPTER 3. RELATED WORK

an external client. The RASS bridges application clients to JESs. Specifically, the RASS is in

charge of processing job execution requests coming from clients, allocating and reserving the

needed Grid resources, monitoring the status of running jobs, and returning the results back

to the clients. Lastly, the DS is used mainly for moving data among computation servers. It

is implemented as a Web Service interface to GridFTP (Allcock et al., 2002), an FTP-based,

high-performance, secure, reliable data transfer protocol for Grid environments.

GRASG conceives “gridification” as the process of deploying an existing application (binary ex-

ecutable) on a Grid resource. Once deployed, applications can be easily accessed through their

corresponding JES, which stores all the necessary information (e.g. executable paths, system

variables, etc.) to execute a gridified or a previously installed application. Like GEMLCA,

application granularity after gridification is very coarse. To partially deal with potential perfor-

mance issues caused by this problem, users can define custom scheduling and resource discovery

mechanisms for a gridified application by writing new sensors that are based on shell or Perl

scripts.

3.1.4 GridAspecting

GridAspecting (Maia et al., 2006) is a development process that is based on Aspect-Oriented

Programming (AOP) (Kiczales et al., 1997) to explicitly separate crosscutting Grid concerns in

parallel Java applications. Its main goal is to offer guidelines for Grid application implementation

focusing on separating the pure functional code as much as possible from the Grid-related code.

Besides, GridAspecting relies on a subset of the Java thread model for application decomposition

that enables for Grid application testing even outside a Grid setting.

GridAspecting uses a finer level of granularity for gridified components than GEMLCA and

GRASG. GridAspecting assumes that ordinary applications can be decomposed into a number

of independent tasks, which can be computed separately. As a first step, the programmer is

responsible for identifying these tasks across the, yet non gridified, application code, and then

encapsulate them as Java threads. Any form of data communication from the main application

to its task threads should be implemented via parameter passing to the task constructor. As

a second step, aspects have to be provided by the programmer in order to map the creation of

a task to a job execution request onto a specific Grid middleware (e.g. Globus). At runtime,

GridAspecting uses the AspectJ (Kiczales et al., 2001) AOP language to dynamically intercept

all thread creation and initialization calls emitted by the gridified application, replacing them

with calls to the underlying middleware-level execution services by means of those aspects.

Despite being relatively simple, the process requires the developer to follow a number of code

conventions. However, applying GridAspecting results in a very modular and testable code.

After passing through the gridification process, the functional code of an application is entirely

separated from its Grid-related code. As a consequence, a different Grid API can be used without

affecting the code corresponding to the application logic.

3.1. GRIDIFICATION PROJECTS 37

3.1.5 GriddLeS

Grid Enabling Legacy Software (GriddLeS) (Kommineni and Abramson, 2005) is a development

environment that facilitates the construction of complex Grid applications from legacy software.

Specifically, it provides a high-level tool for building Grid-aware workflows based on existing,

unmodified applications, called components. Overall, GriddLeS goals are directed towards lever-

aging existing scientific and engineering legacy applications and easily wiring them together to

construct new Grid applications.

The heart of GriddLeS is GridFiles, a flexible and extensible mechanism that allows workflow

components to communicate between each other without the need for source code modification.

Basically, GridFiles overloads the common file input/output primitives of conventional languages

with functionality for supporting file-based interprocess communication over a Grid infrastruc-

ture. In this way, individual components behave as if they were executing in the same machine

and using a conventional file system, while they actually interchange data across the Grid. It

is important to note that GriddLeS is mainly suited for gridifying and composing legacy ap-

plications in which the computation time/communication time ratio is very high. Additionally,

components should expose a clear interface in terms of required input and output files, so as to

simplify the composition process and do not incur in component source code modification.

GridFiles makes use of a special language-dependent routine, called FileMultiplexer, which in-

tercepts file operations and processes them according to a redirection scheme. Current materi-

alizations include local file system redirection, remote file system redirection based on GridFTP

and remote process redirection based on sockets. When using process redirection, a multiplexer

placed on the sending component is linked with a multiplexer on the receiving component through

a buffered channel, which automatically handles data synchronization. In any case, the type

of redirection is dynamically selected depending on whether the file identifier represents a local

file, a remote file or a socket, and the target’s location for the redirection (file or component) is

obtained from the GriddLeS Name Server (GNS). The GridFiles mechanism is summarized in

Figure 3.3.

The GriddLeS approach is simple yet very powerful. Applications programmers can write and

test components without taking into account any Grid-related issues such as data exchanging,

synchronization or fault-tolerance, which in turn are handled by the underlying multiplexer

being used. Another interesting implication of this fact is that implemented components can

transparently operate either as a desktop program or as a block of a bigger application. The

weak point of GriddLes is that its runtime support suffers from portability problems, since

it is necessary to have a new implementation for each programming language and operating

system platform. Also, its implicit socket-based communication mechanism lacks the level of

interoperability required by current Grids.

38 CHAPTER 3. RELATED WORK

Component

Local file
client

Remote file
client

Remote
process client

GNS
client

GNS (GriddLeS
Name Server

Local file
client

Remote file
client

Remote
process client

GNS
client

GridFTP
Server

Local
file system

FileMultiplexer FileMultiplexer

GridFTP
Server

Local
file system

open, close
read, write,

seek

Component

open, close
read, write,

seek

Figure 3.3: GridFiles: file request redirection

3.1.6 Ninf-G

Ninf-G (Takemiya et al., 2003) is a C/FORTRAN programming environment that aims at pro-

viding a simple Grid programming model mostly for non-computer scientists. It builds on top of

the Globus toolkit and offers a reference implementation of the GridRPC specification. Ninf-G

provides familiar RPC semantics so that the complicated structure of a Grid are hidden behind

an RPC-like interface.

Figure 3.4 describes the architecture of Ninf-G, which is based on two major components: Client

Component and Remote Executable. The Client Component consists of a client API and libraries

for GridRPC invocations. The Remote Executable comprises a stub and system-supported

wrapper functions, both similar to those provided by Java RMI or CORBA (Pope, 1998). The

stub is automatically generated by Ninf-G from a special Interface Definition Language (IDL)

file describing the interface of a remote executable. Both client and server programs are obtained

after gridifying an application.

When executing a gridified application, the Client Component and the Remote Executable

communicate with each other by using Globus services. First, the Client Component gets the

IDL information for the server-side stub, comprising the remote executable path and parameter

encoding/decoding information. This is done by means of MDS-2, the Globus network directory

service. Then, the client passes the executable path to the Globus Grid Resource Allocation

Manager (GRAM), which invokes the server-side part of the application. Upon execution, the

stub requests the invocation arguments to the client, which are transferred using the Globus

Input/Output service.

Roughly, the first step to gridify an application is to identify a client part and one or more server

parts. The user should properly restructure its application whenever a server part cannot be

3.1. GRIDIFICATION PROJECTS 39

AM

ge

/O

Server part
Client part

Client side Server side

Client
Component

IDL Compiler

Interface
information

Remote Executable

MDS

GRAM

Globus−I/O

retrieve

invoke

generate

1) Interface
request

2) Interface reply

3) Invoke stub 4) Transfer
arguments

IDL File

Figure 3.4: Ninf-G architecture

straightforwardly obtained from the code, such as merge the most resource-consuming functions

into a new one and pick this latter as the server program. In any case, the user must carefully

remove any data dependence between the client and the server program, or among server parts

(e.g. global variables). Up to this point, the gridification process does not require to be performed

within a Grid setting.

main(){
 pre_processing();
 call_library(args):
}

main(){
 for (i=0;i<task_no;i++)
 task_processing(args);
}

main(){
 pre_processing();
 grpc_call(handle,
 "call_library",
 args);
}

main(){
 for (i=0;i<task_no;i++)
 grpc_call_async(dest[i],
 "task_processing",
 args);
 grpc_wait_all(dest);
}

Gridification Gridification

Figure 3.5: Gridifying applications with Ninf-G: typical scenarios

The next step is concerned with inserting Ninf-G functions into the client program so as to enable

it to interact, via RPC, with its server parts(s). Ninf-G has a number of built-in functions for

initiating and terminating RPC sessions and, of course, performing asynchronous or synchronous

RPC calls. Typical scenarios when gridifying code with Ninf-G are illustrated in Figure 3.5.

Deploying a gridified application involves creating the executables on each server. First, the user

must specify the interface for the server program(s) using Ninf-G IDL, which are used to auto-

matically generate server-side stubs. Finally, the user must manually register this information

in MDS-2. Although simple, these tasks can be tedious if several applications are to be gridified.

40 CHAPTER 3. RELATED WORK

3.1.7 PAGIS

PAGIS (Webb and Wendelborn, 2003) is a Grid programming framework and execution environ-

ment suitable for unskilled Grid developers. PAGIS provides a component-based programming

model that emphasizes on separating what an application does from how it does it. Roughly,

putting an application to work onto the Grid with PAGIS first requires to divide the application

into communicating components, and then to implement how these components are executed

and controlled within a Grid environment.

A PAGIS application comprises a number of components connected through a network of unidi-

rectional links called a process network. In PAGIS terminology, components and links are known

as processes and channels, respectively. A process is a sequential Java program that incremen-

tally reads data from its incoming channels in a first-in first-out fashion, transforms data, and

produces output to some or all of its outcoming channels. At runtime, PAGIS creates a thread

for each process of a network, and maintains a producer-consumer buffer for each channel. Pro-

duction of data is non-blocking whereas consumption from an empty stream is blocking. As the

reader can observe, this mechanism shares many similarities with the Unix process pipelining

model.

Like most component-based frameworks, PAGIS processes are described in terms of ports. Ports

define a communication contract with a process in the same way classes define interfaces for

objects in object-oriented languages. In this way, applications are described by connecting ports

through channels. PAGIS includes an API, called PNAPI (Process Network API), that provides

several useful abstractions for describing applications in terms of process networks. Additionally,

it offers a graphical tool for visually creating, composing and executing process networks.

PAGIS allows a process network to be supplied with Grid behavior by means of metalevel pro-

gramming. Conceptually, metalevel programming divides an application into a base level, com-

posed of classes and objects implementing its functional behavior, and a meta level, consisting

of metaobjects that reify elements of the application at runtime –mostly method invocations–

and perform computations on them. Figure 3.6 illustrates the basics of metalevel programming.

Base level objects ObjectA and ObjectB have been both assigned two different metaobjects. As

a consequence, MetaA receives all method invocations sent from ObjectA and redirects them to

the target’s metaobject (in this case MetaB), which actually carries out the invocations. The

labels in bold represent the phases of a method invocation in which customized user actions can

be associated.

PAGIS introduces the MetaComputation metaobject, specially designed to represent a running

process network as one single structure. Users can then materialize complex Grid functionality

by attaching metaobjects2 to MetaComputation metaobjects. For example, one might implement

2Strictly speaking, these are meta-metaobjects, since they intercept method calls performed by other meta-
objects.

3.1. GRIDIFICATION PROJECTS 41

Base level

Meta level

ObjectA ObjectB

MetaA MetaB

invoke

sending

receiving

executing

Figure 3.6: Overview of metalevel programming

a custom metaobject for transferring certain method invocations to a remote metaobject, thus

achieving load balancing. Similarly, a metaobject that monitors and records the various runtime

aspects of an application can be easily implemented by logging information such as timing,

source and destination objects, amongst others, prior to method redirection.

The gridification scheme proposed by PAGIS is indeed interesting, since it allows to furnish

ordinary applications (i.e. the base level) with Grid-dependent behavior (i.e. the meta level)

without affecting its source code. The only requirement is that those applications are appropri-

ately transformed so that they are structured as a process network. Similar to GridAspecting,

a PAGIS application (i.e. a process) is specified at a task level of granularity.

3.1.8 ProActive

ProActive (Baduel et al., 2006) is a Java-based middleware for object-oriented parallel, mobile

and distributed computing. It includes an API that isolates many complex details of the un-

derlying communication and reflection Java APIs, on top of which a component-oriented view

is provided. This API also includes functionality to transform conventional Java classes to a

ProActive application. The programming model featured by ProActive has also been imple-

mented in C++ and Eiffel.

A typical ProActive application is composed of a number of mobile entities called active objects.

Each active object has its own thread of control and an entry point, called the root, by which

the object functionality can be accessed from ordinary objects. Active objects serve methods

calls issued from other active/ordinary objects, and also request services implemented by other

local or remote active objects. Method calls sent to active objects are synchronized based on

the wait-by-necessity mechanism, which transparently blocks the requester until the results of a

call are received. At the ground level, this mechanism relies on meta programming techniques

similar to that of PAGIS, thus it is very transparent to the programmer.

A Java Virtual Machine (JVM) participating in a computation can host one or more nodes. A

node is a logical entity that groups and abstracts the physical location of a set of active objects.

Nodes are identified through a symbolic name, typically a Uniform Resource Locator (URL).

Therefore, active objects can be programmatically attached/detached from nodes without the

need for manipulating low-level information like networks addresses or ports. Similarly, active

42 CHAPTER 3. RELATED WORK

objects can be sent for execution to remote JVMs by simply assigning them to a different

“container” node.

Standard Java classes can be easily transformed into active objects. For example, let us assume

we have a class named C, which exposes two methods foo and bar, with return type void and

double, respectively. The API call:

ProActive . newActive (”C” , args , ”rmi ://www. exa . unicen . edu . ar /node ”) ;

creates –by means of RMI– a new active object of type C on the node node. Further calls to

either foo or bar are asynchronously handled by ProActive, and any attempt to read the result

of an invocation to bar blocks the caller until the result is computed. In a similar way, the API

can be used to straightforwardly publish an active object as a SOAP-enabled Web Service.

Another interesting feature provided by ProActive is the notion of virtual nodes. The idea behind

this concept is to abstract away the mapping of active objects to physical nodes by eliminating

from the application code elements such as host names and communication protocols. Each

virtual node declared by the application is identified through a plain string, and mapped to

one or a set of physical nodes by means of an external XML deployment descriptor file. As a

consequence, the resulting application code is independent of the underlying execution platform

and can be deployed on different Grid settings by just modifying its associated deployment

descriptor file.

There are, however, some code conventions that programmers must follow before gridifying an

ordinary Java class as an active object. First, classes must be serializable, and include a default

constructor (i.e. with no arguments). Second, the result of a call to a non-void method should

be placed on a local variable for the wait-by-necessity mechanism to work. Return types for non-

void methods should be replaced by system-provided wrappers accordingly. In our example, we

have to replace the return type in the bar method with a ProActive API class that wraps the

double Java primitive type.

3.1.9 Satin

Satin (van Nieuwpoort et al., 2005a) is a Java framework that lets programmers to easily paral-

lelize applications based on the divide and conquer paradigm. The ultimate goal of Satin is to

free programmers from the burden of modifying and hand-tuning applications to exploit a Grid

setting. Satin is implemented on top of Ibis (van Nieuwpoort et al., 2005b), a programming

environment whose goal is to provide an efficient Java-based platform for Grid programming.

Ibis consists of a highly-efficient communication library, and a variety of programming models,

mostly for developing applications as a number of components exchanging messages through

messaging protocols like Java RMI and MPI.

Satin extends Java with two primitives to parallelize single-threaded conventional Java programs:

spawn, to create subcomputations (i.e. divide), and sync, to block execution until the results from

subcomputations are available. Methods considered for parallel execution are identified by means

3.1. GRIDIFICATION PROJECTS 43

of marker interfaces that extend the satin.Spawnable interface. Furthermore, a class containing

spawnable methods must extend the satin.SatinObject class and implement the corresponding

marker interface. In addition, the result of the invocation of a spawnable method must be

stored on a local variable. The next code shows the Satin version of a simple recursive solution

to compute the kth Fibonacci number:

interface IFibMarker extends s a t i n . Spawnable{
public long f i b on a c c i (long k) ;

}

class Fibonacc i extends s a t i n . Sat inObject implements IFibMarker{
public long f i b on a c c i (long k){

i f (k < 2)

return k ;

// The next two c a l l s are au t oma t i c a l l y spawned ,

// because ” f i b ona c c i ” i s marked in IFibMarker

long f 1 = f i b on a c c i (k − 1) ;

long f 2 = f i b on a c c i (k − 2) ;

// Execution b l o c k s u n t i l f 1 and f2 are i n s t an t i a t e d

super . sync () ;

return f 1 + f2 ;

}
stat ic void main (S t r ing [] args){

. . .

F ibonacc i f i b = new Fibonacc i () ;

// a l s o spawned

long r e s u l t = f i b . f i b on a c c i (k) ;

// Blocks the main app l i c a t i on thread

// u n t i l a r e s u l t i s ob ta ined

f i b . sync () ;

. . .

}
}

After indicating spawnable methods and inserting appropriate synchronization calls into the

application source code, the programmer must feed a compiled version of the application to a

tool that translates, through Java bytecode instrumentation, each invocation to a spawnable

method into a Satin runtime task. For example, in the code shown above, a task is generated

for every single call to the fibonacci method.

Since each task represents the invocation (recursive or not) to a spawnable method, their gran-

ularity is clearly smaller than the granularity of tasks like the ones supported by GridAspecting

or PAGIS. A running application may therefore have associated a large number of fine-grained

44 CHAPTER 3. RELATED WORK

tasks, which can be executed on any machine. For overhead reasons, most tasks are processed

on the machine in which they were created. In order to efficiently run gridified programs, Satin

uses a task execution scheme based on a novel load-balancing algorithm called Cluster-aware

Random Stealing (CRS). With CRS, when a machine becomes idle, it attempts to steal a task

waiting to be processed from a remote machine. Finally, intra-cluster steals have a greater prior-

ity than wide-area steals. This policy fundamentally aims at saving bandwidth and minimizing

the latencies inherent to slow wide-area networks.

3.1.10 XCAT

XCAT (Gannon et al., 2005) is a component-based framework for Grid application program-

ming built on top of Web Services technologies. XCAT applications are created by connect-

ing distributed components (OGSA Web Services) that communicate either by SOAP mes-

saging or an implicit notification mechanism. XCAT is compliant with Common Component

Architecture (CCA) (Armstrong et al., 1999), a specification whose goal is to come out with a re-

duced set of standard interfaces that a high-performance component framework should provide/-

expect to/from components in order to achieve easy distributed component composition and

interoperability.

XCAT components are connected by ports. A port is an abstraction representing the interface of

a component. Ports are described in Scientific Interface Definition Language (SIDL), a language

for describing component operations in terms of the data types often found in scientific programs.

SIDL defines two kinds of ports: provides ports, representing the services offered by a component,

and uses ports, which describes the functionality a component might need but is implemented

by another component. Furthermore, XCAT provides ports can be implemented as OGSA Web

Services. XCAT uses ports can connect to any typed XCAT provides port (i.e. those described

in SIDL) but also to any OGSA-compliant Web Service.

Legacy
Application

Application
Manager

application
events

control
messages

control
port

SOAP
events

data
stagering

Figure 3.7: XCAT application managers

3.2. A TAXONOMY OF GRIDIFICATION APPROACHES 45

XCAT allows scientific legacy applications to be deployed as components without code modifica-

tion using the concept of application manager (see Figure 3.7). Basically, each legacy application

is wrapped with a generic component (application manager) responsible for managing and mon-

itoring the execution of the application, and staging the necessary input and output data. The

manager also serves as a forwarder for events taking place inside the wrapped application such as

file creation, errors, and execution finalization/crash. Applications managers can be connected

to each other, and have one special port by which standard components can control them. It is

worth noting that legacy applications have, in general, a large granularity. As a consequence,

XCAT shares some of the limitations of GEMLCA and GRASG with respect to granularity of

gridified applications.

3.2 A Taxonomy of Gridification Approaches

Table 3.1 summarizes the main characteristics of the approaches described in the previous sec-

tions. To better understand the structure of the table, the reader should recall the analogy

between the Grid and the electrical power grid discussed in Chapter 2.

Basically, each row of the table represents a “wall socket” by which applications are gridified and

connected to the Grid. The “Appliance type” column symbolizes the kind of applications sup-

ported by the gridification process, whereas the “Grid-aware appliance” column briefly describes

the new anatomy of applications after passing through the gridification process. In addition,

lower-level Grid technologies upon which each approach is built are also listed. Finally, the

discussion centers on the different approaches to gridification (i.e. the “plugging techniques”)

according to the taxonomies presented in the next subsections.

In particular, taxonomies of subsections 3.2.1 and 3.2.2 describe, from the point of view of

source code modification, the different ways in which an ordinary application can be affected by

the gridification process. The taxonomy presented in subsection 3.2.3 represents the observed

granularity levels to which applications are Grid-enabled. Finally, the taxonomy included in

subsection 3.2.4 categorizes the approaches according to the kind of Grid resources they aim to

virtualize. These taxonomies are simple, but comprehensive enough to cover the various aspects

of gridification.

3.2.1 Application Reengineering

The application reengineering taxonomy defines the extent to which an application must be

manually modified in order to obtain its gridified counterpart. In general, the static anatomy

of every application can be described as a number of compilation units combined with a cer-

tain structure. Compilation units are programming language-dependent pieces of software (e.g.

46 CHAPTER 3. RELATED WORK

Wall

socket

Appliance

type

Plugging technique

highlights

Grid-aware

appliance

Underlying

technologies

GEMLCA Binary

executable

The user must specify

the interface of his/her

application (XML file)

Globus-wrappered

binary executable

Web Services;

Globus

GrADS C application

(MPI-based if

explicit

migration is to

be used)

Instruction insertion if

using SRS

Globus-wrappered

binary executable

Web Services;

Globus; NWS;

MPI

GRASG Binary

executable

Hand-tuning of

applications through

Perl/shell scripting

Binary executable

interfaced through

a JES Web Service

SOAP-based

Web Services;

Globus

Grid-

Aspecting

Task-parallel

Java

application

Manual task

decomposition and Grid

concerns (aspects)

implementation

Multi-threaded,

aspect-enhanced

Java application

AspectJ

GriddLeS Stream-based

binary

executable

Transparent overloading

of system libraries

implementing

file/sockets operations

across the Grid

Globus-wrappered

binary executable

(component)

Globus;

GridFTP

Ninf-G C/Fortran

application

Users decompose

applications into

client/server parts, and

connect them using

GridRPC calls

Client and

server-side binary

executables

Globus;

GridRPC

PAGIS Java

application

Users identify

components and

assemble them through

channels to build

process networks

Binary executable

(process)

-

ProActive Java

application

Source code conventions;

proxy-based wrapping

Active object SOAP-based

Web Services;

RMI

Satin
Divide and

conquer Java

application

Source code conventions;

bytecode

instrumentation

enabling recursive

method calls to be

spawnable

Single-threaded,

parallel Java

application

Ibis

XCAT Binary

executable

The user must specify

the interface of his/her

executable in SIDL

Binary executable

interfaced through

an application

manager

Web Services

Table 3.1: Summary of gridification tools

3.2. A TAXONOMY OF GRIDIFICATION APPROACHES 47

No (GEMLCA, GRASG,
 Griddles, XCAT)

Modify
source
code?

Structure only (GridAspecting, PAGIS)

Structure and
compilation units (Ninf−G)

Yes Compilation units only (GrADS, Proactive, Satin)

Figure 3.8: Application reengineering taxonomy

Java classes, C and Perl modules, etc.) assembled together to form an application. Usually,

a compilation unit corresponds to a single source code file. Furthermore, the way compilation

units are combined determines the structure of the application (e.g. the class hierarchy of a

Java application, the dependence graph between functions within a C program). According to

Figure 3.8, the anatomy of a conventional application might be altered in the following manners:

• Structure only : Some approaches alter the internal structure of the application, restruc-

turing it in such a way some of its constituent parts are reorganized. For example, Gri-

dAspecting requires the user to identify tasks within the application that potentially can

be executed concurrently. Similarly, the PAGIS framework requires to restructure applica-

tions as a set of components exposing and invoking services through well-defined interfaces.

However, in both cases, the user code originating these tasks and components practically

remains unchanged. In general, this procedure makes the appearance of the original ap-

plication significantly different from that of the Grid-aware application, but the pure im-

plementation code is practically the same. In other words, even though the code within

compilation units may slightly change, the focus of structure modification is on redesigning

the application instead of rewriting it (i.e. internally modify methods/procedures).

Structure modification is a very common approach to gridification among template-based

Grid programming frameworks. With these frameworks, the user adapts the structure

of his/her application to a specific template implementing a recurring execution pattern

defined by the framework. For example, JaSkel (Ferreira et al., 2006) is a Java framework

for developing parallel applications that provides a set of abstract classes and a skeleton

catalog, which implements interaction paradigms such as farm, pipeline, divide and conquer

and heartbeat templates. Another example is MW (Goux et al., 2000), a framework based

on the popular master-worker paradigm for parallel programming.

• Compilation units only : Conversely, other approaches alter only some compilation units of

the application. For instance, ProActive and Satin require the developer to modify certain

methods within the application to make them compliant to a specific coding convention.

But, in both cases, the class hierarchy of the application is barely modified. A taxonomy

of gridification techniques for single compilation units is presented in the next subsection.

Examples of compilation unit modification are commonly found in the context of dis-

tributed programming. For instance, this technique is frequently employed when a single-

48 CHAPTER 3. RELATED WORK

machine Java application is adapted to use a distributed object technology such as RMI

or CORBA. Some of the (formerly local) objects are explicitly distributed on different ma-

chines and looked up by adding specific API calls inside the application code. However, the

behavioral relationships between those distributed objects do not change. Additionally,

similar examples can be found in distributed procedural programming using technologies

such as MPI or RPC.

• Structure and compilation units: Of course, gridification methods may also modify both

the structure and compilation units of the application. For example, Ninf-G demands the

developer to split an application into client and server-side parts and then to modify the

client so as to remotely interact with the server(s). Notice that the internal structure of

the application changes dramatically, since a single server part may contain code combin-

ing the functions originally placed at different compilation units. Overall, not only the

ordinary application is refactored by creating many separate programs, but also several

modifications to some of the original functions are introduced.

Intuitively, the first technique enables the user to perform modifications at a higher level of ab-

straction than the second one. Users are not required to provide code for using Grid functionality

and deal with Grid details, but have to change the application shape. As a consequence, the ap-

plication logic is not significantly affected after gridification. In principle, the most undesirable

technique is by far to modify the structure and the compilation units of an application, since not

only the application shape is changed, but also the nature of its code. However, it is very difficult

to determine whether a technique is better than the others, as the amount of effort necessary

to gridify an application with either of the three approaches depends on its complexity/size,

the amount/type of modifications imposed by the gridification method for restructuring and/-

or rewriting the application, the programming language, and the particular Grid setting and

underlying technologies being used for application execution.

3.2.2 Compilation Unit Modification

No (GEMLCA, GridAspecting, GRASG,
 Griddles, PAGIS, XCAT)

Modify
compilation

units?
Instruction insertion (GrADS)

Yes Call replacement (Ninf−G)

Coding conventions (Proactive, Satin)

Figure 3.9: Compilation unit modification taxonomy

The compilation unit modification taxonomy determines how applications are altered after grid-

ification with respect to modification of theirs compilation units. As shown in Figure 3.9, we

3.2. A TAXONOMY OF GRIDIFICATION APPROACHES 49

can broadly identify the following categories:

• Instruction insertion: The most intuitive way to gridify is, as it name indicates, by manu-

ally inserting instructions implementing specific Grid functionality at proper places within

the code. A case of instruction insertion arises in GrADS when the user wants to explic-

itly control application migration and data staging. A clear advantage of this technique is

that the programmer can optimize his/her application at different levels of granularity to

produce a very efficient Grid application. However, in most cases, the application logic is

literally mixed up with Grid-related code, thus making maintainability, legibility, testing

and portability to different Grid platforms hard.

There are many Grid middlewares that require users to employ instruction insertion when

gridifying compilation units. For example, JavaSymphony (Jugravu and Fahringer, 2005)

is a programming model whose purpose is to simplify the development of performance-

oriented, object-based Grid applications. It provides a semi-automatic execution model

that deals with migration, parallelism and load balancing of applications, and at the same

time allows the programmer to control –via instruction insertion– such features as needed.

Other examples are Javelin 3.0 (Neary and Cappello, 2005) and GridWay (Huedo et al.,

2004), two platforms for deployment and execution of CPU-intensive applications which

require users to modify applications in order to exploit job checkpointing and paralleliza-

tion.

• Call replacement : A very common technique to gridify compilation units is by replacing

certain groups of sequential instructions by appropriate calls to the underlying middleware

API. Such instructions may range from operations for carrying out interprocess communi-

cation to code for manipulating data. Unlike the previous case, call replacement puts more

emphasis on replacing certain pieces of conventional code by Grid-aware code instead of

inserting new instructions throughout the user application.

Call replacement assumes users know what portions of their code should be replaced in

order to adapt it for running on a particular Grid middleware. Nevertheless, in order to

help users in doing this task, Grid middlewares usually offer guidelines tutoring users on

how to port their applications. For instance, gridifying with the Globus platform involves

replacing socket-based communication code by calls to the Globus Input/Output service,

transforming conventional data copy/transfers operations by GridFTP operations, and

finally replacing all resource discovery instructions (e.g. for obtaining available execution

nodes) by calls to the MDS-2 service.

Clearly, call replacement is a form of gridification suitable for users who are familiar with

the target middleware API. Users not having a good understanding of the particular API to

be used may encounter difficult to port their applications to the Grid. Another drawback

of the approach is that the resulting code is highly-coupled with a specific Grid API, thus

having many of the problems suffered by instruction insertion. These issues are partially

solved by toolkits that attempt to offer a comprehensive, higher-level programming API on

50 CHAPTER 3. RELATED WORK

top of middleware-level APIs (e.g. Java CoG Kit, GAT). However, developers are forced

to learn yet another programming API. Indeed, Grid toolkits help alleviating developer

pain caused by call replacement, but certainly they are not the cure.

• Coding conventions: This technique is based on the idea that all the compilation units of

an ordinary application must obey certain conventions about their structure and coding

style prior to gridification. These conventions allow tools to properly transform a gridified

application into one or more middleware-level execution units. For example, ProActive

requires application classes to extend the Java Serializable interface. Moreover, Satin

requires that the result of any invocation to a recursive method is placed on a variable,

rather than accessing it directly (e.g. pass it on as an argument to another method).

Unlike instruction insertion and call replacement, the gridified code is in general not tied

to any specific Grid API or library.

To provide an illustrative example in the context of conventional software, we could cite

JavaBeans (Englander, 1997), a widely-known specification from Sun that defines conven-

tions for writing reusable software components in Java. In order to operate as a JavaBean,

a class must follow conventions about method naming and behavior. This, in turn, enables

easy graphical reuse and composition of JavaBeans to create complex applications with

little implementation effort.

It is worth pointing out that using any of the above techniques does not automatically exclude

from using the others. In fact, they usually complement each other. For example, Satin, though

it is focused on gridifying by imposing coding conventions, requires programmers to coordinate

several calls to a spawnable computation within a method by explicitly inserting special syn-

chronizing instructions. Furthermore, it is unlikely that an application that has been adapted

to use a specific Grid API (e.g. GridFTP in the case of Ninf-G) does not include user-provided

instructions for performing some API initialization or disposal tasks.

3.2.3 Gridification Granularity

Granularity is a software metric that attempts to quantify the size of the individual components3

that make up a software system. Large components (i.e. those including much functionality)

are commonly called coarse-grained, while those components providing little functionality are

usually called fine-grained. For example, with service-oriented architectures (Huhns and Singh,

2005), applications are built in terms of components called services. In this context, component

granularity is determined by the amount of functionality exposed by services, which may range

from small (e.g. querying a database) to big (e.g. a facade service to a travel business).

3The term “component” refers to any single piece of software included in a larger system, and should not be
confused with the basic building blocks of the component-based programming model

3.2. A TAXONOMY OF GRIDIFICATION APPROACHES 51

Coarse−grained (GEMLCA, GrADS, GRASG,
 Griddles, Proactive, XCAT)

Gridification
granularity Medium−grained (GridAspecting, Ninf−G, PAGIS)

Fine−grained (Satin)

Figure 3.10: Gridification granularity taxonomy

Notwithstanding, granularity is usually associated with the size of application components from

a user’s point of view, the concept can also be applied to get an idea of how granular the runtime

components of a gridified application are. In this sense, gridification granularity is defined as

the granularity of the individual components that constitute an executing gridified application

from the point of view of the Grid middleware. Basically, these Grid-enabled components are

execution units like jobs or tasks to which the Grid directly provides scheduling and execu-

tion services. Note that “conventional” granularity does not necessarily determines gridification

granularity. Clearly, this is because the former is concerned with the size of components before

an application is transformed to run on a Grid setting. For example, during gridification, a

single coarse-grained service might be partitioned into several more granular services to achieve

scalability.

Like conventional granularity, gridification granularity takes continuous values ranging from the

smallest to the largest possible component size. As shown in the taxonomy of Figure 3.10, the

spectrum of gridification granularities is divided into three discrete values:

• Coarse-grained : A running application is composed of a number of “heavy” execution

units. Typically, the application execution is handled by just one runtime component. This

level of granularity usually results from employing solutions such as GEMLCA, GRASG,

GriddLes and XCAT, which adapt the executable of an ordinary application to be executed

as a single Grid-aware job. At runtime, a job behaves like a “black box” that receives a

pre-determined set of input parameters (e.g. numerical values, files, etc.), performs some

computation, and returns results back to the executor. A similar case occurs with compiled

versions of applications gridified with GrADS.

Coarse-grained gridification granularity suffers from two major problems. On one hand,

the application is treated by the middleware as a single execution unit. Therefore, unless

refactored, it may not be possible for the individual resource-consuming parts of a run-

ning application to take advantage of mechanisms such as distribution, parallelization or

scheduling to achieve higher efficiency. On the other hand, the middleware sees a running

application as an indivisible unit of work. As a consequence, some of its portions that

might be dynamically reused by other Grid applications (e.g. a data mining algorithm)

cannot be discovered or invoked.

To a lesser extent, ProActive applications can also be considered as coarse-grained. An

ordinary Java application (i.e. its main class and helper classes) is gridified by transforming

52 CHAPTER 3. RELATED WORK

it to a self-contained active object. The user sees the non-gridified application as composed

of a number of (medium-grained) objects. On the other hand, ProActive sees the gridified

application as one big (active) object. When executing the application, the ProActive

runtime performs scheduling and distribution activities on active objects rather than on

plain objects. Nevertheless, ProActive is more flexible than the other approaches in this

category, since it lets developers to explicitly manage mobility inside an active object,

invoke methods from other active objects and externalize the methods implemented by an

active object.

• Medium-grained : The running application has a number of execution units of moderate

granularity. Systems following this approach are GridAspecting, Ninf-G and PAGIS. In

the former and latter case, the user identifies those tasks within the application code that

can be executed concurrently. Then, they are mapped by the middleware to semi-granular

runtime task objects. Similarly, a running Ninf-G application is composed of several IDL-

interfaced processes that are distributed across a network. Unlike GridAspecting and

PAGIS, this approach affords an opportunity for dynamic component invocation, as a

Ninf-G application might perform calls to the functions exposed by the components of

another Ninf-G application.

• Fine-grained : This category represents the gridification granularity associated to runtime

components generated upon the invocation of a method/procedure. A representative case

of fine-grained granularity is Satin. Basically, a middleware-level task is created after every

single call to a spawnable method, regardless of whether calls are recursive or not. From

the application point of view, there is a better control of parallelism and asynchronism.

However, a running application may generate a large number of tasks that should be

efficiently handled by the underlying middleware. This fact suggests the need for a runtime

support providing sophisticated execution services smart enough to efficiently deal with

task scheduling and synchronization issues.

It is worth noting that, in some cases, the user may indirectly adjust (e.g. by refactoring code)

the gridification granularity to fit specific application needs. For example, a set of medium--

grained tasks could be grouped into one bigger task in order to reduce communication and

synchronization overhead. Conversely, the functionality performed by a task could be decom-

posed into one or more tasks to achieve better parallelism. Nonetheless, this process can be

cumbersome and sometimes counterproductive. For example, ProActive applications can be

restructured by turning standard objects into active objects, but then the programmer must

explicitly provide code for handling active object lookup and coordination. Similarly, gridifica-

tion granularity of Ninf-G applications can be reduced by increasing the number of server-side

programs. However, this could cause the application to spend more time communicating than

doing useful computations.

3.2. A TAXONOMY OF GRIDIFICATION APPROACHES 53

3.2.4 Resource Harvesting

Yes

Resource
harvesting

No (GridAspecting, PAGIS)

Infrastructure resources only
(GEMLCA, GrADS, GRASG,
 Ninf−G, Satin)

Infrastructure resources
and Grid applications
(Griddles, Proactive, XCAT)

Scavenger

Non−scavenger

Intra−application linking

Extra−application linking

Figure 3.11: Resource harvesting taxonomy

The resource harvesting taxonomy describes, in a general way, the kind of Grid resources to

which access is made transparent by each gridification method. The utmost goal of Grid Com-

puting, as explained in the previous chapter, is to virtualize distributed resources so they can

be transparently used and consumed by ordinary applications. Certainly, gridification tools

play a fundamental role in achieving such a transparency. The resource harvesting taxonomy is

depicted in Figure 3.11.

Surprisingly, some gridification methods do not pursue resource virtualization. Specifically,

solutions such as GridAspecting or PAGIS aim at preserving the integrity of the application

logic during gridification and make them independent of a specific Grid platform or middleware.

In this way, users have the flexibility to choose the runtime support or middleware that better

suits their needs. However, as these approaches do not offer facilities for using Grid services,

the burden of providing the “glue” code for interacting with the Grid is entirely placed on the

application developer, which clearly demands a lot of programming effort.

Most gridification methods, however, provide some form of Grid resource leveraging, along with

a minimal or even no effort from the application developer. Basically, these are integrated solu-

tions that offer services for gridifying ordinary applications as well as accessing Grid resources.

Depending on the type of resource they attempt to virtualize, these methods can be further

classified as:

• Infrastructure resources only: Applications resulting from applying the gridification pro-

cess are not concerned with providing services to other Grid applications. Applications are

simply ported to the Grid to transparently leverage middleware-level services (e.g. resource

brokering, load-balancing, mobility, scheduling, parallelization, storage management, etc.)

that virtualize and enhance the capabilities of computational resources like processing

power, storage, bandwidth, and so forth. Moreover, some approaches are more focused on

harnessing idle CPU power (the so called “scavengers”; GrADS, Ninf-G, Satin), whereas

others also include simple abstractions and easy-to-use services to deal with data manage-

ment on the Grid (GEMLCA, GRASG). In any case, the emphasis is solely put on taking

54 CHAPTER 3. RELATED WORK

advantage of Grid resources, rather than using Grid services and services implemented by

other Grid applications.

• Infrastructure resources and Grid applications: The goal of these approaches is to simplify

the consumption of both Grid services and functionality offered by gridified applications.

At the middleware level, gridified applications are treated just like any other individual

Grid resource: an entity providing special capabilities that can be used/consumed by other

applications by means of specialized Grid services. Note that this is a desirable property

for a gridification tool, since reusing existing Grid applications may improve application

modularity and drastically reduce development effort (Atkinson et al., 2005).

Linking together Grid applications requires the underlying middleware to provide, in prin-

ciple, mechanisms for communicating applications. These mechanisms may range from

low-level communication services such as those implemented by GriddLes, to high-level,

interoperable messaging services like SOAP. In addition, mechanisms are commonly pro-

vided to describe the interface of a gridified application in terms of the internal services

that are made accessible to the outside, and also to discover existing Grid applications. For

example, popular technologies for describing and discovering Grid applications are WSDL

(W3C Consortium, 2007b) and UDDI (OASIS Consortium, 2004), respectively. Table 3.2

briefly compares the tools that support application linking by showing how they deal with

application interface description, communication and discovery.

There are basically two forms to connect applications: extra-application and intra-application.

In the extra-application approach, existing Grid applications can be reused by combining

and composing them into a new application. For example, XCAT conceives gridified ap-

plications as being indivisible components that can be combined –with little coding effort–

into a bigger application, but no binding actions are ever carried out from inside any

of these components. Another example of a gridification tool following this approach is

GMarte (Alonso et al., 2006), a high-level Java API that offers an object-oriented view on

top of Globus services. With GMarte, users can compose and coordinate the execution of

existing binary codes by means of a (usually small) new Java application. On the other

hand, in the intra-application linking approach, users are not required to implement a new

“container” application, since binding to existing Grid applications is performed within the

scope of a client application. GriddLeS and ProActive are examples of approaches based

on intra-application linking.

Gridification approaches oriented towards consuming Grid resources are engaged in finding ways

to make the task of porting applications to use Grid services easier. On the other hand, ap-

proaches seeking to effortlessly take advantage of Grid resources and existing applications gen-

eralize this idea by providing a unified view over Grid resources in which applications not only

consume but also offer Grid services. It is important to note that this approach shares many

similarities with the service-oriented model, where applications may act both as clients and

providers of services. As discussed in Chapter 2, many global Grid standards such as OGSA

3.3. DISCUSSION 55

and WSRF have already embodied the convergence of service-oriented architectures and Grid

Computing technologies.

Tool Interface

description

Communication

protocol

Application

discovery

GriddLeS Implicit

(file-based)

Sockets No

ProActive Explicit (WSDL) SOAP Yes (lookup by active

object identifier)

XCAT Explicit (WSDL) SOAP or XML-based

implicit notification

No

Table 3.2: Comparison between gridification tools leveraging both Grid resources and applications

3.3 Discussion

Table 3.3 summarizes the approaches discussed so far. Each cell of the table corresponds to the

taxonomic value associated to a particular tool (row) with respect to each one of the taxonomies

presented in the previous section.

There are approaches that let users to gridify applications without modifying a single line of code.

Solutions belonging to this category take the application in their binary form, along with some

user-provided configuration (e.g. input and output parameters and resource requirements), and

wrap the executable code with a software entity that isolates the complex details of the underly-

ing Grid. It is important to note that this approach has both advantages and disadvantages. On

one hand, the user does not need to have a good expertise on Grid technologies to gridify his/her

applications. Besides, applications can be plugged into the Grid even when the source code is

not available. On the other hand, the approach results in extremely coarse-grained gridified

applications, thus users generally cannot control the execution of their applications in a fine--

grained manner. This represents a clear tradeoff between ease of gridification versus flexibility

to control the various runtime aspects of a gridified application.

56 CHAPTER 3. RELATED WORK

Tool Application

reengineering

Compilation unit

modification

Gridification

granularity

Resource

harvesting

GEMLCA No No Coarse-grained Grid resources

GrADS Yes (compilation

units only)

Instruction

insertion

Coarse-grained Grid resources

GRASG No No Coarse-grained Grid resources

Grid-

Aspecting

Yes (structure

only)

No Medium-grained No

GriddLeS No No Coarse-grained Grid resources

and applications

Ninf-G Yes (structure

and compilation

units)

Call replacement Medium-grained Grid resources

PAGIS Yes (structure

only)

No Medium-grained No

ProActive Yes (compilation

units only)

Code conventions Coarse-grained Grid resources

and applications

Satin Yes (compilation

units only)

Code conventions Fine-grained Grid resources

XCAT No No Coarse-grained Grid resources

and applications

Table 3.3: Summary of gridification approaches

A remarkable result of the survey is the diversity of programming models existing among

the analyzed tools: procedural and message passing (GrADS), AOP (GridAspecting, PAGIS),

workflow-oriented (GriddLes), RPC (Ninf-G), component-based (PAGIS, ProActive, XCAT),

object-oriented (ProActive, Satin), just to name a few. This evidences the absence of a widely-

adopted programming model for the Grid, in contrast to other distributed environments (e.g. the

Web) where well-established models for implementing applications are found (Johnson, 2005).

