This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems

Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Reactive Mobility by Failure: When Fall
Means Move

Alejandro Zunino Marcelo Campo Cristian Mateo$

ISISTAN Research Institute - UNICEN University
Campus Universitario (B7001BBO), Tandil, Bs. As., Argeanti
TEL: +54 (2293) 440363 int. 35
FAX: +54 (2293) 440363 int. 52
azunino@exa.unicen.edu.ar

*Also National Council for Scientific and Technical ReseastArgentina (CONICET).
TAlso Council for Scientific Research of Buenos Aires, Argea{CIC).

1

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Abstract

Mobile agent development is mainly supported by Java-bpkdtbrms
and tools. However, the weak mobility model they use, thé& lafcade-
quate support for developing inference and reasoning nmésrha, added to
the inherent complexity of building location-aware softeampose strong
limitations for developing mobile intelligent agent syst& In this article
we present MoviLog, a platform for building Prolog-basedhil® agents
with a strong mobility model. MoviLog is an extension of Jawg, an inte-
gration of Java and Prolog, that allows us to take advantageedest fea-
tures of the programming paradigms they represent. Movdgents, called
Brainlets, are able to migrate among different Web sitdheeiproactively
or reactively, to use the available knowledge in order to &irmblution. The
major contribution of MoviLog is itdReactive Mobility by FailurdRMF)
mechanism. RMF is a mechanism that acts when an agent neesisuaae
or service that is not available at the current executing. SRMF uses a
distributed multi-agent system to transparently transihar executing agent
to the site where the resource/service is available, thdiscieg the devel-
opment effort with respect to the traditional mobile aggmpraach, while
maintaining its advantages.

Keywords: mobility, mobile agents, intelligent agents, logic pragmming

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

1 Introduction

Many researchers envision the future Web as a global contymwhiere people and intelli-
gent agents interact and collaborate (Hendler, 2001)irghenterests as well as resources.
In this scenario consisting of sites providing highly dyn@eontent, mobile users using
unreliable connections and small devices such as PDAs dhghames, mobile agents
will have a fundamental role (Gray et al., 2001). A mobilerstge a computer program
which represents a user in a computer network and is capébiegyating autonomously
between hosts to perform some computation on behalf of tae &uch a capability is
particularly interesting when an agent makes sporadic fiaevaluable shared resource.
Also, efficiency can be improved by moving agents to diffedeosts to query a large
database. This approach may also improve the response tightéha availability when
compared to performing the interactions over network lithieg