Another interesting result is the way technologies like Java, Web Services and Globus have influ-

enced the development of gridification tools within the Grid. Specifically, many of the surveyed

tools are based on Java or rely on Web Services, and almost all of them either build on top of

Globus or provide some integration with it. Nevertheless, this result should not be surprising

for several reasons. Java has been widely recognized as an excellent choice for implementing

distributed applications mainly because of its “write once, run anywhere”philosophy, which pro-

motes platform independence. Web Services technologies enable high interoperability across the

Grid by providing a layer that abstracts clients and Grid services from network-related details

such as protocols and addresses. Lastly, Globus has become the de facto standard toolkit for

3.4. CONCLUSIONS 57

implementing Grid middlewares, since it provides a continuous evolving and robust API for

common low-level Grid functionality such as resource discovery and monitoring, job execution

and data management.

3.4 Conclusions

Grid Computing promises users to effortlessly take advantage of the vast amounts and types of

computational resources available on the Grid by simply plugging applications to it. However,

given the extremely heterogeneous, complex nature inherent to the Grid, adapting an application

to run on a Grid setting has been widely recognized as a very difficult task. In this sense, a

number of technologies to facilitate the gridification of conventional applications have been

proposed in the literature. In this chapter, some of the most related technologies to the purpose

of this thesis have been reviewed.

Unfortunately, the approaches to gridification previously discussed only cope with a subset of

the problems that are essential to truly achieving gridification, while not addressing the others.

Namely, these problems are:

• The need for modify and/or restructure applications. Ideally, ordinary applications

should be made Grid-aware without the need for manual code modification, adaptation

or refactoring to use a Grid. Besides drastically reducing development effort, this would

enable even the most novice Grid users to quickly and easily put their applications at work

on the Grid.

Even when the aim of the existing approaches is to ease gridification, they fail in making

the task of porting applications to the Grid a transparent process. While the analyzed

technologies do provide a two-step gridification process (see Section 2.3) in which program-

mers first concentrate on coding the logic of their applications and then on Grid-enabling

them, this latter step still demands significant effort from developers in terms of applica-

tion redesign and programming. This problem is evident in approaches such as GrADS,

GridAspecting, Ninf-G, PAGIS and ProActive, and, to a lesser extent, Satin. This, in

turn, make it difficult to fulfill desirable software quality attributes such as maintainabil-

ity, testability, platform-independence and portability, among others.

• Poor solutions to the ”ease of gridification versus tuning flexibility” tradeoff.

A number of toolkits avoid the problem of source code modification by simply adapting

the binary version of an ordinary application to a Grid-aware one that, at runtime, is com-

posed of just one single execution unit. In some cases (e.g. GEMLCA, GRASG) gridified

applications are wrapped with Web Services technologies so as to achieve interoperability.

However, this oversimplification of the gridification problem leads to another problem: it

is not possible for the programmer to take advantage of mechanisms such as parallelization

or distribution. For example, it is a good idea to execute individual CPU-bound parts of

58 CHAPTER 3. RELATED WORK

an application concurrently at several host to improve performance. In addition, the mech-

anisms offered by these toolkits for application tuning are usually very limited and based

on static parameter configuration or low-level scripting. On the other hand, approaches

like the one followed by ProActive focus on providing a rich support for programmatically

managing distribution, location and parallelization of application components but, again,

the application being gridified must be explicitly modified. In conclusion, the gridification

process should also take into account the runtime characteristics of the applications being

gridified and provide mechanisms by which users easily adjust the granularity of appli-

cation components, so as to produce Grid-aware applications that can be efficiently run

across the Grid.

• Gridified applications live ”in their own bubble”. In many approaches (GEMLCA,

GrADS, GRASG, Ninf-G, Satin), application after gridification are only concerned with

using Grid resources while not interacting with other Grid applications at all. In other

words, the gridification process is exclusively focused on enabling applications to take ad-

vantage of infrastructure resources, rather than producing Grid applications that provide

services to and use the functionality of other Grid applications. However, in order to

promote reusability of applications and collaboration across the Grid, conventional appli-

cations should be able to benefit from Grid resources as well as existing Grid applications,

without any or eventually little coding effort, along with the higher interoperability levels

required on the Grid.

Recently, SOAs have emerged as an elegant approach to tackle down some of these prob-

lems. Under the SOA vision, the Grid is seen as a networked infrastructure of interoper-

ating services representing both Grid resources and applications (Mauthe and Heckmann,

2005). SOAs provide the basis for loose coupling : interacting services know little about

each other in the sense a single service discovers the necessary information to use external

services (protocols, interfaces, location, and so on) in a dynamic fashion. This helps in

freeing Grid developers from explicitly providing code for connecting applications together

and accessing resources from within an application. Moreover, SOAs enable application

interoperability as they usually rely on standard and ubiquitous technologies. As a matter

of fact, it is not clear where to draw the line between Grid Services and Web Service tech-

nologies (Stockinger, 2007). Furthermore, current Grid standards are actively promoting

the use of SOAs and Web Services for materializing the next generation architectures and

middlewares for the Grid (Atkinson et al., 2005).

The next chapter describes an approach to solve these problems.

Chapter 4
The GRATIS Approach

In the past few years, Grid Computing has witnessed a number of significant advances in solutions

aimed at simplifying the process of porting software to the Grid. However, as discussed in the

previous chapter, current approaches are some way off from being effective gridification methods,

and present key problems that require attention (Mateos et al., 2007a).

First, integrating existing source code onto the Grid still requires to rewrite many portions of the

application to include Grid-related code, thus negatively affecting maintainability, legibility and

portability to different Grid platforms. This problem is addressed by gridification methods that

take applications in their binary form, along with some user-provided configuration, and wrap

the executables with a software entity that isolates the complex details of the Grid. However,

this results in extremely coarse-grained Grid applications, thus users generally cannot control

the execution of their applications in a fine-grained manner to make better use of Grid resources.

Finally, existing approaches do not have fully acknowledged the benefits that service-oriented

technologies bring for Grid Computing, mainly in terms of application reusability across the

Grid.

This thesis proposes a new gridification method that solves the problems mentioned above

called GRidifying Applications by Transparent Injection of Services (GRATIS). Central to

GRATIS is the concept of Dependency Injection (DI) (Johnson, 2005), a form of the Inversion

of Control notion found in object-oriented frameworks. In DI, objects providing certain services

are transparently injected into objects that require these services. GRATIS exploits this concept

by allowing developers to inject Grid services into their ordinary applications with little effort. In

essence, GRATIS aims at minimizing the requirement of source code modification when porting

conventional applications to the Grid, and at the same time providing easy-to-use mechanisms

to effectively tune Grid applications. Following the two-step gridification methodology, the idea

is to let developers to focus first on implementing, testing and optimizing the functional code

of their applications, and then to Grid-enable them. GRATIS promotes separation between

application logic and Grid behavior by non-intrusively injecting all Grid-related functionality

needed by the application at the second step of the gridification process.

59

60 CHAPTER 4. THE GRATIS APPROACH

It is worth pointing out that GRATIS is essentially a technology-agnostic gridification method.

However, in order to provide a down-to-earth description of the approach, the contents of this

chapter will be oriented towards describing GRATIS in the context of JGRIM (Mateos et al.,

2008), a Grid middleware for gridifying Java-based, component-oriented applications. Basically,

JGRIM provides a software artifact that supports the gridification method that will be pre-

sented in the sections that follow. Chapter 6 will explain the design and implementation of this

middleware.

The chapter is structured as follows. The next section presents an overview of the GRATIS

method by giving an account of its purpose, scope and related concepts, and introduces much

of the terminology that will be used in the rest of the chapter. Then, Section 4.2 examines

the concept of Dependency Injection. Later, Section 4.3 explains the gridification process of

GRATIS and how this process is supported in the JGRIM middleware. Specifically, the section

starts by introducing the required notions and describing the anatomy of both ordinary and

gridified applications, and then shows a concrete gridification example. Finally, Section 4.4

presents the conclusions of the chapter.

4.1 Aims and Scope

GRATIS is a novel approach for easily creating and deploying applications on service-oriented

Grids. The utmost goal of GRATIS is to make materialization and deployment of Grid applica-

tions simpler, by letting developers to focus on the development and testing of application logic

without worrying about common Grid-related functionality such as resource discovery, service

invocation and execution management. In other words, the goal is to permit applications to

discover and efficiently use the vast amount of services offered by the Grid without the need to

explicitly provide code for either finding or directly accessing these services from within the ap-

plication logic. As the reader can see, GRATIS belongs to the category of two-step gridification

methods.

It is important to note that GRATIS does not aim at providing yet another infrastructure

for dealing with application and resource management on the Grid. Instead, its purpose is

to provide a layer whereby ordinary applications are transformed to applications which are

furnished with specialized middleware-level components that take advantage of existing Grid

services, but minimizing as much as possible the users’ knowledge required to carry out this

transformation. From now on, we will refer to such transformed applications as gridified or

Grid-aware applications. In addition, for the sake of simplicity, middleware-level components

will be called m-components.

Figure 4.1 depicts an overview of GRATIS. As shown, GRATIS aims at transparently leveraging

existing infrastructure Grid services by adding an intermediate middleware layer that enables

4.1. AIMS AND SCOPE 61

Grid−a ware applications

that access Grid services

through specialized

components or

m−co mponents

Component−o riented

applications that request

functionality through

well−d efined interfaces

Existing Grid services

for job submission,

efficient and

robust execution,

and data transfer

CPU, bandwidth,

storage, and so on

Application

layer

Middleware

layer

Basic Service

layer

Resource

layer

Ordinary
application

Ordinary
application

Ordinary
application

. . .

Job
Migration

Data
Transfer

Parallelization
Resource
Discovery

Execution
Management &

Monitoring

Gridification

Service
Discovery

Service
Invocation

Application
Tuning

Grid−aware application

Globus ProActive Ibis. . .

. . .

Figure 4.1: The GRATIS approach: a layered view

component-based applications to seamlessly use Grid services. Specifically, GRATIS considers

four distinct layers at which Grid service provisioning is performed, namely:

• Resource layer : It simply represents the physical infrastructure of a Grid, given by re-

sources such as computing nodes, networking capabilities and storage systems, along with

the necessary low-level protocols to interact with them. Strictly speaking, this layer is

basically a provider of resources –and not services– to the upper layers. Note that, as here

defined, the resource layer encompasses both the Fabric and Resource and Connectivity

layers of the Grid architecture presented in Section 2.1.

• Basic Service layer : This layer provides, by means of concrete resource management sys-

tems such as Globus, Condor or Ibis, a catalog of services whose main goal is to make

a smart use of Grid resources. Services at this layer include load balancing, execution

parallelization, resource brokering, fault tolerance, and so on. Basically, they represent so-

phisticated Grid functionality that is accessible to applications through specific protocols

and APIs.

• Middleware layer : The Middleware layer is composed of a number of entities that roughly

act as a glue between conventional applications and the Grid. The solely purpose of

62 CHAPTER 4. THE GRATIS APPROACH

these entities is to isolate applications from technology-related details for accessing the

Basic Service layer (i.e. the aforementioned protocols and APIs) by means of specialized

components or metaservices. A metaservice can be understood as a representative of a

set of interrelated concrete services, that is, those providing similar Grid functionality.

Examples of metaservices include:

– Service Discovery : It represents the services within the Basic Service layer that per-

form service lookup on a Grid. Service discovery metaservices can talk, for example,

to a UDDI registry or a MDS-2 Globus service in order to find a list of required

Web Services, and then present this information to the Application layer in a Grid--

independent format. In other words, the purpose of this m-component is to hide all

concrete lookup services behind a generic, technology-neutral lookup(serviceInterface)

primitive.

– Service Invocation: Once one or more instances of a required service have been discov-

ered, interaction with these instances comes next. In this way, it may be necessary

to make use of different protocols, datatype formats, binding parameters, and so

on. Typically, these elements are specified in the so-called service descriptors (e.g. a

WSDL document), which represent any information that is necessary to contact an in-

dividual service instance. To sum up, the goal of the Service Invocation m-component

is to isolate applications from the technologies involved in using Grid services or, in

other words, to provide a generic call(serviceDescriptor) primitive.

– Application Tuning : The GRATIS approach takes as input component-oriented ap-

plications, where components do not share any state and communicate through well-

defined interfaces, and works by associating tuning services to certain requests from

an application-level component to another. For example, an invocation performed on

a time-consuming operation of a component may be submitted to a Globus or a Ibis

environment, thus achieving better performance, scalability and reliability. In sum-

mary, the purpose of the Application Tuning metaservice is to make the execution of

individual calls to component operations more efficient by leveraging (and potentially

enhancing) underlying services for job execution, load balancing, parallelization and

mobility.

• Application layer : According to Figure 4.1, ordinary applications are composed of a num-

ber of components, each one clearly described through an interface, that is, a list of one or

more operations and their corresponding signature. After gridification, operation requests

originated at the application level are handled by m-components, which are basically in

charge of dealing with service discovery and interaction within the Grid.

In opposition with the approaches discussed in the previous chapter, in which users have to

explicitly alter the application to use Grid services, the aim of GRATIS is to non-intrusively

“inject” Grid services into the logic of ordinary applications. The assumption that drives this

4.1. AIMS AND SCOPE 63

injection is that it is possible to associate Grid services to the various dependencies of individual

software components. By definition, a component C1 has a dependency to another component C2

when C1 explicitly uses any of the operations of C2. By associating metaservices to dependencies,

interacting components can indirectly benefit from Grid services without changing their internal

implementation.

C1

C2

Interface Dependency Grid service

C3

Ordinary
application

(Injection of
Grid services)

Gridification

C1

C2

C3

Grid−aware
application

Figure 4.2: Component dependencies and Grid service injection

Figure 4.2 summarizes the concepts exposed so far. Components of an ordinary application

interact with each other by means of their interfaces, thus establishing dependencies. Upon

gridification, individual dependencies are associated with one or more metaservices, which cus-

tomize the way a dependency behaves in a Grid setting. In the end, the gridified application

will have injected into it one or more Grid services, which are concrete services providing non--

functional Grid behavior to the application.

An interesting implication of dependencies is that they may also refer to external functionality for

which an ordinary application does not provide an implementation. Specifically, an application

component might declare a dependency to a missing component whose interface is known. As a

matter of fact, a Grid often offers services not only for managing resources, but also for providing

functional capabilities (e.g. algorithms, search engines, etc.) that play the role of third-party

building blocks for creating new applications. Based on this fact, GRATIS distinguishes two

types of Grid services:

• Non-functional services, which are those located at the Basic Service layer and represented

by m-components. Non-functional services are characterized by a lack of a clear and

standard interface to its capabilities, as they commonly represent abstract Grid concerns

rather than explicitly-interfaced, callable services. Examples of this services are those

providing parallelization, synchronization and coordination, mobility, load balancing and

fault tolerance, among others.

• Functional services, which are basically a service interface to an already deployed Grid ap-

plication that is external to the application being gridified. Similarly, gridified applications

64 CHAPTER 4. THE GRATIS APPROACH

may become themselves functional services if an interface describing their functionality is

supplied. In this way, applications do not “live in their own bubble”after gridification, and

a smooth correspondence with the SOA paradigm is achieved. Note that injecting func-

tional services usually implies the injection of non-functional services as well (e.g. using

security mechanisms when contacting functional services), but not the other way around.

The remainder of this chapter will be mostly concerned with describing how GRATIS injects

m-components into conventional applications and, to a lesser extent, with the mechanisms for

bridging these m-components with concrete Grid services, which will be explained in Chapter 6

in more detail. In this sense, the next section steps into making a deeper exploration of the

relationships between component dependencies and Grid services.

4.2 Dependency Injection

Central to GRATIS is the concept of DI (Johnson, 2005). The idea behind this concept is

to establish a level of abstraction between application components via public interfaces, and

to remove dependency on components by delegating the responsibility for object creation and

object linking to an application container or DI container. In other words, components only

know each other’s interfaces; it is up to the DI container to create and set (hence “inject”) to

a client component an instance of another component implementing a certain interface upon

method calls on that interface.

By drawing a parallel with service-oriented software, the former component can be seen as the

client requesting services, whereas the latter as one potential provider of these services. Here,

the container would be the runtime platform in charge of binding clients to service providers.

For example, a Web application might simply declare a dependency to a keyword-based search

service. Then, the runtime platform in which the application is hosted (e.g. an application

server) would be responsible for associating a concrete service for that dependency, such as a

Web Service-based interface to the Amazon or the Google search engine.

4.2.1 Non-DI Applications: An Example

In the following paragraphs we will illustrate the concept of DI through an example. Let us

suppose we have a Java application for listing books of a particular topic (BookLister) which

fetches a remote text file where book information is stored. In addition, let us assume we are

using the GridFTP protocol for transferring the file. The code implementing this application

is very simple: setup a GridFTP connection to the remote site, transfer and parse the file, and

then locally iterate the results in order to display book information. The code of our lister is:

import java . i o . RandomAccessFile ;

import java . u t i l . Enumeration ;

import java . u t i l . L i s t ;

4.2. DEPENDENCY INJECTION 65

import org . g lobus . f t p . FileRandomIO ;

import org . g lobus . f t p . GridFTPClient ;

public class BookLister {
public void disp layBooks (S t r ing top i c){

// se tup a GridFTP connec t ion to [hostname : port] . . .

GridFTPClient c l i e n t = new GridFTPClient (hostname , port) ;

RandomAccessFile r a f = new RandomAccessFile (” l o ca l−books . i n f o ”) ;

FileRandomIO s ink = new FileRandomIO (r a f) ;

f i l e S i z e = c l i e n t . g e tS i z e (remoteFi le) ;

c l i e n t . extendedGet (”remote−books . i n f o ” , f i l e S i z e , s ink , null) ;

c l i e n t . c l o s e () ;

L i s t books = parseBooks (” l o ca l−books . i n f o ”) ;

Enumeration elems = books . e lements () ;

while (elems . hasMoreElements ()){
Book book = (Book) elems . nextElement () ;

i f (book . getTopic () . equa l s (t op i c))

System . out . p r i n t l n (book . g e tT i t l e () + ” : ” + book . getYear ()) ;

}
}

}

Now, if we want to use a completely different mechanism for retrieving book information such as

querying a database or calling a Web Service, displayBooks method must be rewritten. Clearly,

this is because the application code is designed to handle a specific type of information source, or

a GridFTP server in this case. But there is more: depending on the way information is accessed,

a different set of configuration parameters might be required (e.g. passwords, endpoints, URLs,

etc.). In such a case, BookLister must also be modified to include the necessary instance

variables and constructors/setters methods. This is rather undesirable, since a big part of the

application would be tied to a specific file transfer technology.

4.2.2 A DI-based Solution

Next we present an alternative implementation of the above example that is coded according to

the DI concept. The DI version of the listing component could include an interface (BookSource)

by which BookLister accesses the book information, and several components implementing this

interface for each form of fetching. Additionally, BookLister could expose a method set-

Source(BookSource) so that the container can inject the particular retrieval component being

used. Note that BookLister now contains code only for iterating and displaying information,

which is in fact pure application logic, but the code which knows how to obtain this information

is placed on extra components. The new version of the example is:

66 CHAPTER 4. THE GRATIS APPROACH

public interface BookSource {
public L i s t getBooks (S t r ing top i c) ;

}

public class GridFTPBookSource implements BookSource{
. . .

public void sethostname (S t r ing hostname){
this . hostname = hostname ;

}
public void s e tp o r t (int port){

this . port = port ;

}
public void setremoteFileName (int remoteFileName){

this . remoteFileName = remoteFileName ;

}
public L i s t getBooks (S t r ing top i c){

/∗∗
∗ 1) se tup a GridFTP connec t ion to [hostname : port] . . .

∗ 2) t r an s f e r [remoteFileName] to l o c a l s torage

∗ 3) parse l o c a l f i l e and f i l t e r books by [t op i c]

∗/
}
. . .

}

public class BookLister {
BookSource source = null ;

public void s e tSou r ce (BookSource source){
this . source = source ;

}
public BookSource getSource (){

return source ;

}
public void disp layBooks (S t r ing top i c){

L i s t r e s u l t s = getSource () . getBooks (t op i c) ;

// I t e r a t e and d i s p l a y r e s u l t s

}
}

We also must indicate the DI container to use the GridFTPBookSource class when injecting a

4.2. DEPENDENCY INJECTION 67

value to the source field. This is supported in most containers by configuring a separate file (usu-

ally in XML format), which specifies a concrete implementation and configuration information

for all the components of an application, along with the dependencies that exist between these

components. In the rest of the chapter, the examples will be based on Spring (Walls and Breiden-

bach, 2005; Johnson, 2005), a popular Java-based DI container for developing component-based

distributed applications, which provides the means for Grid service injection in JGRIM. The

configuration file for the example being discussed is:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

<components>

<component id=”myLister ” c l a s s=”BookLister ”>

<dependency name=”Source ”>mySource</dependency>

</component>

<component id=”mySource” c l a s s=”GridFTPBookSource ”>

<proper ty name=”hostname ”>g r i d f t p . books . com</ proper ty>

<proper ty name=”port ”>2811</ proper ty>

<proper ty name=”remoteFileName ”>remote−books . i n f o</ proper ty>

</component>

</components>

Figure 4.3 shows the class diagrams corresponding to the two versions of our book listing ap-

plication. In the non-DI version shown on the left, BookLister directly interacts with the

GridFTP client. In this way, the application logic is mixed with code for creating and configur-

ing GridFTP, thus resulting in a poor solution in terms of flexibility and maintainability. On the

contrary, in the DI version shown on the right, the implementation code for dealing with both

the configuration and creation of a GridFTP connection is partially replaced by configuration

information placed on a separate file, which is processed at runtime by an assembling element

supplied by the DI container.

DI is an effective way to achieve loose coupling between application components. The pattern

results in highly decoupled components, since the glue code for linking them together is not

explicitly declared in the application code (Johnson, 2005). In the context of this thesis, a crucial

implication of this separation is that the code linking components can be completely managed at

the middleware level to transparently add Grid behavior to ordinary applications. For example,

Grid concerns such as service discovery, service invocation and parallelization are supported by

the JGRIM middleware by means of injection of built-in Spring-based m-components. Indeed,

the main idea of JGRIM is to inject all Grid related services into any Java application structured

as objects whose data and behavior are accessed by using the standard get/set conventions.

The next section describes the gridification process of GRATIS in the context of JGRIM.

68 CHAPTER 4. THE GRATIS APPROACH

GridFTPClientBookLister

Application

Run-time system

< < c r e a t e > >

(a) Without using DI

<<interface>>

BookSource
BookLister

Application

GridFTPBookSource

Assembler

Run-time system

DI-based container

GridFTPClient
< < c r e a t e > >

setsource
< < c r e a t e > >

(b) Using DI

Figure 4.3: Class diagrams for the book listing application

4.3 Gridifying Applications with JGRIM

JGRIM is a middleware for easy gridification of Java applications that materializes GRATIS

concepts. Following the GRATIS philosophy, JGRIM provides a mean for developers to grid-

ify their applications by minimizing the requirement of source code modification. In addition,

JGRIM lets programmers to easily control the granularity of application components to address

efficiency issues during the gridification process. JGRIM promotes separation of concerns be-

tween application logic and Grid behavior. Therefore, it conceives gridification as the process

of shaping the source code of an ordinary application according to few coding conventions, and

then non-intrusively adding Grid concerns in the form of m-components into it.

JGRIM let developers to focus first on implementing, testing and optimizing the functional

code of applications, and then to Grid-enable it. JGRIM imposes little code modifications on

compilation units. In addition, its programming model shares many similarities with widely

used models for Java programming such as JavaBeans. Besides, the fact that Java is itself a

very popular language for application development, makes JGRIM a gridification tool that can

potentially benefit other kind of Java applications provided they are adapted to component-based

applications.

JGRIM is materialized as an implementation of Generalized Reactive Intelligent Mobility (GRIM)

(Chapter 5), a generic agent programming and execution model which allows developers to eas-

ily manage mobility of agents and resources in distributed environments. Grid applications in

JGRIM (i.e. a gridified application) are application-level mobile services called Mobile Grid

Services (MGS) that interact with other MGSs and use middleware-level Grid services for mo-

bility, parallelization, service brokering and invocation. An MGS comprises the logic (what the

service does), and the Grid-dependent behavior, which is configured separately from the logic

and glued to the MGS at deployment time. Basically, the gridification process of JGRIM works

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 69

by semi-automatically transforming ordinary applications to MGSs.

4.3.1 Mobile Grid Services

Mobile agent technology is a well-known alternative for developing distributed applications. A

mobile agent is a computer program that can migrate within a network to perform tasks or locally

interact with resources (Tripathi et al., 2002). Mobile agents have some nice properties that make

them suitable for exploiting the potential of Grid environments, because they add mobility to

the capacities of ordinary agents. Some of the most significant advantages of mobile agents are

their support for disconnected operations, heterogeneous systems integration, robustness and

scalability (Lange and Oshima, 1999).

A mobile agent has the capacity to migrate to the location where a resource is hosted, thus

avoiding remote interactions which can significantly reduce network traffic. Consider, for exam-

ple, an information retrieval service. The goal of the service is to perform a data mining analysis

task over several tables of a database hosted at a site S. Based on information such as local

and remote workload and available bandwidth, a mobile version of the service could decide to

migrate to S in order to avoid remote interactions with the database, at the cost of potentially

cheaper migration overhead. The retrieval service could then employ a mobile agent in order to

interact with resources efficiently.

The service provisioning within a Grid is also well suited to be managed by mobile agents (Di

Martino and Rana, 2004). Scheduling, brokering, monitoring and coordination are inherently

high-level tasks that require agents’ abilities such as autonomy, proactivity, mobility and nego-

tiation. In fact, several Grid systems and applications have proposed the use of mobile agents

as their underlying Grid infrastructure (Fukuda et al., 2006). Mobile agents are a good alter-

native for providing efficient access to computational resources and supplying the basic bricks

for building service-based Grids. Specifically, the approach of having mobile agents providing

Grid services is very interesting, since it permits mobile agents and services to complement each

other to achieve better network usage and increased efficiency (Ishikawa et al., 2004), among

other advantages. Grid middleware and its services need to be highly-scalable and interoperable,

since managing today’s diverse and heterogeneous infrastructure for making Grid Computing a

reality is an increasing challenge. Mobile agents provide a satisfactory solution to tackle down

both of these problems (Lange and Oshima, 1999).

Using mobility within the Grid is not a new idea. For example, mobile agents have been suc-

cessfully employed for job submission and management (Barbosa and Goldman, 2004; Fukuda

et al., 2006), resource sharing (Suna et al., 2004), and resource discovery (Chunlin and Layuan,

2003; Aversa et al., 2004). In addition, Grid infrastructures such as Cactus (Allen et al., 2001),

Condor (Thain et al., 2003), GridWay (Huedo et al., 2004) and GrADS (Vadhiyar and Dongarra,

2005) also rely on mobility for both application scheduling and execution. However, their migra-

tion frameworks use traditional process migration techniques, while JGRIM provides mobility at

a higher level of abstraction by supporting migration for both Grid applications and resources.

70 CHAPTER 4. THE GRATIS APPROACH

Besides, the granularity of mobility is quite different, since our migration scheme only moves

certain application objects rather than entire processes.

4.3.2 JGRIM Application Anatomy

The most important aspect of JGRIM is its gridification process, that is, the set of tasks users

must follow to adapt their applications to run on a Grid. This process is illustrated in Figure 4.4.

As we will see in the next sections, the gridification process of JGRIM is semi-automatic, as it

roughly requires:

1. Modification of source code in order to obey some simple and standard object-oriented code

conventions, so as to ensure that applications components are implicitly linked through

get/set accessors. Since the get/set programming style is commonplace in object-oriented

development, it is expected that most of the time this task will not be necessary or will

require little effort.

2. User-supplied information about the interfaces of both implemented application compo-

nents and external (functional) Grid services potentially needed by the application. Basi-

cally, this information indicates the hot spots for service injection within the application.

3. Assembling of the outputs of (1) and (2), and deployment of the newly created MGS

on a particular Grid, which are performed automatically by JGRIM. Once deployed, an

MGS becomes itself a functional Grid service that may in turn be injected into another

application.

class B{

}

class B{

}

Mobile
Grid Service

(MGS)

class A{
 B = new B();
 B.someOp();
 . . .
 C.extOp();
}

Input
application

B_Intf{
 someOp();
}

(1)

(2)

C_Intf{
 extOp();
}

class A{
 getB().someOp();
 . . .
 getC().extOp();
} (3)

Output
application

(1) y (2) performed by users
(3) performed by JGRIM

Figure 4.4: JGRIM: Gridifying applications

Ordinary applications after passing through the JGRIM gridification process become WSDL--

interfaced functional Grid services with migration capabilities called MGS. Basically, an MGS

is a mobile entity that is composed of two parts:

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 71

• a stationary part, given by a WSDL document describing the interface of the service (i.e.

its operations), and a binding, which acts as a bridge between the WSDL and the mobile

part of the service. As described in Chapter 2, WSDL (W3C Consortium, 2007b) is a well-

known XML-based language for describing distributed services as a set of operations over

ubiquitous transport protocols (HTTP, RMI, CORBA, etc.). From a WSDL specification,

an MGS can determine the operations other MGSs provide, and how to interact with them.

It is worth noting that the WSDL interface for an MGS is not supplied by the developer,

since it is automatically built from the public methods of the MGS implementation, that

is, the original application.

• a mobile part, consisting of a mobile agent carrying the logic that implements the service.

As such, the agent can potentially move to other hosts in order to find and locally access

required resources, or even other MGS. Additionally, the agent is instructed with the Grid-

dependent behavior configured for the MGS by combining it to the service logic. The next

section presents further details on how this is done.

Note that, since Grid-aware applications in JGRIM are essentially mobile entities whose

runtime behavior follows a particular execution model, JGRIM acts not only as an injector

of mobility but also as a concrete provider of migratory capabilities. In this sense, JGRIM

can be seen both as a gridification tool and a Grid middleware that provides mobility

services to applications.

When an MGS is deployed on a host, its IDL information is locally installed, and its associated

agent is launched. Upon launching, a proxy to the mobile agent is created in order to hide its

real location. The mobile agent informs its location to its proxy after processing each operation

request, in a piggybacking fashion. Moreover, each proxy maintains a mailbox where client

requests are queued. When the agent finishes processing a request, the proxy picks an unserved

request from the mail box and forwards it to the agent. Figure 4.5 depicts the anatomy of a

running gridified application.

The runtime support for MGSs is implemented through Java servlets (Hunter and Crawford,

1998). It provides low-level services to agents such as execution, mobility, system resource

monitoring (CPU load, bandwidth, memory, and so forth) and request forwarding. Mobility

here is mostly concerned with marshaling agents’ execution state into a network-transferable

format, unmarshaling received agents and resuming their execution. This is partially supported

by means of JavaFlow (Apache Software Foundation, 2006), a library from Apache for capturing

the execution state of a running Java application.

The following paragraphs explain the Grid service injection support of JGRIM.

72 CHAPTER 4. THE GRATIS APPROACH

Host #1

Host #2

Client
Application
(possibly

another MGS)

MGS
interface

1. c
all o

peratio
n

4. o
peratio

n

response

3. request
processed

2. request
forwarding

Binding
Agent
Proxy

Mobile
AgentService

logic

Injected
Grid services

Figure 4.5: Elements of an MGS

4.3.3 Grid Service Injection

As stated at the beginning of this chapter, GRATIS conceives ordinary applications as being

composed of logic and dependencies. The logic is the portion of the application implementing

pure application logic, that is, code for performing calculations, interacting with data resources,

and requesting services from other applications. These data resources and external services are

the dependencies of an application. An individual dependency specifies, by means of a well--

defined interface, the conventions needed to appropriately interact with a certain application

component or functional Grid service. After gridification, individual dependencies may have

configured one or more Grid metaservices.

Figure 4.6 summarizes the concepts introduced above. According to JGRIM, dependencies may

also have an attached policy, which non-intrusively customizes the way application components

or external services are accessed when executing in a Grid setting (e.g. to increase efficiency).

At the middleware level, both policies and dependencies are materialized as JGRIM built-in

components, or m-components. Basically, these m-components are intended to represent the

Grid-related behavior of applications.

4.3.3.1 The Service Discovery/Invocation m-Component

Unless otherwise indicated, all dependencies for an application are assumed to refer to external

MGSs, Web Services or any other kind of service-like entity described through a WSDL interface.

The Java interface (e.g. BookSource in the example of Section 4.2) for every dependency of

a JGRIM application is in fact transparently associated to a service discovery m-component.

This kind of built-in component accepts service requests from the application upon it depends,

inspects registries to find a service whose WSDL interface matches the dependency interface,

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 73

<<interface>>

AnInterface3

<<interface>>

AnInterface2

APolicy1

Custom
Policy

<<interface>>

AnInterface1Application Logic
dependencies

Application

JGRIM

Service
Discovery

Method
Spawner

APolicy1

Itinerary

Custom
Policy

0..1

1..N

Association
Mapping

Figure 4.6: Dependencies, policies and JGRIM m-components

and invokes operations on that service1. In this way, the user is freed not only from the burden of

searching functional Grid services, but also from dealing with low-level details such as addresses,

protocols, ports, etc. to invoke these services.

Moreover, based on the support offered by this m-component, developers may decide not to im-

plement certain applications components but relying on functional service injection capabilities,

thus drastically reducing implementation effort. Note that this type of reuse is precisely the

cornerstone of the SOA paradigm.

Figure 4.7 shows a diagram illustrating how JGRIM isolates applications from discovering and

invoking functional Grid services. ServiceDiscoverer materializes the service discovery m-

component previously mentioned. Instances of this m-component, which are automatically in-

jected into the application, act as proxies to functional Grid services by converting any incoming

method call to the corresponding WSDL operation request. For each dependency –and therefore

for each interface– a proxy is injected, which is in charge of discovering and then accessing any

of the available Grid services offering the operations declared in the corresponding interface. In

this way, methods calls issued at the application level on a particular dependency are transpar-

ently intercepted by the associated proxy and forwarded to a concrete service instance within

the Grid.

Conceptually, a service discoverer can be viewed as a simple service broker that, given a specific

list of operation signatures, is capable of finding concrete Grid services whose exposed interface

is a superset of the input list. In addition, the service discoverer is responsible for transforming

1According to the WSDL specification, a Web Service may be composed of one or more operations

74 CHAPTER 4. THE GRATIS APPROACH

<<interface>>

AnInterface

+operation(arg1,...,argN)

AnApplication
aDependency

Application

JGRIM

ServiceDiscoverer

+operation(arg1,...,argN)

<<dynamically realizes>>

Assembler
< < c r e a t e > >

set the component
for "aDependency"

DI-based container

(Spring framework)

Find a matching service and invoke it

GRID

Figure 4.7: Dependencies and service discovery/invocation m-components in JGRIM

a call on any of these operations to an operation request on any of the service instances that

were initially found. Note that the materialization of the discovery mechanism may involve, for

example, the inspection of a centralized service registry or the use of Peer to Peer (P2P)protocols.

In fact, the current implementation of this mechanism in JGRIM (see Section 6.2.1) is based on

UDDI registries.

4.3.3.2 The Policy m-Component

Another aspect that is represented by means of m-components is policy management. Basically,

policies represent a mechanism that allows developers to express, separately from the applica-

tion logic, customized reconfiguration strategies for mobile applications in order to achieve better

performance (Montanari et al., 2004). Particularly, JGRIM provides a policy-inspired applica-

tion tuning support that let programmers to customize the way applications interact with Grid

services without altering application code.

JGRIM applications use policies mainly for managing MGS mobility and resource access. For

example, one could instruct an MGS to move to a powerful host every time a specific CPU--

intensive operation of a certain application component is executed, or specify filtering actions on

the available providers for an external service component. Individual policies can be attached

to the operations of one or more dependencies. Basically, a JGRIM policy is a plain Java class

that allow developers to specify:

• Customized pre and post actions that are executed by JGRIM before and after an invo-

cation to any of the operations of the associated dependency takes place. This is useful to

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 75

keep the “conversation” between an individual application component and its dependen-

cies, which in turn may serve as a mean of improving efficiency (e.g. caching invocations

results), performing debugging (e.g. diagnosing communication errors with external ser-

vices) or just carrying out profiling tasks.

• Code to dynamically select the particular source for an external component and the way

it should be accessed. Within a Grid environment, many providers for the same service

interface are usually available, thus applications may want to decide which instance should

be used. On the other hand, an individual service instance may be contacted in several

ways, such as moving the requesting MGS to the service’s location or remotely calling it.

These decisions can be specified only for dependencies to functional Grid services accessed

through discovery/invocation or itinerary m-components.

Dependency type

(target component)

Pre/Post

actions

Service instance/ access

method selection

Service

(external component)

√ √

Service

(internal component)

√ −

Self dependency

(this)

√ −

Table 4.1: Aspects that can be controlled through policies, according to different dependency types

Table 4.1 summarizes the aspects that can be customized by a policy depending on the type of

the dependency to which the policy is associated. After gridification, JGRIM maps all policy

declarations to a special middleware-level m-component, thus service discovery/invocation m-

components can reference and use these policies. In addition, dependencies can be configured to

employ policies in order to establish, for example, a custom ordering for accessing services when

using itineraries. The rationale behind this customization mechanism is the GRIM model, which

will be described in the next chapter. In GRIM terminology, JGRIM policies are conceptually

defined as agent-level policies.

As explained in past sections, upon gridification, the application logic is mapped to an MGS.

This is done by automatically modifying the application source in order to inherit from specific

classes of the JGRIM API that provide basic high-level primitives for handling agent mobility

and managing agent state information. Similarly, interfaces for dependencies and classes imple-

menting custom policies are mapped to m-components, and combined into a single configuration

file which is then wired to the MGS functional behavior. According to GRIM, those interfaces

are known as the protocols2 of the MGS.

2The term should be understood here in the context of object-oriented programming

76 CHAPTER 4. THE GRATIS APPROACH

The next section presents a comprehensive example in order to clarify the ideas exposed so far.

4.3.3.3 The Parallelization m-Component

A fundamental service of any Grid is parallelization. Certainly, simultaneously executing the

same task or a set of closely-related tasks can dramatically improve the performance of Grid

applications. Indeed, most Java-based platforms proposed for Grid programming provide some

form of execution parallelization, mainly in the form of method spawning. Basically, the idea is

to distribute the execution of certain methods to atomically run them on different hosts. For

example, Ibis (Chapter 3) let programmers to declare a special marker interface whose methods

corresponds to those operations within a class which should be spawned. Another example

of a Java-based language for parallel programming that uses method spawning techniques is

JCilk (Danaher et al., 2006).

From the point of view of the JGRIM programming model, an interface similar to an Ibis marker

is considered as a dependency that do not refer to external Grid services, but to operations

provided by the application. In other words, an application offering services usually depends

upon itself, since these services internally use each other. For example, a component C1 might

provide two operations A and B, with A depending on several independent calls to B. Overall,

C1 has a dependency to itself, whose interface includes an operation with exactly the same

signature as B.

In this sense, JGRIM exploit this notion to transparently inject parallelization: developers can

specify self-dependencies that are automatically mapped to a MethodSpawner built-in component

(Figure 4.8 (a)). The MethodSpawner transparently parallelizes the invocation of any method

declared within those dependencies by creating different child tasks that can be sent to remote

hosts to improve performance. Section 4.3.4 exemplifies the usage of this m-component.

Task execution within a MethodSpawner can be managed in several ways. A very interesting

scheme is to delegate the execution of these tasks to existing job submission services such as those

offered by Ibis or Globus’s GRAM, which are suited to handle the execution of CPU-intensive

applications. In addition, reusing these services allows applications to indirectly benefit from

useful features like load balancing, fault tolerance and execution monitoring. Currently, imple-

mentation of the JGRIM MethodSpawner is based on the execution and parallelization services

provided by the Ibis platform. In the next chapters, a detailed explanation and evaluation of

this support is presented.

JGRIM complements the above mechanism by transforming the application source code so as

to wrap the result of a (spawnable) method call with a special object, and replace any further

reference to that result with an invocation to a blocking getValue method on that object

(Figure 4.8 (b)). The execution of the method is actually handled by a MethodSpawner in a

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 77

Method
Spawner

class C1{
 opB(){. . .}
 opA(){
 . . .
 opB();
 . . .
 }
}

Actual execution

of opB() (Threads,

Globus, Ibis, etc.)

Application level

Middleware level

Normal execution flow

Interception of the

call to opB()

(a) The Method-Spawner built-in component

opA(){
 . . .
 a = opB();
 . . .
 print(a);
}

Rewritten to opA(){
 . . .
 wa = wrap(opB());
 . . .
 print(wa.getValue());
}

Blocking call. Un−
blocks upon a call
to setValue on wa

(b) Sincronization of a spawned computation

Figure 4.8: The Parallelization m-Component

separate thread, which is in charge of contacting an external Grid execution service (in this

case Ibis) and then calling the corresponding setValue method on the wrapper object once

the results are available. In this way, both the task of spawning methods and waiting for their

results are totally transparent to the application programmer. Another very important benefit

of this separation is that applications can be configured to use different job submission services

without requiring source code modifications.

4.3.3.4 The Itinerary m-Component

JGRIM supports the notion of itinerary. In most mobile agent-based platforms, an itinerary

is an ordered list of sites used by agents to locally perform a single task or a set of tasks on

these sites, one at a time. JGRIM provides a m-component which, upon creation, locates the

external functional services adhering the interface of the dependency to which an application

component is associated, and store them into a list. The m-component delegates an incoming

service invocation to the current item of the list by moving the MGS to the service location.

When the list reaches its end, an exception to the MGS is thrown. Besides, the itinerary is

incrementally updated as new services are discovered.

JGRIM itineraries are useful when applications need to contact more than one provider for

the same service functionality. For example, a temperature forecaster could be easily gridified

by declaring an itinerary-like dependency (traveler) that searches for Grid services offering a

predict(latitude, longitude, day) operation:

public interface S imp l eFo r e ca s t e r I n t e r f a c e {
public long p r ed i c t (long l a t i t ud e , long l ong i tude , Date day) ;

}

public class Pr ob ab i l i s t i cFo r e c a s t e r {
public stat ic f ina l int PROVIDERS = 5 ;

78 CHAPTER 4. THE GRATIS APPROACH

// An i t i n e ra ry− l i k e dependency

S imp l eFo r e ca s t e r I n t e r f a c e t r a v e l e r ;

public void s e tT r av e l e r (S imp l eFo r e ca s t e r I n t e r f a c e t r a v e l e r){
this . t r a v e l e r = t r a v e l e r ;

}
public S imp l eFo r e ca s t e r I n t e r f a c e ge tTrave l e r (){

return t r a v e l e r ;

}
public long f o r e c a s t (long l a t i t ud e , long l ong i tude , Date day){

long [] p r e d i c t i o n s = new long [PROVIDERS] ;

for (int i =0; i<PROVIDERS; i++){
p r ed i c t i o n s [i] = getTrave l e r () . p r ed i c t (l a t i t ud e , long itude , day) ;

}
// P r o b a b i l i s t i c f o r e c a s t i n g

return f o r e c a s t (p r e d i c t i o n s) ;

}
protected long f o r e c a s t (long [] f o r e c a s t s) { . . . }

}

Each method call served by the m-component results in a request to a different service provider.

After a number of results has been obtained, the application might apply probabilistic methods

in order to return a more accurate prediction of the temperature.

Note that an itinerary m-component can be viewed as a special type of service discovery/-

invocation m-component. They behave almost the same, except that the former has some

notion of state. While the latter delegates every single method call coming from the application

to any matching service it discovers, itinerary m-components contact all those services which

has been initially discovered when the m-component was injected.

4.3.4 An Example: The k-Nearest Neighbor Classifier

From the programmer’s perspective, there are a few conventions to keep in mind before us-

ing JGRIM. First, all dependencies to services must be labeled with an identifier, and a type

(service, itinerary or self) to provide information to JGRIM about how to map these depen-

dencies to built-in components. Second, any reference to a dependency within the application

code must be done by calling a fictitious method getXX, where XX is the identifier given to

that dependency, instead of accessing the dependency directly (XX.operation()). For example,

if an application reads data from a file, instead of accessing it as dataFile.read(), it should be

accessed as getDataFile().read(). JGRIM then automatically modifies the source code so as to

include the necessary instance variables and getters/setters methods. After that, the compiled

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 79

version of the code is instrumented to enable the application for performing method spawning

and mobility.

This section shows the gridification process for an existing implementation of k-nearest neighbor

algorithm (k-NN). k-NN (Dasarathy, 1991) is a popular supervised learning technique used

in data mining, pattern recognition and image processing. The algorithm is computationally

intensive, hence it is a suitable application to be deployed on a Grid environment.

k-NN classifies objects (also called instances) by placing them at a single point of a multidimen-

sional feature space. The training examples (also called dataset) are mapped into this space

before instance classification, thus the space is partitioned into regions according to class labels

of the training samples. A point in the space is assigned to the class C if it is the most frequent

class label among the k nearest training samples.

Suppose we already have a Java application implementing this algorithm and we want to gridify

it with JGRIM. Roughly, the application consists of a number of helper classes and a KNN class

declaring three operations:

• classifyInstance, which computes the class label associated to a particular instance,

• classifyInstances, which is analogous to classifyInstance but operates on a list of

instances, and

• sameClass, which tests whether two different instances have associated the same class

label.

Among these helper classes is the component that provides the means to access the dataset based

on the specific storage mechanism (e.g. a file), which is in turn called by the above methods to

perform classification of new instances. Basically, the structure of the application code could be

as follows:

public class KNN{
protected int k ;

Fi l eDatasetReader datas e t ;

KNN(int k){
this . k = k ;

this . datas e t = new Fi leDatasetReader () ;

}
public double c l a s s i f y I n s t a n c e (In s tance i n s t an c e) { . . .}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s t an c e s) { . . .}
public boolean sameClass (In s tance instA , In s tance instB) { . . .}

}

80 CHAPTER 4. THE GRATIS APPROACH

public class Fi leDatasetReader{
public In s tance [] readItems (int s ta r t , int end) { . . .}
public int s i z e () { . . .}
public int dimensions () { . . .}

}

As explained previously, gridifying an application involves to take its code, along with some

user-provided information, and generate the corresponding MGS. Basically, the user must define

the class within the application he wants to expose as an MGS (in this case, the KNN class),

and provide a list of pairs [identifier, JavaInterface] specifying all the existing dependencies3.

Optionally, a third argument representing the dependency type can be specified, and a fourth

configuring a custom policy.

Apart from the computational resources itself, k-NN needs a data resource with the dataset

in order to classify a single instance. In JGRIM, this is modeled through a dependency to an

external component. We expect that data resource to expose an interface for reading items and

metadata (size and number of dimensions) from the dataset, so we provide a Java interface for

this matter (DatasetInterface), and a dependency with this interface identified as dataset is

declared in the application. The gridified version of the code is4:

public interface Data s e t I n t e r f a c e {
public In s tance [] readItems (int s ta r t , int end) ;

public int s i z e () ;

public int dimensions () ;

}

public class KNN extends j gr im . core . JGRIMAgent{
protected int k ;

Data s e t I n t e r f a c e datas e t ;

KNN(int k){
this . k = k ;

}
public void s e td a ta s e t (Data s e t I n t e r f a c e datas e t){

this . datas e t = datas e t ;

}
public Data s e t I n t e r f a c e ge tdatas e t (){

return datas e t ;

}

3The development of a plug-in for the Eclipse SDK to help programmers define dependencies and create/con-
figure policies is underway.

4Some of the class names shown in the examples of this chapter may differ from the actual JGRIM API
discussed in Chapter 6.

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 81

public double c l a s s i f y I n s t a n c e (In s tance i n s t an c e) { . . .}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s t an c e s) { . . .}
public boolean sameClass (In s tance instA , In s tance instB) { . . .}

}

and the automatically generated configuration file is:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

< !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”

”h t tp : //www. spr ingframework . org /dtd/ spr ing−beans . dtd ”>

<beans>

<bean id=”jgrim KNN” c l a s s=”KNN”>

<proper ty name=”datas e t ”>

<r e f l o c a l=” j g r im data s e t ”/>

</ proper ty>

</bean>

< !−− A se r v i c e d i s c ov e r y m−component −−>
<bean id=”j g r im data s e t ” c l a s s=”jgr im . core . S e r v i c eD i s cov e r e r ”>

<proper ty name=”exp ec t ed In t e r f a c e ”>

<value>Data s e t I n t e r f a c e</ value>

</ proper ty>

</bean>

</beans>

The application declares a dependency to a data resource named dataset, which has been previ-

ously modeled through the DatasetInterface interface. Besides, proper getter/setters methods

for interacting with that dependency were automatically added. As the reader can see, the re-

sulting code is very clean, since it was not necessary to use any particular class from the JGRIM

platform during the gridification process. The only requirement for the programmer was to add

calls to a (not yet existent at implementation time) getdataset method at the places where

the dataset is accessed. Furthermore, it is very easy to change the real source of the dataset for

testing purposes, by simply replacing the jgrim dataset component in the configuration file. A

quantitative report on the gridification effort for the k-NN algorithm, from the programmer’s

point of view, can be found in Chapter 7.

4.3.4.1 Parallelization

A natural way to implement the sameClass operation is by issuing two different calls to classify-

Instance and then simply compare the results, thus improving code reusability. These calls are

inherently independent between each other, hence they are computations suitable to be executed

concurrently.

82 CHAPTER 4. THE GRATIS APPROACH

Let us exploit this fact by injecting parallelization into the sameClass operation. Basically, the

idea is to declare a self-dependency to those operations whose execution should be parallelized.

Let us identify this dependency as self, and specify its corresponding Java interface:

public interface SpawnInter face {
public double c l a s s i f y I n s t a n c e (In s tance i n s t an c e) ;

}

As a consequence, a new component is added to the configuration file previously shown:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

< !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”

”h t tp : //www. spr ingframework . org /dtd/ spr ing−beans . dtd ”>

<beans>

<bean id=”jgrim KNN” c l a s s=”KNN”>

. . .

<proper ty name=”spawner ”>

<r e f l o c a l=”jgr im spawner ”/>

</ proper ty>

</bean>

. . .

< !−− A method spawning component −−>
<bean id=”jgr im spawner ” c l a s s=”jgr im . core . MethodSpawner”>

<proper ty name=”exp ec t ed In t e r f a c e ”>

<value>SpawnInter face</ value>

</ proper ty>

</bean>

</beans>

In order to adequately interact with the self dependency in the sameClass operation, the pro-

grammer must replace the two implicit calls to classifyInstance through the this reference

variable by calls to a fictitious method getself. Similarly to Ibis, the only extra programming

convention needed for the spawning technique to work is that the results of the spawned com-

putations must be placed on two different Java variables. Further references to any of these

results will block the execution of the sameClass operation until they are computed by the

MethodSpawner component. A sequence diagram showing the interaction between the objects

involved in the computation of the sameClass operation is depicted in figure 4.9.

4.3.4.2 Policy Management

To illustrate the runtime behavior of our gridified classifier service, let us suppose a scenario

consisting of several JGRIM-enabled sites where some of them have a copy of the dataset stored

4.3. GRIDIFYING APPLICATIONS WITH JGRIM 83

Synchronous call

Asynchronous call

Call result

Client Application

Figure 4.9: Parallelization of the sameClass operation: sequence diagram

on a database. All occurrences of the dataset has been previously wrapped with a single Web

Service, providing the operations needed by the MGS for querying the dataset. Finally, the

latency between any pair of sites could vary along time. The same applies to CPU load at any

site.

Since our MGS works by reading blocks of data from the dataset and then performing a compute-

intensive computation on them, availability of both network bandwidth and CPU should be

seriously taken into account. Accessing a service from a site to which the MGS current location

experience a high latency might increase response time. Moreover, processing a block of data

on a loaded site might lead to inefficient use of computing resources. We could overcome this

situation by attaching a policy to the dataset dependency. To code a policy, the programmer

must specify his access decisions by implementing four separate methods of the PolicyAdapter

class:

import j gr im . core . Constants ;

import j gr im . core . p o l i c y . Pol icyAdapter ;

import j gr im . metr i c s . P r o f i l e r ;

public class DatasetPol i cy extends Pol icyAdapter{
public Str ing accessWith (S t r ing methodA , S t r ing methodB){

return Constants .INVOKE;

84 CHAPTER 4. THE GRATIS APPROACH

}
public Str ing accessFrom (Str ing s iteA , S t r ing s i t eB){

P r o f i l e r pr = P r o f i l e r . ge t In s tance () ;

double latA = pr . p r o f i l e (” l a t ency ” , pr . getLocalHost () , s i teA) ;

double latB = pr . p r o f i l e (” l a t ency ” , pr . getLocalHost () , s i t eB) ;

return (latA < latB) ? s i teA : s i t eB ;

}
public void executeBefore (){

Str ing s i t e = P r o f i l e r . ge t In s tance () . l ea s tLoadedS i t e () ;

((JGRIMAgent) getOwner ()) . move(s i t e) ;

}
public void execu teAf te r () { . . .}

}

For simplicity reasons, exception handling is omitted. The previous code works as follows:

every time the MGS calls the dataset service, DatasetPolicy is evaluated. Firstly, the method

executeBefore causes the MGS to migrate to the least loaded host. From there, the policy

instructs our MGS (through methods accessWith and accessFrom) to remotely invoke the

service which is hosted at the site that offers the lowest latency. After accessing the service, the

code placed within executeAfter method is executed. For now, it should be clear that it is very

easy to tune JGRIM applications by means of policies, which customize the way Grid services

are accessed without altering the MGS behavior. In the next chapter, a more deep discussion

on the policy mechanism is presented.

It is worth noting that DatasetPolicy will be activated upon invocations on any operation

from the DatasetInterface interface, because by default a policy handles the execution of

any method within the interface of the dependency to which the policy is attached. However,

operations size and dimensions are very lightweight in terms of bandwidth consumption, and

they are invoked only once during the classification process, thus policies are not needed for

them. But, two unnecessary and potentially expensive MGS migrations are triggered anyway.

In this sense, the policy mechanism also let programmers to attach policies to single operations

rather than to entire interfaces.

By adding a simple policy, the MGS is now able to make mobility decisions according to avail-

ability of both CPU and network resources across sites. The weak point of the approach, as

shown in the code, is that it is necessary to know details of a small subset of the JGRIM API

in order to code a policy. As pointed out in the previous chapter, this is a problem suffered by

many of the tools proposed for Grid development. However, the approach presented so far do

not come into contradiction for two reasons. First, API details are circumscribed only to policy

coding, as they are never present in the service logic. Second, the usage of policies for gridifying

applications is not mandatory, since decisions regarding MGS mobility and service invocation

can be delegated to the JGRIM middleware, at the potential cost of decreased performance.

4.4. CONCLUSIONS 85

4.4 Conclusions

This chapter described GRATIS, a new approach to gridification that is essentially based upon

the concept of Dependency Injection. In DI, explicit references between application components

are removed from the source code and transparently injected by a runtime system instead.

GRATIS takes advantage of this idea to dynamically inject Grid services to ordinary applications

without forcing developers to modify the application logic. A fundamental aspect of GRATIS is

that it sits on top of existing Grid middlewares and infrastructures, therefore leveraging existing

Grid services and resources. Lastly, GRATIS is strongly inspired on SOA concepts, thus it

promotes reusability of both Grid services and user applications.

The chapter explained the approach in the context of JGRIM, a middleware that supports the

GRATIS gridification method for component-based Java applications. JGRIM lets developers

to easily code and deploy Grid applications while keeping them away from most Grid-related

details. Besides providing mechanisms for porting applications to the Grid with little effort,

JGRIM aims at addressing performance issues through the mechanisms prescribed by a mobile

agent-based, easy-to-tune application execution support called GRIM.

Basically, GRIM models common interactions between mobile applications and resources in

distributed systems. The next chapter describes this model.

86 CHAPTER 4. THE GRATIS APPROACH

Chapter 5
GRIM

GRIM (Mateos et al., 2005; Mateos et al., 2007b; Mateos et al., 2007c) is a generic, programming

language-neutral reference model for building mobile agent-based applications. GRIM prescribes

an execution model for mobile agents that is based upon the concept of binding, that is, a

middleware-level mechanism for transparently and efficiently supplying agents with available

instances of requested resources. In essence, GRIM promotes separation of concerns between

application logic and non-functional aspects of mobile applications related to distributed resource

access, agent mobility and application tuning.

As mentioned in the previous chapter, gridified applications in JGRIM are mobile agents called

MGS whose runtime behavior is based on the GRIM model. As such, an agent is basically

composed of application logic and some external configuration (i.e. non-functional concerns)

that dictates how the agent behaves with respect to mobility management and resource access

when executing on a distributed system.

The rest of the chapter is organized as follows. The next section introduces GRIM and discusses

its related concepts. Then, Section 5.2 explains the internals of the execution model prescribed

by GRIM for agent-resource interaction. Finally, Section 5.3 briefly summarizes the contents of

the chapter.

5.1 Overview of GRIM

GRIM is a generic agent execution model that abstracts away common interactions between

mobile agents and resources when building mobility-based distributed applications. GRIM gen-

eralizes Reactive Mobility by Failure (RMF)1 (Zunino et al., 2005b), a transparent migration

mechanism that aims at reducing the effort of developing mobile agents by automating some

decisions about mobility. In RMF, a failure is defined as the impossibility of an executing mobile

agent to find some needed resource (e.g. data, services, etc.) at the site at which the agent is

1For a comprehensive discussion on the RMF mechanism, see (Zunino, 2003)

87

88 CHAPTER 5. GRIM

running. A single failure is handled by RMF by moving the failing mobile agent to a remote

site containing instances of the requested resource. Basically, GRIM takes this idea further by

enlarging the set of methods that are employed to handle failures, and providing flexible decision

mechanisms so that developers can tailor GRIM according to specific application requirements.

GRIM is built upon the concept of binding, which is conceived as the process of matching an

agent resource request to the actual resource instance able to serve that request. Generally

speaking, requests are composed of resource interface information, which specifies the desired

interaction “contract” with resources, and metadata information, which defines concrete values

for the various properties that identify individual resource instances matching the same interface

information. Metadada information is useful to specify constraints over the size, availability,

owner, etc. of a resource. For example, an agent might be interested in contacting a service

(i.e. the resource) for performing a keyword-based search (i.e. the interface information) whose

provider is “Amazon”.

Figure 5.1 depicts an overview of the GRIM model. The execution units prescribed by GRIM

are mobile agents composed of two parts: behavior and protocols. Behavior is the stationary

implementation of an agent, that is, the code not concerned with mobility. Protocols represent

resources potentially needed by the agent along its lifetime. The execution environment for

agents residing at a physical site is called a host, which is introduced in the next subsection.

Hosts are responsible for hosting agents as well as resources. The terms “agent” and “mobile

agent” will be used interchangeably throughout the rest of the chapter.

GRIM
Agent

GRIM−enabled
Network

ResourcesHost

Behavior

Protocols

logically
points tologically

points to

Figure 5.1: The GRIM model: core concepts

As mentioned above, an agent behavior corresponds to the logic implementing that agent. This

logic usually makes use of resources external to the agent which are described by means of

protocols. A protocol is essentially the interface –methods and conventions– exposed by a

resource to which the agent agrees in order to access the resource. Indirectly, protocols indicate

the points within the agent’s behavior which potentially may need a binding. For example,

5.2. GRIM RUNTIME SUPPORT 89

the behavior of an agent looking for a phrase within a file would be that of implementing a

string matching algorithm over the file contents. Here, a protocol is required to indicate the

algorithm needs an external resource (i.e. the file), and the expected interface for manipulating

that resource (e.g. open, read and close methods). In addition, metadata such as name, size and

permissions might be associated to the protocol, thus an individual file is identified. It is up to

the middleware to bind each operation issued on the file resource with the code implementing

the actual interaction. For instance, in the Grid context this may be a Web Service providing

operations for accessing files or a wrapper to a Grid file system.

GRIM states that, upon any attempt to access a resource (e.g. the file in the above example), a

middleware trap is generated. As a consequence, the trap is reactively handled, that is, GRIM

automatically do whatever is necessary in order to obtain a resource whose exposed interface

adheres to the protocol causing the trap. For instance, GRIM may move the agent to a site

offering the required resource, or remotely invoke the resource instead. Section 5.2.1.1 discusses

the mechanisms provided by GRIM to handle traps.

Moreover, not all requests to external resources trigger traps, but only those points of an agent’s

behavior associated with a protocol. If we map this to JGRIM, it means not all calls to a getXX

method within an MGS will trigger a trap. The binding process will be activated only if XX has

been declared as a dependency to an external service. Conceptually, by declaring protocols the

programmer is able to select which points of an agent code may need to be bound to resources

and services. At an extreme, an agent may not declare any protocol. This implies that the

programmer is in charge of manually finding and accessing resources, and even performing agent

mobility. However, note that this is not suitable when building applications for complex and

distributed execution environments like the Grid, where manually handling resource access and

application execution usually involve difficult, laborious and error-prone tasks such as service

discovery, invocation, failure handling, parallelization, and so forth.

5.2 GRIM runtime support

The execution model of GRIM is able to automate decisions on when, how and what site within

a network to contact to satisfy agents resource needs. GRIM is based on the notion of re-

active mobility (Fuggetta et al., 1998), and as such it is founded on the idea that an entity

external to agents helps them to handle traps. Those entities are stationary (i.e. non-mobile)

agents called Protocol Name Servers (PNS) agents. In contrast, in schemes based on proactive

mobility (Fuggetta et al., 1998), migration is exclusively managed within agents, which means

programmers must explicitly provide code for handling mobility when building applications.

Programming toolkits following this philosophy include at least a “move” or “go” API primitive

to manually move an agent from one location to another. Proactive mobility is often referred as

“explicit mobility”, whereas reactive mobility is also known as “implicit mobility”.

The runtime platform residing at each physical site capable of hosting and providing support

for executing GRIM agents is called a host. Basically, hosts provide resources such as databases,

90 CHAPTER 5. GRIM

libraries or services to agents. A set of hosts such as all of them know one another conform a

logical network. A logical network is a GRIM-enabled network that groups hosts belonging to

the same application or some closely related applications. Figure 5.2 illustrates this concept.

As shown in the figure, two logical networks (A and B) have been configured. Network A is

composed of hosts H1, H2 y H3, while network B links hosts H2 and H3. As the reader can

observe, a single host may be part of more than one logical network. Consequently, resources

owned by the host can potentially be accessed by applications belonging to any of those logical

networks.

H1
H2

H3

Logical network A

Logical network B

Figure 5.2: Logical networks in GRIM

Each host contains one or more PNS agents. PNS agents are responsible for managing infor-

mation about protocols offered at each host, and for searching for the list of resource instances

matching a given protocol whenever a trap occurs. Just like the UDDI machinery or the Globus

MDS-2 metaservice serve as a vehicle for service discovery in Grid applications, PNS agents are

intended to provide brokering facilities for resource discovery in mobile applications.

A host offering resources registers on its local PNSs the protocols and metadata information

associated with these resources. Then, PNS agents announce this new information to its peers

in the logical network(s). Figure 5.3 shows the relationships between agents, a host and its

associated PNSs.

It is worth pointing out that GRIM does not prescribe any particular mechanism for dealing

with protocol information at the PNS level. Both discovery and announcement of resources

could be materialized with either a registry-based publication scheme, multicast and Peer to Peer

technologies, or even hybrid approaches. For example, WS-Log (Mateos et al., 2007b), a platform

for Web programming based on GRIM and Prolog, combines a multicast-based communication

facility named GMAC (Gotthelf et al., 2005) and UDDI registries (OASIS Consortium, 2004)

5.2. GRIM RUNTIME SUPPORT 91

GRIM−enabled site

protocol discovery
and announcementPNS Agents PNS Agents

Agent R2

Resources with
interface adhering

protocol P (ii)

GRIM−enabled site

Resource instance
selection (iii)

i = 0;
while (i<N){
 r = call()
 x = r.query(i)
 print(x)
}
. . . trap!

binding actions for
handling the trap (i)

R1

Resource access (iv)

interface
to R1 interface

to R2

Figure 5.3: Overview of the execution model of GRIM

for managing protocol information. As for JGRIM, protocols are managed similarly to WS-Log.

Other alternatives for protocol management include, for example, the materialization through

the use of Semantic Web technologies (Berners-Lee, 1999). An incipient work in this line is

Apollo (Mateos et al., 2006b; Mateos et al., 2006a), an infrastructure that extends the WS-Log

platform with semantic-based service matching and discovery capabilities. Apollo enhances all

protocols describing Web Services by annotating their operations with concepts extracted from

shared ontologies.

5.2.1 Resource binding

When a middleware trap occurs, there may be many hosts offering the required resource. For

example, a database could be replicated across several hosts, a file could be hosted at more

than one site, or the same service could be offered by many different providers. GRIM is able to

autonomously decide which host to contact in order to access the requested resource. In addition,

since depending on the nature of a resource several access methods may be suitable, GRIM can

apply different tactics to select the most convenient one. Both, the tasks of contacting a host

and choosing an access method are decided by GRIM through policies. Policies are decision

mechanisms based on platform-level metrics such as CPU load, network traffic, distance between

sites, agent size, and so on. For example, one may specify that any access to a large remote

database should be done by moving the requester where the database is located, rather than

performing a time and bandwidth-consuming copy operation of the data from the remote site.

Besides, GRIM lets agent developers to define custom policies to adapt the model to fit specific

application requirements. In this latter case, decisions may be based on system metrics as well

as application-specific information such as execution parameters, user-supplied constraints, etc.

The next section takes a deeper look at the access methods provided by GRIM for agent-resource

92 CHAPTER 5. GRIM

interaction. Then, subsections 5.2.1.2 and 5.2.1.3 discuss in detail the policy support of GRIM

at both middleware and application level, respectively.

5.2.1.1 Accessing resources

Unlike its predecessor RMF (Zunino et al., 2005b), which is an agent execution model mainly

designed to automate mobility decisions such as when and where to move an agent, GRIM

provides mobility beyond agent code, hence GRIM“generalize” agent mobility. Note that blindly

moving an agent every time some required resource is not locally available can lead to situations

where performance is bad, therefore rendering agent mobility impractical (Zunino et al., 2005a).

Here are two representative examples of this fact:

• When the size of an agent is greater than the size of a requested resource. Clearly, it

is more convenient to transfer a copy of the resource2 from the remote host, instead of

moving the agent to that host. This approach saves network bandwidth at the cost of

using more system resources on the local host (e.g. disk space for storing transferred files).

• The requested resource is a remotely-callable resource, such as a Web Service, where a

transfer is usually not feasible. In particular, Web Services –apart from implementation

code– have dependencies to software modules or libraries and configuration information

that are either not available or do not apply in other hosts. For these reasons, the proper

way to use a Web Service is by remotely invoking the operations defined by the service, thus

transferring only (potentially small) input arguments and results rather than migrating the

mobile agent.

However, in many cases, agent mobility is a good choice. For example, the interaction of an agent

with a large database can be better done by moving the agent to the provider host, and then

locally interacting with the data. Note that database access by copy is unacceptable because

it might use too much network bandwidth. Also, remotely querying the database may not be

suitable for network latency reasons, specially when the number of queries to be performed is

high.

In this sense, GRIM includes extra methods for accessing resources besides agent mobility.

GRIM supports remote invocation for interacting with service-like resources, and replication of

resources, for the case of files and data repositories. From the resource access point of view, this

is like providing different ways of accessing resources or extending the RMF model. However,

from the mobility point of view, we claim this is a generalized model of mobility since remote

invocation implies control flow migration, and replication can be considered as a form of resource

migration. The three forms of mobility considered by GRIM, as illustrated in Figure 5.4, are:

2Java Applets and ActiveX controls are examples of technologies based on this paradigm

5.2. GRIM RUNTIME SUPPORT 93

Agent

Local host Remote host

(1) move

Agent Resource

(2)

(3)

Agent

Local host Remote host

(i) remote request

Resource
(ii)

Local host

(i) copy

Agent Resource

(ii)

(iii)

Remote host

Resource

Figure 5.4: Forms of mobility in GRIM: agent, resource and control flow migration

• Agent migration (move): As it name indicates, this method moves the agent to the host

having the required resource. Once at the remote site, the agent is able to locally interact

with the resource through its protocol. A typical scenario where agent migration can

bring significant benefits is when accessing remote resources from mobile devices such as

laptops and cell phones, which are usually subject to unreliable, low-bandwidth, high--

latency wireless network connections (Vasiu and Mahmoud, 2004).

At the middleware level, this can be supported by a move sentence implementing either

a strong or a weak agent migration mechanism (Fuggetta et al., 1998) (see Table 5.1 for

a brief comparison of these mechanisms). Strong refers to the ability of a mobile agent

runtime system to allow migration of both the implementation code and the execution

state of a mobile agent. In opposition, weak migration cannot transfer the execution state

of agents. This approach has a negative impact in agent design, because an agent itself

must be thought as a state machine to save/restore the execution state at the application

level. The current materializations of GRIM (Zunino et al., 2005b; Mateos et al., 2007b),

including JGRIM, are based exclusively on strong migration.

• Resource migration (fetch): This form of mobility transfers the resource from the hosting

location to the current agent’s location, for example by copying it to a shared reposi-

tory accessible to the agent. Resources such as data streams, structured files and code

94 CHAPTER 5. GRIM

Strong migration Weak migration

Migration of: Implementation code and

execution state

Implementation code only

Execution resumes from: Next statement A user-defined restart entry

point

Enables: Proactive and reactive

migration

Proactive migration only

Benefits/drawbacks (-) The move primitive is
hard to implement
(+) Better programming
style

(+) Agent code is easy to

understand and debug

(+) The move primitive is
easy to implement
(-) “Unnatural” non-modular
programming style.

(-) Difficult to reason about

and debug.

Table 5.1: Strong vs weak agent migration

libraries can be effectively replicated using this mechanism. The only requirement for a

resource to be “fetchable” is that its protocol must include a transfer(srcHost, dstHost)

operation, which implements the logic along with all technology-related issues for moving

that resource between two hosts. This operation is invoked by the middleware whenever its

runtime system decides to fetch the resource. At present, JGRIM implements this support

for the case of file-like resources.

• Control flow migration (invoke): The idea is to “migrate” the call requesting a resource by

creating a new flow of execution on the remote host, blocking the requesting agent until

an answer is received, and then resuming the normal execution flow. Technologies such

as RPC and RMI are two examples of popular alternatives for supporting control flow

migration at the middleware level.

Control flow migration in JGRIM is supported through Web Service calls, as all resources

are assumed to be wrapped by WSDL interfaces. Currently, this support is implemented

by using the remoting and Web Services support provided by the Spring framework, and

a subset of the functionality of Web Services Invocation Framework (WSIF), a Java API

that allows to stubless and dynamically introspect and call Web Services based upon the

examination of WSDL descriptions at runtime.

In GRIM, fetchable or transferable resources are those which can be moved or replicated from one

host to another (e.g. files, data repositories and environment variables) whereas non-transferable

ones are those which cannot (e.g. hardware components like printers and scanners). Further-

more, GRIM defines two kinds of transferable resources: free and fixed. Free resources can be

freely migrated across different hosts. Moreover, fixed resources represent data and software

components whose transfer is either not suitable (e.g. a very large database) or not permitted

(e.g. a password-protected file). Figure 5.5 illustrates this taxonomy.

5.2. GRIM RUNTIME SUPPORT 95

Resources

Transferable

Non−transferable

Free

Fixed

constant classification policies

variable classification policies

Figure 5.5: GRIM resource taxonomy

Transferability of free and non-transferable resources can be determined statically: the former

are always transferable, whereas the latter are never transferable. On the other hand, note

that transferability of fixed resources is determined at runtime, even when by nature this kind

of resources might be able to be transferred. GRIM defines the concept of classification policy,

which comprises the middleware-level logic in charge of dynamically associating a resource with a

single leaf from the taxonomy tree of Figure 5.5. Resource publishers must provide a classification

policy for every resource they add to a host. These policies tell the middleware whether a resource

can be transferred or not.

Classification policies can be either constant, where the type for a resource is configured statically

and do not vary along time (i.e. non-transferable or free transferable resources), or variable,

where the type and therefore transferability of a resource is computed dynamically. For example,

one might configure a simple sharing/replication scheme whereby transferability of a particular

resource is subject to the identity of the host requesting the transfer.

5.2.1.2 Middleware-level policies

Deciding which form of mobility to employ in order to efficiently access distributed resources

strongly depends on highly dynamic execution conditions such as network metrics, agent and

resource size, available processing power and storage space, etc. In this sense, middleware-

level policies (m-policies for short) allow GRIM hosts to statically configure decisions regarding

which migration method to use upon traps on a protocol. For example, a host M1 might set

96 CHAPTER 5. GRIM

an m-policy specifying that “all access to a resource R hosted at a host connected through an

unreliable link should trigger agent mobility”. This policy will affect any agent trying to access

R when executing at M1.

When more than one host offer the resource needed to handle a trap, it may be necessary (e.g.

reliability reasons) to contact some or all of them to interact with their corresponding resource

instance. Furthermore, the order for contacting these hosts may be important. For example,

it may be convenient to contact the sites according to their speed, CPU load or availability.

M-policies also let to define the destination for an agent when more than one destination is

available for trap handling. In other words, m-policies provide criteria to select which resource

to use from a set of candidates exposing the same GRIM protocol.

Besides simplifying mobile agent programming, a goal of GRIM is to provide a reference model

for implementing intelligent middleware for mobile agents, automating mobility and access to

resources in a clever way through platform-level policies. In the end, m-policies aim at configuring

intelligent decisions for managing agent and resource mobility. However, “intelligent”here should

be understood as making best-effort decisions, but not with the meaning that AI-related areas

give to that term. In other words, GRIM does not explicitly prescribes any learning technique

for managing mobility neither for agents nor resources.

5.2.1.3 Agent-level policies

GRIM allows agents to delegate decisions about from where and how to access resources, thus

providing an elegant and convenient programming style for mobile applications. However, doing

so implies that developers lose control of how these decisions are actually made. Under certain

circumstances, this can be troublesome and lead to unacceptable application performance and

bad use of resources.

Consider, for example, a situation where an agent located at a host M1 needs to use a database D

located at M2. Let us assume that an m-policy for optimizing network traffic has been configured

for M1, and the agent has a significant size. As a result, every time the agent accesses D, a trap

will be triggered, and then a control flow migration will be carried out. In the end, a remote

query to the database is sent.

As far as it has been discussed, GRIM has problems with this type of situations because it

does not take into account particularities about the application being executed. In our example,

agent performance will be good or poor depending on whether the number of queries performed

by the agent to the database is low or high, respectively. Generally speaking, this is caused since

GRIM is not able to know whether the agent will carry out many or few interactions with the

same resource within a given time frame.

To cope with this, GRIM introduces another type of policy called agent-level policies (a-policies

for short), which allows developers to customize the way agents interact with resources. A-

policies are defined separately from the agent’s behavior, and they are attached to a protocol.

5.2. GRIM RUNTIME SUPPORT 97

When binding after a trap, GRIM evaluates (if declared) the a-policy attached to the protocol

causing the trap to decide the particular resource instance and the access method that should

be used. A-policies have a greater priority than m-policies, in the sense that agent decisions

overrides middleware ones for the same protocol.

Application level

Agent

Middleware level

trap!

A trap occurs (i)

D

RYes, access resources
based on the

corresponding
a−policy (ii.1)

<−> m−policyA

<−> m−policyB

<−> a−policyA
Binding (ii)

Does the agent
declare a policy

for the failing
protocol?

Yes, access resources
based on the corresponding

m−policy (ii.2)
M1 M2

Figure 5.6: A-policies vs m-policies

Figure 5.6 illustrates the relationships between a-policies and m-policies. The middleware--

level policy identified as m-policyA represents the policy for optimizing traffic explained above,

whereas m-policyB represents access decisions associated to other resources, whose interface has

been depicted in the figure with a semi-circle. In addition, the agent has declared an a-policy

named a-policyA to act upon access to resources whose interface is the same as the database D,

which has been represented as a square. In our previous example, a trap on the protocol

associated to D will cause the middleware to access the database based on a-policyA rather than

m-policyA.

To further clarify these ideas, we provide below a concrete implementation for a-policyA in

JGRIM:

import j gr im . core . Po l i cy ;

import j gr im . core . Constants ;

import j gr im . metr i c s . P r o f i l e r ;

public class DataBasePolicy extends Pol icyAdapter{

public Str ing accessWith (S t r ing methodA , S t r ing methodB){
return Constants .MOVE;

}

public Str ing accessFrom (Str ing hostA , S t r ing hostB){

98 CHAPTER 5. GRIM

P r o f i l e r pr = P r o f i l e r . ge t In s tance () ;

// The next two l i n e s compute network l a t enc y from the

// l o c a l hos t to hostA and hostB , r e s p e c t i v e l y

double latA = pr . p r o f i l e (” l a t ency ” , pr . getLocalHost () , hostA) ;

double latB = pr . p r o f i l e (” l a t ency ” , pr . getLocalHost () , hostB) ;

return (trA < trB) ? hostA : hostB ;

}
}

The accessFrom method defines the logic to select the desired resource instance from any pair

of available candidates, whereas accessWith contains the code for choosing an access strategy

given any pair of valid access methods for the database. The former returns the move method

(ignoring other options), thus forcing the agent to migrate to M2 upon the first query to the

database D. Now let us suppose that a replica of database D is available at a third host M3.

Method accessWith ensures that our agent will access the remote host containing the database

(M2 or M3) to which the lowest latency from the current agent’s location is experienced.

As shown in the code, system metrics in JGRIM are obtained through the Profiler class, which

wraps and enhances the services provided by the NWS (Wolski et al., 1999), a distributed system

that monitors and forecasts the performance of a network and its nodes according to metrics

such as CPU processing power and load, memory availability, network bandwidth and latency,

among others. The next chapter provides details on the implementation of this support.

Policies can also redefine two more methods, not shown in the previous example, named ex-

ecuteBefore and executeAfter. As their name indicate, they are evaluated before and after

calls to accessFrom and accessWith take place. These methods are particularly useful for im-

plementing more complex policies. For example, one might implement a stateful policy that

registers the performance of the access to certain services and uses this information to dynami-

cally infer (e.g. by means of statistical methods or learning algorithms) the best way to interact

with these services.

In short, a-policies let agents to define custom policies for adapting GRIM to fit specific appli-

cation requirements. In other words, the “wild” version of GRIM might not be enough to make

agent execution efficient under certain circumstances, therefore the mechanism must be“tamed”.

In fact, according to the Merriam-Webster Dictionary3, “grim” means “savage”, which in turn is

defined as the condition of not being “domesticated or under human control”. A-policies play

the role of controlling GRIM despite the default behavior for managing mobility it had prior to

agent execution.

3Merriam-Webster Online Dictionary: http://www.m-w.com

5.3. CONCLUSIONS 99

5.3 Conclusions

This chapter presented GRIM, a reference model for mobile computing in distributed envi-

ronments. GRIM provides a conceptual framework that guides the materialization of mobile

applications –and underlying middleware technologies– according to the idea that the code

for handling mobility-related issues is, to a certain extent, orthogonal to the logic implement-

ing agents. GRIM takes advantage of this fact by automating some decisions concerning the

management of the non-functional behavior of mobile agents, therefore making mobile code

programming simpler and easier.

GRIM has been already materialized by several middlewares for mobile application program-

ming. Among them is JGRIM, a GRIM-based platform based on the Java language that also

provides a materialization of the GRATIS approach to gridification. JGRIM further exploits the

above orthogonality by conceiving the non-functional behavior of applications beyond mobility,

and considering common Grid concerns such as service discovery, service invocation and paral-

lelization. The next chapter describes the design and implementation of the JGRIM middleware.

100 CHAPTER 5. GRIM

Chapter 6
The JGRIM middleware

This chapter describes the design and implementation of the JGRIM middleware (Mateos et al.,

2008), which has been introduced in previous chapters. Particularly, the description will put

emphasis on explaining the implementation of the mechanisms that are employed by JGRIM

to enable the transparent injection of Grid services to Java applications. The chapter includes

some diagrams in Unified Modeling Language (UML) notation to better understand the various

components of the middleware and the way they interact with Grid services.

The chapter is structured as follows. The next section briefly introduces the JGRIM platform.

Then, Section 6.2 presents the general architecture of the JGRIM runtime environment and

discusses the most relevant aspects related to its design and implementation details. Finally,

Section 6.3 concludes the chapter.

6.1 The JGRIM Platform

The execution context for gridified applications provided by a host of a JGRIM-enabled network

is based on HTTP Java servlets (Hunter and Crawford, 1998). Basically, an HTTP servlet is a

stationary object accessible through the HTTP protocol that implements two methods: doGet

y doPost. These methods are invoked by the Web or application server in which the servlet is

running upon a client request. Typically, parameters passed in to doGet and doPost indicate

the particular service that must be served by the servlet. In JGRIM, these services include MGS

deployment, resource monitoring, protocol exchanging, and so on. The only difference between

doGet and doPost is the way request data is sent from the client to the servlet. However, doPost

is able to handle large values for parameters (e.g. a moving agent from another host), whereas

doGet cannot. The reason for which the Java servlet technology was chosen is that it is currently

supported by almost all Web servers.

A JGRIM-enabled host can belong to one or more logical networks. A host within a specific logi-

cal network is identified through a universal locator of the form http://address:port/servlet,

101

102 CHAPTER 6. THE JGRIM MIDDLEWARE

where address is the machine name or IP address of the host, servlet is the name of the corre-

sponding servlet, and port is an integer value is the identifier of the logical network. Essentially,

logical networks serve as a mean to establish many service networks (e.g. with different comput-

ing capabilities) among hosts belonging to the same or even different administrative domains.

H (http://h1:8080/servlet)
1 H (http://h2:8080/servlet)

2

H (http://h3:8080/servlet)
3

Logical network

(LAN/WAN/Internet)

Web Container + Servlet

JGRIM Runtime System

Figure 6.1: Overview of the JGRIM platform

Figure 6.1 summarizes the concepts mentioned above. As observed from the figure, a JGRIM

logical network (from now on simply a network) is composed of a number of physical nodes,

which are globally identified through an URI. Furthermore, each node is equipped with a

software support that provides an execution environment for (gridified) JGRIM applications.

The next section describes this support in detail.

6.2 The JGRIM Runtime System

Figure 6.2 depicts the architecture of the JGRIM runtime system. Basically, the components of

this architecture are organized in three layers: the Application layer, which represents gridified

applications or MGSs, the Core API layer, which provides access to concrete Grid services by

means of built-in Grid metaservice components, and the Injection layer, which is in charge of

transparently and seamlessly binding applications and metaservice components.

The Injection layer is implemented based on the facilities provided by Spring (Walls and Brei-

denbach, 2005; Johnson, 2005), a Java-based, lightweight framework for the development of

enterprise grade distributed applications. Spring is a highly modular framework composed of

seven modules that implement functionality such as remote access to applications and services

6.2. THE JGRIM RUNTIME SYSTEM 103

Application layer

. . .MGS MGS MGS

Core API layer
Service Discovery/

Invocation Subsystem

Mobility
Subsystem

Policy
Subsystem

Parallelization
Subsystem

Injection layer
(Spring framework)

Spring Core

Spring AOP Spring Remoting

Figure 6.2: Architecture of the JGRIM runtime system

(e.g. RMI or SOAP services), communication and messaging, declarative transaction manage-

ment, data persistence, and so on. Because of its good modularity, Spring allows developers to

selectively use only those modules that are required by their applications. In fact, as illustrated

in the figure, JGRIM only make use of the Spring Core, Spring AOP (aspecting support) and

Spring Remoting (remote service invocation) modules. Nevertheless, programmers who are fa-

miliarized enough with Spring can further exploit it by using the rest of the functionality. In this

way, applications can simultaneously take advantage of both JGRIM metaservices and Spring

components.

The core of Spring’s design is the Spring Core module, which provides a consistent mean of

managing Java objects and their associated dependencies. In other words, this module imple-

ments a Dependency Injection container for Java applications. Objects created by the container

are entities exposing well-defined interfaces called JavaBeans (or simply Beans). A Spring ap-

plication is essentially a collection of decoupled bean components that interact between each

other according to the DI pattern. Certainly, there are quite a few Java frameworks for im-

plementing DI-based applications (e.g. Apache’s HiveMind1, Google’s Guice2, PicoContainer3,

Seasar4, etc.), but Spring has become widely popular in the Java community since it offers a lot

of freedom to developers yet provides well-documented solutions for common practices in the

industry. In addition, unlike other frameworks, Spring is not just a DI container, but a complete

enterprise development platform.

1HiveMind: http://hivemind.apache.org
2Guice: http://code.google.com/p/google-guice
3PicoContainer: http://www.picocontainer.org
4Seasar: http://www.seasar.org/en/index.html

104 CHAPTER 6. THE JGRIM MIDDLEWARE

On top of the Spring facilities, the Core API layer materializes metaservice components (i.e.

m-components) through specialized beans that either wrap existing concrete Grid services or

implement new ones. These beans play the role of the injected components of gridified appli-

cations. Roughly speaking, metaservice beans are grouped in four different subsystems, each

representing a different kind of Grid metaservice:

• Service Discovery/Invocation subsystem: Beans at this subsystem are in charge of deal-

ing with Web Service discovery and invocation across a Grid, that is, providing concrete

bindings between ordinary applications and external service components. Currently, ser-

vice discovery is supported by inspection of UDDI registries, while service invocation is

performed by extending and enhancing the components of the Spring Remoting module.

The Service Discovery and Invocation subsystem is described in Section 6.2.1.

• Policy subsystem: Both user and middleware-level policies are represented by special beans

that provide an extensible support for specifying decisions related to application tuning.

At runtime, service discovery and invocation beans may talk to policy beans to customize

the way Grid services are accessed. Similarly, customized pre and post actions attached to

dependencies on internal application components are also represented by means of policy

beans. The class design and details on the implementation of this subsystem are discussed

in Section 6.2.2.

• Mobility subsystem: Basically, mobility-related beans offer strong migration services to

gridified applications. Although JGRIM migration primitives may be used explicitly by

developers in the application code, mobility services are mainly intended to be accessed

by means of user policies, which are configured separately from the application logic.

Section 6.2.3 describes the implementation of this subsystem.

• Parallelization subsystem: Metaservice beans of the parallelization subsystem material-

ize the necessary support to associate concrete method infrastructure-level execution and

spawning services to self-dependencies. Parallelization in JGRIM is currently based on the

services provided by the Ibis platform (Section 3.1.9). Section 6.2.4 explains the imple-

mentation of the parallelization subsystem. As we will see later, the JGRIM parallelization

components can be easily extended to leverage other execution services such as those pro-

vided by ProActive or Globus.

6.2.1 The Service Discovery/Invocation Subsystem

The Spring Remoting module provides a programming abstraction for working with various

RPC-based service technologies available on the Java platform, both for client connectivity and

exporting objects as services on remote servers. This module isolates applications from the

intricate configuration and coding details involved in using these technologies. Spring achieves

this separation by proxying remote services with special beans that rely on the component

6.2. THE JGRIM RUNTIME SYSTEM 105

injection and aspecting features of the Core and AOP modules, respectively. Basically, these

beans are responsible for decoupling client applications from services.

Among those beans is the JaxRpcPortClientInterceptor, which provides transparent access to

Web Service operations by means of JAX-RPC, a protocol to implement and call Web Services

described in WSDL. An application can define dependencies to particular Web Services by

supplying the corresponding interfaces for these dependencies and the contact information of

the services. For example, the following code shows the Spring configuration of an application

declaring a dependency to an accounting Web Service:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

< !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”

”h t tp : //www. spr ingframework . org /dtd/ spr ing−beans . dtd ”>

<beans>

<bean id=” c l i e n t ” c l a s s=”example . AccountClientImpl ”>

<proper ty name=” s e r v i c e ”>

<r e f bean=”accountWebService ”/>

</ proper ty>

</bean>

<bean id=”accountWebService ”

c l a s s=”sp r ing . JaxRpcPortProxyFactoryBean ”>

<proper ty name=”po r t I n t e r f a c e ”>

<value>example . AccountService</ value>

</ proper ty>

<proper ty name=”wsdlDocumentUrl”>

<value>h t tp : // l o c a l h o s t : 8 0 8 0 /account ?WSDL</ value>

</ proper ty>

<proper ty name=”namespaceUri ”>

<value>h t tp : // l o c a l h o s t : 8 0 8 0 /account</ value>

</ proper ty>

<proper ty name=”serviceName ”>

<value>AccountService</ value>

</ proper ty>

<proper ty name=”portName ”>

<value>AccountPort</ value>

</ proper ty>

</bean>

</beans>

where wsdlDocumentUrl, namespaceUri, serviceName and portName are the contact information

of the service, and portInterface is the contract to interact with the service. JaxRpcPortProx-

yFactoryBean is the Spring factory class that creates an instance of a proxy for the service.

Then, this instance is injected into the AccountClientImpl in order to transparently translate

106 CHAPTER 6. THE JGRIM MIDDLEWARE

any method call performed on the dependency interface (AccountService) to the corresponding

Web Service operation.

JGRIM extends the above support to get rid of the configuration details for contacting individual

services, and otherwise to extract this information from service registries. The WSDLMatcher-

PortClientInterceptor (Figure 6.3) implements a service proxy that searches for Web Services

that match the interface of its associated dependency. This process involves two more classes,

namely GenericWSDLFinder, which is a proxy to the service registry (currently UDDI) where

the service descriptions are stored, and WSDLMatcher, which implements the logic to determine,

from a WSDL description, whether a specific service matches the operations of a Java interface.

Programmers can easily refine the matching process by specifying custom mappings between

application datatypes and WSDL types. In GRATIS terminology, the WSDLMatcherPortCli-

entInterceptor class is a materialization for the m-component of the approach in charge of

injecting functional Grid services to applications.

<<interface>>

GenericWSDLFinder

findWSDL() : Vector

SerializablePolicyBasedExternalServiceInterceptor

JaxRpcPortClientInterceptor <<interface>>

Serializable

<<realize>>

(from spring)

PolicyBasedExternalServiceInterceptor

WSDLMatcherPortClientInterceptor

prepare() : void

standardPrepare() : void

postProcessJaxRpcService(service : Service) : void

registerBeanMapping(m : TypeMapping,type : Class,

registerBeanMapping(m : TypeMapping,type : Class,

setWsdlFinder(finder : GenericWSDLFinder) : void

getWsdlFinder() : GenericWSDLFinder

setWsdlMatcher(wsdlMatcher : WSDLMatcher) : void

getWsdlMatcher() : WSDLMatcher

setInterfacesToMap(interfacesToMap : Vector) : void

getInterfacesToMap() : Vector

interfacesToMap : Vector

finder : GenericWSDLFinder

wsdlMatcher : WSDLMatcher

qName : QName) : void

name: String) : void

WSDLMatcher

newInstance(servInterface : Class,def : Definition,typeMaps : Map) : WSDLMatcher

WSDLMatcher(servInterface : Class,def : Definition,complexTypeMappings : Map)

getComplexTypeMappings() : Map

setComplexTypeMappings(complexTypeMappings : Map) : void

getDefinition() : Definition

setDefinition(definition : Definition) : void

getServiceInterface() : Class

setServiceInterface(serviceInterface : Class) : void

getSimpleTypeMappings() : Map

setSimpleTypeMappings(simpleTypeMappings : Map) : void

getPortMatching() : Port

setPortMatching(portMatching : Port) : void

getServiceMatching() : Service

setServiceMatching(serviceMatching : Service) : void

isServiceMatching() : boolean

getOperationMatching(method : Method,portType : PortType,

isTypeMatching(javaType : Class,messagePart : Part,

isSimpleTypeMatching(javaType : Class,partTypeName : QName) : boolean

isComplexTypeMapping(javaType : Class,partTypeName : QName,

isTypeMappingMatching(javaType : Class,typeMapping : TypeMapping) : boolean

unWrapIfWrappedDocLit(parts : List,operationName : String) : void

serviceInterface : Class

simpleTypeMappings : Map

complexTypeMappings : Map

definition : Definition

serviceMatching : Service

portMatching : Port

tmpTypeMaps : Map) : boolean

tmpTypeMaps : Map) : boolean

tmpTypeMaps : Map) : boolean

Figure 6.3: Class design of the Service Discovery/Invocation subsystem

6.2. THE JGRIM RUNTIME SYSTEM 107

Another important class in the diagram is PolicyBasedExternalServiceInterceptor, which

implements a service discovery bean that contact Web Services based on policies. As such, the

bean uses the methods of the policy bean configured for accessing the service. After querying a

UDDI registry, a discovery bean passes on the list of available candidates to its associated policy

bean to find out which service instance should be used, and how it should be contacted. As a

consequence, a discovery bean may, for example, trigger the migration of the application to the

host where the service instance is hosted, or ask the external service –in case it is an MGS– to

migrate to the local host. In this sense, the SerializablePolicyBasedExternalServiceIn-

terceptor class implements the support for using policy-based service discovery and invocation

beans in conjunction with mobility beans.

Every JGRIM service proxy have a reference to a finder bean that implements the GenericWS-

DLFinder interface. Generally speaking, finder beans are responsible for retrieving Web Service

metadata from service registries based on pre-configured search criteria. As mentioned above,

JGRIM provides built-in support for querying UDDI service registries. Figure 6.4 illustrates the

class diagram of the UDDI discovery support of JGRIM. For space reasons, some classes have

been suppressed its methods. Each UDDI finder represents a specific search criteria to inspect

the relational model that UDDI maintains to describe Web Services. To simplify the usage of

discovery metaservices, JGRIM injects by default business finder beans, which search for Web

Services based on a case-sensitive match on the owner of services. However, application devel-

opers have the freedom to employ other inspection mechanisms as needed by attaching other

types of finder bean to service proxies.

The UDDIProxy class is a proxy for a UDDI registry that is part of the UDDI4J library5. Basi-

cally, instances of this class provides clients with the ability to utilize any of the API methods

described in the UDDI API specification. Furthermore, UDDIProxyWrapper is a class provided

by the JGRIM API that implements a lazy initialization mechanism for the instances of the UD-

DIProxy class to minimize the objects that are transferred during application and therefore proxy

migration. The parameters needed to establish a UDDI session –address of the UDDI registry,

authentication information and communication transport protocol– are supplied by the JGRIM

runtime. Again, developers can override these parameters by modifying the configuration of the

UDDI proxy beans in the XML file of a gridified application.

The next subsection describes the Policy subsystem.

6.2.2 The Policy Subsystem

The class hierarchy materializing the Policy subsystem of JGRIM is shown in Figure 6.5. The

root of the hierarchy is the Policy class, which represents a generic policy component that

5The UDDI4J API: http://uddi4j.sourceforge.net

108 CHAPTER 6. THE JGRIM MIDDLEWARE

TModelFinder

name : String

authorizedName : String

defaultDescriptionString : String

operator : String

overviewDocDefaultDescriptionString : String

tModelKey : String

identifierBag : IdentifierBag

categoryBag : CategoryBag

ServiceFinder

businessKey : String

names : Vector

defaultDescriptionString : String

serviceKey : String

bindingFinder : BindingFinder

categoryBag : CategoryBag

tModelBag : TModelBag

BusinessFinder

serviceFinder : ServiceFinder

names : Vector

authorizedName : String

businessKey : String

defaultDescriptionString : String

operator : String

discoveryURLs : DiscoveryURLs

identifierBag : IdentifierBag

categoryBag : CategoryBag

tModelBag : TModelBag

contacts : Contacts

BindingFinder

tModelFinder : TModelFinder

serviceKey : String

bindingKey : String

defaultDescriptionString : String

tModelBag : TModelBag

accesPoint : AccessPoint

hostingRedirector : HostingRedirector

tModelInstanceDetails : TModelInstanceDetails

<<interface>>

GenericWSDLFinder

findWSDL() : Vector

<<realize>>

UDDIProxyWrapper

UDDIProxy

<<interface>>

Serializable
<<realize>>

UDDIFinder

UDDIFinder()

UDDIFinder(uddiProxy : UDDIProxyWrapper)

UDDIFinder(uddiProxy : UDDIProxyWrapper,

getUddiProxy() : UDDIProxyWrapper

setUddiProxy(uddiProxy : UDDIProxyWrapper) : void

getFindQualifiers() : FindQualifiers

setFindQualifiers(findQualifiers : FindQualifiers) : void

getMaxRows() : int

setMaxRows(maxRows : int) : void

DEFAULT_MAX_ROWS : int

uddiProxy : UDDIProxyWrapper

maxRows : int

findQualifiers : FindQualifiers

findQualifiers : FindQualifiers,maxRows : int)

(from uddi)

Figure 6.4: Classes materializing the inspection of UDDI registries

can act before and after a method of a particular dependency is invoked. In this sense, the

methods executeBefore and executeAfter must be implemented by its subclasses in order

to specify the concrete set of actions that will be executed upon an invocation of any method

of the dependency to which the policy is associated. In addition, policies can be temporarily

activated/deactivated by implementing the isActivated abstract method. Lastly, all policies

have a reference to its owner agent, and another reference to a Spring object (instance of the

BeanFactory class) that keeps track of all beans owned by the agent. In this way, policies can

access the methods of any application component within an MGS, which leads to flexibility and

reusability of components.

The PolicyAdapter class simply provides a default (empty) implementation for the execute-

Before, executeAfter and isActivated methods. It also includes some extra methods to

6.2. THE JGRIM RUNTIME SYSTEM 109

PoliciesCache

getPolicy(methodName : String) : Policy

getInterfacePolicy() : Policy

setInterfacePolicy(interfacePolicy : Policy) : void

getMethodPolicies() : HashMap

setMethodPolicies(methodPolicies : HashMap) : void

methodPolicies : HashMap

interfacePolicy : Policy

Policy

executeBefore() : void

executeAfter() : void

isActivated() : boolean

setBeanFactory(factory : BeanFactory) : void

getBeanFactory() : BeanFactory

getCallInfo() : ServiceCallInfo

setCallInfo(callInfo : ServiceCallInfo) : void

getCallResult() : Object

setCallResult(callResult : Object) : void

setOwnerAgent(ownerAgent : JGRIMAgent) : void

getOwnerAgent() : JGRIMAgent

ownerAgent : JGRIMAgent

callInfo : ServiceCallInfo

callResult : Object

factory : BeanFactory

<<interface>>

Serializable

<<realize>>

<<realize>>

PolicyAdapter

executeBefore() : void

executeAfter() : void

isActivated() : boolean

isStopped() : boolean

stop() : void

handleInvocation() : Object

JGRIMPolicyAdapter

accessWith(methodA : String,methodB : String) : String

accessFrom(stra : String,strb : String) : String

1..N 1..N

PolicyBasedExternalServiceInterceptor

PolicyBasedInternalServiceInterceptor

1..1

1..1

1..1

1..1

Figure 6.5: Class design of the Policy subsystem

permanently cease the activity of the policy (stop), and to manually handle the invocation of

a dependency method (handleInvocation). For example, one might implement a policy to

cache the results of the invocation to methods of either external or internal components, thus

improving performance. In this case, handleInvocation should be implemented in such a way

that some invocations (e.g. those with certain values for the arguments) receive a return value

extracted from a caching structure maintained by the policy. By default, not overriding this

method means that JGRIM will carry out the invocation directly on the target component.

Instances of PolicyAdapter are used by the PolicyBasedInternalServiceInterceptor class,

whose instances represent dependencies between internal application components.

Other important classes of the Policy subsystem are JGRIMPolicyAdapter and PoliciesCache.

Basically, the former represent a full-fledged JGRIM policy that can be attached to an exter-

nal service component to decide how to interact with concrete functional services, and perform

customized actions before/after invoking operations of these services. Instances of JGRIMPoli-

cyAdapter are used by the PolicyBasedExternalServiceInterceptor class, whose instances

represent dependencies from an application component to an external component.

110 CHAPTER 6. THE JGRIM MIDDLEWARE

Furthermore, the PoliciesCache class basically implements a policy registry, which is composed

of one or more policies affecting the invocation of methods on a particular dependency interface.

The interfacePolicy attribute represent (if defined) the policy controlling the entire dependency

interface, whereas methodPolicies is a map containing a number of policies that act upon in-

vocation on specific methods of this interface. To clarify this aspect, below is a skeleton of the

XML configuration generated for a gridified application employing both interface and method

policies on a dependency whose interface is MyInterface:

. . .

<bean id=”1 ”

c l a s s=”core . d i s covery . Po l i cyBasedEx te rna lS e rv i c e I n te r c ep to r ”>

<proper ty name=”exp ec t ed In t e r f a c e ”>

<value>MyInter face</ value>

</ proper ty>

<proper ty name=”po l i c i e sCach e ”>

<r e f bean=”cache 1 ”/>

</ proper ty>

</bean>

<bean id=”cache 1 ” c l a s s=”core . p o l i c y . Po l i c i e sCache ”>

<proper ty name=” i n t e r f a c ePo l i c y ”>

< !−− Reference to a po l i c y bean −−>
<r e f bean=”2 ”/>

</ proper ty>

<proper ty name=”methodPol ic i es ”>

<map>

<entry>

<key>MyInter face . someOp</key>

< !−− Reference to another p o l i c y bean −−>
<r e f bean=”3 ”/>

</ entry>

</map>

</ proper ty>

</bean>

. . .

On one hand, the policy bean identified as“3”is in charge of controlling the invocations performed

on the operation someOp of MyInterface. For simplicity, method overriding has been omitted.

On the other hand, invocations to the other methods of MyInterface are intercepted by the

policy bean whose identifier is “2”.

6.2. THE JGRIM RUNTIME SYSTEM 111

6.2.2.1 Profiling

The basic elements upon which policies are usually built are system metrics. JGRIM offers the

programmer a number of API methods whose purpose is to return accurate values for metrics

such as CPU load, free memory, network performance, among others. The API is accessed

through the Profiler class, which is a singleton component providing a well-defined profiling

interface for which many different concrete implementations could be supplied.

To date, profiling in JGRIM is based on NWS (Wolski et al., 1999), a distributed monitoring

service that periodically measures and predicts the performance of both network and compu-

tational resources. The service operates and controls a distributed set of performance sensors

(e.g. network monitors, CPU monitors, memory monitors, etc.) from which it gathers readings

of the instantaneous conditions. NWS then uses numerical models (mean-based, median-based

and autoregressive) to generate forecasts about the conditions for a given time frame.

Because NWS is highly dependent on the operating system platform, and it has proved to

be difficult to deploy on Grid settings, another profiling component based on JMX6 is being

implemented. JMX is a Java-based API for building distributed solutions for monitoring devices,

applications and networks. Diffusion of metric information will be performed by means of

GMAC (Gotthelf et al., 2005), a protocol specially designed to provide Internet-wide multicast

services to mobile agent platforms.

Programmers can use the JGRIM profiling API to code complex heuristics to improve application

performance. Specifically, the services exposed by the API include:

• load(S), which returns a forecast of the average CPU utilization (percentage) at the site S.

It is a useful measure under certain circumstances. For example, if an expensive operation

of an internal application component needs to be executed, and the local CPU load is twice

the CPU load of a remote site R, the MGS may be forced to move to R, thus providing a

simple tactic for load balancing across sites. A service similar to load is provided to obtain

statistics about memory usage.

• agentsAt(S), which computes the number of executing agents at S. Note that this metric

is closely related to CPU load, especially when agents are doing CPU-intensive work, that

is, they are neither blocked nor waiting for some notification or success. In addition,

agentsAt gives an approximate idea of both the CPU and memory utilization.

• agentSize(A), which returns the estimated size (in bytes) of the allocated memory space

for an executing agent (i.e., the allocated RAM for its object graph). It is a useful metric

to determine whether it is appropriate to migrate an agent, and it can be used together

with metrics that estimate the network conditions.

6Java Management Extensions (JMX) Technology: http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement

112 CHAPTER 6. THE JGRIM MIDDLEWARE

• latency(S1, S2), which represents the estimated latency (in seconds) for transmitting data

from a site S1 to another site S2. Having measures about network latency is crucial to

decide, for example, which external service to contact from a set of available candidates.

Similarly, the profiling API also provides a service to estimate the network transfer rate

(measured in KB per second), and the communication reliability, that is, the percentage

of the information lost during transference per unit time.

The subsytem materializing MGS mobility is presented in the next subsection.

6.2.3 The Mobility Subsystem

During gridification, the original code of the entry point class of a Java application is automat-

ically modified in order to inherit the behavior of the JGRIMAgent class, which gives birth to an

MGS. Basically, this class provides basic primitives for handling agent mobility and managing

agent state information (i.e. application-specific knowledge that is private to the agent). As

mentioned above, these primitives are particularly intended to be invoked from within policies,

so as to keep the application logic away from the JGRIM API. The class design of the Mobility

subsystem is shown in Figure 6.6.

JGRIMAgent

moveTo(hostname : String) : void

loopMove() : void

getCurrentHost() : String

getHomeHost() : String

addVariable(key : String,value : Object) : void

getVariable(key : String) : Object

run() : void

stateVariables : Hashtable

homeHost : String

<<interface>>

Serializable
<<realize>>

<<interface>>

Runnable

<<realize>>

ContinuationExecutor

run() : void

stop() : void

setContinuation(continuation : Continuation) : void

setMovable(movable : JGRIMAgent) : void

getMovable() : JGRIMAgent

setContinuationMover(continuationMover : IContinuationMover) : void

getContinuationMover() : IContinuationMover

setFirstTime(firstTime : boolean) : void

serialVersionUID : long

firstTime : boolean

movable : JGRIMAgent

continuation : Continuation

continuationMover : IContinuationMover

<<realize>><<realize>>

<<interface>>

IContinuationMover

move(ce : ContinuationExecutor,nextHost : String) : boolean

ServletContinuationMover

move(ce : ContinuationExecutor,serverIp : String) : boolean

profileSerialization(m : Message) : void

serialVersionUID : long

<<realize>>

Continuation
1..1

1..1

(from javaflow)

Figure 6.6: Class design of the Mobility subsystem

6.2. THE JGRIM RUNTIME SYSTEM 113

The JGRIMAgent class mostly provides methods that implement mobility-related functionality.

Specifically, methods getCurrentHost and getHomeHost return the address of the host where

an agent is currently executing, and the site where it was originally deployed, respectively. Every

policy declared by the original application is injected a reference to the corresponding instance of

JGRIMAgent, thus both mobility and agent state primitives can be directly accessed by policies.

Lastly, the run method contains the logic to transform an external service request –coming, for

instance, from another agent or a client application– to the corresponding method call.

The moveTo method moves an agent to a specific host. When this primitive is invoked, the

execution of the agent is frozen and stored in a Continuation class. A continuation is an

object that, for a given point in the execution of the agent, contains a snapshot of the stack

trace, local variables and program counter. This information is used to restore the execution

of the suspended agent once it has been successfully migrated to the requested remote site.

Continuation support was implemented through JavaFlow (Apache Software Foundation, 2006),

an open source library that allows to capture the execution state of threads within a Java

application. Basically, JavaFlow operates by instrumenting the bytecode of certain application

classes in order to make the execution state accessible to the application. The reader should

recall that, as for the current version, Java does not allow applications to access the full execution

state of a running thread.

Each instance of JGRIMAgent is assigned an instance of the ContinuatorExecutor class. This

class implements the execution services that are necessary to transfer continuation objects to re-

mote hosts and resume their execution. Instances of the ContinuatorExecutor class are in turn

assigned an instance implementing the IContinuationMover interface. Classes implementing

this interface represent specific mechanisms for transferring continuation objects from a host to

another (e.g. sockets, RPC, RMI, etc.). Because the JGRIM execution environment for MGSs

at any host is currently based on servlets, the ServletContinuationMover class is responsible

for marshalling agents into a byte array format, open TCP connections to remote servlets, and

perform the reliable transfer of this data. Figure 6.7 illustrates the interacting classes involved

in the process of initiating, suspending and resuming the execution of a JGRIM agent.

Apart from transparently moving its execution state, JGRIM also transfers the code of an agent

in case this code is not present in the destination host. Specifically, when a host receives an

incoming continuation object, it requests back to the origin host the missing bytecode that are

necessary to fully restore the execution of the continuation. The server side processes continu-

ation objects coming from the underlying network data stream by using a special class loader

(implemented by the NetworkClassLoader class) that requests back missing classes as the con-

tinuation object is unmarshalled. Transferred .class files are stored on disk thus they can be sent

to other hosts as well. In consequence, the deployment of the MGS implementation across hosts

is done in a on demand basis and in a transparent way, thus saving bandwidth consumption and

not involving developer intervention.

114 CHAPTER 6. THE JGRIM MIDDLEWARE

setContinuationMover(cm)

Local DI
Container

Remote DI
Container

ce:ContinuationExecutor cm:ContinuationMover ag:JGRIMAgent Continuation

setMovable(ag)

run()
startWith(ag): Continuation

<<static>> run()

run()

moveTo(s)

suspend()

<<static>>

run()

continueWith(c)

<<static>>

moveTo(c,s)

[c]: Continuation

Figure 6.7: Initiating, suspending and resuming agent execution: sequence diagram

A problem that arisen when combining mobility with Spring beans was concerned with serial-

ization. Java allows objects to be transferred through a network provided the classes associated

with these objects implement the Serializable interface. Since both JGRIM and Spring make

extensive use of classes which were not thought to be serializable, such as those contained in the

Java reflection API or the Spring AOP module, marshalling agent execution state through the

standard Java serialization support was not possible. To overcome this limitation, a generic seri-

alization support for converting any Java class into a serializable one was implemented. Roughly,

this support works by dynamically modifying the structure of an object (i.e. the associated

bytecode) in order to force it to be serializable. In addition, this transformation is recursively

performed on the instance and class attributes of the object, thus guaranteeing that the whole

object graph representing an executing agent is serializable. It is worth mentioning that the

implementation of this mechanism is completely independent of the JGRIM API, and only adds

a minimum performance overhead with respect to the standard Java serialization mechanism.

Therefore, the support can benefit non-JGRIM applications and other Java frameworks as well.

The next subsection discusses the implementation of the Parallelization subsystem.

6.2.4 The Parallelization Subsystem

The parallelization metaservices of JGRIM are based upon the concept of interceptor. An

interceptor is a reified object that inserts behavior between a caller and a callee or, in others

words, a method invoker and the object implementing the method. Interceptors are the key of

AOP programming. Spring’s AOP module has a rich, extensible support for AOP, and provides

built-in interceptors to transparently apply cross-cutting concerns such as logging, security and

profiling to an existing Java application without source code modification.

6.2. THE JGRIM RUNTIME SYSTEM 115

Spring materializes interceptors as beans that are commonly attached to application dependen-

cies. Specifically, if an application component or bean A has a dependency to a another bean

B, an interceptor can be configured to act upon method calls from A to B, and do something

in between. However, this is transparent to the application, since the code implementing A and

B remains untouched. For instance, Spring interceptors were used to partially implement the

support for service proxies and policies discussed in previous sections, where A represents a client

application bean, B is either a external or an internal service component, and the interceptor is

the proxy itself (which can depend in turn on policy beans). In the case of self-dependencies, A

is equal to B, that is, the caller and callee are exactly the same component.

To configure a self-dependency, a programmer must first define the interface of the dependency,

which will be composed of the methods whose execution is to be handled by a JGRIM execution

interceptor. Then, just like any other dependency, access to any of these methods within the

application code should be done by using the self-dependency instead of calling the method

directly. In case of invocations to non-void methods, a coding convention to store an invocation

result similar to that of Ibis must be used. For example, given the code:

public class MyApplication {
public void methodA(){

. . .

i f (methodB ()){
. . .

}
. . .

}
public boolean methodB () { . . . }

}

the user must perform two simple modifications to the original code, so as to place the result

of the invocation to methodB in a local variable, and accessing a fictitious self dependency by

means of the associated getter. Note that developers can avoid accessing the self-dependency

in certain parts of the code by simply invoking methodB on this instead of doing so on the

object returned by getself. Furthermore, the dependency interface must be clearly defined,

thus resulting in the following code:

public interface S e l f I n t e r f a c e {
public boolean methodB () ;

}

public class MyApplication {
public void methodA(){

. . .

boolean r e s u l t = g e t s e l f () . methodB () ;

116 CHAPTER 6. THE JGRIM MIDDLEWARE

i f (r e s u l t){
. . .

}
. . .

}
public boolean methodB () { . . . }

}

JGRIM then takes this code and automatically makes MyApplication to inherit from the JGRIM-

Agent class, and adds an instance variable of type SelfInterface and the necessary get/set

accessors to MyApplication. Execution of self-dependency methods are handled concurrently

with the execution of the caller method. In this sense, JGRIM also modifies the body of the

methods that invoke operations on the self-dependency (in this case methodA) in order to in-

sert one or more calls to a synchronization primitive (barrier) to block the execution until the

results of concurrent computations are available (in our example, when the result variable is

instantiated). All of these transformations are performed by using java2xml7, a Java API for

generating an XML representation of Java source code. Representing the application code as

an XML document permits to utilize XPath8, an XML query and manipulation language that

allows to easily address and transform portions of XML documents.

At runtime, the actual execution of the operation is transparently delegated to an execution

interceptor bean, whose definition is appended to the file that configures the various meta-

service beans of an application. Basically, an execution bean knows how to intercept and forward

a method execution request to an existing resource management system (e.g. Globus, Condor,

Ibis). As a consequence, each execution bean implements the specific communication protocol

to interact with a particular resource management system. Returning to our example, the

generated configuration for beans would be:

<?xml version=”1.0 ” encoding=”UTF−8” ?>

< !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”

”h t tp : //www. spr ingframework . org /dtd/ spr ing−beans . dtd ”>

<beans>

<bean id=” s e r v i c e ” c l a s s=”example . MyApplication ”>

<proper ty name=” s e l f ”>

<r e f l o c a l=” s e l f ”/>

</ proper ty>

</bean>

<bean id=” s e l f ” c l a s s=”sp r ing . ProxyFactoryBean ”>

<proper ty name=”p r oxy In t e r f a c e s ”>

<value>example . S e l f I n t e r f a c e</ value>

</ proper ty>

7The java2xml Project: https://java2xml.dev.java.net
8The XPath Language Specification: http://www.w3.org/TR/xpath

6.2. THE JGRIM RUNTIME SYSTEM 117

<proper ty name=”interceptorNames ”>

< l i s t>

<value> i n t e r c e p t o r</ value>

</ l i s t>

</ proper ty>

</bean>

<bean c l a s s=”jgr im . I b i s I n t e r c e p t o r ” id=” i n t e r c e p t o r ”>

<proper ty name=”ownerAgent ”>

<r e f bean=”s e r v i c e ”/>

</ proper ty>

</bean>

</beans>

As shown in the above XML code, the entry point bean of the application (identified as service)

declares a dependency to a self bean, which is a factory class that returns an AOP proxy to

interceptor. AOP proxies are able to make any object to dynamically implement one or more

Java interfaces. Invocations to any of the methods of the self object (i.e. those included in

the SelfInterface interface) are intercepted by the AOP proxy and delegated to interceptor.

Roughly, interceptors implement one operation:

public Object invoke(MethodInvocation method)

to provide custom code and, optionally, proceed with the execution of the actual method code

(i.e. the one implemented by the service bean) based on the information received in the method

argument. Currently, JGRIM supports only Ibis-based interceptors, which are implemented

through the IbisInterceptor class. However, the separation achieved by JGRIM between a

method invocation and the environment where the execution of the method is actually carried

out serve as a hook on which other types of interceptors may be “hung”. For instance, JGRIM

provides a default interceptor that just redirects all method invocations back to the main ap-

plication bean. This is useful to easily and straightforwardly remove the Grid parallelization

services injected into the gridified application.

6.2.4.1 The Ibis Execution Bean

An Ibis execution bean is responsible for handling the execution of those operations within

the application that are implemented under the divide and conquer paradigm. The main goal

of this support is to take advantage of the sophisticated parallelization and load balancing

services of the Ibis platform, but without the burden of modifying the application to use the

underlying Ibis API (i.e. performing special subclassing, creating marker interfaces and using

explicit synchronization primitives). The only requirement imposed to the programmer, which is

a consequence of using Ibis, is that the results of recursive calls must be placed on local variables.

However, this is a simple coding convention that does not involve Grid API usage at all.

118 CHAPTER 6. THE JGRIM MIDDLEWARE

To execute an application on the Ibis platform, the implementation of the application must

obey certain structure conventions, namely subclassing a specific API class, and implementing

a user-supplied interface that indicates the methods whose execution must be spawned. In

consequence, the process of injecting Ibis services into an ordinary Java class involves the creation

of another class (from now on the peer) whose code is automatically derived from the original

class but transformed in such a way it adheres to the Ibis application structure. In addition,

the implementation code associated to the peer should include calls to the Ibis sync primitive

at proper places. Overall, the peer represents the Ibis-aware version of the gridified application

code, which is indirectly accessed through a JGRIM execution interceptor.

Recall the application that was presented as an example at the beginning of this section. The

application is implemented through a MyApplication component declaring a self-dependency on

a single methodB operation. Let us additionally suppose that methodB implements a compute--

intensive divide and conquer algorithm, thus it is a suitable code to be executed by Ibis. The

peer class created by JGRIM is as follows:

public interface S e l f I n t e r f a c e P e e r extends i b i s . s a t i n . Spawnable{
public boolean methodB () ;

}

public class MyApplication Peer extends i b i s . s a t i n . Sat inObject{
private byte [] s e r i a l i z edAgen t = null ;

private transient Object targetAgent = null ;

public void methodA () { . . . }
public boolean methodB (){

. . .

boolean aBranch = methodB () ;

boolean anotherBranch = methodB () ;

. . .

// I b i s sync p r im i t i v e i s au t oma t i c a l l y i n s e r t e d

super . sync () ;

return (aBranch | | anotherBranch) ;

}
public void s e tS e r i a l i z edAgen t (byte [] s e r i a l i z edAgen t){

this . s e r i a l i z edAgen t = s e r i a l i z edAgen t ;

}
public Object getTargetAgent () throws Throwable{

i f (this . targetAgent == null){
// De s e r i a l i z e s the con ten t s o f ”s e r i a l i z e dAg en t ”

// and as s i gn s the r e s u l t to ”targe tAgen t ”

}

6.2. THE JGRIM RUNTIME SYSTEM 119

return targetAgent ;

}
}

Since it is composed of spawnable calls to itself, the code implementing methodB is modified to

include appropriate calls to the sync Ibis barrier primitive to ensure that the results returned

by recursive calls are always available before they are used. In some cases, automatic insertion

of synchronization primitives may lead to performance degradation, but it drastically simpli-

fies application programming, and also isolates developers from the parallel programming API.

Therefore, gridification is transparent and easy.

The serializedAgent variable holds the serialized version of the executing JGRIM agent accessing

the self-dependency, that is, the MyApplication class. It is injected into the peer in order to

transparently allow its code to keep using the dependencies and the state of the associated agent.

For efficiency reasons, the agent is loaded in its object form on an on demand basis. In addition,

upon being migrated by the Ibis runtime, only the data pointed by the serializedAgent variable

is transferred because targetAgent is transient. Furthermore, getters corresponding to other

application dependencies (e.g. external services) are rewritten to access –via the Java reflection

API– their associated injected runtime object. For example, the extra code that is generated in

the peer class if the agent now declares a dependency named somedependency is:

public SomeDependencyInterface getsomedependency (){
return getDependency (”somedependency ”) ;

}
protected Object getDependency (S t r ing name) throws Throwable{

Object agent = getTargetAgent () ;

Method m = agent . ge tC las s () . getMethod (”get ” + name , new Class [] { }) ;

return m. invoke (agent , new Object [] { }) ;

}

Ibis interceptors contact the Ibis parallelization services by creating instances of peer classes

that are sent to an Ibis network for execution. The next subsection explains the anatomy of Ibis

networks and how these interceptors interact with them.

6.2.4.2 The Ibis Server

Deploying and running a pure Ibis parallel application requires to carry out a number of manual

configuration steps. First, the application bytecode has to be copied to the Grid hosts that will

participate in the execution of the application. Second, each node must be explicitly assigned

a numeric global identifier (which ranges from zero to the number of hosts participating in the

run less one), the unique identifier of the application, and the address and port of the so--

called nameserver (usually one of these machines). Nameservers provide runtime information

about a particular run, such as determining the applications that are being executed, finding

120 CHAPTER 6. THE JGRIM MIDDLEWARE

hosts participating in a run, providing address and port information, and so on. Finally, after all

these steps have been accomplished, the application is launched by manually initiating it in every

host. Hosts coordinate themselves to cooperatively and efficiently execute the Ibis application.

Nonetheless, the above mechanism has some clear drawbacks. On one hand, it is literally too

manual, as it demands the user to be excessively involved in the deployment, configuration and

even the execution of applications. On the other hand, the mechanism is very inflexible, since the

application code that is executed on the Ibis platform is determined statically. After launching,

applications execute their associated main method that invokes the actual divide and conquer

spawnable code, and then die. This is to say, it is not possible to dynamically parametrize the

Ibis parallelization module with the code to be executed.

To alleviate these problems, JGRIM provides the IbisServer class. Basically, this class im-

plements a pure Ibis application –that is, it is compliant to the Ibis application structure and

its bytecode is properly instrumented through the Ibis compiler– that is able to execute other

Ibis applications. An Ibis network is statically established by simultaneously configuring and

starting the Ibis server on one or more hosts. A network is identified by the port on which

it listens for incoming application execution requests. A request comprises three elements: a

method signature, invocation arguments, and a target Java object (e.g. a peer) that represents

an instance of the Ibis application on which the method must be executed. Instances of these

Java objects specialize the behavior of the SatinObject Ibis API class. To send a SatinObject

for execution on an specific Ibis network and wait for the results, the IbisClient is used.

Each JGRIM host may or may not be part of an Ibis network. In case it does, the host is

configured to point to a specific Ibis nameserver, which in this context represents an arrangement

of machines running the Ibis server application. Moreover, an individual host can belong to one

or more Ibis networks, playing the role of either a slave or a master (i.e. nameserver) machine

within a single network. The parameters that must be supplied to configure a JGRIM host as

a node of an Ibis network are the IP address and the port to which the network’s nameserver is

bound.

Furthermore, all JGRIM hosts are statically supplied with the address of the Ibis machine that

is contacted by JGRIM execution interceptors to run Ibis applications, and the specific port

(execPort) where the Ibis server application running in that network is listening. Basically, the

entry point to an Ibis network is the Ibis instance listening on nameserver:execPort. Figure 6.8

exemplifies a Grid that is composed of a number of JGRIM and Ibis-enabled machines.

As depicted, a logical JGRIM network including two Ibis networks A (with hosts H1, H2 and

H3) and B (with hosts H3 and H4) have been configured. The Ibis nameserver of A and B

are hosts H1 and H4, respectively. In consequence, two instances of the Ibis server will be run,

waiting for incoming execution requests on (H1, 10000) and (H4, 10000). In this way, spawns

generated by applications received through the former/latter endpoint will be executed on the

machines of the Ibis network A/B. By default, Ibis interceptors located at a host Hi send all

execution requests to the nameserver of the network to which Hi belongs. In case Hi is part of

6.2. THE JGRIM RUNTIME SYSTEM 121

more than one network (e.g. H4), the nameserver that is to be used must be chosen at Grid

deployment time.

H
1

JGRIM network (4 hosts)

H
3

H
2

H
4

Ibis network A (3 hosts) Ibis network B (2 hosts)

Ibis network A (master)
nameserver=local:5432
execPort=local:10000

Ibis network A (slave)
nameserver=H1:5432

Ibis network B (slave)
nameserver=H4:5432
execPort=H4:10000

Ibis network A (slave)
nameserver=H1:5432
execPort=H1:10000

Ibis network B (master)
nameserver=local:5432
execPort=local:10000

Figure 6.8: JGRIM hosts and Ibis networks

To minimize WAN and Internet traffic, it is usually a good idea that most of the hosts of a

JGRIM network be configured to point to a LAN-accessible Ibis entry point. For instance, the

Grid setting that were used to evaluate JGRIM (described in the next chapter) was composed

of a JGRIM network across three Internet-connected clusters, and three Ibis networks, each one

having a nameserver located on a different cluster. Additionally, hosts within a particular cluster

were configured to access its local nameserver machine as the Ibis entry point for the execution

self-dependency methods.

Figure 6.9 shows the JGRIM components that are involved in the execution of the self-dependency

method of the example discussed throughout this section. When the MGS invokes its methodB

operation, the injected interceptor creates an instance of the IbisClient class based on the Ibis

entry point configured for the host where the MGS is currently executing. Then, an instance of

its associated peer is built by injecting to it the both the MGS instance variables not related with

dependencies and a “flattened” version of the agent. Finally, the peer and the information for

executing methodB is sent to the Ibis server application. Eventually, the computation finishes

and the Ibis server delivers the result back to the interceptor, which in turn passes it to the

application.

122 CHAPTER 6. THE JGRIM MIDDLEWARE

mgs:MyApplication ib:IbisInterceptor js:JGRIMServer is:IbisServer

peer:MyApplication_Peer

getIbisNetworkInfo() :IbisEntryPointinvoke(mi) :Object

methodB() :boolean

execute(mi, peer) :Object

Invokes, via Java reflection

the method represented by

"mi" on the peer object

Figure 6.9: Execution of self-dependency methods as Ibis applications

6.3 Conclusions

The JGRIM middleware is implementation of the GRATIS approach discussed in Chapter 4,

which also materializes the concepts of the GRIM model. Particularly, the present chapter

discussed in detail the aspects related to the design and implementation of JGRIM. The mid-

dleware is purely based on Java, which makes it portable to any operating system for which a

JVM implementation exists. In addition, JGRIM is designed to be extensible, and it is fully

integrated with Web technologies, thus it can be used not only for building Grid settings but

also for serving as a platform on which other types of distributed environments and applications

can be built. Examples are mobile agent systems, service-oriented software and e-commerce

applications.

In other respect, JGRIM served as a mean of assessing the benefits of the approach described in

this thesis. Specifically, several experiments using JGRIM and some of the related alternatives

were conducted on a real Grid setting to corroborate the practical soundness of GRATIS. Com-

parison was performed based on common dimensions of gridification such as effort, flexibility

and performance. The next chapter describes these experiments.

Chapter 7
Experimental Results

In previous chapters, a novel approach to gridification called GRATIS and a concrete implemen-

tation for it named JGRIM were presented. This chapter describes the experimental evaluation

that was carried out in order to provide empirical evidence about the practical soundness of the

GRATIS approach.

In short, the Ibis, ProActive and JGRIM middlewares were separately employed to gridify

existing implementations of two different applications, namely the k-NN clustering algorithm

(discussed in Section 4.3.4), and an application for enhancement of panoramic pictures based

on the restoration algorithm proposed in (Tschumperlé and Deriche, 2003). After gridification,

code metrics on the Grid-aware applications were taken to quantitatively analyze how hard is to

port a Java application to a Grid with either of the three alternatives. In addition, experiments

were conducted to test the various performance aspects of JGRIM applications with respect

to related approaches. To this end, a real Grid setting deployed over a WAN was used. The

numerical data obtained from the experiments can be found in Appendix C (k-NN algorithm)

and Appendix D (image restoration). The code implementing the different variants of the k-NN

and restoration applications is shown in Appendixes A and B.

The chapter is organized as follows. The next section describes the Grid setting that was

configured to perform the above experiments. Results obtained from the experimentation with

the k-NN algorithm and the picture restoration application are described in Sections 7.2 and 7.3,

respectively. Finally, in Section 7.4, the conclusions of the chapter are presented.

7.1 The Grid Setting

Figure 7.1 shows the topology of the Grid setting that was used to run the experiments. Specif-

ically, three clusters named ISISTAN, Bianca and Ale, each composed of a certain number of

machines, were linked through a Virtual Private Network (VPN) by using OpenVPN (Feilner,

2006). OpenVPN is an open source software package for creating point-to-point encrypted tun-

nels between Internet-connected computers. It is worth mentioning that the machine“gw isistan”

123

124 CHAPTER 7. EXPERIMENTAL RESULTS

in the figure just represents the network infrastructure of the ISISTAN Research Institute at

UNICEN, but it did not participate in the runs. Moreover, machines of the ISISTAN cluster

are part of a larger, public network that shares the 2 MB ADSL link. In contrast, the other two

clusters are basically local private networks with exclusive access to their associated Internet

link.

An OpenVPN server (version 2.0.9) was installed on the “VPNServer” machine of the ISISTAN

cluster, thus establishing a simple star configuration for the resulting virtual private network.

On average, communication between nodes of the Bianca or the Ale cluster and any machine of

the ISISTAN cluster experienced a latency in the range of 60-90 milliseconds, whereas communi-

cation between Bianca and Ale clusters was subject to a latency of 100-150 milliseconds. All test

described further in this chapter were performed during night time (approximately from 11 P.M.

to 8 A.M.), that is, when the Internet traffic is low and network latency has little variability.

Furthermore, all test batteries were launched from the machine named “ale”.

dani

Cluster ISISTAN

GridCluster1 GridCluster2 GridCluster3

GridCluster4 GridCluster5 VPNServer

gw_isistan

Cluster Bianca

cmateos−home−pc

(Internet Proxy)

cmateos−laptop

Direct
network link

Internet

Cluster Ale

ADSL 256 Kbps

ADSL 256 Kbps
ADSL

2 Mbps
(Internet Proxy)

dani

Router wireless

(Internet Proxy)

Figure 7.1: Network topology used for the experiments

Table 7.1 shows the CPU1 and memory2 specifications for the various machines of the Grid set-

ting previously shown. All machines were equipped with either Kubuntu Linux or its lightweight

version Xubuntu, both running Ubuntu kernel version 2.6.20. Besides, the Sun JDK version 1.5.0

was used. Finally, to keep the system clocks accurately synchronized across the Grid, a Network

Time Protocol (NTP) 3 daemon was installed on every machine. NTP is a protocol for synchro-

1Dual core feature was disabled to alleviate the differences in processing capabilities
2As reported by the top linux command
3The Network Time Protocol project: ttp://www.ntp.org

7.2. THE K-NN CLUSTERING ALGORITHM 125

nizing the clocks of computer systems over packet-switched networks that is designed mainly to

resist the effects of variable latency or jitter.

As the reader can see from the table, both CPU power and memory availability significantly

varies not only between different clusters, but also among machines of the same cluster. Similarly,

bandwidth and latency across cluster machines are quite different. However, note that this is not

a problem but a distinctive feature of Grid-like environments, which are indeed characterized

by being an arrangement of (usually very) heterogeneous machines connected through network

infrastructures with different capabilities.

Machine name CPU model CPU frequency Memory (Kb)

GridCluster1 Pentium III (Coppermine) 852 Mhz. 247.960

GridCluster2 Pentium III (Coppermine) 852 Mhz. 247.960

GridCluster3 Pentium III (Coppermine) 852 Mhz. 377.812

GridCluster4 Pentium III (Coppermine) 852 Mhz. 377.812

GridCluster5 Pentium III (Coppermine) 798 Mhz. 256.160

VPNServer Intel Pentium 4 2.80 Ghz. 516.040

cmateos-home-pc AMD Athlon XP 2200+ 1.75 Ghz. 256.092

cmateos-laptop Intel Core2 T5600 1.83 Ghz. (per core) 1.027.528

ale AMD Athlon 64 X2 Dual

Core 3.600+

2 Ghz. (per core) 904.660

dani AMD Sempron 1.9 Ghz. 483.472

Table 7.1: CPU and memory specifications of the Grid machines

7.2 The k-NN Clustering Algorithm

The k-nearest neighbor (k-NN for short) (Dasarathy, 1991) is a supervised learning technique

where an object instance is classified by being assigned the most common class label among its

k nearest neighbors in a multidimensional feature space. In other words, given a new instance

(or query point), the algorithm finds k objects (or training instances) closest to the query point.

Suppose we have a dataset containing data about paper tissues, where each instance is repre-

sented by two attributes (acid durability and strength) and a class value indicating whether a

particular paper tissue is good or not. Additionally, let us suppose that the class label associated

to each instance has been assigned by collecting the opinion of many people. Table 7.2 shows

four training samples of this hypothetical dataset. Now, if a factory produces a new paper tissue

that pass laboratory test with acid durability = 3 and strength = 7, the k-NN algorithm can

126 CHAPTER 7. EXPERIMENTAL RESULTS

predict the quality of the paper without the need of conducting another (possibly expensive)

survey.

Acid durability

(seconds)

Strenght

(kg/square meter)

Class

(quality)

7 7 Bad

7 4 Bad

3 4 Good

1 4 Good

Table 7.2: A sample dataset with four training instances

The k parameter of the k-NN algorithm is a positive integer, typically small. The best choice of k

depends upon the data. Usually, larger values of k reduce the effect of noise on the classification,

but make boundaries between classes less distinct. A good k can be selected by various heuristic

techniques (e.g. cross-validation). To experiment with long-running, time-consuming tests, the

performance evaluation of this algorithm described later in this section used a fixed, large value

for k.

Algorithm 1 The k-nearest neighbor algorithm

procedure classify(instance, k) ⊲ Returns the class label associated to an instance
double[] attrs← getAttributes(instance)
Vector neighbors← initializeNeighborsList(k)
for all trainingInstance ∈ Dataset do

double[] trainingAttrs← getAttributes(trainingInstance)
String trainingClassLabel← getClassLabel(trainingInstance)
double distance← euclideanDistance(instance, trainingInstance)
sortedInsertion(neighbors,distance,trainingClassLabel) ⊲ neighbors is kept

sorted (smaller distances first)
if listSize(neighbors) > k then

removeLast(neighbors)
end if

end for
return mostFrequentLabel(neighbors)

end procedure

A pseudo code for the k-NN is shown in Algorithm 1. The original version (i.e. non-Grid aware)

of this algorithm was implemented as a single Java class accessing a file-based dataset through

a Dataset class. The application provided two operations classifyInstance and classify-

Instances for classifying and individual instance and a list of instances, respectively. On the

other hand, Dataset included a method for reading a block of training instances, and methods

for obtaining the size and the number of dimensions of the dataset.

7.2. THE K-NN CLUSTERING ALGORITHM 127

In order to establish a simple service-oriented Grid environment, the dataset was wrapped with

a Web Service exposing analogous operations to those implemented by the Dataset class, and a

replica of this service –along with its associated data– was deployed on each cluster. The original

dataset had a size of 10.000 records, each described by 20 attributes with randomly-generated

numerical values, and a numerical class label taking its value at random from a set of three

predefined categories. The dataset was built by using the Weka4 data mining toolkit. Finally,

a UDDI registry pointing to the WSDL definitions of the service replicas was installed on the

ISISTAN cluster.

Sections 7.2.1 and 7.2.2 present the experimental results obtained from the gridification of the

Java implementation of the k-NN algorithm previously mentioned. Specifically, the former

section describes the gridification effort incurred by each Grid platform, whereas the latter

concentrates on evaluating performance issues.

7.2.1 Gridification Effort

The purpose of the analysis presented in this section is to measure the effort to gridify the

existing k-NN implementation, and the impact of this process on the application design and

implementation. Certainly, quantifying these aspects is very difficult. Therefore, the analysis

focuses on elaborating and then applying an formula to quantitatively estimate the effort required

when using Ibis, ProActive and JGRIM. The resulting formula was also employed to quantify

the gridification effort of the restoration application of Section 7.3.

Essentially, the estimation of the effort invested in gridification was performed by comparing the

values of relevant code metrics for both the original application and its gridified counterparts.

Compilation units being part of the dataset Web Service implementation were not considered

by the estimation, because the experiments were carried out as if the Grid (and therefore its

services) was already established and performing gridification thereafter. The following list

summarizes the code metrics that were employed:

• TLOC (Total Lines Of Code): It counts the total non-blank and non-commented lines

across the entire application code, including the code implementing the algorithm itself,

plus the code (when applicable) for interacting with the dataset, performing Grid exception

handling and taking advantage of execution parallelization. This metric is directly related

to the extra implementation effort that is necessary to prepare the source code of an

ordinary application to execute on a Grid platform.

• PLOC (Platform-specific Lines Of Code): This metric counts the number of source code

lines that access the underlying API of the target Grid platform. Specifically, instructions

using API classes or invoking methods defined in these classes are computed as a PLOC

line.

4Weka version 3: http://www.cs.waikato.ac.nz/ml/weka

128 CHAPTER 7. EXPERIMENTAL RESULTS

Note that the larger the value of PLOC, the more the level of tying between the application

code and the Grid platform API. Clearly, it is highly desirable to keep PLOC as low as

possible, so as to avoid applications to be dependent on a particular Grid platform, which

in turn hinders their portability to other platforms. Intuitively, as PLOC grows, so does

the time that must be spent learning the corresponding platform API, since the probability

of using different portions of this API increases.

• NOC (Number Of Classes) and NOI (Number Of Interfaces): They represent the number

of implemented application classes and interfaces, respectively, without taking into account

classes or interfaces provided by the underlying Grid platform API, the Java API or third-

party libraries. Although simple, note that these metrics are useful to give an idea of the

amount of object-oriented design present in the application.

• NOT (Number Of Types): It simply counts the number of object types (classes and inter-

faces) which are defined in, and referenced from within, any of the compilation units of the

application. The NOT metric does not consider neither the Java primitive types nor the

JVM bootstrap classes defined in the java.lang package. NOT can be viewed as the sum

of NOC, NOI and the number of classes/interfaces used after the Java reserved keywords

extends, implements or import. As a corollary, the formula NOT − (NOC + NOI) yields

as a result the number of classes/interfaces not considered by the NOC/NOI metrics, that

is, the object types which are defined in either the runtime system API or external li-

braries. It is worth noting that a class which is simultaneously subclassed and imported

–or similarly, an interface which is implemented and imported– is counted as one object

type.

Table 7.3 shows the resulting metrics for each one of the four implementations of the k-NN

application: original, Ibis, ProActive and JGRIM. Figure 7.2 summarizes the measured TLOC,

and Figure 7.3 shows the overhead incurred in gridifying the application in terms of source

code lines. In order to perform a fair comparison, the following tasks were carried out on the

implementation code:

• The source code was transformed to a common formatting standard, thus sentence layout

was uniform across the different implementations of the application.

• Java import statements within compilation units were optimized by using the source code

optimizing tool of the Eclipse IDE. Basically, this tool provides support for automatic

import resolution, thus leaving in the application code only those classes/interfaces which

are actually referenced by the application.

• Applications were Java 1.5 compliant, but Java generics across the source code were re-

moved. The goal of this task was to avoid counting a line including a declaration of the

form <PlatformClass> as a PLOC line. Otherwise, variants repeatedly using this feature

across the code (e.g. in method signatures, data structure declarations, etc.) would have

been unfairly resulted in greater PLOC.

7.2. THE K-NN CLUSTERING ALGORITHM 129

Besides, all Grid-aware versions were implemented by the same person. The developer had very

good expertise on distributed programming, and a minimal background on the facilities provided

by either of the three Grid platforms. In this way, the analysis is not biased by the experience,

or by different design and implementation criteria that potentially might have arisen if more

than one person were involved in the gridification of the application.

k-NN version TLOC PLOC NOC NOI NOT Code overhead (%)

Original 192 – 4 0 11 –

Ibis 1477 10 25 3 79 669.27

ProActive 404 11 5 0 37 110.42

JGRIM 166 4 4 2 12 -13.54

Table 7.3: Gridification of the k-NN algorithm: code metrics

 0

 100

 200

 300

 400

 500

 600

 700

 800

JGRIMProActiveIbisOriginal

T
LO

C
 (

Le
ss

 is
 B

et
te

r)

k−NN Version

Figure 7.2: TLOC after gridification

7.2.1.1 Ibis

The size of the application in the case of Ibis was 1477 lines (seven times bigger than the

original implementation). As a consequence, only a small percentage of the code resulted in

130 CHAPTER 7. EXPERIMENTAL RESULTS

 0

 50

 100

 150

 200

 250

 300

JGRIMProActiveIbis

S
ou

rc
e

C
od

e
O

ve
rh

ea
d

(%
)

(le
ss

 is
 b

et
te

r)

k−NN Version

Figure 7.3: Source code overhead introduced by the gridification process

pure application logic, since it was necessary to provide a lot of code mostly to generate and use

a client-side proxy to the dataset Web Service. Therefore, NOC and NOT also suffered (six and

seven times bigger, respectively), since more application classes and interfaces were created, and

also extra APIs for low-level interaction with Web Services were imported. Surprisingly, despite

being a platform proposed for Grid development, Ibis does not offer any facilities for using Web

Services.

As the original application was thought to be executed sequentially on a single machine, clas-

sifyInstances (see Figure 7.4) was straightforwardly implemented by means of a loop control

structure that iteratively feeds the classifyInstancemethod with the items of the list received

as an argument. To take advantage of Ibis parallelism, classifyInstances was rewritten to

use a spawnable classification method (spawnclassify) which in turn directly calls classify-

Instance. Hence, at runtime, each invocation to classifyInstance is concurrently executed by

the Ibis platform. In this way, significant performance benefits were obtained at the cost of having

an extra implementation effort since more changes to the original application were introduced.

Figure 7.4 shows a simplified class diagram of the resulting application. Communication and

coordination between classifyInstances and spawned computations was achieved by means

of a shared object (Wrzesinska et al., 2006), a mechanism provided by Ibis to transparently

share and update the state of a Java object among the distributed spawned computations of an

executing application.

To further optimize the application, the IbisDatasetClient class was implemented to choose,

upon classification of a particular instance, the service replica that is located at the cluster where

the associated spawned computation is executing. The dataset client operates as its own service

7.2. THE K-NN CLUSTERING ALGORITHM 131

broker: when data needs to be read, the client simply performs a “ping” operation to select –

based on communication latency– the most appropriate WSDL description from a list of known

candidate addresses. Consequently, fast interaction with the dataset is achieved. However, this

mechanism forced the code to be improperly tied to specific service instances, therefore lacking

reusability as the information for invoking services on a Grid (e.g. WSDL location) or the

available instances for a service may vary over time. Even when this problem can be solved by

using a service registry, or alleviated by passing the available service descriptions as an argument

to the application, the heuristic used for service selection still remains hardwired in the dataset

client code. In consequence, using other selection heuristic requires to reimplement this code.

<<realize>>

<<interface>>

Serializable

<<realize>>

SatinObject (from ibis.satin)
<<interface>>

Spawnable (from ibis.satin)

ValueHolder

ValueHolder(instances : int)
setValue(child : int,value : double) : void
getResults() : double[]

array : double[]
<<interface>>

WriteInterface

setValue(child : int,value : double) : void

<<realize>>

SharedObject (from ibis.satin)

IbisDatasetClient

IbisDatasetClient()
selectEndpoint() : String
parseHostAddr(fullUrl : String) : String
selectFromPair(stra : String,strb : String) : String
pingHost(host : String) : double
setUp() : void
getStub() : DatasetIF_Stub
numInstances() : int
readItem(itemNumber : int) : Instance
readRange(startItemNumber : int,

datasetService : DatasetService
endpoint : String
stub : DatasetIF_Stub

endItemNumber : int) : Instance[]

<<interface>>

KNNSpawnInterface

spawn_classify(holder : ValueHolder,i : Instance,
k : int,child : int) : void

KNNAlgorithm

KNNAlgorithm()
getInstances(startIndex : int) : Instance[]
classifyInstance(instance : Instance,k : int) : double
classifyInstances(instances : Instance[],k : int) : double[]
spawn_classify(holder : ValueHolder,i : Instance,k : int,

dataset : IbisDatasetClient

child : int) : void

(from java.io)

Figure 7.4: Class diagram of the Ibis version of the k-NN application

7.2.1.2 ProActive

The ProActive version of the application introduced a source code overhead near to 110%. The

PLOC was slightly greater than for the Ibis case (11 lines, less than 3%) but, as indicated by

NOT, the number of object types were reduced to less than a half (37 against 79). Figure 7.5

shows the class diagram of this implementation. Note that the class design is evidently much

simpler than that of Ibis. However, several problems arised when gridifying with ProActive,

which are described next.

132 CHAPTER 7. EXPERIMENTAL RESULTS

ProActive also lacks full support for using Web Services, as it only offers a set of classes that allow

applications to interact with either SOAP-enabled services or ProActive active objects. Web

Service consumption within a client application is carried out by working directly with the SOAP

APIs, since ProActive does not provide abstractions to transparently support other bindings to

services such as CORBA or EJB. In this sense, since all dataset replicas were initially wrapped

with a non-SOAP Web Service, it was necessary to implement an active object for interfacing

the data, expose it as a SOAP service, and finally write a client to use it. Directly using SOAP

instead of a more generic support for Web Service invocation significantly reduced both NOC and

NOT, but caused the application to be tied to a specific transport protocol for interacting with

services. Furthermore, in order to allow efficient interaction between the application and the

dataset, ProActiveDatasetClient was instructed to employ the latency-based replica selection

heuristic described before. In consequence, the ProActive dataset proxy shares the reusability

and flexibility problems suffered by its Ibis counterpart.

Similar to Ibis, parallelization of classifyInstances was achieved by concurrently classifying

individual instances at different Grid hosts. Specifically, a master-worker approach was followed

in which, for each instance, a clone of the KNNAlgorithm class in the form of an active object

is created, programmatically deployed on a particular host, and asked to perform a single clas-

sification. Whenever an active object becomes idle, another job is sent to it. Synchronization

between the parent active object (i.e. the main execution thread of the application) and these

clones was accomplished through the ProActive wait-by-necessity mechanism, which in this par-

ticular case was used to transparently block the execution of classifyInstances until any child

active object finishes its assigned job.

Unfortunately, a significant amount of code to complement the ProActive synchronization sup-

port had to be supplied. The purpose of this code was mainly to implement behavior for keeping

track of busy workers as well as assigning pending tasks to idle ones. Another alternative that

was explored in an attempt to avoid this problem was to delegate job execution management to

the platform. However, at the time the performance tests described later in this chapter were

performed, load balancing in ProActive appeared to be a little unstable5.

Finally, another negative aspect that arised as a consequence of parallelization was closely related

to the ProActive wait-by-necessity mechanism. Basically, this mechanism forced the interface

of the gridified application to differ from the interface of the original implementation, because a

method must be changed its return type (i.e. replace it with some ProActive API class) to enable

it to be invoked asynchronously. Particularly, the return type of the classifyInstance method

was modified to return instances of the GenericTypeWrapper ProActive built-in object type.

Consequently, the new application interface contained non-standard datatypes and interaction

conventions. From a SOA point of view, this makes the interface of the ordinary version of the

application no longer valid, as the gridified application does not adhere to the original service

interface. Hence, application discovery within a Grid setting is more tedious and difficult, as

5The original post to the ProActive development community reporting this problem can be found in
http://www.nabble.com/Deployment-and-load-balancing-t4126250.html

7.2. THE K-NN CLUSTERING ALGORITHM 133

details on required service interfaces must be provided by external clients for the discovery

process to be effective.

<<interface>>
Serializable

<<realize>>

<<interface>>

Service (from java.xml.rpc)

KNNAlgorithm

<<create>> KNNAlgorithm()
<<create>> KNNAlgorithm(nodes : Node[])
initializeNodes(numberOfNodes : int) : void
getAvailableNode() : int
getCurrentFutureList() : Vector
getDataset() : ProactiveDatasetClient
getInstances(item : int) : Instance[]
classifyInstance(instance : Instance,k : int,

classifyInstances(instances : Instance[],k : int) : double[]

dataset : ProactiveDatasetClient
nodes : Node[]
isNodeAvailable : boolean[]
assignedWork : Hashtable
childNodeHash : Hashtable

instanceNumber : int) : GenericTypeWrapper

ProactiveDatasetClient

<<create>> ProactiveDatasetClient()
setUp() : void
selectEndpoint() : String
parseHostAddr(fullUrl : String) : String
selectFromPair(stra : String,strb : String) : String
pingHost(host : String) : double
createCall() : Call
readItem(itemNumber : int) : Instance
readRange(startItemNumber : int,

numInstances() : int

namespaceURI : String
serviceName : String
portName : String
service : Service
endpoint : String

endItemNumber : int) : Instance[]

(from java.io)

Figure 7.5: Class diagram of the ProActive version of the k-NN application

7.2.1.3 JGRIM

The gridification of the k-NN algorithm with JGRIM resulted in 166 lines of code, plus 126 lines

of XML configuration automatically generated by the JGRIM gridification tool (similar values

were obtained for the a variant using a policy, which is described later). The code was even

smaller than the non-gridified version, since dataset access is transparently performed through

the discovery and invocation metaservices. Besides, exceptions that may be thrown when calling

services (e.g. communication errors, timeouts, etc.) are mostly handled at the platform level,

which greatly helps in reducing the gridification effort.

The class diagram of the JGRIM k-NN application is illustrated in Figure 7.6. It is worth em-

phasizing that the tasks of extending the JGRIMAgent and JGRIMPolicyAdapter classes, adding

proper setters/getters, and realizing both DatasetInterface and ParallelMethodInterface

were performed automatically by JGRIM based on the dependencies declared at gridification

time. From the diagram, it can be seen that the application logic (i.e. the KNNAlgorithm class)

does not directly reference concrete components providing Grid behavior.

134 CHAPTER 7. EXPERIMENTAL RESULTS

KNNAlgorithm

<<create>> KNNAlgorithm()
setdataset(dataset : DatasetInterface) : void
getdataset() : DatasetInterface
getselfdependency() : ParallelMethodInterface
setselfdependency(selfdependency : ParallelMethodInterface) : void
getInstances(item : int) : Instance[]
classifyInstance(instance : Instance,k : int) : double
classifyInstances(instances : Instance[],k : int,start : int,end : int) : double[]
classifyInstances(instances : Instance[],k : int) : double[]

dataset : DatasetInterface
selfdependency : ParallelMethodInterface

PingPolicy

accessFrom(stra : String,strb : String) : String
executeAfter() : void

<<interface>>

DatasetInterface

numInstances() : int
readItem(itemNumber : int) : Instance
readRange(start : int,end : int) : Instance[]

JGRIMAgent

JGRIMPolicyAdapter

(from core)
<<interface>>

ParallelMethodInterface

classifyInstances(instance : Instance[],k : int,
start : int,end : int) : double[]

(from core.policy) Implicit association

between the policy

and the dependency

Figure 7.6: Class diagram of the JGRIM version of the k-NN application

The object decoupling and metaservice injection capabilities featured by JGRIM enabled to im-

plement the interaction with the dataset with little coding effort. Only few lines (those invoking

dataset operations) were altered to use the corresponding getter method, making the resulting

code very clean and easy to understand. Moreover, introducing and testing further improve-

ments over the algorithm outside the Grid setting is straightforward, since another source for

the dataset dependency (e.g. a mock Java object) can be easily configured to the application

without modifying its code. This is not always the case in Ibis and ProActive, since the por-

tions of applications that are tied to Grid configuration information or technologies have to be

rewritten or discarded.

To stay competitive, and performing a fair performance evaluation, a policy materializing ex-

actly the same service selection heuristic used by the Ibis and ProActive implementations was

configured for the JGRIM application. Apart from its benefits in terms of flexibility and re-

configurability, a very interesting aspect of the policy mechanism is that it concentrates the

underlying platform details within a few classes that are external to the original application

code. Specifically, besides using less API code than either Ibis or ProActive (4 lines against

10/11 lines) the totality of the PLOC lines of the JGRIM application were located exclusively

in the classes implementing policies, which made the application logic free from platform API

code. These lines were mostly calls to the profiling services provided by the JGRIM middleware.

The aspect of the JGRIM solution that demanded more attention from the developer was

concerned with parallelization. As explained in previous chapters, JGRIM complements self-

dependencies with a coordination technique that works by blocking the execution of an MGS

the first time it requests the result of an unfinished spawned computation. As a consequence,

the technique is by far less effective if an operation of a self-dependency is called inside a loop

control structure which accesses the result of a call before another call takes place. For example,

dumbly replacing “this” by a self-dependency in the original implementation of classifyIn-

7.2. THE K-NN CLUSTERING ALGORITHM 135

stances would have resulted in a code similar to:

double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k){
double [] r e s u l t = new double [i n s t an c e s . l ength] ;

for (int i = 0 ; i < i n s t an c e s . l ength ; ++i){
iC l a s s = get s e l f d ependency () . c l a s s i f y I n s t a n c e (i n s t an c e s [i] , k) ;

r e s u l t [i] = iC l a s s ;

}
return r e s u l t ;

}

which clearly causes classification to be performed sequentially, as the computation of the class

label associated to instances[i+1] do not start until the class value of instances[i] is avail-

able.

Parallelization of classifyInstances demanded to split its original implementation into two

new operations: a method (keeping the original interface of classifyInstances) that accesses,

through a self-dependency, another method implementing the actual classification process for

a list of instances. Since the Ibis execution metaservice6 was used to concurrently classifying

instances, the latter method was implemented in a recursive way by following the Ibis coding

conventions. The resulting code produced by this transformation was:

double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k){
return get s e l f d ependency () . c l a s s i f y I n s t a n c e s (

in s tances , k , 0 , i n s t an c e s . l ength) ;

}

double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k ,

int s ta r t , int end){
i f (end − s t a r t == 1){

iC l a s s = c l a s s i f y I n s t a n c e (i n s t an c e s [s t a r t] , k) ;

return new double [] { iC l a s s } ;
}
int mid = (s t a r t + end) / 2 ;

double [] r e s1 = c l a s s i f y I n s t a n c e s (in s tances , k , s ta r t , mid) ;

double [] r e s2 = c l a s s i f y I n s t a n c e s (in s tances , k , mid , end) ;

double [] r e s u l t = new double [r e s1 . l ength + res2 . l ength] ;

System . arraycopy (res1 , 0 , r e s u l t , 0 , r e s1 . l ength) ;

System . arraycopy (res2 , 0 , r e s u l t , r e s1 . length , r e s2 . l ength) ;

return r e s u l t ;

}

6Cluster-aware random stealing (CRS) was configured as the algorithm for job stealing

136 CHAPTER 7. EXPERIMENTAL RESULTS

In this way, the execution of the second method is delegated to an external execution service

(in this case Ibis), and the interface of the original classifyInstances method is maintained.

Therefore, the resulting MGS exposes the same service interface as the original application.

Additionally, note that the transformation did not require to use any Grid API code at all.

Finally, many simple techniques can be found in the literature to deal with the old task of

switching from iterative to recursive code (and viceversa).

The situation described before is a clear example of a common tradeoff likely to be found

when parallelizing an application: independence from the parallel programming API versus

flexibility to control the application execution (Freeh, 1996). From the programming language

level, the approaches to parallel processing can be classified into implicit or explicit. On one hand,

implicit parallelism allows programmers to write their programs without any concern about the

exploitation of parallelism, which is instead automatically performed by the runtime system. On

the other hand, languages based on explicit parallelism aim at supplying synchronization and

coordination APIs for describing the way parallel computations take place. The programmer

has absolute control over the parallel execution, thus it is feasible to deeply take advantage

of parallelism to implement very efficient applications. However, programming with explicit

parallelism is more difficult, since the burden of initiating, stopping and synchronizing parallel

executions is placed on the programmer.

Platforms like ProActive and Ibis, which are inherently performance-oriented, are designed to

provide explicit parallelization. The programmer has a finer control of parallelism, but gridified

applications are rather difficult to understand and to maintain. Conversely, JGRIM promotes

implicit parallelism, since it provides parallelization facilities in those places of an application

where it can be transparently used, that is, without requiring to explicitly use extra API code.

Unlike ProActive or Ibis, JGRIM pays attention not only to application performance, but also

to portability, maintainability and legibility of the application code.

7.2.1.4 Discussion

An interesting result of the evaluation is concerned with the size of the runnable versions of the

different k-NN implementations described in the above sections. Table 7.4 shows application

bytecode information, given by the number of generated .class files and the total size (in Bytes)

of these files after compilation, and plugging information, given by the number of total lines of

code (and PLOC lines) destinated to run the application on the Grid.

After source code gridification and compilation, the binary size of the ProActive implementa-

tion was about 17 KB, versus 31 KB and 108 KB of the JGRIM and Ibis, respectively. In

this latter case, though much functionality for interacting with the dataset was added to the

original application (resulting in approximately 74 KB of bytecode), the final deployment gen-

erated a lot of .class files for performing parallelization, managing shared objects and carrying

7.2. THE K-NN CLUSTERING ALGORITHM 137

k-NN version # .class Bytecode size Bytecode overhead (%) Test lines/PLOC

Original 4 8242 – –

Ibis 45 111452 1252 43/0

ProActive 5 17750 115 72/15

JGRIM 13 32028 288 55/4

Table 7.4: Characteristics of the k-NN implementations upon execution on the Grid setting

out platform-specific object serialization, therefore increasing the amount of bytecode of the

whole application. In the end, transferring the code for application execution on a remote host

will require more bandwidth than either the ProActive or JGRIM implementations. For more

complex applications, the extra required bandwidth could be bigger.

The bytecode of the ProActive solution was about a half of the binary code generated by the

JGRIM implementation. However, it is worth noting that ProActive dynamically adds mobility

to applications by enhancing their bytecode not at deployment time, but at runtime, thus this

overhead is not present in the above results because it is very difficult to measure. On the other

hand, it was determined that a big percentage of bytecode for the JGRIM implementation were

instructions specifically targeted for dealing with thread-level serialization and migration, and

specially creating the Ibis peer for the main application class, this latter representing a 72%

of the total bytecode. In fact, the binary size without this support was even smaller than the

compiled version of the original k-NN implementation. In this sense, in order to make the binary

code lighter and more compact, at least in appearance, a technique for instrumenting bytecode

similar to the one used by ProActive could be implemented. Basically, the idea is to develop

a special Java class loader that instruments applications at runtime, thus dynamically enabling

them for being parallel as well as mobile. In this way, dynamic code transfer is more efficient:

when a host do not have the necessary bytecode to execute an application, the binary code that

is transferred to it is just the non-instrumented version, thus saving network bandwidth.

Table 7.4 also includes the amount of source code that was implemented in order to allow

applications to be tested and executed, and how much of this code was concerned with accessing

the corresponding platform API. To a certain extent, the amount of implemented lines can be

interpreted as an indicator of the effort demanded by either of those platforms to execute a

gridified application onto the Grid. Quantifying this effort is important since a major goal of

Grids is to be used to run user applications in a plug and play fashion. Taking into account that

learning a Grid API is indeed a time-consuming task, this effort could be approximated by the

following formula:

PlugEffort = (TestLines− PLOCTest) + PLOCTest ∗ APIFactor

where APIFactor is a numeric value that represents the complexity inherent to the platform

API being used. Basically, the formula adjusts the lines representing Grid code to incorporate

the effort invested by the programmer in learning the API. As here defined, APIFactor is highly

138 CHAPTER 7. EXPERIMENTAL RESULTS

influenced by how much does the application programmer know about a particular Grid API

and its underlying abstractions. In this case, as the k-NN application was gridified by one person

initially not having solid knowledge about any of the different Grid platforms, we can assume

this influence is not present. In addition, since the developer had a very good background on

distributed and parallel programming, the complexity associated to each API is very similar.

Hence, we can naively assume that APIFactorIbis = APIFactorProActive = APIFactorJGRIM

holds, which means he spent almost the same time to learn the three APIs.

Of course, the above formula is a very rough approximation to truly quantifying the necessary

effort to execute a gridified application on the Grid. Certainly, many aspects intimately related

to Grid application execution and deployment (e.g. creating/editing application configuration

files, performing network-specific settings, initiating the execution of the application itself, and

so forth) are obviously out of the scope of this formula. However, as the purpose of this thesis is

not to address gridification beyond implementation code, the formula is a good approximation.

We can extend this idea to take into account the code metrics reported previously to obtain

an estimation of the effort incurred by each middleware when gridifying an application. Ac-

cording to the taxonomies presented in Chapter 3, two fundamental aspects that characterize

the existing gridification tools are concerned with how much redesign and code modification

(within compilation units) they impose on the input application. Hence, the overall gridification

effort can be thought as composed of three different effort factors: restructuring the application,

adapting its individual compilation units, and plugging the resulting application into the Grid

(modeled by PlugEffort).

Provided that the implementation language of the original application and the gridified ap-

plication is the same (which is the case of the experiments of this chapter), we can obtain

an estimation of the effort –in terms of source code lines– that is necessary to carry out this

transformation, plus the effort to put the application to work, by the formula:

GE (Gridification Effort) = ReimplEffort + RedesignEffort + PlugEffort

where:

ReimplEffort = |TLOCGrid − TLOCOrig|+ PLOC ∗APIFactor

P lugEffort = (TestLines− PLOCTest) + PLOCTest ∗ APIFactorTest

The reimplementation effort is computed as the difference between the amount of source code

lines of the original and the gridified application, plus the adjustment of PLOC lines. If the

difference is positive, extra lines to the original implementation has been added, whereas a

negative difference indicates that the size of the new application is smaller. To model these

cases with a single expression, the formula assumes that adding lines is as laborious as removing

lines from the original application. As the redesign tasks performed on the original application

were straightforward, RedesignEffort was assumed to be almost zero. As a consequence, this

factor was not considered in the computation of the values of GE for the three middlewares.

Intuitively, APIFactor at implementation time should always be greater than the one included

in the computation of PlugEffort, because at plugging time the developer is likely to be more

7.2. THE K-NN CLUSTERING ALGORITHM 139

familiarized with the Grid programming API. In our experiments, this rule does not hold since

the portions of the platform APIs that were used to perform both steps (i.e. object types) were

almost disjunct. Therefore, the APIFactor at implementation and plugging time are the same,

and they were both set to 30 (i.e. a PLOC line is worth 30 regular or non-PLOC lines).

Since the gridification processes of Ibis, ProActive and JGRIM produce Java applications, com-

parison of the different GE values resulted from gridifying the original k-NN application –which

was also written in Java– is absolutely feasible. To further simplify the comparison and to better

perceive the relative differences between the computed values, GE was normalized according to

the following formula:

NormalizedGE = GE
ScalingFactor

where:

ScalingFactor = 10truncate(log10 [max(GEIbis,GEProActive,GEJGRIM)])

In the end, applying the GE indicator to the gridified versions of the k-NN algorithm resulted in

1.63 (Ibis), 1.05 (ProActive) and 0.41 (JGRIM) (see Figure 7.7). Roughly speaking, GE suggests

that Ibis was the middleware demanding the greatest amount of effort from the developer.

Furthermore, ProActive and JGRIM decreased this effort by 36% and 75% respectively, which

means that the smallest effort was achieved by using JGRIM. Once again, it is worth emphasizing

that these results cannot be generalised, since they merely represent an indicator of how much

effort each middleware demanded to gridify the original k-NN implementation taking into special

account the assumptions formulated in previous paragraphs.

 0

 0.5

 1

 1.5

 2

JGRIMProActiveIbis

G
E

 o
f t

he
 k

−
N

N
 A

pp
lic

at
io

n
(le

ss
 is

 b
et

te
r)

Middleware

Figure 7.7: Gridification effort for the k-NN application

140 CHAPTER 7. EXPERIMENTAL RESULTS

7.2.2 Performance Analysis

In order to evaluate the runtime behavior of the applications with respect to response time and

network resource usage, each gridified version of the algorithm was employed to classify several

list of instances with different sizes. Network resource consumption –specifically, the generated

TCP traffic and the amount of data packets– were measured through the tcpdump network

monitoring program7 and then analyzed with the help of the Wireshark8 software tool. It is

worth mentioning that loopback network traffic was filtered out.

Furthermore, all tests were initiated in one machine (“ale”), thus launching conditions were

exactly the same. In addition, since Ibis does not support dynamic transfer of application

bytecode, the executable codes of all the gridified applications were manually copied to each host

of the Grid. This task, which contributed to make a fair estimation of the network resources used

by each application, was also carried out before experimenting with the restoration application

described later in this chapter.

Each test battery performed on a gridified application involved ten executions of the classification

algorithm on input lists composed of 5, 10, 15, 20 and 25 instances. The resulting execution

times were averaged to compute the total execution time (TET). On the other hand, for the

sake of simplicity, network resource consumption was measured by taking into account the total

amount of network traffic and packets generated during an entire test battery.

7.2.2.1 Comparison of TET

The TET obtained from the different Grid-aware implementations of the k-NN algorithm are

shown in Figure 7.8. Particularly, the figure depicts the average response time associated to the

Ibis, ProActive and JGRIM implementations, and a variant of JGRIM using a policy that stores

in an in-memory cache the totality of the data that is read from the dataset service. In addition,

cache entries were configured to be non-volatile, thus cached information persisted across indi-

vidual executions. As a consequence, dataset replicas were accessed completely by Grid hosts

only once per test battery. The implementation associated to the policy was straightforward (13

lines of code), and it made explicit use of only two operations of the JGRIM policy API. The

figure also shows errorbars in the y axis corresponding to the standard deviation in each case.

The ProActive application experienced low performance levels with respect to those achieved

by the Ibis application or even the plain version of JGRIM (i.e. not using the caching policy).

A great percentage of the time was spent by ProActive in remotely creating JVMs on every

Grid node, which demanded on average 40 seconds. Easy deployment of Grid applications is

7Tcpdump/libpcap: http://www.tcpdump.org
8The Wireshark Network Protocol Analyzer: http://www.wireshark.org

7.2. THE K-NN CLUSTERING ALGORITHM 141

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

252015105

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
T

im
e

(m
in

)
(le

ss
 is

 b
et

te
r)

Number of instances

Ibis
ProActive

JGRIM
JGRIM caching policy

Figure 7.8: TET (min) of the k-NN application

142 CHAPTER 7. EXPERIMENTAL RESULTS

indeed one of the good features of the ProActive middleware. However, the results analyzed here

show that this feature directly conditioned the overall performance of the gridified application.

In principle, the results suggest that ProActive may not be suitable for running computations

whose response time is similar or just a few factors greater than the time required to remotely

initialize the ProActive runtime system.

The Ibis application performed clearly better than the JGRIM version. Specifically, the JGRIM

added a performance overhead in the range of 10-20%. However, much of this time (20 seconds

on average) corresponded to access to the UDDI registry. Despite the obvious overhead service

brokering has associated, it allows the application code to be completely isolated from the actual

service instances implementing a certain functionality, which are selected at runtime instead by

the underlying middleware. In consequence, the implementation code is shorter and cleaner,

and remains free from instructions for searching and configuring Grid services. This fact became

evident when the TLOC of the Ibis and JGRIM implementations were analyzed. Furthermore,

brokering enables for a better reuse of Grid services, since applications and services are bound

in a dynamic, more flexible way. In other words, brokering allows executing applications to

potentially discover new services as they are published. It is worth mentioning that brokering

capabilities in JGRIM can be easily disabled without modifying an application by simply editing

the configuration associated to the gridified application. In this way, the performance of the

application increases, at the potential cost of underexploiting the available Grid services.

To keep the JGRIM application using brokering services (i.e. access the UDDI registry), and at

the same time decrease its response time, a variant of the JGRIM application based on a simple

caching mechanism was implemented. As depicted, the alternative version reduced the TET

of the non-cached JGRIM implementation by 8-16%, and achieved performance levels similar

to the Ibis implementation. Moreover, implementing the policy demanded some programming

effort, and resulted in a code similar to:

public class DatasetCachePol icy extends PingPol icy {
public Object hand leInvocat ion () {

int dataBlock = (In t eg e r) g e tCa l l I n f o () . getArguments () [0] ;

i f (cacheHit (dataBlock))

return getFromCache (dataBlock) ;

return null ;

}
public void execu teAf te r () {

super . execu teAf te r () ;

int dataBlock = (In t eg e r) g e tCa l l I n f o () . getArguments () [0] ;

putInCache (dataBlock , ge tCa l lResu l t ()) ;

}
}

7.2. THE K-NN CLUSTERING ALGORITHM 143

Basically, the policy was implemented as an extension of the ping-based mechanism for selecting

the nearest dataset service replica mentioned previously (represented by the PingPolicy class).

The code within the handleInvocation method is executed by JGRIM prior to obtain a block

of instance data from the dataset service. As discussed in Section 6.2.2, if a non-null value is

returned (a cache hit), the actual invocation to the dataset service do not proceed. Conversely,

method executeAfter is executed by the JGRIM runtime right after an actual access to the

service takes place. Therefore, code has been provided to cache the result of a call to the dataset

service, which is accessed by means of the getCallResult API method.

The weak point of the solution is that it increased the total memory usage within the Grid

by about 100 MB, that is, the extra memory that was allocated at every host to store Java

objects representing the instances of the dataset. In production Grids, where many different

applications compete for the available resources, allocating memory and storage resources at will

may be disallowed. However, the goal here was to show the flexibility of policies to provide user

code to effectively and non-invasively tune JGRIM applications. Note that both the ProActive

and Ibis applications might have benefited from the same caching mechanism, but this would

have forced to introduce yet more modifications to the original application.

 2

 4

 6

 8

 10

 12

252015105

S
pe

ed
up

 F
ac

to
r

(m
or

e
is

 b
et

te
r)

Number of instances

Ibis
ProActive

JGRIM
JGRIM caching policy

Figure 7.9: Speedup introduced by the gridified versions of the k-NN application with respect to the
original implementation

In parallel computing, speedup refers to how much a parallel algorithm is faster than its sequen-

tial counterpart. Speedup is defined as T1/Tp, where T1 is the execution time of the sequential

algorithm, and Tp represents the execution time of the parallel version of the algorithm on p pro-

cessors. Similarly, Figure 7.9 depicts the speedups associated to the k-NN application, that is,

144 CHAPTER 7. EXPERIMENTAL RESULTS

the time necessary to execute the original implementation –which sequentially classifies instances

based on a file-based dataset– over the time required to run the Grid-enabled k-NN implemen-

tations. All test batteries corresponding to the original application were run on “VPNServer”,

which is a fast machine.

Note that, despite achieving different speedup levels, the speedup “functions” of the Ibis and

the two variants of JGRIM seemed to have the same behavior. Basically, this is because these

implementations share the same execution model (i.e. the job stealing mechanism of Ibis) to

parallely access the dataset service and classify individual instances, which is the stage of the

whole classification process where implementations spent most of the time. On the other hand,

ProActive appeared to gain efficiency as the number of instances increased, but clearly more

experiments should be conducted to corroborate this trend.

Overall, the implications of the resulting speedup is twofold. First, the original application

certainly benefited from being ported to the Grid. Second, and more important, JGRIM achieved

speedups levels that are competitive to those achieved by Ibis and ProActive. Specifically, using

the caching policy allowed the JGRIM application to achieve, together with the Ibis version, the

highest levels of performance.

7.2.2.2 Comparison of network traffic and packets

Figure 7.10 illustrates the total network traffic (measured in GB) that was generated across the

Grid when running a test battery, that is, ten runs of an individual gridified implementation of

the k-NN application. This traffic computes the amount of data that was sent from any of the

Grid machines to another machine residing in either the same or an external cluster. Although

LAN communication is significantly cheaper than communication between machines that are

connected through the Internet, the traffic associated to intra and extra cluster communication

was not discriminated because the latter just represented a very small fraction of the total traffic.

In other words, even when the Grid-aware applications are in essence service-bound, services are

always accessed through local links.

Specifically, the traffic destinated to extra cluster communication was only 23.46 MB (Ibis),

12.98 MB (ProActive), 30.06 MB (JGRIM, without caching), and 26.95 MB (JGRIM, with

caching). The relation among these values clearly cannot be generalised, but they are certainly a

consequence of the way each toolkit manages the execution of applications at the platform level.

In Ibis, idle machines –that is, machines not executing a spawned computation– periodically

generate requests to other nodes of the Grid participating in the execution of the application

to get an unfinished computation from those nodes. In this way, requests originated at any

machine can have a remote node as its target. JGRIM applications inherit this behavior since

parallelization is currently based on the Ibis execution services. Therefore, extra cluster traffic

in JGRIM comprises the data in remote job stealing requests, plus the traffic related to service

brokering and diffusion of host profiling information. Lastly, the ProActive implementation

generated less extra cluster communication, but its code resulted in a mix of application logic

7.2. THE K-NN CLUSTERING ALGORITHM 145

and many instructions to manually start the classification of individual instances on specific

hosts.

 0

 1

 2

 3

 4

 5

 6

JGRIM
(caching policy)

JGRIMProActiveIbis

T
ot

al
 T

ra
ffi

c
(G

B
)

(le
ss

 is
 b

et
te

r)

Implementation Variant

Figure 7.10: Total traffic (GB) generated by each variant of the k-NN application

All in all, the plain JGRIM implementation only added an overhead of less than 1% to the total

traffic generated by the Ibis implementation, which represented about 4 MB of extra traffic per

test. Note that the overhead is totally acceptable because part of this extra traffic was destinated

to support Grid service brokering, whose benefits have been already discussed. Furthermore, the

generation of the traffic related to the diffusion of profiling information gradually spread over the

entire test time, which, unlike bursty communication, helps in avoiding network congestion. In

short, these results show that the JGRIM solution did not incur in high communication overheads

with respect to the application using the underlying, wrappered Ibis execution services.

The JGRIM implementation with the caching policy not only showed very competitive perfor-

mance levels with regard of the rest of the implementations, but also allowed the application

to drastically decrease the network traffic. Particularly, it reduced the traffic generated by the

other versions (including the plain JGRIM implementation) by around a 92%. Obviously, these

gains are a direct consequence of reducing the number of accesses to the dataset service. Nev-

ertheless, as explained previously, the most interesting aspect of the caching mechanism is that

it was implemented without altering neither the structure nor the logic of the original code.

146 CHAPTER 7. EXPERIMENTAL RESULTS

 0

 1

 2

 3

 4

 5

 6

 7

JGRIM
(caching policy)

JGRIMProActiveIbis

T
ot

al
 P

ac
ke

ts
 (

10
6)

(le
ss

 is
 b

et
te

r)

Implementation Variant

Figure 7.11: Amount of TCP packets transmitted by Grid machines during each test battery

Finally, Figure 7.11 illustrates the total network packets generated by each variant of the k-NN

application during an entire test battery. The amount of packets generated by the Ibis and the

plain JGRIM variants were very similar. As expected, the JGRIM version using the policy for

dataset caching reduced the amount of packets generated by the ProActive solution by nearly a

84%.

7.3 Panoramic Image Restoration

Panoramic imaging is a subarea of photography that aims at creating images with very wide

fields of view. Specifically, panoramic imaging is thought to capture a field of view of at least

that of the human eye, while maintaining detail and consistency across the entire panorama. A

panoramic image is thus a complete view of an area that is composed of smaller images.

This section describes the gridification of an application for restoring panoramic images located

at a remote image repository. Algorithmically, the application works by downloading a specific

image from a known host, splitting it into one or more smaller images, and finally restoring each

part of the original image by applying a CPU-intensive restoration filter9 that implements the

algorithm proposed in (Tschumperlé and Deriche, 2003).

9Both a C++ library and binary executables implementing this filter are available at
http://cimg.sourceforge.net

7.3. PANORAMIC IMAGE RESTORATION 147

Master

(1) Download image
and split it into equal
parts

Worker
1

Worker
2

Worker
n

(2) Create workers, distribute
work and wait for the results

. . .

(3) Combine
results to generate
the restored image

SubImage2

SubImage1 SubImagen

Panoramic Image

Figure 7.12: Overview of the panoramic image restoration process

As illustrated in Figure 7.12, the non-gridified version of the application was implemented ac-

cording to the well-known master-worker pattern. Restoration of individual parts of an image

are handled by different threads (i.e. workers), thus taking advantage of multi-core machines.

The master is responsible for downloading the image, creating the workers, and assigning to

each one of them an individual part of this image to filter. After all parts have been processed,

the master combines the results into one single restored image. The idea is then to gridify this

application so that workers can solve its assigned task by concurrently executing on the nodes

of the Grid.

Figure 7.13 illustrates the class diagram corresponding to the original implementation of the

restoration application. The ImageRestorer class implements the master component. Workers

keep a reference to the master for signaling purposes upon completion of their assigned work. As

we will explain later, this association represented one of the most problematic obstacles towards

gridifying the application with the middlewares. Image splitting/merging behavior was imple-

mented by the RestoreUtils class, whose implementation code is based on the functionality

provided by the Java Advanced Imaging (JAI) and Java Image IO media APIs from Sun10.

The image repository (FTP server) was installed on the “VPNServer” machine located at the

ISISTAN cluster. To experiment with the application, the image repository contained an RGB

image in JPEG format of about 2.4 MB (10120 x 2200), and four more pictures obtained from

rescaling this image down to 76, 63, 37 and 18 percent. Rescaled images resulted in a size

of 1.8 MB (9100 x 1980), 1.5 MB (8080 x 1760), 900 KB (6060 x 1320) and 400 KB (4040 x

880), respectively. In the original implementation of the application (and therefore also in their

gridified counterparts), images were split by the master into twenty equal parts. It is worth

10http://java.sun.com/javase/technologies/desktop/media

148 CHAPTER 7. EXPERIMENTAL RESULTS

ImageRestorer

<<create>> ImageRestorer(iterations : int,children : int)
restoreImage(fileLocation : String,fileName : String) : void
getImage(fileLocation : String,fileName : String) : PlanarImage
submitWork(taskData : Hashtable,currentChild : int) : void
startWorker(worker : Worker) : void
receiveWork(result : Object,child : int) : void
waitAll() : void
getRemaining() : int
getResults() : Object[]

iterations : int
children : int
results : Object[]
currentChild : int
remaining : int
client : FTPClientInterface

<<interface>>

Master

submitWork(taskData : Hashtable,child : int) : void
receiveWork(result : Object,child : int) : void
waitAll() : void

<<realize>>

Worker

<<create>> Worker(taskData : Hashtable,master : Master,child : int)
run() : void
restoreImage(imageData : byte[],iterations : int) : byte[]

taskData : Hashtable
child : int
master : Master

RestoreUtils

mergeSubImages(restoredSubImages : Object[],subImageWidth : int,

createTiles(image : PlanarImage,tileWidth : int,tileHeight : int) : Vector
reformatImage(img : PlanarImage,tileDim : Dimension) : RenderedOp

height : int,resultFileName : String) : void

1..N

1..1

FTPClientImpl

transferAnon(ftpLocation : String,targetFile : String,destDir : String) : void
transfer(ftpLocation : String,targetFile : String,destDir : String,username : String,password : String) : void
download(location : String,file : String,username : String,password : String) : byte[]
downloadAnon(location : String,file : String) : byte[]
getIt(location : String,file : String,username : String,password : String) : byte[]
getFileSize(ftpLocation : String,targetFile : String,username : String,password : String) : long
getFileSizeAnon(ftpLocation : String,targetFile : String) : long
askFileSize(ftpLocation : String,fileName : String,username : String,password : String) : long

FTPClientInterface

transferAnon(ftpLocation : String,targetFile : String,destDir : String) : void
transfer(ftpLocation : String,targetFile : String,destDir : String,username : String,password : String) : void
getFileSize(ftpLocation : String,targetFile : String,username : String,password : String) : long
getFileSizeAnon(ftpLocation : String,targetFile : String) : long

<<realize>>

<<interface>>

Serializable

<<realize>>

(from java.io)

Figure 7.13: Class diagram of the restoration application

pointing out that, although these images are relatively small in size, the restoration algorithm

is extremely CPU-intensive, thus they effectively served to enable the algorithm to produce

long-running computations.

Sections 7.3.1 discusses the gridification of the restoration application by using Ibis, ProActive

and JGRIM. Then, Section 7.3.2 presents experiments evaluating aspects related to performance

and bandwidth consumption.

7.3.1 Gridification Effort

In order to evaluate the characteristics of both the original and the gridified versions of the

application, the code metrics explained in Section 7.2.1 were used. Table 7.5 shows the resulting

metrics for the Ibis, ProActive and JGRIM implementations of the application, and a variant

7.3. PANORAMIC IMAGE RESTORATION 149

of JGRIM using a policy to move the application to the image repository location and access

images locally, thus avoiding the downloading process.

As illustrated in the table, the size of the applications did not significantly vary among each

other. The ProActive version introduced a code overhead of 24%, while the Ibis and JGRIM

implementations reduced the original code by about 6%. Unfortunately, the negative overhead

values of Ibis and JGRIM resulted from removing several source code lines directly related to the

logic of the original application, specifically, code implementing synchronization and coordination

behavior between the master and its workers. Nevertheless, the ProActive application preserved

the interaction scheme originally designed to manage communication and coordination between

master and worker components. In fact, one of the first official uses of ProActive was precisely

for developing master-worker Grid applications. On the other hand, the JGRIM solution was

also able to provide a fitting alternative to coordinate master and workers.

k-NN version TLOC PLOC NOC NOI NOT Code overhead (%)

Original 241 – 3 1 37 –

Ibis 227 5 3 1 40 -5.81

ProActive 299 17 4 1 46 24

JGRIM 226 0 3 1 36 -6.22

JGRIM (move) 233 1 4 1 36 -3.32

Table 7.5: Gridification of the restoration application: code metrics

Master and workers in ProActive were implemented as active objects. ProActive provides a

mechanism so that references between active objects are transparently managed by means of

specialized proxies that hide the physical location of active objects. When a method call is

performed on an active object A, the invocation is transparently forwarded to the actual object

instance representing A, regardless where it is currently located. Consequently, worker instances

in the ProActive application were straightforwardly implemented to send their results to the

master object, to which a reference is obtained when a worker is first created. However, while

ProActive greatly preserved the original interaction structure, some application and API code

to implement active object deployment/task management had to be supplied, which in turn

affected PLOC.

In contrast, unless explicitly managed by means of its communication API, Ibis does not auto-

matically maintain references between distributed application objects. In consequence, spawning

a computation W from within a method of a master M which passes itself as an argument to

W results in losing the reference to M in W . Another alternative that was explored, similar to

the k-NN Ibis implementation, involved the use of a shared object to indirectly communicate

the master and the workers. Unlike the k-NN application, task results coming from workers are

150 CHAPTER 7. EXPERIMENTAL RESULTS

processed subimages that may be pretty large in size. Since Ibis automatically broadcast an

individual write to a shared object to its distributed copies, employing this mechanism would

clearly require too much network resources. This can be avoided by maintaining a list of shared

objects, each handling the communication of the master and exactly one worker. However, this

would had made the implementation of the application more difficult.

To overcome the above situation, the iterative-like work submitting structure of the original

application was transformed to a recursive algorithm, in which each leaf of the execution three

spawns a computation that is in charge of processing an individual portion of the image being

restored. The code structure was basically the one presented in Section 7.2.1.3 (JGRIM im-

plementation of the k-NN algorithm). A code snippet of the master component is presented

next:

void submitWork(Vector t i l e s){
. . .

Vector r e s u l t s = submitWork(t i l e s , 0) ;

// I b i s synchron i za t i on pr im i t i v e

super . sync () ;

. . .

}

Vector submitWork(Vector t i l e s , int cu r r en tChi ld){
i f (t i l e s . s i z e () == 1){

byte [] subImagePixels = (byte []) t i l e s . f i r s tE l emen t () ;

Hashtable data = new Hashtable () ;

data . put (”p i x e l s ” , subImagePixels) ;

data . put (” i t e r a t i o n s ” , i t e r a t i o n s) ;

Worker worker = new Worker (data , cu r r en tCh i ld) ;

Vector r e s u l t = new Vector () ;

r e s u l t . addElement (worker . run ()) ;

return r e s u l t ;

}
int mid = t i l e s . s i z e () / 2 ;

Vector t i l e s S t a r t = grabElements (t i l e s , 0 , mid) ;

Vector t i l e sEnd = grabElements (t i l e s , mid , t i l e s . s i z e ()) ;

Vector r e s1 = submitWork(t i l e s S t a r t , cu r r en tCh i ld) ;

Vector r e s2 = submitWork(t i l e sEnd , cu r r en tCh i ld + mid) ;

// I b i s synchron i za t i on pr im i t i v e

super . sync () ;

r e s1 . addAll (r e s2) ;

return r e s1 ;

}

7.3. PANORAMIC IMAGE RESTORATION 151

The JGRIM implementation demanded some modifications that can be grouped in two cat-

egories. On one hand, similar to its k-NN counterpart, a recursive submitWork method was

implemented to take advantage, through a self-dependency, of the execution and parallelization

services provided by the Ibis platform. In this case, the transformation is absolutely necessary

since JGRIM discourages explicit referencing between application components (i.e. master and

workers), because in practice it leads to poor reusability and portability of both components

and even applications across the Grid.

On the other hand, a dependency named client from the master component (implemented by

the ImageRestorer class) to the FTP client component was declared. In consequence, direct

access to this component were replaced across the source code of ImageRestorer by calls to the

corresponding getclient method. As in the case of the k-NN application, other data reader

or “downloader” component can be used for the application (e.g. GridFTP instead of plain old

FTP), as long as this new component adheres to the service interface required by the master

component, represented by the FTPClientInterface Java interface.

A place of the application where mobility can be useful is when accessing the remote image

repository. Generally speaking, application mobility can bring significant benefits in terms of

decreased latency and bandwidth usage when applications are moved to locally interact with

remote data. In this sense, a variant of the JGRIM application was built by simply configuring

the following policy to the client dependency:

public class AlwaysMovePolicy extends Pol icyAdapter{
public void executeBefore (){

// Force moving the agent to the r e p o s i t o r y l o c a t i on

getOwnerAgent () . moveTo(”VPNServer ”) ;

}
}

Lines one and two, although pointing to an object type and a method defined in the JGRIM

API respectively, is not considered by PLOC, since the skeleton for any policy is automatically

generated at gridification time. Conversely, line four has been manually added to instruct the

JGRIM runtime system to migrate the MGS upon access to methods declared by the FTP

component. The getOwnerAgent method is provided by the policy framework to get a reference

to the application object that represents the executing MGS. That is to say, when the application

requests to download an image file, the code within the executeBeforemethod is executed, thus

the application state is transparently transferred to the site hosting the data. It is worth noting

that a call to moveTo(S) has no effect at all if the requesting application is already located at S.

Finally, more complex policies could be implemented to further increase efficiency. For example,

it might be interesting to move the agent only in those cases where the size of the target image

file exceeds a certain threshold.

In contrast, mobility for the Ibis version was not possible, since Ibis implicitly manages migration

of spawned computations between machines and does not let applications to explicitly control

152 CHAPTER 7. EXPERIMENTAL RESULTS

this feature. On the other hand, ProActive do provide a migrateTo API method. However, this

primitive implements a weak migration mechanism for active objects, thus placing a burden on

the developer since inherently complex and lengthy code to manually maintain the execution

state of the application must be supplied. Due to this fact, it was decided not to add mobility

to the ProActive application so as to keep the TLOC metric low, and to simplify application

programming.

Table 7.6 shows the bytecode information associated to the different versions of the restoration

application, and the anatomy of the test code used to launch the applications. Since the restora-

tion application required less Grid functionality than the k-NN application (i.e. parallelization

only), bytecode information can be used to get a more accurate estimation of the minimum

bytecode overhead introduced by each middleware for the same application. Since ProActive

instruments applications at runtime, bytecode overhead after compiling the gridified application

was less than the one introduced by Ibis and JGRIM. Furthermore, the JGRIM implementation

introduced a bytecode overhead of 15% to the Ibis solution. This is an undesirable neverthe-

less acceptable overhead given the added value of JGRIM applications in terms of component

reusability and decoupling, and the possibility of leveraging the services provided by other Grid

middlewares. In any case, dynamic class instrumentation could be employed to cut down some

of this overhead.

k-NN version # .class Bytecode size Bytecode overhead (%) Test lines/PLOC

Original 4 12731 – –

Ibis 10 30515 139 32/0

ProActive 5 16852 32 48/11

JGRIM 11 35137 175 34/7

Table 7.6: Characteristics of the restoration applications upon execution on the Grid setting

Figure 7.14 shows the resulting GE for the different versions of the image restoration application.

To make these results comparable to the ones described in Section 7.2.1.4, GE values were scaled

down by using the same factor (103). According to the GE indicator, the restoration application

was easier to gridify than the k-NN application. This situation truly makes sense because after

gridification the former utilizes less Grid functionality, does not use functional Grid services,

and includes less source code to perform application tuning.

The resulting GE was 0.046 (Ibis), 0.095 (ProActive) and 0.042 (JGRIM), which indicates that

gridifying with ProActive demanded more effort than doing so with Ibis or JGRIM. Specifically,

JGRIM reduced GE of ProActive by about 55%, whereas Ibis decreased this effort by 51%. As

illustrated in the figure, most of the effort when gridifying with Ibis and JGRIM was invested

in providing code to launch the execution of the Grid-aware application. In any case, the

plugging effort can be drastically reduced by providing better tools to easily run the Grid--

enabled applications. In fact, one important feature that is currently missing in JGRIM and

will be supplied in the near future is concerned with the provision of desktop as well as Web

7.3. PANORAMIC IMAGE RESTORATION 153

interfaces to graphically launch and monitor the execution of gridified applications.

As observed, the reimplementation effort in JGRIM was slightly greater than in Ibis. However,

one important point must be clarified. The restoration application is inherently a pure parallel

application, and is not intended to take advantage of other Grid resources and services. These

characteristics makes the application ideal to be implemented by using the parallelization ser-

vices of Ibis. Furthermore, JGRIM materializes an approach whose goal is precisely to isolate

applications from the way Grid services are accessed, and therefore how parallelization is per-

formed, which translates in a little extra effort at gridification time. Nevertheless, this small

overhead is completely acceptable given the benefits of JGRIM in terms of maintainability and

portability of a gridified application. In the experiments, the logic of the JGRIM restoration

application was absolutely clean of Grid API code and decoupled from the specific execution

service, thus workers can be configured to be run by means of other execution services (e.g.

threads, Globus jobs, ProActive active objects, etc.) with little effort and without source code

modification.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

JGRIMIbisProActive

G
E

 o
f t

he
 R

es
to

ra
tio

n
A

pp
lic

at
io

n)
(le

ss
 is

 b
et

te
r)

Middleware

Plugging effort
Reimplementation effort

Figure 7.14: Gridification effort for the restoration application

Since both the k-NN and the restoration application were gridified by the same person, and this

former was ported first, it is clear that the developer had knowledge about each Grid API at

the time the gridification of the latter started. In this light, GE was computed by considering

APIFactor = 0. The goal of this adjustment is to model the fact that programmers often

face a steep learning curve when employing new Grid technologies, but as they use them, the

learning effort tend to disappear. Learning curves corresponding to the three middlewares used

154 CHAPTER 7. EXPERIMENTAL RESULTS

in the experiments were assumed to be similar to each other because of the developer’s strong

background on distributed and parallel programming, and the similarity/correspondence in the

API complexity/target programming language.

7.3.2 Performance Analysis

This section reports the performance tests that were conducted based on the various versions of

the restoration application presented previously. To better understand the runtime behavior of

these applications, and set the basis for a more detailed comparison, a simple benchmark based

on the original application was prepared. To this end, the aforementioned image repository was

used.

The purpose of the benchmark was to have an estimation of the time (on average) necessary

to download and to restore an image from the repository. These two factors were estimated

separately. On one hand, the average transfer time (ATT) was measured by performing five

different downloads of each image (located at the “VPNServer”machine of the ISISTAN cluster)

from the remote “ale” machine residing at the Ale cluster. To avoid unnecessary noise, the tests

were run under low network load. Table 7.7 shows the resulting transfer times. From the table, it

can be seen that, keeping in mind that all transfers were carried out through a public WAN link,

experienced deviations were in the range (0.4 − 2.0 seconds), therefore the network benchmark

has an acceptable confidence level.

Image (KB) Size (KB) ATT (secs) Std. Dev. (secs) Avg. transfer rate (KB/s)

Image1 435.40 17.03 0.43 25.56

Image2 903.12 34.56 1.70 26.13

Image3 1515.56 55.71 0.51 27.20

Image4 1819.16 66.98 0.53 27.16

Image5 2409.18 94.21 1.98 25.57

Table 7.7: Restoration application: network benchmark

For practical reasons, the time required to enhance an image was estimated by running the

restoration process on a random image portion (i.e. an horizontal component of the panorama)

of a size of 1/20 of the original image, and multiplying the elapsed time by 20. Note that this is

exactly the same criteria for splitting an input panoramic image that is employed by the gridified

versions of the application.

Table 7.8 shows the total estimated execution time (in minutes), calculated as twenty times the

average execution time (AET) among five runs of the restoration process on a portion of an

image. All tests were run on “VPNServer”. Again, little standard deviation –specifically in the

range of 0.55− 1.35 seconds– was obtained, thus the estimations will serve to our purposes.

The estimated total execution time (TET) required to download and process a complete image is

shown in Table 7.9. On average, the lower and upper bounds of the amount of KBytes processed

7.3. PANORAMIC IMAGE RESTORATION 155

Image (1/20) AET (min) AET * 20 (min) Std. Dev. (secs)

Image1 0.44 8.80 0.56

Image2 0.99 19.97 0.67

Image3 1.78 35.63 0.68

Image4 2.34 46.80 0.99

Image5 2.79 55.80 1.32

Table 7.8: Restoration application: performance benchmark

per unit time (minute) was in the range of about 38 and 48, respectively. The table also shows

the time increment ratio between any image and its immediate preceding image.

Image TET (min) TETn/TETn−1 Throughput (KB/min)

Image1 9.08 – 47.95

Image2 20.55 2.26 43.95

Image3 36.56 1.78 41.46

Image4 47.92 1.31 37.96

Image5 57.37 1.20 41.99

Table 7.9: Total execution times and throughput of the original restoration application

The experiments using the gridified versions of the above application were performed by process-

ing each image ten times, and then computing the resulting TET (in minutes) and throughput

(in KB per minute) accordingly. As in the case of the k-NN application, network resources

consumed by applications, namely the generated TCP traffic (in MB) and the amount of data

packets, were measured by using the tcpdump and Wireshark tools. In addition, all tests were

initiated in the “ale” machine.

7.3.2.1 Comparison of TET

The TET values obtained from the different versions of the restoration application are depicted

in Figure 7.15. Specifically, the figure illustrates the behavior of the Ibis, ProActive and JGRIM

implementations, and the variant of JGRIM employing the policy that moves the application

to the image repository location when an individual image is downloaded. As explained, the

implementation of the policy was almost effortless, because only involved the use of a single line

of code for moving the MGS to “VPNServer”. The graphic includes the errorbars in the y axis

corresponding to the standard deviation of the elapsed times.

From the figure, it can be observed that JGRIM performed very well and experienced perfor-

mance levels similar to its related approaches. Specifically, the function that defines its associated

156 CHAPTER 7. EXPERIMENTAL RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Image 5Image 4Image 3Image 2Image 1

A
ve

ra
ge

 R
es

to
ra

tio
n

T
im

e
(m

in
)

(le
ss

 is
 b

et
te

r)

Implementation Variant

Ibis
ProActive

JGRIM
JGRIM move policy

Figure 7.15: TET (min) of the restoration application

7.3. PANORAMIC IMAGE RESTORATION 157

TET appears to be close to the one describing the TET of the ProActive version. In addition,

the variant of JGRIM using the policy for moving the MGS brought significant benefits in terms

of increased execution performance. Another interesting fact is that coding this policy was very

easy. Also, as policies are individual software components that are non-intrusively injected by

JGRIM into applications, they do not affect the code of the application logic and can be reused

in other applications.

A result that may confuse the reader is that the JGRIM version of the application performed

better than the Ibis variant, even when the former used the Ibis services as the underlying

support for application parallelization. The reason of this is that the code that is interpreted by

the Ibis runtime in either cases is subject to different execution conditions. On one hand, the

implementation of the Ibis version comprises the application logic plus the code (main method)

to run the application, which is called by the Ibis runtime to carry out the handshaking process

among Ibis hosts to actually start and cooperatively execute the application. On the other

hand, upon the execution of a self-dependency method, an Ibis object is created and sent by the

JGRIM platform to an already deployed Ibis network, which is running a pure Ibis application

(i.e. Ibis server) that is able to execute other Ibis objects.

 120

 140

 160

 180

 200

 220

 240

 260

Image 5Image 4Image 3Image 2Image 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
B

/m
in

)
(m

or
e

is
 b

et
te

r)

Implementation Variant

Ibis
ProActive

JGRIM
JGRIM move policy

Figure 7.16: Throughput (KB/min) of the restoration application

Figure 7.16 shows the throughput achieved by the different variants of the application, calculated

as the average amount of data processed per time unit, that is, the amount of image data (KB)

158 CHAPTER 7. EXPERIMENTAL RESULTS

 2

 3

 4

 5

 6

 7

Image 5Image 4Image 3Image 2Image 1

S
pe

ed
up

 F
ac

to
r

(m
or

e
is

 b
et

te
r)

Implementation Variant

Ibis
ProActive

JGRIM
JGRIM move policy

Figure 7.17: Speedup introduced by the gridified versions of the restoration application with respect to
the original implementation

restored per minute. As reported, the JGRIM application offered a throughput level similar to

its competitors, and even better levels were achieved by using policies.

In addition, Figure 7.17 depicts the speedups associated to the restoration application, calculated

as the time necessary to execute the original implementation (estimated by the above bench-

mark) over the time required to run the Grid-aware versions. Remarkably, employing a very

simple policy allowed the JGRIM application to outperform the Ibis as well as the ProActive

implementations.

7.3.2.2 Comparison of network traffic and packets

To profile the network resources utilized by the variants of the restoration application, the net-

work traffic (measured in MB) and TCP packets generated during the test runs were measured.

In this sense, Figure 7.18 shows the total traffic in MB generated by each variant during the

whole experiment, that is, the traffic accumulated throughout the ten runs that were performed

to compute the average execution time. Moreover, traffic has been discriminated into two types:

intra cluster, which counts the LAN traffic generated to communicate any pair of machines

residing in the same cluster, and extra cluster, which measures the total network traffic for send-

ing data between two machines that belong to different clusters. Since clusters are connected

to each other by Internet links, it is extremely desirable to generate little extra cluster traf-

fic because Internet communication is several orders of magnitude more expensive than local

communication.

7.3. PANORAMIC IMAGE RESTORATION 159

 0

 50

 100

 150

 200

 250

 300

 350

 400

JGRIM
(move policy)

JGRIMProActiveIbis

T
ot

al
 T

ra
ffi

c
(M

B
)

(le
ss

 is
 b

et
te

r)

Implementation Variant

Intra cluster
Extra cluster

Figure 7.18: Total traffic (MB) generated during the entire experiment

The plain JGRIM variant of the application generated less and more traffic than the Ibis and

ProActive implementations, respectively. However, extra cluster communication in the JGRIM

version represented the 84% of its total traffic, against a higher value of 89% for ProActive.

Furthermore, using policies allowed JGRIM to further reduce the total traffic. Even more

interesting, the percentage of extra cluster communication with respect to the total traffic in

the policy-based JGRIM application dropped down to 57%. In addition, this latter reduced

the extra cluster communication of ProActive by almost 18% (30 MB). These facts evidence an

important aspect of JGRIM: policies are certainly useful not only to achieve higher performance

but also to make a better use of Grid network resources.

There are other interesting points that can be observed from the figure. First, the middleware

that generated the least amount of total network traffic was ProActive. Unlike the rest of the

implementations in which nodes randomly try to steal jobs from their peers and thus many

messages may be sent before actually get a job to execute, ProActive promotes the use of a job

submission model in which the application decides which node (i.e. which active object) should

handle the execution of the next unfinished job. In consequence, less traffic is generated, but

a significant amount of code have to be provided by the programmer in order to support this

mechanism. Second, similar to the case of TET discussed in the previous subsection, JGRIM

incidentally used less network resources than Ibis since both implementations access the services

provided by the Ibis platform according to a different application execution scheme.

160 CHAPTER 7. EXPERIMENTAL RESULTS

 0

 20

 40

 60

 80

 100

 120

Image 5Image 4Image 3Image 2Image 1

E
xt

ra
 C

lu
st

er
 T

ra
ffi

c
(M

B
)

(le
ss

 is
 b

et
te

r)

Ibis
ProActive

JGRIM
JGRIM (move policy)

Figure 7.19: Total traffic (MB) generated during the entire experiment

As a complement, Figure 7.19 illustrates the extra cluster network traffic (also in MB) generated

by each application during the restoration process of an individual image. Naturally, the total

traffic results in higher values as the size of the input image increases. In all cases, the variant

of JGRIM with the move policy was the most efficient application in terms of network usage.

Lastly, data tables of the total packets destinated to intra and extra cluster communication across

Grid nodes when restoring individual images can be found in Appendix D. The percentage of

extra cluster packets with respect to the total generated packets was 52 (Ibis), 89 (ProActive), 72

(JGRIM) and 57 (JGRIM with policy). In consequence, the non-policy and policy-based JGRIM

implementations of the application experienced network performance levels –with respect to

TCP packets– similar to that of ProActive and Ibis, respectively. The amount of packets used

to carry out local communication can be ignored, as they are subject to very small latency

values compared to extra cluster communication. Finally, in both JGRIM implementations, a

high percentage of the extra cluster packets corresponded to communication performed by the

Ibis execution service.

7.4 Conclusions

This chapter described in detail some experiments that were performed with JGRIM in order to

validate GRATIS. Specifically, the validation was carried out by comparing JGRIM with Ibis and

ProActive, two Java-based platforms for Grid application development and execution that ma-

terialize alternative approaches to gridification. Experiments show that gridifying applications

with JGRIM demands less effort from the developer, and effectively preserves the application

7.4. CONCLUSIONS 161

logic, thus producing Grid-aware code that is significantly easier to maintain, test, and port to

various Grid settings and platforms. In addition, experiments suggest that, even when JGRIM

may cause gridified applications to consume more Grid resources than their Ibis and ProActive

counterparts, this do not directly translate into an irremediable problem, since policies can be

used to easily and non-intrusively improve resource usage and to allow JGRIM applications to

perform in a very competitive way with regard to related approaches.

162 CHAPTER 7. EXPERIMENTAL RESULTS

Chapter 8
Conclusions and future work

The Grid is a globally distributed computing environment that virtualizes resources underneath

an abstract layer providing special services through which applications can greatly improve

their capabilities. The notion of “Grid” find its roots in an analogy with the electrical power

grid infrastructure, since developers will take advantage of Grid resources by simply plugging

conventional applications to the Grid. However, zero-effort portability of ordinary applications

is still far from being a reality.

In this light, the previous chapters described a new approach for gridifying existing applica-

tions called GRATIS, whose goal is to solve the problems inherent to gridification not yet

fully addressed in the literature. Essentially, GRATIS promotes separation of concerns between

application logic and Grid behavior, combining the notions of Dependency Injection, service--

oriented software and mobile services to facilitate the construction of API-agnostic, maintainable,

portable and efficient Grid applications. Based on the concepts introduced by GRATIS, a mid-

dleware for gridifying applications called JGRIM was implemented. JGRIM allows the developer

to easily gridify an application by mapping it to an MGS, which are basically mobile entities

that live in the Grid. JGRIM injects MGSs with one or more metaservices to transparently

interact with Grid resources, infrastructure services and other MGSs.

In order to experimentally validate the GRATIS approach, some applications were developed and

then gridified by using JGRIM as well as other Grid toolkits designed for gridifying applications.

Then, a detailed analysis of the incurred gridification effort in each case was carried out. In

addition, a comparison of the different implementations in terms of their runtime behavior

and resource usage was performed. To this end, a concrete Grid setting composed of several

Internet-connected computer clusters was configured, which served as a testbed for running

the applications. From the experiments, it can be seen that JGRIM, besides reducing the

gridification effort and producing Grid-free application code, allows Grid-enabled applications

to achieve levels of efficiency very similar or even better compared to applications gridified with

the other middlewares.

The next section details the main contributions of the present work to the area of Grid Com-

163

164 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

puting. Then, Section 8.2 enumerates its limitations. Later, Section 8.3 describes prospective

future research directions. Finally, Section 8.4 presents concluding remarks.

8.1 Contributions

This thesis introduces several contributions to the area of Grid Computing:

• It defines a novel, two-step approach to gridification that combines the benefits of the

component-based and SOA programming paradigms in terms of modularity, reusability,

loose coupling and interoperability, with the advantages of the Dependency Injection con-

cept, which allows application components and distributed services to be transparently

assembled together at the middleware level. GRATIS builds upon these notions to allow

conventional applications to use Grid services with a minimum development effort. In

addition, GRATIS prescribes an effective tuning support for gridified applications that

is based on the notions of mobile software and policies, that is, a mechanism to non--

intrusively and dynamically adapt the execution of a Grid application according to the

characteristics of both the particular Grid setting being used and the specific Grid services

accessed by the application.

• From a software engineering perspective, GRATIS has a positive impact on Grid appli-

cation development as a whole, since its gridification process produces applications that

possess several quality attributes that are highly desirable for any type of software sys-

tem. Specifically, as the gridified code combines but do not mix the original application

logic with the Grid functionality, testing and improving this logic outside a Grid setting

becomes more convenient. As a corollary, since the gridified application logic is free from

Grid-related code, it is easier to port the same code to various Grid settings and execution

environments. In addition, there are also some gains in terms of legibility, since the gridi-

fied code is more clear and is completely unaware of the Grid, thus developers do not need

to know in advance specific Grid technologies or APIs before making further improvements

or extensions to the application code.

• Through JGRIM, which is a middleware that materializes the GRATIS approach, the thesis

experimentally showed that it is possible to achieve –with an acceptable programming

effort– good levels of response time and network resource usage for a gridified application

without forcing the developer to explicitly alter the application logic. In other words,

providing implicit interaction between application logic and Grid services and still let

applications to execute efficiently is viable from a practical point of view. In addition,

since concerns related to service interaction are completely handled at the middleware

level, JGRIM may also serve as a toolkit to greatly simplify the implementation of service-

oriented distributed applications in other domains, such as electronic commerce and e--

business applications.

8.2. LIMITATIONS 165

• The thesis specifies a taxonomic framework that attempt to help the Grid research com-

munity to better understand the different dimensions of the gridification problem. Particu-

larly, the framework is composed of four taxonomies that characterize existing approaches

to gridification in terms of application redesign, compilation unit reimplementation, grid-

ification granularity, and the kind of Grid resources applications are able to transparently

leverage after gridification. The framework proved to be very useful to set a common

basis for analysis and comparison among the existing approaches aimed at addressing the

problem of gridifying ordinary applications.

• GRIM is a generic model based on SOA concepts and separation of concerns that guides

and facilitates the construction of mobile software and supporting platforms. Basically,

GRIM models common interaction patterns between applications and resources in dis-

tributed environments, and prescribes mechanisms to easily make these interactions more

efficient. The model has been materialized by JGRIM as well as by other middlewares for

Internet development. In this sense, its versatility may help to facilitate its widespread

adoption not only to build Grid and Internet applications but also to develop other kind

of distributed systems, such as those running in local networks, computer clusters and

supercomputers.

8.2 Limitations

A limitation of the GRATIS approach arises as a consequence of the assumptions made when

gridifying applications. Specifically, GRATIS assumes input applications as being constructed

under a component-based paradigm, comprising a number of components exposing and re-

questing services through well-defined interfaces. Although the component-based programming

paradigm is very popular, the assumption does not likely hold for any kind of applications. In

the context of JGRIM, this may be the case of legacy Java code or applications having a bad

structure in terms of object-oriented design. Fortunately, the problem of componentizing exist-

ing object-oriented applications has been already addressed in the literature (Lee et al., 2003;

Kim and Chang, 2004). In this sense, a similar approach could be followed to provide JGRIM

with an extra transformation step to ensure, prior to gridification, that input applications are

in fact component-based applications.

Even though JGRIM is a tool that simplifies the gridification of existing applications and pro-

duces code that is free from Grid functionality, its current implementation lacks proper support

for configuring and deploying ordinary applications to a specific Grid setting, and also for mon-

itoring the execution of gridified applications. Consequently, development support tools are

currently being developed to make JGRIM easy to adopt and use. Specifically, a prototype

plug-in for the Eclipse SDK has been implemented. The middle-term goal of this tool is to help

developers in gridifying their applications by graphically defining dependencies, creating/associ-

ating custom policies to these dependencies, and configure the necessary parameters to perform

166 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the execution of the application on a Grid, such as the logical network where it will reside,

authentication credentials, UDDI information, etc. It is expected that, in the future, the plug-in

will also let users to debug and inspect the execution state of gridified applications.

Another weak point of the implementation of JGRIM is concerned with the management of

self-dependencies. In its current state, JGRIM allows developers to declare exactly one self--

dependency in the main application component, whose operations are by default executed by

means of the Ibis services. On the contrary, note that having many self-dependencies would

allow gridified applications to simultaneously benefit from a wide variety of Grid execution

services. For example, operations having very strict or hard performance requirements might

be associated to efficient and fault-tolerant Grid execution services, whereas operations that are

suspected to cause problems or to behave abnormally might be handled by execution services

that additionally include a convenient support for performing application debugging and error

diagnosis.

8.3 Future work

In the course of this work, several directions for future research have been identified. In the

following paragraphs, some of them are described.

8.3.1 Enhancement of the Parallelization Support

An interesting point that deserves further attention is concerned with the current implementation

of the parallelization and policy support of JGRIM. On one hand, the method spawning scheme

employed to handle the execution of self-dependency operations and wait for the corresponding

results could be extended to transparently parallelize the invocation of operations declared by

other types of dependencies (e.g. to Grid functional services). In this way, parallelly contacting

for example two Grid services S1 and S2, together with the usage of policies that customize the

way interaction with services is performed, may bring significant benefits in terms of performance

thus allowing JGRIM to produce more efficient Grid applications. However, it will be necessary

to carefully study how this new support affects not only the existing metaservices but also the

execution model for MGSs. For example, it is necessary to determine how to handle a situation

in which a policy attached to S1 decides to move the MGS to another host while the result of a

parallel invocation to S2 is still not available.

Similarly, the policy support could be also enhanced to provide facilities for customizing par-

allelization, such as controlling at runtime the way dependency operations are called (syn-

chronously vs. asynchronously) or under what conditions the execution of a certain self--

dependency operation should be spawned. This will allow programmers to better adapt the

same application code –with few or even no modifications– to the underlying Grid environ-

ment by using parallelization only in those cases where it helps in improving performance. For

example, it may be useful to control the number of spawns generated by the application when

8.3. FUTURE WORK 167

executing on an Ibis network according to conditions such as network size, processing capabilities

of its nodes, latencies, and so on. An interesting recent work in this line is POP-C++ (Nguyena

and Kuonen, 2007), a parallel programming language based on C++ that provides inter-object

and intra-object parallelism according to various method invocation semantics.

8.3.2 Decentralized Mechanisms for Service Discovery

Another issue that should be explored in the near future is the use of more efficient mechanisms

for service discovery across a Grid. Currently, service invocation and discovery metacomponents

in JGRIM basically operate on a client-server basis: when an MGS requests a certain service, an

appropriate service instance is retrieved by first contacting and then querying a specific service

registry. However, tomorrow’s Grids will offer thousands or perhaps millions of services to user

applications. Additionally, as Grids evolve, the number of potential clients for these services will

increase at a very high rate. In this context, achieving good scalability will be crucial, therefore

rendering solutions for service discovery based on centralized schemes absolutely inappropriate.

At present, approaches to decentralized service discovery include the use of UDDI node federa-

tions (clouds) and P2P technologies (Garofalakis et al., 2006), among others. Consequently, an

important future line of research involves to incorporate in JGRIM a service discovery mecha-

nism that follows either of these approaches. An incipient work in this line is the extension of

the GMAC P2P protocol (Gotthelf et al., 2005) with service discovery capabilities.

8.3.3 Ease of Deployment

Although the analysis throughout this work has been explicitly centered around the notion of

gridification as the process of transforming the source code of an application to run on the Grid,

an aspect that deserves special attention is the amount of configuration that may be necessary

to truly make this transformation happen. In a broader sense, gridifying an application is not

only concerned with making conventional source code Grid-aware, but also with supplying some

Grid-dependent configuration in order to run the adapted application, which usually ranges from

application-specific parameters (e.g. expected execution time and memory usage) to deployment

information (e.g. number of nodes to use). Sadly, this demands developers to know in advance

many platform-related details before an application can take advantage of Grid services.

As gridification methods evolve, difficulties in gridifying ordinary applications seem to move

from adapting source code to configuring and deploying Grid-aware applications (Mateos et al.,

2007a). For example, this fact is evident in those approaches (e.g. GEMLCA, GRASG, XCAT)

where code modification is not required but deployment becomes difficult. Nevertheless, the

problem of simplifying the deployment of Grid applications has been acknowledged by the Grid

research community. For instance, a ProActive application can be executed on several Internet-

connected machines by configuring and launching the application at a single location. In this

sense, future research in JGRIM will be also oriented towards make the launching, tuning and

168 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

deployment of gridified applications onto any Grid easier. One initial step towards reaching this

end includes the Eclipse plug-in for gridifying applications mentioned above.

8.3.4 Language Independence

The approach to gridification described in this thesis is strongly based on notions from com-

ponent-based software development, Dependency Injection and object-oriented programming.

In addition, GRATIS has been at present materialized only for the Java language. In this

sense, future research will explore the viability of materializing GRATIS concepts in other lan-

guages implementing alternative programming paradigms, such as compiled languages like C++

or interpreted languages like Python, Ruby or Perl. The main motivation of this task is that

many of these languages (specially C++) are being extensively used for programming Grid and

parallel applications. Note that materializing GRATIS in a different language will require to

study whether the language supports the necessary core features such as application migra-

tion, function/method execution introspection, Web Service invocation capabilities, an so forth.

Fortunately, many frameworks supporting the DI pattern for a variety of languages already ex-

ist, such as Autumn Framework and QtIocContainer (C++), Spring Python and PyContainer

(Python), Copland and Needle (Ruby), and IOC Module (Perl). In addition, APIs for inter-

acting with remote services as well as libraries implementing process migration techniques for

some of these languages also exist. In this way, developers will be able to take advantage of the

benefits of GRATIS for gridifying their applications and at the same time using programming

languages of their choice.

8.3.5 Security

Finally, an important feature still missing in the solution described in this thesis is concerned

with security provisioning. Since GRATIS applications can potentially travel across the bound-

aries of different administrative domains looking for Grid services and other applications, security

is crucial to guarantee the integrity of both traveling applications and resource providers. The

main factor that has hindered the widespread adoption of mobile agents is precisely their se-

curity problems (Kotz and Gray, 1999). Nevertheless, the problem of supporting security in

mobile agent systems has been widely acknowledged and extensively investigated (Jansen, 2000;

Claessens et al., 2003; Bellavista et al., 2004). In this sense, a line of future research is to in-

corporate proper security mechanisms into the agent execution model of GRATIS, and also to

study how these mechanisms can be integrated with existing security services for the Grid such

as GSI1.

1The Grid Security Infrastructure (GSI): http://www.globus.org/security/overview.html

8.3. FUTURE WORK 169

8.3.6 Integration with Mobile Devices

Mobile devices such as Personal Digital Assistant (PDA), cell and smart phones, and wearable

computers, are becoming increasingly common. As time goes on, the trend seems to significantly

increase, which will result in the following years in an unprecedented, huge mobile computing

community. Yet, these devices are often limited in terms of resource capabilities, since processing

power is low, battery life is finite, and memory space and storage capacity are heavily constrained.

In addition, mobile devices commonly are connected to the Internet through wireless links which

are unreliable and slow. These facts limits the potential of mobile devices as elements fully

integrated to the Grid for accessing and consuming its services from anywhere and everywhere.

In this context, mobile agent technology is particularly useful (Vasiu and Mahmoud, 2004;

Spyrou et al., 2004). For example, agents can travel from a resource-constrained device to a wired

network, and then locally perform an expensive computation by making use of the resources and

services hosted at the new execution environment. Consequently, future investigations will also

study how JGRIM agents can help mobile users to easily, transparently and efficiently leverage

the services provided by the Grid. As an aside, as both mobile devices can be viewed as both

Grid clients and Grid nodes hosting limited nevertheless useful and potentially idle resources

(Chu and Humphrey, 2004), another research line is concerned with extending GRATIS and

JGRIM concepts to Grids composed of static as well as mobile nodes.

8.3.7 Semantic Grids

One major problem of current Grids is that its metadata – that is, the information about the

characteristics and capabilities of both Grid resources and services – is generated and used

in an ad-hoc fashion, and is mostly hardwired in the middleware code libraries and database

schemas (Corcho et al., 2006). This leads to Grid systems and applications that are brittle when

faced with frequent changes in the syntactic structure of resource and service metadata, and

the protocols to access it. Precisely, the Semantic Grid is an extension of the current Grid in

which resources and services are associated well-defined meaning through machine-processable

descriptions that maximize the potential for automatic sharing and reuse, thus better enabling

computers and people to work in cooperation.

The Semantic Grid is essentially the application of the principles of the Semantic Web (Berners-

Lee et al., 2001) to the Grid environment. As a matter of fact, the Semantic Grid is often viewed

as the result of combining Grids and Semantic Web technologies in order to simultaneously

achieve increased levels of computational performance and application interoperability. In this

sense, future research will study how to enhance GRATIS metaservices and gridified applications

with metadata processing capabilities. A preliminary result in this line includes Apollo (Mateos

et al., 2006b; Mateos et al., 2006a), a semantic-based service publication and discovery system

that is designed to be used in massively distributed computing environments such as the Web.

As a first step, the research will be focused on applying and adapting the ideas underpinning

Apollo to the JGRIM middleware.

170 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.4 Final remarks

The Grid is an arrangement of distributed resources such as processing power, storage, services

and applications that aims at allowing users to improve the execution capabilities of their ap-

plications by many orders of magnitude. Just like the Web, which is a system offering a huge

amount of information in the form of text, images and video that can be easily accessed by users

through a Web browser, a major goal of the Grid Computing paradigm is to enable developers

to benefit from its resources with minimum (or ideally zero) implementation effort. However,

the goal seems to be very far from being achieved, as plugging applications onto a Grid setting

still requires these applications to be significantly modified or carefully configured before they

can efficiently take advantage of Grid resources.

In this light, the thesis outlined throughout this work addressed the problem of ease gridification

of conventional applications, that is, porting to the Grid applications that were not originally

thought to run on a Grid environment. GRATIS showed that it is possible to simultaneously

gridifying software with less effort, producing efficient Grid applications, and preserve the original

application logic. Essentially, GRATIS is a step towards providing gridification techniques in

which applications are gridified in a fully transparent and effortless way. In summary, GRATIS

is an important contribution to the area of Grid Computing that leaves the door open to future

research so as to improve the scalability, deployability and security of gridified applications, thus

promoting a broad adoption of the approach to build real and production Grid applications.

Appendix A
Source Code of the k-NN Application

This appendix contains the source code associated to the implementations of the k-NN algorithm

discussed in Section 7.2. Particularly, Section A.1 shows the code of the original (i.e. non--

gridified) application. Later, Sections A.2, A.3 and A.4 shows the code of the Ibis, JGRIM and

ProActive implementations, respectively. For the sake of clarity, only the most relevant portions

of the application code are shown in each case.

A.1 Original

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . L inkedLis t ;

public class KNNAlgorithm {
DatasetReader datas e t ;

KNNAlgorithm () {
datas e t = new DatasetReader () ;

}
protected In s tance [] g e t I n s t an c e s (int item) {

return datas e t . readRange (item , item + 1000) ;

}
public double c l a s s i f y I n s t a n c e (In s tance instance , int k)

throws Exception {
Double g r ea t e s tC l a s s = new Double (0 . 0) ;

i f (i n s t an c e . hasMiss ingValue ()) {
throw new RuntimeException (”No support f o r mis s ing va lues ! ”) ;

}

171

172 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

LinkedLis t ne ighborL i s t = new LinkedLis t () ;

int numInstances = datas e t . numInstances () ;

for (int i = 0 ; i < numInstances ;) {
In s tance [] b lock = ge t I n s t an c e s (i) ;

for (int arrayIndex = 0 ; arrayIndex < 1000; arrayIndex++) {
In s tance t r a i n In s t an c e = block [arrayIndex] ;

// Use ”t ra i n In s t anc e ” to update the current ne ighbor l i s t

// a s s oc i a t e d to ”ins tance ”

. . .

}
i += 1000;

}
// Compute the most f r e qu en t c l a s s l a b e l i n t o ”g r e a t e s tC l a s s ”

return g r ea t e s tC l a s s . doubleValue () ;

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k)

throws Exception {
double [] r e s u l t = new double [i n s t an c e s . l ength] ;

for (int i = 0 ; i < i n s t an c e s . l ength ; ++i) {
r e s u l t [i] = c l a s s i f y I n s t a n c e (i n s t an c e s [i] , k) ;

}
return r e s u l t ;

}
}

A.2 Ibis

import i b i s . s a t i n . Sat inObject ;

import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . L inkedLis t ;

public class KNNAlgorithm extends Sat inObject

implements KNNSpawnInterface , S e r i a l i z a b l e {
transient I b i sData s e tC l i en t datas e t ;

KNNAlgorithm () {
}
protected In s tance [] g e t I n s t an c e s (int s ta r t Index) {

return datas e t . readRange (s tar t Index , s ta r t Index + 1000) ;

A.2. IBIS 173

}
public double c l a s s i f y I n s t a n c e (In s tance instance , int k)

throws Exception {
Double g r ea t e s tC l a s s = new Double (0 . 0) ;

datas e t = new I b i sData s e tC l i en t () ;

i f (i n s t an c e . hasMiss ingValue ()) {
throw new RuntimeException (”No support f o r mis s ing va lues ! ”) ;

}
LinkedLis t ne ighborL i s t = new LinkedLis t () ;

int numInstances = datas e t . numInstances () ;

for (int i = 0 ; i < numInstances ;) {
In s tance [] b lock = ge t I n s t an c e s (i) ;

for (int arrayIndex = 0 ; arrayIndex < 1000; arrayIndex++) {
In s tance t r a i n In s t an c e = block [arrayIndex] ;

// Use ”t ra i n In s t anc e ” to update the current ne ighbor l i s t

// a s s oc i a t e d to ”ins tance ”

. . .

}
i += 1000;

}
// Compute the most f r e qu en t c l a s s l a b e l i n t o ”g r e a t e s tC l a s s ”

return g r ea t e s tC l a s s . doubleValue () ;

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k)

throws Exception {
ValueHolder holder = new ValueHolder (i n s t an c e s . l ength) ;

ho lder . exportObject () ;

for (int i = 0 ; i < i n s t an c e s . l ength ; ++i) {
s p awn c l a s s i f y (holder , i n s t an c e s [i] , k , i) ;

}
sync () ;

return holder . ge tResu l t s () ;

}
public void s p awn c l a s s i f y (ValueHolder holder , In s tance i ,

int k , int ch i l d) {
try {

double value = this . c l a s s i f y I n s t a n c e (i , k) ;

ho lder . s etValue (ch i ld , va lue) ;

} catch (Exception e) {
e . pr in tStackTrace () ;

}

174 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

}
}

import i b i s . s a t i n . Spawnable ;

public interface KNNSpawnInterface extends Spawnable {
public void s p awn c l a s s i f y (ValueHolder holder , In s tance i ,

int k , int ch i l d) ;

}

import i b i s . s a t i n . SharedObject ;

f ina l class ValueHolder extends SharedObject

implements Write In te r f ace {
double [] array = null ;

public ValueHolder (int i n s t an c e s) {
array = new double [i n s t an c e s] ;

}
public void setValue (int ch i ld , double value) {

array [c h i l d] = value ;

}
public double [] g e tResu l t s () {

return array ;

}
}

import i b i s . s a t i n . WriteMethodsInter face ;

public interface Write In te r f ace extends WriteMethodsInter face {
public void setValue (int ch i ld , double value) ;

}

A.3 JGRIM

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . L inkedLis t ;

public class KNNAlgorithm extends core . JGRIMAgent {
Data s e t I n t e r f a c e datas e t ;

A.3. JGRIM 175

Para l l e lMethod In te r f a ce s e l f d ependency ;

public KNNAlgorithm () {
}
public void s e td a ta s e t (Data s e t I n t e r f a c e datas e t) {

this . datas e t = datas e t ;

}
public Data s e t I n t e r f a c e ge tdatas e t () {

return datas e t ;

}
public Para l l e lMethod In te r f a ce ge t s e l f d ependency () {

return s e l f d ependency ;

}
public void s e t s e l f d ep endency (

Para l l e lMethod In te r f a c e s e l f d ependency) {
this . s e l f d ependency = se l fd ependency ;

}
protected In s tance [] g e t I n s t an c e s (int item) {

return getdatas e t () . readRange (item , item + 1000) ;

}
public double c l a s s i f y I n s t a n c e (In s tance instance , int k)

throws Exception {
Double g r ea t e s tC l a s s = new Double (0 . 0) ;

i f (i n s t an c e . hasMiss ingValue ()) {
throw new RuntimeException (”No support f o r mis s ing va lues ! ”) ;

}
LinkedLis t ne ighborL i s t = new LinkedLis t () ;

int numInstances = getdatas e t () . numInstances () ;

for (int i = 0 ; i < numInstances ;) {
In s tance [] b lock = ge t I n s t an c e s (i) ;

for (int arrayIndex = 0 ; arrayIndex < 1000; arrayIndex++) {
In s tance t r a i n In s t an c e = block [arrayIndex] ;

// Use ”t ra i n In s t anc e ” to update the current ne ighbor l i s t

// a s s oc i a t e d to ”ins tance ”

. . .

}
i += 1000;

}
// Compute the most f r e qu en t c l a s s l a b e l i n t o ”g r e a t e s tC l a s s ”

return g r ea t e s tC l a s s . doubleValue () ;

}

176 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k ,

int s ta r t , int end) throws Exception {
i f (end − s t a r t == 1)

return new double [] { c l a s s i f y I n s t a n c e (i n s t an c e s [s t a r t] , k) } ;
int mid = (s t a r t + end) / 2 ;

double [] r e s1 = c l a s s i f y I n s t a n c e s (in s tances , k , s ta r t , mid) ;

double [] r e s2 = c l a s s i f y I n s t a n c e s (in s tances , k , mid , end) ;

double [] r e s u l t = new double [r e s1 . l ength + res2 . l ength] ;

System . arraycopy (res1 , 0 , r e s u l t , 0 , r e s1 . l ength) ;

System . arraycopy (res2 , 0 , r e s u l t , r e s1 . length , r e s2 . l ength) ;

return r e s u l t ;

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k)

throws Exception {
return get s e l f d ependency () . c l a s s i f y I n s t a n c e s (in s tances , k ,

0 , i n s t an c e s . l ength) ;

}
}

public interface Data s e t I n t e r f a c e {
public int numInstances () ;

public In s tance readItem (int itemNumber) ;

public In s tance [] readRange (int s ta r t , int end) ;

}

public interface Para l l e lMethod In te r f a c e {
public double [] c l a s s i f y I n s t a n c e s (In s tance [] in s tance ,

int k , int s ta r t , int end) throws Exception ;

}

import i b i s . s a t i n . Sat inObject ;

import java . i o . ByteArrayInputStream ;

import java . i o . ObjectInputStream ;

import java . lang . r e f l e c t . Method ;

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . L inkedLis t ;

import java . u t i l . z ip . GZIPInputStream ;

public class KNNAlgorithmPeer extends Sat inObject

implements Para l l e lMethod In te r f acePeer {

A.3. JGRIM 177

private byte [] s e r i a l i z edAgen t = null ;

private transient Object targetAgent = null ;

public KNNAlgorithmPeer () {
}
public void s e tS e r i a l i z edAgen t (byte [] s e r i a l i z edAgen t) {

this . s e r i a l i z edAgen t = s e r i a l i z edAgen t ;

}
public Object getTargetAgent () throws Throwable {

i f (targetAgent == null) {
ByteArrayInputStream bStream = new ByteArrayInputStream (

s e r i a l i z edAgen t) ;

GZIPInputStream zStream = new GZIPInputStream(bStream) ;

ObjectInputStream oStream = new ObjectInputStream (zStream) ;

targetAgent = oStream . readObject () ;

}
return targetAgent ;

}
protected Object getDependency (S t r ing name) {

try {
Object agent = getTargetAgent () ;

S t r ing mname = ”get ” + name ;

Method m = agent . ge tC las s () . getMethod (mname, new Class [] {}) ;

Object r e s = m. invoke (agent , new Object [] {}) ;

return r e s ;

} catch (Throwable e) {
e . pr in tStackTrace () ;

return null ;

}
}
public Data s e t I n t e r f a c e ge tdatas e t () {

return (Data s e t I n t e r f a c e) getDependency (”datas e t ”) ;

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k ,

int s ta r t , int end) throws Exception {
// Same implementat ion as the KNNAlgorithm c las s , bu t proper l y

// i n c l u d i n g the sync () I b i s p r im i t i v e

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k)

throws Exception {

178 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

return c l a s s i f y I n s t a n c e s (in s tances , k , 0 , i n s t an c e s . l ength) ;

}
}

import i b i s . s a t i n . Spawnable ;

public interface Para l l e lMethod In te r f acePeer extends Spawnable {
public double [] c l a s s i f y I n s t a n c e s (In s tance [] in s tance ,

int k , int s ta r t , int end) throws Exception ;

}

A.4 ProActive

import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . L inkedLis t ;

import java . u t i l . Vector ;

import org . objectweb . p roact ive . ProActive ;

import org . objectweb . p roact ive . core . node . Node ;

import org . objectweb . p roact ive . core . u t i l . wrapper . GenericTypeWrapper ;

public class KNNAlgorithm implements S e r i a l i z a b l e {
transient Proact iveDatas e tC l i en t datas e t ;

Node [] nodes = null ;

private boolean [] i sNodeAvai lab le ;

private Hashtable assignedWork ;

Hashtable childNodeHash ;

public KNNAlgorithm () {
}
public KNNAlgorithm (Node [] nodes) {

this . nodes = nodes ;

i n i t i a l i z eN od e s (nodes . l ength) ;

assignedWork = new Hashtable () ;

childNodeHash = new Hashtable () ;

}
protected void i n i t i a l i z eN od e s (int numberOfNodes) {

this . i sNodeAvai lab le = new boolean [numberOfNodes] ;

for (int i = 0 ; i < numberOfNodes ; i++)

isNodeAvai lab le [i] = true ;

A.4. PROACTIVE 179

}
protected int getAvai lab leNode () {

for (int i = 0 ; i < i sNodeAvai lab le . l ength ; i++)

i f (i sNodeAvai lab le [i])

return i ;

return −1;

}
protected Vector getCurrentFutureL is t () {

Vector f u t u r eL i s t = new Vector () ;

Enumeration cu r r en tF l = assignedWork . e lements () ;

while (cu r r en tF l . hasMoreElements ())

f u t u r eL i s t . add (cu r r en tF l . nextElement ()) ;

return f u t u r eL i s t ;

}
protected Proact iveDatas e tC l i en t getDataset () {

i f (datas e t == null) {
datas e t = new Proact iveDatas e tC l i en t () ;

}
return datas e t ;

}
protected Proact iveDatas e tC l i en t getDataset () {

i f (datas e t == null) {
datas e t = new Proact iveDatas e tC l i en t () ;

}
return datas e t ;

}
protected In s tance [] g e t I n s t an c e s (int item) {

return getDataset () . readRange (item , item + 1000) ;

}
public GenericTypeWrapper c l a s s i f y I n s t a n c e (In s tance instance , int k ,

int instanceNumber) throws Exception {
Double g r ea t e s tC l a s s = new Double (0 . 0) ;

i f (i n s t an c e . hasMiss ingValue ()) {
throw new RuntimeException (”No support f o r mis s ing va lues ! ”) ;

}
LinkedLis t ne ighborL i s t = new LinkedLis t () ;

int numInstances = getDataset () . numInstances () ;

for (int i = 0 ; i < numInstances ;) {
In s tance [] b lock = ge t I n s t an c e s (i) ;

for (int arrayIndex = 0 ; arrayIndex < 1000; arrayIndex++) {
In s tance t r a i n In s t an c e = block [arrayIndex] ;

180 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

// Use ”t ra i n In s t anc e ” to update the current ne ighbor l i s t

// a s s oc i a t e d to ”ins tance ”

. . .

}
i += 1000;

}
// Compute the most f r e qu en t c l a s s l a b e l i n t o ”g r e a t e s tC l a s s ”

TaskResult r e s u l t = new TaskResult (

g r ea t e s tC l a s s . doubleValue () , instanceNumber) ;

return new GenericTypeWrapper (r e s u l t) ;

}
public double [] c l a s s i f y I n s t a n c e s (In s tance [] i n s tances , int k)

throws Exception {
GenericTypeWrapper [] temp =

new GenericTypeWrapper [i n s t an c e s . l ength] ;

for (int i = 0 ; i < i n s t an c e s . l ength ; ++i) {
int av a i l = getAvai lab leNode () ;

i f (a v a i l == −1) {
Vector f l = getCurrentFutureL is t () ;

int f i n i s h e d = ProActive . waitForAny (f l) ;

GenericTypeWrapper element =

(GenericTypeWrapper) f l . elementAt (f i n i s h e d) ;

int so lvedChi ld = ((TaskResult) element . getObject ())

. getCh i ld () ;

assignedWork . remove (so lvedChi ld) ;

int node = childNodeHash . remove (so lvedChi ld) ;

i sNodeAvai lab le [node] = true ;

a v a i l = node ;

}
KNNAlgorithm worker = (KNNAlgorithm) ProActive . newActive (

ge tC las s () . getName () , null , nodes [a v a i l]) ;

temp [i] = worker . c l a s s i f y I n s t a n c e (i n s t an c e s [i] , k , i) ;

i sNodeAvai lab le [a v a i l] = fa l se ;

assignedWork . put (i , temp [i]) ;

childNodeHash . put (i , a v a i l) ;

}
double [] r e s u l t = new double [i n s t an c e s . l ength] ;

for (int i = 0 ; i < i n s t an c e s . l ength ; ++i) {
r e s u l t [i] = ((TaskResult) temp [i] . getObject ())

. g e t I n s t an c eC l a s s () ;

}

A.4. PROACTIVE 181

return r e s u l t ;

}
}

import java . i o . S e r i a l i z a b l e ;

public class TaskResult implements S e r i a l i z a b l e {
private double i n s t an c eC l a s s ;

private int ch i l d ;

public TaskResult (double i n s tanceC las s , int ch i l d) {
this . i n s t an c eC l a s s = in s t an c eC l a s s ;

this . c h i l d = ch i l d ;

}
public int getChi ld () {

return ch i l d ;

}
public double ge t I n s t an c eC l a s s () {

return i n s t an c eC l a s s ;

}
}

182 APPENDIX A. SOURCE CODE OF THE K-NN APPLICATION

Appendix B
Source Code of the Restoration Application

This appendix includes the source code associated to the implementations of the image restora-

tion application presented in Section 7.3. Specifically, Section B.1 shows the code of the original

(i.e. non-Grid aware) restoration application. Later, Sections B.2, B.3 and B.4 shows the code

of the Ibis, JGRIM and ProActive implementations, respectively. For simplicity reasons, the

most relevant portions of the code of the master and worker components are shown in each case.

B.1 Original

import java . i o . IOException ;

import java . u t i l . Hashtable ;

import java . u t i l . I t e r a t o r ;

import java . u t i l . Vector ;

import javax . media . j a i . JAI ;

import javax . media . j a i . PlanarImage ;

import u t i l s . f t p . FTPClientImpl ;

public class ImageRestorer implements Master {
private int i t e r a t i o n s ;

private int ch i l d r en ;

private Object [] r e s u l t s = null ;

private int cu r r en tChi ld = 0 ;

private int remain ing = 0 ;

private FTPClientImpl c l i e n t = null ;

public ImageRestorer (int i t e r a t i o n s , int ch i l d r en) {
this . i t e r a t i o n s = i t e r a t i o n s ;

this . c h i l d r en = ch i l d r en ;

183

184 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

this . remain ing = ch i l d r en ;

this . c l i e n t = new FTPClientImpl () ;

this . r e s u l t s = new Object [ch i l d r en] ;

}

public void res toreImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws Exception {
PlanarImage image = getImage (f i l eL o c a t i o n , f i leName) ;

int width = image . getWidth () ;

int height = image . getHeight () ;

Vector v = Res to r eUt i l s . c r e a t eT i l e s (image ,

width / ch i ld r en , he ight) ;

for (I t e r a t o r i t e r = v . i t e r a t o r () ; i t e r . hasNext () ;) {
byte [] subImagePixels = (byte []) i t e r . next () ;

Hashtable data = new Hashtable () ;

data . put (”p i x e l s ” , subImagePixels) ;

data . put (” i t e r a t i o n s ” , i t e r a t i o n s) ;

submitWork(data , cu r r en tChi ld) ;

cu r r en tCh i ld++;

}
waitAl l () ;

Re s t o r eUt i l s . mergeSubImages(ge tResu l t s () , width / ch i ld r en ,

height , ”/tmp/ r e s ” + f i leName) ;

}
protected PlanarImage getImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws IOException {
c l i e n t . t r an s f e r (f i l e L o c a t i o n , f i leName , ”/tmp” ,

System . getProper ty (”imageftp . user ”) ,

System . getProper ty (”imageftp . passwd ”)) ;

return JAI . c r ea t e (” f i l e l o a d ” , ”/tmp/ ” + fi leName) ;

}
public void submitWork(Hashtable taskData , int cu r r en tCh i ld) {

Worker worker = new Worker (taskData , this , cu r r en tChi ld) ;

startWorker (worker) ;

}
public void startWorker (Worker worker) {

Thread thr = new Thread (worker) ;

thr . s t a r t () ;

}
public void receiveWork (Object r e su l t , int ch i l d) {

r e s u l t s [c h i l d] = r e s u l t ;

B.1. ORIGINAL 185

synchronized (this) {
n o t i f y () ;

remaining−−;

}
}
public void waitAl l () {

while (getRemaining () > 0) {
synchronized (this) {

try {
wait () ;

} catch (Inter ruptedExcept ion i e) {
i e . p r in tStackTrace () ;

}
}

}
}
public synchronized int getRemaining () {

return remain ing ;

}
public Object [] ge tResu l t s () {

return r e s u l t s ;

}
}

import java . u t i l . Hashtable ;

public interface Master {
public void submitWork(Hashtable taskData , int ch i l d) ;

public void receiveWork (Object r e su l t , int ch i l d) ;

public void waitAl l () ;

}

import java . i o . Buf feredReader ;

import java . i o . FileOutputStream ;

import java . i o . InputStream ;

import java . i o . InputStreamReader ;

import java . i o . RandomAccessFile ;

import java . u t i l . Hashtable ;

public class Worker implements Runnable {
private Hashtable taskData = null ;

186 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

private Master master = null ;

private int ch i l d = 0 ;

public Worker (Hashtable taskData , Master master , int ch i l d) {
this . taskData = taskData ;

this . master = master ;

this . c h i l d = ch i l d ;

}
public void run () {

byte [] imageData = (byte []) taskData . get (”p i x e l s ”) ;

int i t e r a t i o n s = (In t eg e r) taskData . get (” i t e r a t i o n s ”) ;

byte [] r e s u l t = null ;

try {
r e s u l t = restoreImage (imageData , i t e r a t i o n s) ;

}
catch (Exception e) {

e . pr in tStackTrace () ;

}
master . receiveWork (r e su l t , c h i l d) ;

}
protected byte [] r es toreImage (byte [] imageData , int i t e r a t i o n s)

throws Exception {
// Runs the ac tua l r e s t o r a t i on proce s s on ”imageData ”

}
}

B.2 Ibis

import i b i s . s a t i n . Sat inObject ;

import java . i o . IOException ;

import java . u t i l . Hashtable ;

import java . u t i l . Vector ;

import javax . media . j a i . JAI ;

import javax . media . j a i . PlanarImage ;

import u t i l s . f t p . FTPClientImpl ;

public class ImageRestorer extends Sat inObject

implements ImageRestorerSpawnInter face {
private int i t e r a t i o n s ;

private int ch i l d r en ;

private Object [] r e s u l t s = null ;

B.2. IBIS 187

private int cu r r en tChi ld = 0 ;

private FTPClientImpl c l i e n t = null ;

public ImageRestorer (int i t e r a t i o n s , int ch i l d r en) {
this . i t e r a t i o n s = i t e r a t i o n s ;

this . c h i l d r en = ch i l d r en ;

this . r e s u l t s = new Object [ch i l d r en] ;

this . c l i e n t = new FTPClientImpl () ;

}
public void res toreImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws Exception {
PlanarImage image = getImage (f i l eL o c a t i o n , f i leName) ;

int width = image . getWidth () ;

int height = image . getHeight () ;

Vector v = Res to r eUt i l s . c r e a t eT i l e s (image ,

width / ch i ld r en , he ight) ;

submitWork(v) ;

Re s t o r eUt i l s . mergeSubImages(ge tResu l t s () , width / ch i ld r en ,

height , ”/tmp/ r e s ” + f i leName) ;

}
public void submitWork(Vector t i l e s) {

Vector temp = submitWork(t i l e s , 0) ;

sync () ;

this . r e s u l t s = temp . toArray () ;

}
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) {

i f (t i l e s . s i z e () == 1) {
byte [] subImagePixels = (byte []) t i l e s . f i r s tE l emen t () ;

Hashtable data = new Hashtable () ;

data . put (”p i x e l s ” , subImagePixels) ;

data . put (” i t e r a t i o n s ” , i t e r a t i o n s) ;

Worker worker = new Worker (data , cu r r en tCh i ld) ;

Vector r e s u l t = new Vector () ;

r e s u l t . addElement (worker . run ()) ;

return r e s u l t ;

}
int mid = t i l e s . s i z e () / 2 ;

Vector t i l e s S t a r t = grabElements (t i l e s , 0 , mid) ;

Vector t i l e sEnd = grabElements (t i l e s , mid , t i l e s . s i z e ()) ;

Vector r e s1 = submitWork(t i l e s S t a r t , cu r r en tCh i ld) ;

Vector r e s2 = submitWork(t i l e sEnd , cu r r en tCh i ld + mid) ;

188 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

sync () ;

r e s1 . addAll (r e s2) ;

return r e s1 ;

}
protected Vector grabElements (Vector target , int s ta r t , int end) {

Vector r e s u l t = new Vector () ;

for (; s t a r t < end ; s t a r t++)

r e s u l t . addElement (t a r g e t . elementAt (s t a r t)) ;

return r e s u l t ;

}
}

import i b i s . s a t i n . Spawnable ;

import java . u t i l . Vector ;

public interface ImageRestorerSpawnInter face extends Spawnable {
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) ;

}

import java . i o . Buf feredReader ;

import java . i o . FileOutputStream ;

import java . i o . InputStream ;

import java . i o . InputStreamReader ;

import java . i o . RandomAccessFile ;

import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Hashtable ;

public class Worker implements S e r i a l i z a b l e {
private Hashtable taskData = null ;

private int ch i l d = 0 ;

public Worker (Hashtable taskData , int ch i l d) {
this . taskData = taskData ;

this . c h i l d = ch i l d ;

}
public byte [] run () {

byte [] imageData = (byte []) taskData . get (”p i x e l s ”) ;

int i t e r a t i o n s = (In t eg e r) taskData . get (” i t e r a t i o n s ”) ;

byte [] r e s u l t = null ;

try {
r e s u l t = restoreImage (imageData , i t e r a t i o n s) ;

B.3. JGRIM 189

} catch (Exception e) {
e . pr in tStackTrace () ;

}
return r e s u l t ;

}
protected byte [] r es toreImage (byte [] imageData , int i t e r a t i o n s)

throws Exception {
// Runs the ac tua l r e s t o r a t i on proce s s on ”imageData ”

}
}

B.3 JGRIM

import java . i o . IOException ;

import java . u t i l . Hashtable ;

import java . u t i l . Vector ;

import javax . media . j a i . JAI ;

import javax . media . j a i . PlanarImage ;

import u t i l s . f t p . FTPCl ientInter face ;

import core . JGRIMAgent ;

public class ImageRestorer extends JGRIMAgent {
private int i t e r a t i o n s ;

private int ch i l d r en ;

private Object [] r e s u l t s = null ;

private FTPCl ientInter face c l i e n t = null ;

S t r ing image = null ;

Para l l e lMethod In te r f a ce s e l f d ependency ;

public ImageRestorer (int i t e r a t i o n s , int ch i ld r en , S t r ing image) {
this . i t e r a t i o n s = i t e r a t i o n s ;

this . c h i l d r en = ch i l d r en ;

this . r e s u l t s = new Object [ch i l d r en] ;

this . image = image ;

}
public void res toreImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws Exception {
// Same implementat ion as the I b i s vers ion , wi th the excep t i on

// o f the e x p l i c i t c a l l s to the sync () I b i s p r im i t i v e

}
public void submitWork(Vector t i l e s) {

190 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

Vector temp = get s e l f d ependency () . submitWork(t i l e s , 0) ;

this . r e s u l t s = temp . toArray () ;

}
protected PlanarImage getImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws IOException {
g e t c l i e n t () . t r an s f e r (f i l e L o c a t i o n , f i leName , ”/tmp” ,

System . getProper ty (”imageftp . user ”) ,

System . getProper ty (”imageftp . passwd ”)) ;

return JAI . c r ea t e (” f i l e l o a d ” , ”/tmp/ ” + fi leName) ;

}
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) {

// Same implementat ion as the I b i s vers ion , wi th the excep t i on

// o f the e x p l i c i t c a l l s to the sync () I b i s p r im i t i v e

}
public FTPCl ientInter face g e t c l i e n t () {

return c l i e n t ;

}
public void s e t c l i e n t (FTPCl ientInter face c l i e n t) {

this . c l i e n t = c l i e n t ;

}
public Para l l e lMethod In te r f a ce ge t s e l f d ependency () {

return s e l f d ependency ;

}
public void s e t s e l f d ep endency (

Para l l e lMethod In te r f a c e s e l f d ependency) {
this . s e l f d ependency = se l fd ependency ;

}
public void s e tRe su l t s (Object [] r e s u l t s) {

this . r e s u l t s = r e s u l t s ;

}
public int getChi ldren () {

return ch i l d r en ;

}
public void s e tCh i ld r en (int ch i l d r en) {

this . c h i l d r en = ch i l d r en ;

}
public int g e t I t e r a t i o n s () {

return i t e r a t i o n s ;

}
public void s e t I t e r a t i o n s (int i t e r a t i o n s) {

this . i t e r a t i o n s = i t e r a t i o n s ;

B.3. JGRIM 191

}
public void run () {

try {
res toreImage (” f tp :// VPNServer ” , image) ;

} catch (Exception e) {
e . pr in tStackTrace () ;

}
}

}

import java . i o . IOException ;

public interface FTPCl ientInter face {
public void transferAnon (S t r ing f tpLocat ion , S t r ing ta r g e tF i l e ,

S t r ing destDir) throws IOException ;

public void t r an s f e r (S t r ing f tpLocat ion , S t r ing ta r g e tF i l e ,

S t r ing destDir , S t r ing username ,

S t r ing password) throws IOException ;

public long g e tF i l e S i z e (S t r ing f tpLocat ion , S t r ing ta r g e tF i l e ,

S t r ing username , S t r ing password) throws IOException ;

public long getFi l eS izeAnon (S t r ing f tpLocat ion ,

S t r ing t a r g e tF i l e) throws IOException ;

}

import java . u t i l . Vector ;

public interface Para l l e lMethod In te r f a c e {
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) ;

}

import java . i o . S e r i a l i z a b l e ;

public class Worker implements S e r i a l i z a b l e {
// Same implementat ion as the I b i s v e r s i on

}

import i b i s . s a t i n . Sat inObject ;

import java . i o . ByteArrayInputStream ;

import java . i o . IOException ;

import java . i o . ObjectInputStream ;

import java . lang . r e f l e c t . Method ;

192 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

import java . u t i l . Hashtable ;

import java . u t i l . Vector ;

import java . u t i l . z ip . GZIPInputStream ;

import javax . media . j a i . JAI ;

import javax . media . j a i . PlanarImage ;

import u t i l s . f t p . FTPCl ientInter face ;

public class ImageRestorerPeer extends Sat inObject

implements Para l l e lMethod In te r f acePeer {
private int i t e r a t i o n s ;

private int ch i l d r en ;

private Object [] r e s u l t s = null ;

private byte [] s e r i a l i z edAgen t = null ;

private transient Object targetAgent = null ;

public ImageRestorerPeer () {
}
public ImageRestorerPeer (int i t e r a t i o n s , int ch i l d r en) {

this . i t e r a t i o n s = i t e r a t i o n s ;

this . c h i l d r en = ch i l d r en ;

this . r e s u l t s = new Object [ch i l d r en] ;

}
public void s e tS e r i a l i z edAgen t (byte [] s e r i a l i z edAgen t) { . . . }
public Object getTargetAgent () throws Throwable { . . . }
protected Object getDependency (S t r ing name) { . . . }
public void res toreImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws Exception { . . . }
public void submitWork(Vector t i l e s) {

// Same implementat ion as the ImageRestorer c l a s s , bu t proper l y

// i n c l u d i n g the sync () I b i s p r im i t i v e

}
protected PlanarImage getImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws IOException { . . . }
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) {

// Same implementat ion as the ImageRestorer c l a s s , bu t proper l y

// i n c l u d i n g the sync () I b i s p r im i t i v e

}
public FTPCl ientInter face g e tC l i en t () {

return (FTPCl ientInter face) getDependency (” c l i e n t ”) ;

}
// S e t t e r s / g e t t e r s f o r the r e s u l t s , c h i l d r en and

B.4. PROACTIVE 193

// i t e r a t i o n s ins tance v a r i a b l e s

. . .

}

import i b i s . s a t i n . Spawnable ;

import java . u t i l . Vector ;

public interface Para l l e lMethod In te r f acePeer extends Spawnable {
public Vector submitWork(Vector t i l e s , int cu r r en tChi ld) ;

}

B.4 ProActive

import java . i o . IOException ;

import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Arrays ;

import java . u t i l . Enumeration ;

import java . u t i l . Hashtable ;

import java . u t i l . I t e r a t o r ;

import java . u t i l . Vector ;

import javax . media . j a i . JAI ;

import javax . media . j a i . PlanarImage ;

import org . objectweb . p roact ive . Act iveObjectCreat ionExcept ion ;

import org . objectweb . p roact ive . ProActive ;

import org . objectweb . p roact ive . core . node . Node ;

import org . objectweb . p roact ive . core . node . NodeException ;

import org . objectweb . p roact ive . core . u t i l . wrapper . GenericTypeWrapper ;

import u t i l s . f t p . FTPClientImpl ;

public class ImageRestorer implements Master , S e r i a l i z a b l e {
private int i t e r a t i o n s ;

private int ch i l d r en ;

private Object [] r e s u l t s = null ;

private int cu r r en tChi ld = 0 ;

private FTPClientImpl c l i e n t = null ;

private Node [] nodes = null ;

private Vector f u t u r eL i s t = null ;

// Data s t r u c t u r e s to maintain the a s s oc i a t i on

// between workers and t h e i r t a s k s

. . .

194 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

public ImageRestorer () {
}
public ImageRestorer (int i t e r a t i o n s , int ch i ld r en , Node [] nodes) {

this . i t e r a t i o n s = i t e r a t i o n s ;

this . c h i l d r en = ch i l d r en ;

this . c l i e n t = new FTPClientImpl () ;

this . r e s u l t s = new Object [ch i l d r en] ;

this . nodes = nodes ;

this . f u t u r eL i s t = new Vector () ;

// I n i t i a l i z e the above data s t r u c t u r e s

. . .

}
public void res toreImage (S t r ing f i l eL o c a t i o n , S t r ing f i leName)

throws Exception {
PlanarImage image = getImage (f i l eL o c a t i o n , f i leName) ;

int width = image . getWidth () ;

int height = image . getHeight () ;

Vector v = Res to r eUt i l s . c r e a t eT i l e s (image ,

width / ch i ld r en , he ight) ;

for (I t e r a t o r i t e r = v . i t e r a t o r () ; i t e r . hasNext () ;) {
byte [] subImagePixels = (byte []) i t e r . next () ;

Hashtable data = new Hashtable () ;

data . put (”p i x e l s ” , subImagePixels) ;

data . put (” i t e r a t i o n s ” , i t e r a t i o n s) ;

submitWork(data , cu r r en tChi ld) ;

cu r r en tCh i ld++;

}
waitAl l () ;

Re s t o r eUt i l s . mergeSubImages(ge tResu l t s () , width / ch i ld r en ,

height , ”/tmp/ r e s ” + f i leName) ;

}
public void submitWork(Hashtable taskData , int cu r r en tCh i ld) {

// Task management/ a c t i v e o b j e c t deployment i s implemented

// s im i l a r to the ProActive ve r s i on o f the k−NN app l i c a t i on

// (see Appendix A)

}
public void startWorker (Worker worker) {

GenericTypeWrapper wrapper = worker . run () ;

f u t u r eL i s t . addElement (wrapper) ;

}
public void receiveWork (Object r e su l t , int ch i l d) {

B.4. PROACTIVE 195

r e s u l t s [c h i l d] = r e s u l t ;

}
public void waitAl l () {

ProActive . waitForAll (f u t u r eL i s t) ;

}
public Object [] ge tResu l t s () {

return r e s u l t s ;

}
}

import java . u t i l . Hashtable ;

public interface Master {
public void submitWork(Hashtable taskData , int ch i l d) ;

public void receiveWork (Object r e su l t , int ch i l d) ;

public void waitAl l () ;

}

import java . i o . Buf feredReader ;

import java . i o . FileOutputStream ;

import java . i o . InputStream ;

import java . i o . InputStreamReader ;

import java . i o . RandomAccessFile ;

import java . u t i l . Hashtable ;

import org . objectweb . p roact ive . core . u t i l . wrapper . GenericTypeWrapper ;

public class Worker implements Runnable , S e r i a l i z a b l e {
private Hashtable taskData = null ;

private Master master = null ;

private int ch i l d = 0 ;

public Worker () {
}
public Worker (Hashtable taskData , Master master , int ch i l d) {

this . taskData = taskData ;

this . master = master ;

this . c h i l d = ch i l d ;

}
public GenericTypeWrapper run () {

byte [] imageData = (byte []) taskData . get (”p i x e l s ”) ;

int i t e r a t i o n s = (In t eg e r) taskData . get (” i t e r a t i o n s ”) ;

196 APPENDIX B. SOURCE CODE OF THE RESTORATION APPLICATION

byte [] r e s u l t = null ;

try {
r e s u l t = restoreImage (imageData , i t e r a t i o n s) ;

} catch (Exception e) {
e . pr in tStackTrace () ;

}
master . receiveWork (r e su l t , c h i l d) ;

return new GenericTypeWrapper () ;

}
protected byte [] r es toreImage (byte [] imageData , int i t e r a t i o n s)

throws Exception {
// Runs the ac tua l r e s t o r a t i on proce s s on ”imageData ”

}
}

Appendix C
Result Tables of the k-NN Application

This appendix presents the data tables containing the measurements of performance and network

resources usage associated to the experiments that were carried out on the k-NN algorithm

presented in Section 7.2. Sections C.1, C.2, C.3 and C.4 shows the result tables of the Ibis,

JGRIM, JGRIM (caching policy) and ProActive implementations, respectively.

C.1 Ibis

C.1.1 Total Execution Time (milliseconds)

Run 5 inst. 10 inst. 15 inst. 20 inst. 25 inst.

1 121128 126420 127544 201262 215567

2 118697 94330 118838 170997 196996

3 88066 90984 138189 171922 183621

4 115203 89197 134001 166977 178314

5 108066 113827 104118 170547 178045

6 88714 89567 111675 169437 177414

7 87902 91078 106656 166094 178341

8 87614 91123 105805 171677 174843

9 114740 119075 118056 171797 175750

10 88750 115651 138758 170355 194435

Std. Dev. (ms) 14794.58 14720.51 13501.24 10092.22 13130.76

Average (ms) 101888 102125.2 120364 173106.5 185332.6

197

198 APPENDIX C. RESULT TABLES OF THE K-NN APPLICATION

Std. Dev./Average 0.15 0.14 0.11 0.06 0.07

Average (min) 1.70 1.70 2.01 2.89 3.09

Total elapsed time (min) 16.98 17.02 20.06 28.85 30.89

C.1.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 35993009 2099802 345354610 3176969 35477677 2032936

10 119419067 1066590 582141183 1306173 107784688 984417

15 155174428 1279633 599960330 1730737 305902731 1084436

20 238266560 1792497 840311771 2460683 341259992 1598266

25 238722086 1364148 1196190671 1520513 457189048 1098144

Subtotal (MB) 751.09 7.25 3398.86 9.72 1189.82 6.48

Total cluster (MB) 758.34 3408.58 1196.30

Total traffic (MB) 5363.22 (extra: 23.46 MB)

C.1.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 37540 26083 391604 43104 36536 28214

10 118376 11890 579278 17201 108039 13388

15 153001 14356 613952 22984 293540 14548

20 235047 20451 861012 33123 328283 21845

25 235351 14419 1170024 19827 439478 14631

Subtotal 779315 87199 3615870 136239 1205876 92626

C.2. JGRIM 199

Total cluster 866514 3752109 1298502

Total packets 5917125 (extra: 316064)

C.2 JGRIM

C.2.1 Total Execution Time (milliseconds)

Run 5 inst. 10 inst. 15 inst. 20 inst. 25 inst.

1 131115 131201 157449 216008 230945

2 134491 123996 129689 205018 216253

3 119578 121733 131911 206231 212337

4 111770 127116 132335 200286 211657

5 118659 115692 124226 200802 205518

6 119336 120352 133063 201718 209521

7 113074 118245 130029 198214 215020

8 117552 116230 126613 196592 210272

9 110851 123145 130485 193185 211263

10 114640 123187 128144 191695 205731

Std. Dev. (ms) 7902.86 4800.77 9208.63 7028.95 7227.19

Average (ms) 119106.6 122089.7 132394.4 200974.9 212851.7

Std. Dev./Average 0.07 0.04 0.07 0.03 0.03

Average (min) 1.99 2.03 2.21 3.35 3.55

Total elapsed time (min) 19.85 20.35 22.07 33.5 35.48

200 APPENDIX C. RESULT TABLES OF THE K-NN APPLICATION

C.2.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 47921726 2394527 291906922 3068005 23671388 1751910

10 119332748 1771121 599489310 1816926 117680350 846962

15 238624266 1480555 600516073 2000219 234640220 875019

20 250788230 2973686 830277453 3881903 352945382 2100438

25 358022598 2267393 1197779022 2826101 376395959 1465356

Subtotal (MB) 967.68 10.38 3356.90 12.96 1054.13 6.71

Total cluster (MB) 978.07 3369.87 1060.84

Total traffic (MB) 5408.78 (extra: 30.06 MB)

C.2.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 48630 23194 336093 37780 24649 23920

10 117712 11780 589391 15649 113292 10993

15 233874 8552 601520 14176 223790 9049

20 247398 26378 858746 40979 336645 24786

25 351419 14328 1177025 20791 359801 15208

Subtotal 999033 84232 3562775 129375 1058177 83956

Total cluster 1083265 3692150 1142133

Total packets 5917548 (extra: 297563)

C.3. JGRIM (CACHING POLICY) 201

C.3 JGRIM (caching policy)

C.3.1 Total Execution Time (milliseconds)

Run 5 inst. 10 inst. 15 inst. 20 inst. 25 inst.

1 134621 134252 137703 202517 213880

2 109949 106883 105597 181040 181946

3 105506 107930 116730 179115 183749

4 105846 112135 113480 179622 184269

5 104914 107247 111243 190870 185318

6 104238 105271 111214 177909 184723

7 110868 105978 114609 182561 184113

8 107677 108215 109302 170865 185374

9 109138 108844 105098 176058 186596

10 107466 108475 119720 179990 186031

Std. Dev. (ms) 8919.55 8543.68 9355.51 8786.86 9325.00

Average (ms) 110022.3 111323.0 114469.6 182054.7 187599.9

Std. Dev./Average 0.08 0.08 0.08 0.05 0.05

Average (min) 1.83 1.86 1.91 3.03 3.13

Total elapsed time (min) 18.34 18.42 19.08 30.34 31.27

C.3.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 12193213 2236744 62637919 2466842 12006335 1219457

10 12116868 1619244 62074000 1706405 11905327 810227

15 12079335 1444770 62084130 1938815 11905423 663558

20 12200954 2868660 65943298 3924059 11973100 1681626

202 APPENDIX C. RESULT TABLES OF THE K-NN APPLICATION

25 12074182 2009275 63853807 2382516 11872865 1282561

Subtotal (MB) 57.85 9.71 301.93 11.84 56.90 5.40

Total cluster (MB) 67.56 313.77 62.29

Total traffic (MB) 443.63 (extra: 26.95 MB)

C.3.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 13095 17730 100271 27815 12810 17352

10 13547 11330 70562 14817 12957 10031

15 12641 7973 72879 11542 12226 6887

20 13935 23376 119820 36701 13372 21935

25 13784 13671 73911 18408 13666 12883

Subtotal 67002 74080 437443 109283 65031 69088

Total cluster 141082 546726 134119

Total packets 821927 (extra: 252451)

C.4 ProActive

C.4.1 Total Execution Time (seconds)

Run 5 inst. 10 inst. 15 inst. 20 inst. 25 inst.

1 133 171 201 216 248

2 133 167 178 218 259

3 135 166 183 219 259

4 130 165 180 236 257

5 130 168 205 237 257

C.4. PROACTIVE 203

6 132 164 173 216 259

7 137 173 176 217 256

8 132 165 175 217 258

9 132 165 175 232 256

10 136 167 183 253 257

Std. Dev. (secs) 2.36 2.88 11.15 12.74 3.24

Average (secs) 133.0 167.1 182.9 226.1 256.6

Std. Dev./Average 0.02 0.02 0.06 0.06 0.01

Average (min) 2.22 2.79 3.05 3.77 4.28

Total elapsed time (min) 22.17 27.85 30.48 37.68 42.77

C.4.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 119724820 1746741 0 1080899 117560112 443230

10 119744722 2306580 595306172 1344802 117569022 468437

15 239077678 2530941 595237375 1358298 235134264 547765

20 358441935 2913094 631053272 1472469 352693350 638433

25 358442628 3393550 1179864459 1633644 364352959 661672

Subtotal (MB) 1140.05 12.29 2862.42 6.57 1132.31 2.63

Total cluster (MB) 1152.35 2868.99 1134.94

Total traffic (MB) 5156.27 (extra: 21.50 MB)

204 APPENDIX C. RESULT TABLES OF THE K-NN APPLICATION

C.4.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Instances Intra Extra Intra Extra Intra Extra

5 119440 10706 0 8115 111528 3266

10 119626 12132 553255 9679 111693 3527

15 236070 12839 553846 9874 223316 4057

20 352809 14164 587014 10761 334825 4649

25 352774 15209 1108358 11632 345364 4876

Subtotal 1180719 65050 2802473 50061 1126726 20375

Total cluster 1245769 2852534 1147101

Total packets 5245404 (extra: 135486)

Appendix D
Result Tables of the Restoration Application

This appendix presents the data tables containing the measurements of performance and network

resources usage associated to the experiments that were carried out on the restoration application

presented in Section 7.3. Sections D.1, D.2, D.3 and D.4 shows the result tables of the Ibis,

JGRIM, JGRIM (move policy) and ProActive implementations, respectively.

D.1 Ibis

D.1.1 Total Execution Time (milliseconds)

Run Image 1 Image 2 Image 3 Image 4 Image 5

1 155746 382553 631631 839782 944597

2 158862 356035 607022 840158 896725

3 136198 349497 643679 879266 956731

4 163541 399742 637130 709532 1043207

5 188527 351618 627238 870509 988298

6 173809 392974 655232 825621 1054727

7 141200 367648 657021 869676 931633

8 149897 385438 596638 860451 1039956

9 171396 347119 598948 892861 872852

10 180653 348284 649935 788145 1040525

Std. Dev. (ms) 16916.63 20346.44 22646.24 54186.8 66132.16

Average (ms) 161982.9 368090.8 630447.4 837600.1 976925.1

205

206 APPENDIX D. RESULT TABLES OF THE RESTORATION APPLICATION

Std. Dev./Average 0.10 0.06 0.04 0.06 0.07

Average (min) 2.70 6.13 10.51 13.96 16.28

Total elapsed time (min) 27.00 61.35 105.07 139.60 162.82

Average(i)/Average(i-1) - 2.27 1.71 1.33 1.17

Image size (bytes) 445848 924794 1551932 1862822 2467004

Throughput (KB/min) 161.28 147.21 144.24 130.31 147.97

D.1.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 1044175 5733714 4681559 10568730 282706 3091175

Image 2 1590774 11829591 10148085 22249633 1081995 5348232

Image 3 796071 21050161 20789325 39843352 881673 9657627

Image 4 661322 26378506 30251104 48252813 1191294 12553535

Image 5 4761146 31261763 29107439 60756800 916425 15489082

Subtotal (MB) 8.44 91.79 90.58 173.26 4.15 44.00

Total cluster (MB) 100.24 263.83 48.15

Total traffic (MB) 412.23 (25% intra,75% extra)

D.1.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 1907 20479 40903 31901 1626 17473

Image 2 2989 43195 96584 69268 4090 36615

Image 3 3395 76740 178524 125374 6103 66285

D.2. JGRIM 207

Image 4 4332 106950 272020 175932 8717 96238

Image 5 8721 117543 283633 192167 8067 100841

Subtotal 21344 364907 871664 594642 28603 317452

Total cluster 386251 1466306 346055

Total packets 2198612 (42% intra, 58% extra)

D.2 JGRIM

D.2.1 Total Execution Time (milliseconds)

Run Image 1 Image 2 Image 3 Image 4 Image 5

1 149828 311194 551545 690227 854520

2 141567 303336 561653 688101 824640

3 144757 285123 572661 695953 778367

4 143988 301309 560217 754831 868289

5 134009 323744 533166 713058 876086

6 156129 324879 510969 759095 840967

7 141076 325700 577893 753706 874180

8 159246 289248 574144 730191 875516

9 147320 326324 540914 767413 856541

10 148905 321950 543824 699496 925772

Std. Dev. (ms) 7389.97 15707.48 21007.18 31462.96 38515.01

Average (ms) 146682.50 311280.70 552698.60 725207.10 857487.80

Std. Dev./Average 0.05 0.05 0.04 0.04 0.04

Average (min) 2.44 5.19 9.21 12.09 14.29

Total elapsed time (min) 24.45 51.88 92.12 120.87 142.91

Average(i)/Average(i-1) - 2.12 1.78 1.31 1.18

Image size (bytes) 445848 924794 1551932 1862822 2467004

Throughput (KB/min) 178.1 174.08 164.53 150.51 168.58

208 APPENDIX D. RESULT TABLES OF THE RESTORATION APPLICATION

D.2.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 794284 5485968 2507310 10165850 205316 1952224

Image 2 1729418 10984353 3927723 19475017 477456 4338607

Image 3 1725921 18549707 10334401 34136470 1013729 7486738

Image 4 1536463 22475407 9351611 41023730 1493963 10860664

Image 5 3651746 27036990 10701399 51956964 1550325 12051550

Subtotal (MB) 9.00 80.62 35.12 149.50 4.52 34.99

Total cluster (MB) 89.62 184.61 39.51

Total traffic (MB) 313.74 (16% intra, 84% extra)

D.2.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 1290 13399 13393 18202 804 7917

Image 2 2448 24435 21652 31656 1704 14349

Image 3 2650 40169 39185 53890 3447 25383

Image 4 3356 53063 52538 69550 4153 33401

Image 5 5374 62459 58996 81741 4760 37532

Subtotal 15118 193525 185764 255039 14868 118582

Total cluster 208643 440803 133450

Total packets 782896 (28% intra, 72% extra)

D.3. JGRIM (MOVE POLICY) 209

D.3 JGRIM (move policy)

D.3.1 Total Execution Time (milliseconds)

Run Image 1 Image 2 Image 3 Image 4 Image 5

1 111267 275184 405355 570176 663184

2 112878 267775 466274 553722 767989

3 113323 223339 476230 558828 698072

4 99582 242524 429368 549069 652632

5 125610 252888 479998 645923 756660

6 104279 230637 434709 605929 742243

7 101405 254760 468672 567304 634039

8 112071 273169 397285 531071 690436

9 104385 245264 395758 595253 629228

10 101481 268986 398702 649984 788898

Std. Dev. (ms) 7953.41 18022.53 35002.50 40581.23 58232.66

Average (ms) 108628.10 253452.60 435235.10 582725.90 702338.10

Std. Dev./Average 0.07 0.07 0.08 0.07 0.08

Average (min) 1.81 4.22 7.25 9.71 11.71

Total elapsed time (min) 18.10 42.24 72.54 97.12 117.06

Average(i)/Average(i-1) - 2.33 1.72 1.34 1.21

Image size (bytes) 445848 924794 1551932 1862822 2467004

Throughput (KB/min) 240.49 213.80 208.93 187.31 205.81

D.3.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 148458 2339550 7681334 4186725 214857 2421402

210 APPENDIX D. RESULT TABLES OF THE RESTORATION APPLICATION

Image 2 699491 5496225 11932234 8599605 317618 5622590

Image 3 1162919 9137274 22850725 15222437 1173487 7881943

Image 4 2022224 10507448 31347804 16995452 1639555 10353230

Image 5 941245 14467458 30670864 24080329 1430680 12574126

Subtotal (MB) 4.74 40.00 99.64 65.88 4.55 37.05

Total cluster (MB) 44.75 165.53 41.61

Total traffic (MB) 251.88 (43% intra, 57% extra)

D.3.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 558 7722 19784 12617 769 8088

Image 2 1427 15585 38320 25224 1288 16359

Image 3 2468 25973 64374 41830 2664 25043

Image 4 3781 39676 116115 66781 4294 42787

Image 5 3231 43963 108886 72174 4084 42329

Subtotal 11465 132919 347479 218626 13099 134606

Total cluster 144384 566105 147705

Total packets 858194 (43% intra, 57% extra)

D.4 ProActive

D.4.1 Total Execution Time (seconds)

Run Image 1 Image 2 Image 3 Image 4 Image 5

1 218 351 582 716 814

2 216 346 574 718 817

D.4. PROACTIVE 211

3 206 369 563 714 804

4 206 376 581 718 787

5 207 367 594 722 794

6 218 374 571 720 794

7 208 366 574 718 795

8 204 374 582 721 799

9 208 369 576 722 800

10 220 372 577 726 792

Std. Dev. (secs) 6.12 10.04 8.19 3.44 9.61

Average (secs) 211.1 366.4 577.4 719.5 799.6

Std. Dev./Average 0.029 0.027 0.014 0.005 0.012

Average (min) 3.52 6.11 9.62 11.99 13.33

Total elapsed time (min) 35.18 61.07 96.23 119.92 133.27

Average(i)/Average(i-1) - 1.74 1.58 1.25 1.11

Image size (bytes) 445848 924794 1551932 1862822 2467004

Throughput (KB/min) 123.75 147.89 157.49 151.70 180.78

D.4.2 Network Traffic (bytes)

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 1883159 5920628 0 7519677 0 1730094

Image 2 3130948 8500154 0 13787557 0 2509867

Image 3 4906296 13051090 0 22370274 0 3425992

Image 4 5582678 14398938 0 26414632 0 3872121

Image 5 6731362 17675866 0 34172309 0 5576476

Subtotal (MB) 21.20 56.79 0 99.43 0 16.32

Total cluster (MB) 77.99 99.43 16.32

Total traffic (MB) 193.75 (11% intra, 89% extra)

212 APPENDIX D. RESULT TABLES OF THE RESTORATION APPLICATION

D.4.3 TCP Packets

Ale cluster ISISTAN cluster Bianca cluster

Image Intra Extra Intra Extra Intra Extra

Image 1 5598 21031 0 16786 0 6496

Image 2 7027 26732 0 22403 0 7620

Image 3 8858 34282 0 30253 0 8780

Image 4 9555 37008 0 33438 0 9363

Image 5 10920 43714 0 39940 0 11514

Subtotal 41958 162767 0 142820 0 43773

Total cluster 204725 142820 43773

Total packets 391318 (11% intra, 89% extra)

Bibliography

D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with Nimrod/G:

Killer Application for the Global Grid? In 14th IEEE International Symposium on Parallel

and Distributed Processing (IPDPS ’00), Cancun, Mexico, pages 520–528. IEEE Computer

Society, Washington, DC, USA, 2000. ISBN 0-76950-574-0.

B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefe-

dova, D. Quesnel, and S. Tuecke. Data Management and Transfer in High-Performance

Computational Grid Environments. Parallel Computing, 28(5):749–771, 2002. Elsevier Sci-

ence, Amsterdam, The Netherlands. ISSN 0167-8191.

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf.

The Cactus Worm: Experiments with Dynamic Resource Discovery and Allocation in a

Grid Environment. International Journal of High Performance Computing Applications,

15(4):345–358, 2001. SAGE Publications. ISSN 1094-3420 (print), 1741-2846 (electronic).

G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky,

J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling

Applications on the Grid: A GridLab Overview. International Journal of High Performance

Computing Applications, Special issue on Grid Computing: Infrastructure and Applications,

17(4):449–466, 2003. SAGE Publications. ISSN 1094-3420 (print), 1741-2846 (electronic).

G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. V. van

Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott, E. Seidel, and B. Ullmer. The Grid

Application Toolkit: Towards Generic and Easy Application Programming Interfaces for the

Grid. Proceedings of the IEEE, 93(3):534–550, 2005. IEEE Computer Society, Piscataway,

NJ, USA. ISSN 0018-9219.

J. M. Alonso, V. Hernández, and G. Moltó. GMarte: Grid Middleware to Abstract Remote

Task Execution. Concurrency and Computation: Practice and Experience, 18(15):2021–

2036, 2006. John Wiley & Sons, Inc., Chichester, UK, UK. ISSN 1532-0626.

213

214 BIBLIOGRAPHY

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home: An

Experiment in Public-Resource Computing. Communications of the ACM, 45(11):56–61,

2002. ACM Press, New York, NY, USA. ISSN 0001-0782.

Apache Software Foundation. Jakarta Commons Javaflow. http://jakarta.apache.org/

commons/sandbox/javaflow, 2006.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mcinnes, S. Parker, and B. Smolin-

ski. Toward a Common Component Architecture for High-Performance Scientific Comput-

ing. In 8th IEEE International Symposium on High Performance Distributed Computing

(HPDC ’99), Redondo Beach, CA, USA, pages 115–124. IEEE Computer Society, Wash-

ington, DC, USA, 1999. ISBN 0-76950-287-3.

K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, Reading, MA,

USA, 1996. ISBN 0-20163-455-4.

M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton, S. Newhouse,

S. Parastatidis, A. Trefethen, P. Watson, and J. Webber. Web Service Grids: An Evolution-

ary Approach. Concurrency and Computation: Practice and Experience, 17(2-4):377–389,

2005. John Wiley & Sons, Inc., Chichester, UK, UK. ISSN 1532-0626.

R. Aversa, B. Di Martino, N. Mazzocca, and S. Venticinque. A Resource Discovery Service

for a Mobile Agents Based Grid Infrastructure. In L. T. Yang and Y. Pan, editors, High

Performance Scientific and Engineering Computing: Hardware/Software Support, pages

189–200. Kluwer Academic Publishers, Norwell, MA, USA, 2004. ISBN 1-40207-580-4.

L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici. Grid Computing:

Software Environments and Tools, chapter Programming, Composing, Deploying on the

Grid, pages 205–229. Springer, Berlin, Heidelberg, and New York, 2006. ISBN 1-85233-

998-5.

M. Baker, R. Buyya, and D. Laforenza. Grids and Grid Technologies for Wide-Area Distributed

Computing. Software Practice & Experience, 32(15):1437–1466, 2002. John Wiley & Sons,

Inc., New York, NY, USA. ISSN 0038-0644.

H. Bal, H. Casanova, J. Dongarra, and S. Matsuoka. Application-level Tools. In (Foster and

Kesselman, 2003b), pages 463–489.

R. M. Barbosa and A. Goldman. MobiGrid: Framework for Mobile Agents on Computer Grid

Environments. In A. Karmouch, L. Korba, and E. Madeira, editors, Mobility Aware Tech-

nologies and Applications - 1st International Workshop (MATA ’04), Florianopolis, Brazil,

volume 3284 of Lecture Notes in Computer Science, pages 147–157. Springer, 2004. ISBN

3-54023-423-3. ISSN 0302-9743 (print), 1611-3349 (electronic).

BIBLIOGRAPHY 215

P. Bellavista, A. Corradi, C. Federici, R. Montanari, and D. Tibaldi. Security for Mobile Agents:

Issues and Challenges. In I. Mahgoub and M. Ilyas, editors, Handbook of Mobile Computing,

chapter 39, pages 941–958. CRC Press, 2004. ISBN 0-84931-971-4.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,

G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adaptive

Computing on the Grid Using AppLeS. IEEE Transactions on Parallel Distributed Systems,

14(4):369–382, 2003. IEEE Computer Society, Piscataway, NJ, USA. ISSN 1045-9219.

T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, USA, 1999. ISBN 0-06251-586-1.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5),

2001. Scientific American, Inc. ISSN 0036-8733.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML)

1.0 (Fourth Edition). http://www.w3.org/TR/REC-xml, 2006.

CERN. The GridCafé Project. http://gridcafe.web.cern.ch/gridcafe (last accessed August

2007), 2007.

C. Chapman, C. Goonatilake, W. Emmerich, M. Farrellee, T. Tannenbaum, M. Livny, M. Calleja,

and M. Dove. Condor BirdBath: Web Service Interfaces to Condor. In 2005 UK e-Science

All Hands Meeting (AHM ’05), Nottingham, UK, pages 737–744. UK Engineering and Phys-

ical Science Research Council, 2005. ISBN 1-90442-553-4.

C. Chapman, P. Wilson, T. Tannenbaum, M. Farrellee, M. Livny, J. Brodholt, and W. Emmerich.

Condor Services for the Global Grid: Interoperability Between Condor and OGSA. In

2004 UK e-Science All Hands Meeting (AHM ’04), Nottingham, UK, pages 870–877. UK

Engineering and Physical Science Research Council, 2004. ISBN 1-90442-553-4.

M. Chetty and R. Buyya. Weaving Computational Grids: How Analogous Are They with Elec-

trical Grids? Computing in Science and Engineering, 4(4):61–71, 2002. IEEE Educational

Activities Department, Piscataway, NJ, USA. ISSN 1521-9615.

A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and Performance of an

Enterprise Desktop Grid System. Journal of Parallel and Distributed Computing, 63(5):597–

610, 2003. Elsevier Science, San Diego, CA, USA. ISSN 0743-7315.

D. C. Chu and M. A. Humphrey. Mobile OGSI.NET: Grid Computing on Mobile Devices. In

R. Buyya, editor, 5th International Workshop on Grid Computing (GRID ’04), Pittsburgh,

PA, USA, pages 182–191. IEEE Computer Society, Piscataway, NJ, USA, 2004. ISBN

0-7695-2256-4.

L. Chunlin and L. Layuan. Apply Agent to Build Grid Service Management. Journal of Networks

and Computer Applications, 26(4):323–340, 2003. Academic Press Ltd., London, UK, UK.

ISSN 1084-8045.

216 BIBLIOGRAPHY

J. Claessens, B. Preneel, and J. Vandewalle. (How) Can Mobile Agents do Secure Electronic

Transactions on Untrusted Hosts? A Survey of the Security Issues and the Current Solu-

tions. ACM Transactions on Internet Technology, 3(1):28–48, 2003. ACM Press, New York,

NY, USA. ISSN 1533-5399.

W. Codenie, K. D. Hondt, P. Steyaert, and A. Vercammen. From Custom Applications to

Domain-Specific Frameworks. Communications of the ACM, 40(10):71–77, 1997. ACM

Press, New York, NY, USA. ISSN 0001-0782.

O. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, and C. Goble. An Overview of

S-OGSA: A Reference Semantic Grid Architecture. Web Semantics: Science, Services and

Agents on the World Wide Web, 4(2):102–115, 2006. Elsevier Science, Amsterdam, The

Netherlands. ISSN 1570-8268.

F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in Web Services.

Communications of the ACM, 46(10):29–34, 2003. ACM Press, New York, NY, USA. ISSN

0001-0782.

K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. Foster. Grid Information Services for Dis-

tributed Resource Sharing. In 10th IEEE International Symposium on High Performance

Distributed Computing (HPDC ’01), San Francisco, CA, USA, pages 181–194. IEEE Com-

puter Society, Washington, DC, USA, 2001. ISBN 0-76951-296-8.

J. S. Danaher, I. A. Lee, and C. E. Leiserson. Programming with Exceptions in JCilk. Science

of Computer Programming, Special Issue on Synchronization and Concurrency in Object-

Oriented Languages, 63(2):147–171, 2006. Elsevier Science, Amsterdam, The Netherlands.

ISSN 0167-6423.

B. V. Dasarathy, editor. Nearest Neighbor (NN) Norms: Nn Pattern Classification Techniques.

IEEE Computer Society, Los Alamitos, CA, USA, 1991. ISBN 0-8186-8930-7.

T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kacsuk. GEMLCA:

Running Legacy Code Applications as Grid Services. Journal of Grid Computing, 3(1-

2):75–90, 2005. Springer. ISSN 1570-7873 (print), 1572-9814 (electronic).

B. Di Martino and O. F. Rana. Grid Performance and Resource Management Using Mobile

Agents. In V. Getov, M. Gerndt, A. Hoisie, A. Malony, and B. Miller, editors, Performance

Analysis and Grid Computing, pages 251–263. Kluwer Academic Publishers, Norwell, MA,

USA, 2004. ISBN 1-40207-693-2.

Distributed.net. The Distributed.Net Project. http://www.distributed.net (last accessed

August 2007), 1997.

J. Dongarra and D. Walker. MPI: A Standard Message Passing Interface. Supercom-

puter, 12(1):56–68, 1996. Stichting Akademisch Rekencentre Amsterdam, Amsterdam, The

Netherlands. ISSN 0168-7875.

BIBLIOGRAPHY 217

T. B. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide, Foster City,

CA, USA, 1998. ISBN 0-76458-043-4.

R. Englander. Developing Java Beans. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1997.

ISBN 1-56592-289-1.

D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A Worldwide Flock

of Condors: Load Sharing Among Workstation Clusters. Future Generation Computer

Systems, 12(1):53–65, 1996. Elsevier Science, Amsterdam, The Netherlands. ISSN 0167-

739X.

M. Feilner. OpenVPN: Building and Integrating Virtual Private Networks. Packt Publishing

Ltd., Birmingham, UK, 2006. ISBN 1-90481-185-X.

J. F. Ferreira, J. L. Sobral, and A. J. Proenca. JaSkel: A Java Skeleton-Based Framework for

Structured Cluster and Grid Computing. In 6th IEEE International Symposium on Cluster

Computing and the Grid (CCGrid ’06), Singapore, pages 301–304. IEEE Computer Society,

Washington, DC, USA, 2006. ISBN 0-76952-585-7.

Folding@home. The Folding@home Project. http://folding.stanford.edu (last accessed

August 2007), 2000.

I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6), 2002. http://www.

gridtoday.com/02/0722/100136.html.

I. Foster. The Grid: Computing without Bounds. Scientific American, 288(4), 2003. Scientific

American, Inc. ISSN 0036-8733.

I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In Network and

Parallel Computing - IFIP International Conference (NPC ’05), Beijing, China, volume

3779, pages 2–13. Springer, 2005. ISBN 3-54029-810-X. ISSN 0302-9743 (print), 1611-3349

(electronic).

I. Foster and C. Kesselman. Concepts and Architecture. In (Foster and Kesselman, 2003b),

pages 37–63.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan-

Kaufmann Publishers Inc., San Francisco, CA, USA, 2003b. ISBN 1-55860-933-4.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-

tual Organization. International Journal of High Performance Computing Applications,

15(3):200–222, 2001. SAGE Publications. ISSN 1094-3420 (print), 1741-2846 (electronic).

I. Foster, C. Kesselman, and S. Tuecke. The Open Grid Services Architecture. In F. Berman,

G. Fox, and A. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality,

pages 215–257. John Wiley & Sons Inc., New York, NY, USA, 2003. ISBN 0-47085-319-0.

218 BIBLIOGRAPHY

V. W. Freeh. A Comparison of Implicit and Explicit Parallel Programming. Journal of Parallel

and Distributed Computing, 34(1):50–65, 1996. Elsevier Science, Orlando, FL, USA. ISSN

0743-7315.

A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Transactions

on Software Engineering, 24(5):342–361, 1998. IEEE Computer Society, Los Alamitos, CA,

USA. ISSN 0098-5589.

M. Fukuda, K. Kashiwagi, and S. Kobayashi. AgentTeamwork: Coordinating Grid-Computing

Jobs with Mobile Agents. Applied Intelligence, Special Issue on Agent-Based Grid Comput-

ing, 25(2):181–198, 2006. Springer, Dordrecht, The Netherlands. ISSN 0924-669X.

D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, and A. Slominski. On Building

Parallel and Grid Applications: Component Technology and Distributed Services. Cluster

Computing, 8(4):271–277, 2005. Springer, New York, NY, USA. ISSN 1386-7857 (print),

1573-7543 (eletronic).

J. D. Garofalakis, Y. Panagis, and E. S. A. K. Tsakalidis. Contemporary Web Service Discovery

Mechanisms. Journal of Web Engineering, 5(3):265–290, 2006. Rinton Press, Princeton,

NJ, USA. ISSN 1540-9589.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM Parallel

Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Computing. MIT

Press, Cambridge, MA, USA, 1994. ISBN 0-262-57108-0.

Globus Alliance. The Java CoG Kit. http://wiki.cogkit.org/index.php/Java_CoG_Kit (last

accessed August 2007), 2006.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von Laszewski, C. Lee, A. Merzky,

H. Rajic, and J. Shalf. SAGA: A Simple API for Grid Applications - High-Level Application

Programming on the Grid. Computational Methods in Science and Technology, 12(1):7–20,

2006. Scientific Publishers OWN.

P. Gotthelf, M. Mendoza, A. Zunino, and C. Mateos. GMAC: An Overlay Multicast Network

for Mobile Agents. In 6th Argentinian Symposium on Technology (ASAI ’05 - 34th JAIIO),

Rosario, Santa Fé, Argentina. Sociedad Argentina de Informática e Investigación Operativa

(SADIO), 2005.

J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An Enabling Framework for Master-

Worker Applications on the Computational Grid. In 9th IEEE International Symposium

on High Performance Distributed Computing (HPDC ’00), Pittsburgh, Pennsylvania, USA,

pages 43–50. IEEE Computer Society, Washington, DC, USA, 2000. ISBN 0-76950-783-2.

GRIDS Laboratory. The GridBus Project. http://www.gridbus.org (last accessed August

2007), 2007.

BIBLIOGRAPHY 219

Q. Ho, T. Hung, W. Jie, H. Chan, E. Sindhu, S. Ganesan, T. Zang, and X. Li. GRASG -

A Framework for ’Gridifying’ and Running Applications on Service-Oriented Grids. In

6th IEEE International Symposium on Cluster Computing and the Grid (CCGrid ’06),

Singapore, pages 305–312. IEEE Computer Society, Washington, DC, USA, 2006. ISBN

0-76952-585-7.

Q. Ho, Y. Ong, and W. Cai. ’Gridifying’ Aerodynamic Design Problem Using GridRPC. In M. Li,

X. Sun, Q. Deng, and J. Ni, editors, Grid and Cooperative Computing - 2nd International

Workshop (GCC ’03), Shanghai, China, volume 3032 of Lecture Notes in Computer Science,

pages 83–90. Springer, 2003. ISBN 3-54021-988-9. ISSN 0302-9743 (print), 1611-3349

(electronic).

E. Huedo, R. S. Montero, and I. M. Llorente. A Framework for Adaptive Execution in Grids.

Software: Practice and Experience, 34(7):631–651, 2004. John Wiley & Sons Inc., New York,

NY, USA. ISSN 0038-0644 (print), 1097-024X (electronic).

M. N. Huhns and M. P. Singh. Service-Oriented Computing: Key Concepts and Principles. IEEE

Internet Computing, 9(1):75–81, 2005. IEEE Computer Society, Piscataway, NJ, USA. ISSN

1089-7801.

J. Hunter and W. Crawford. Java Servlet Programming. O’Reilly & Associates, Inc., Sebastopol,

CA, USA, 1998. ISBN 1-56592-391-X.

IBM alphaWorks. Grid Application Framework for Java. http://alphaworks.ibm.com/tech/

GAF4J, 2004.

H. Imade, R. Morishita, I. Ono, N. Ono, and M. Okamoto. A Grid-Oriented Genetic Algorithm

Framework for Bioinformatics. New Generation Computing, 22(2):177–186, 2004. Springer

Ohmsha, Tokyo, Japan. ISSN 0288-3635.

F. Ishikawa, N. Yoshioka, Y. Tahara, and S. Honiden. Towards Synthesis of Web Services

and Mobile Agents. In Z. Maamar, C. Lawrence, D. Martin, B. Benatallah, K. Sycara,

and T. Finin, editors, Workshop on Web Services and Agent-Based Engineering (WSABE

’04), 3rd International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS’2004), New York, NY, USA. 2004.

W. A. Jansen. Countermeasures for Mobile Agent Security. Computer Communications,

23(17):1667–1676, 2000. Elsevier Science, Amsterdam, The Netherlands. ISSN 0140-3664.

R. Johnson. J2EE Development Frameworks. Computer, 38(1):107–110, 2005. IEEE Computer

Society, Los Alamitos, CA, USA. ISSN 0018-9162.

R. E. Johnson. Frameworks = (Components + Patterns). Communications of the ACM,

40(10):39–42, 1997. ACM Press, New York, NY, USA. ISSN 0001-0782.

220 BIBLIOGRAPHY

A. Jugravu and T. Fahringer. JavaSymphony, a Programming Model for the Grid. Future

Generation Computer Systems - The International Journal of Grid Computing: Theory,

Methods and Applications, 21(1):239–247, 2005. Elsevier Science, Amsterdam, The Nether-

lands. ISSN 0167-739X.

P. Kacsuk and G. Sipos. Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal.

Journal of Grid Computing, 3(3-4):221–238, 2005. Springer. ISSN 1570-7873 (print), 1572-

9814 (electronic).

N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of the

Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5):551–563,

2003. Elsevier Science, San Diego, CA, USA. ISSN 0743-7315.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting Started

with AspectJ. Communications of the ACM, 44(10):59–65, 2001. ACM Press, New York,

NY, USA. ISSN 0001-0782.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-Oriented Programming. In M. Akşit and S. Matsuoka, editors, 11th European Con-

ference on Object-Oriented Programming (ECOOP ’97), volume 1241 of Lecture Notes in

Computer Science, pages 220–242. Springer, New York, NY, USA, 1997.

T. Kielmann, A. Merzky, H. Bal, F. Baude, D. Caromel, and F. Huet. Grid Application Pro-

gramming Environments. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future

Generation Grids - Workshop on Future Generation Grids, Dagstuhl, Germany, pages 286–

306. Springer, 2006. ISBN 0-38727-935-0.

S. D. Kim and S. H. Chang. A Systematic Method to Identify Software Components. In 11th

Asia-Pacific Software Engineering Conference (APSEC ’04), Busan, Korea, pages 538–545.

IEEE Computer Society, Washington, DC, USA, 2004. ISBN 0-76952-245-9. ISSN 1530-

1362.

P. Z. Kolano. Facilitating the Portability of User Applications in Grid Environments. In J. Ste-

fani, I. M. Demeure, and D. Hagimont, editors, Distributed Applications and Interoperable

Systems - 4th IFIP WG6.1 International Conference (DAIS ’03), Paris, France, volume

2893 of Lecture Notes in Computer Science, pages 73–85. Springer, 2003. ISBN 3-54020-

529-2. ISSN 0302-9743 (print), 1611-3349 (electronic).

J. Kommineni and D. Abramson. GriddLeS Enhancements and Building Virtual Applications for

the Grid with Legacy Components. In P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld,

and M. Bubak, editors, Advances in Grid Computing - EGC 2005, European Grid Confer-

ence, Amsterdam, The Netherlands, volume 3470 of Lecture Notes in Computer Science,

pages 961–971. Springer, 2005. ISBN 3-54026-918-5. ISSN 0302-9743 (print), 1611-3349

(electronic).

BIBLIOGRAPHY 221

D. Kotz and R. S. Gray. Mobile Agents and the Future of the Internet. ACM Operating Systems

Review, 33(3):7–13, 1999. ACM Press, New York, NY, USA. ISSN 0163-5980.

H. Kreger. Web Services Conceptual Architecture (WSCA 1.0). Technical report, IBM Corpo-

ration, 2001.

D. B. Lange and M. Oshima. Seven Good Reasons for Mobile Agents. Communications of the

ACM, 42(3):88–89, 1999. ACM Press, New York, NY, USA. ISSN 0001-0782.

E. Lee, B. Lee, W. Shin, and C. Wu. A Reengineering Process for Migrating from an Object-

Oriented Legacy System to a Component-Based System. In Design and Assessment of

Trustworthy Software-Based Systems - 27th International Conference on Computer Software

and Applications (COMPSAC ’03), Dallas, Texas, USA, pages 336–341. IEEE Computer

Society, Washington, DC, USA, 2003. ISBN 0-76952-020-0.

D. Levine and M. Wirt. Interactivity with Scalability: Infrastructure for Multiplayer Games. In

(Foster and Kesselman, 2003b), pages 167–178.

L. Loewe. Evolution@home: Observations on Participant Choice, Work Unit Variation and Low-

Effort Global Computing. Software: Practice and Experience, 37(12):1289–1318, 2007. John

Wiley & Sons, Inc., New York, NY, USA. ISSN 0038-0644 (print), 1097-024X (electronic).

P. H. M. Maia, N. C. Mendonça, V. Furtado, W. Cirne, and K. Saikoski. A Process for Separation

of Crosscutting Grid Concerns. In 2006 ACM Symposium on Applied Computing, Dijon,

France, pages 1569–1574. ACM Press, New York, NY, USA, 2006. ISBN 1-59593-108-2.

J. Martin. Web Services: The Next Big Thing. XML Journal, 2(5), 2001. http://xml.sys-con.

com/read/40192.htm.

C. Mateos, M. Crasso, A. Zunino, and M. Campo. Adding Semantic Web Services Matching

and Discovery Support to the MoviLog Platform. In M. Bramer, editor, Artificial Intelli-

gence in Theory and Practice - IFIP 19th World Computer Congress (WCC ’06), Santiago,

Chile, volume 217 of IFIP International Federation for Information Processing, pages 51–60.

Springer, Boston, MA, USA, 2006a. ISBN 0-38734-654-6. ISSN 1571-5736.

C. Mateos, M. Crasso, A. Zunino, and M. Campo. Supporting Ontology-Based Semantic Match-

ing of Web Services in MoviLog. In J. S. ao Sichman, editor, Advances in Artificial Intel-

ligence - 2nd International Joint Conference, 10th Ibero-American Conference on AI, 18th

Brazilian AI Symposium (IBERAMIA-SBIA ’06), Ribeirão Preto, Brazil, volume 4140 of

Lecture Notes in Computer Science, pages 390–399. Springer, 2006b. ISBN 3-54045-462-4.

C. Mateos, A. Zunino, and M. Campo. Integrating Intelligent Mobile Agents with Web Ser-

vices. International Journal of Web Services Research, 2(2):85–103, 2005. Idea Group Inc.,

Hershey, PA, USA. ISSN 1545-7362 (print), 1546-5004 (electronic).

222 BIBLIOGRAPHY

C. Mateos, A. Zunino, and M. Campo. A Survey on Approaches to Gridification. Software:

Practice and Experience, 2007a. John Wiley & Sons, Inc., New York, NY, USA. ISSN

0038-0644 (print), 1097-024X (electronic). To appear.

C. Mateos, A. Zunino, and M. Campo. Extending MoviLog for Supporting Web Services. Com-

puter Languages, Systems & Structures, 33(1):11–31, 2007b. Elsevier Science. ISSN 1477-

8424.

C. Mateos, A. Zunino, and M. Campo. Modern Technologies in Web Services Research, chapter

Mobile Agents Meet Web Services, pages 98–121. Cybertech Publishing, Hershey, PA, USA,

2007c. ISBN 1-59904-280-0.

C. Mateos, A. Zunino, and M. Campo. JGRIM: An Approach for Easy Gridification of Applica-

tions. Future Generation Computer Systems - The International Journal of Grid Comput-

ing: Theory, Methods and Applications, 24(2):99–118, 2008. Elsevier Science, Amsterdam,

The Netherlands. ISSN 0167-739X.

A. Mauthe and O. Heckmann. Distributed Computing - GRID Computing. In R. Steinmetz and

K. Wehrle, editors, Peer-to-Peer Systems and Applications, volume 3485 of Lecture Notes

in Computer Science, pages 193–206. Springer, 2005. ISBN 3-540-29192-X. ISSN 0302-9743

(print), 1611-3349 (electronic).

R. Montanari, E. Lupu, and C. Stefanelli. Policy-Based Dynamic Reconfiguration of Mobile-

Code Applications. Computer, 37(7):73–80, 2004. IEEE Computer Society, Los Alamitos,

CA, USA. ISSN 0018-9162.

H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova. A GridRPC

Model and API for End-User Applications. Technical report, GridRPC Working Group,

2005.

A. Natrajan, M. A. Humphrey, and A. S. Grimshaw. The Legion Support for Aadvanced

Parameter-Space Studies on a Grid. Future Generation Computer Systems, 18(8):1033–

1052, 2002. Elsevier Science, Amsterdam, The Netherlands. ISSN 0167-739X.

M. O. Neary and P. Cappello. Advanced Eager Scheduling for Java-Based Adaptive Parallel

Computing. Concurrency and Computation: Practice and Experience, 17(7-8):797–819,

2005. John Wiley & Sons Inc., New York, NY, USA. ISSN 1532-0626.

T. Nguyena and P. Kuonen. Programming the Grid with POP-C++. Future Generation Com-

puter Systems, 23(1):23–30, 2007. Elsevier Science, Amsterdam, The Netherlands. ISSN

0167-739X.

OASIS Consortium. UDDI Version 3.0.2. UDDI Spec Technical Committee Draft, http://

uddi.org/pubs/uddi_v3.htm, 2004.

OASIS Consortium. Web Services Resource Framework (WSRF) - Primer v1.2. Committee Draft

02. http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, 2006.

BIBLIOGRAPHY 223

OGSA-WG. Defining the Grid: A Roadmap for OGSA Standards. http://www.ogf.org/

documents/GFD.53.pdf, 2005.

A. L. Pope. The CORBA Reference Guide: Understanding the Common Object Request Broker

Architecture. Addison-Wesley, Boston, MA, USA, 1998. ISBN 0-20163-386-8.

L. F. G. Sarmenta and S. Hirano. Bayanihan: Building and Studying Volunteer Computing Sys-

tems Using Java. Future Generation Computer Systems, Special Issue on Metacomputing,

15(5-6):675–686, 1999. Elsevier Science, Amsterdam, The Netherlands. ISSN 0167-739X.

C. Spyrou, G. Samaras, E. Pitoura, and P. Eviripidou. Mobile Agents for Wireless Computing:

The Convergence of Wireless Computational Models with Mobile-Agent Technologies. Mo-

bile Networks and Applications, 9(5):517–528, 2004. Kluwer Academic Publishers, Hingham,

MA, USA. ISSN 1383-469X.

H. Stockinger. Defining the Grid: A Snapshot on the Current View. Journal of Supercomputing,

42(1):3–17, 2007. Springer, Dordrecht, The Netherlands. ISSN 0920-8542.

Sun Microsystems. Sun N1 Grid Engine 6. http://www.sun.com/software/gridware (last

accessed August 2007), 2005.

A. Suna, G. Klein, and A. E. Fallah-Seghrouchni. Using Mobile Agents for Resource Sharing.

In IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT ’04),

Beijing, China, pages 389–392. IEEE Computer Society, Washington, DC, USA, 2004. ISBN

0-76952-101-0.

G. Taffoni, D. Maino, C. Vuerli, G. Castelli, R. Smareglia, A. Zacchei, and F. Pasian. Enabling

Grid Technologies for Planck Space Mission. Future Generation Computer Systems - The

International Journal of Grid Computing: Theory, Methods and Applications, 23(2):189–

200, 2007. Elsevier Science, Amsterdam, The Netherlands. ISSN 0167-739X.

H. Takemiya, K. Shudo, Y. Tanaka, and S. Sekiguchi. Constructing Grid Applications Using

Standard Grid Middleware. Journal of Grid Computing, 1(2):117–131, 2003. Springer. ISSN

1570-7873 (print), 1572-9814 (electronic).

I. J. Taylor. From P2P to Web Services and Grids: Peers in a Client/Server World. Computer

Communications and Networks. Springer, 2005. ISBN 1-85233-869-5.

D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, G. Fox, and

A. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality, pages 299–

335. John Wiley & Sons Inc., New York, NY, USA, 2003. ISBN 0-47085-319-0.

A. R. Tripathi, N. M. Karnik, T. Ahmed, R. D. Singh, A. Prakash, V. Kakani, M. K. Vora,

and M. Pathak. Design of the Ajanta System for Mobile Agent Programming. Journal of

Systems and Software, 62(2):123–140, 2002. Elsevier Science, New York, NY, USA. ISSN

0164-1212.

224 BIBLIOGRAPHY

D. Tschumperlé and R. Deriche. Vector-Valued Image Regularization with PDE’s: A Common

Framework for Different Applications. In 2003 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR ’03), Madison, WI, USA, volume 1, pages 651–656. IEEE

Computer Society, Los Alamitos, CA, USA, 2003. ISBN 0-7695-1900-8.

S. Vadhiyar and J. Dongarra. Self Adaptability in Grid Computing. Concurrency and Computa-

tion: Practice and Experience, Special Issue on Grid Performance, 17(2-4):235–257, 2005.

John Wiley & Sons Inc., New York, NY, USA. ISSN 1532-0626.

R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. E. Bal. Satin: Simple and Efficient

Java-Based Grid Programming. Scalable Computing: Practice and Experience, 6(3):19–32,

2005a. Warsaw School of Social Psychology. ISSN 1895-1767.

R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann, and

H. E. Bal. Ibis: A Flexible and Efficient Java Based Grid Programming Environment.

Concurrency and Computation: Practice and Experience, 17(7-8):1079–1107, 2005b. John

Wiley & Sons Inc., New York, NY, USA. ISSN 1532-0626.

L. Vasiu and Q. H. Mahmoud. Mobile Agents in Wireless Devices. Computer, 37(2):104–105,

2004. IEEE Computer Society, Los Alamitos, CA, USA. ISSN 0018-9162.

S. J. Vaughan-Nichols. Web Services: Beyond the Hype. Computer, 35(2):18–21, 2002. IEEE

Computer Society, Los Alamitos, CA, USA. ISSN 0018-9162.

S. Venugopal, R. Buyya, and K. Ramamohanarao. A Taxonomy of Data Grids for Distributed

Data Sharing, Management, and Processing. ACM Computing Surveys, 38(1):1–53, 2006.

ACM Press, New York, NY, USA. ISSN 0360-0300.

W3C Consortium. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C Recommendation,

http://www.w3.org/TR/soap12-part0, 2007a.

W3C Consortium. Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language. W3C Candidate Recommendation, http://www.w3.org/TR/wsdl20, 2007b.

C. Walls and R. Breidenbach. Spring in Action. Manning Publications Co., Greenwich, CT,

USA, 2005. ISBN 1-93239-435-4.

B. Wang, Z. Xu, C. Xu, Y. Yin, W. Ding, and H. Yu. A Study of Gridifying Scientific Computing

Legacy Codes. In H. Jin, Y. Pan, N. Xiao, and J. Sun, editors, Grid and Cooperative

Computing - 3rd International Conference (GCC ’04), Wuhan, China, volume 3251 of

Lecture Notes in Computer Science, pages 404–412. Springer, 2004. ISBN 3-54023-564-7.

ISSN 0302-9743 (print), 1611-3349 (electronic).

D. Webb and A. L. Wendelborn. The PAGIS Grid Application Environment. In P. M. A.

Sloot, D. Abramson, A. V. Bogdanov, J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev,

editors, Computational Science - ICCS 2003, Melbourne, Australia and St. Petersburg,

BIBLIOGRAPHY 225

Russia, volume 2659 of Lecture Notes in Computer Science. Springer, 2003. ISBN 3-54040-

196-2. ISSN 0302-9743 (print), 1611-3349 (electronic).

R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource

Performance Forecasting Service for Metacomputing. Future Generation Computer Systems,

15(5-6):757–768, 1999. Elsevier Science, Amsterdam, The Netherlands. ISSN 0167-739X.

G. Wrzesinska, J. Maassen, K. Verstoep, and H. E. Bal. Satin++: Divide-and-Share on the Grid.

In 2nd IEEE International Conference on e-Science and Grid Computing (E-SCIENCE

’06), Amsterdam, Netherlands, page 61. IEEE Computer Society, Washington, DC, USA,

2006. ISBN 0-76952-734-5.

C. S. Yeo, R. Buyya, M. D. de Assunção, J. Yu, A. Sulistio, S. Venugopal, and M. Placek. Utility

Computing on Global Grids. In H. Bidgoli, editor, The Handbook of Computer Networks,

chapter 143. John Wiley & Sons Inc., New York, NY, USA, 2007. ISBN 0-47178-461-3.

A. Zunino. Movilidad Reactiva por Fallas: Un Modelo de Movilidad para Simplificar el Desarrollo

de Agentes Móviles. PhD Dissertation, Universidad del Centro de la Provincia de Buenos

Aires, Campus Universitario - Paraje Arroyo Seco, Tandil, Buenos Aires, Argentina, 2003.

(In Spanish).

A. Zunino, C. Mateos, and M. Campo. Enhancing Agent Mobility Through Resource Access

Policies and Mobility Policies. In 5th Encontro Nacional de Inteligência Artificial (ENIA

’05), 15th Congresso da Sociedade Brasileira de Computação (SBC ’05), Saõ Leopoldo, RS,

Brasil, pages 851–860. 2005a.

A. Zunino, C. Mateos, and M. Campo. Reactive Mobility by Failure: When Fail Means Move.

Information Systems Frontiers, Special Issue on Mobile Computing and Communications,

7(2):141–154, 2005b. Springer, Dordrecht, The Netherlands. ISSN 1387-3326.

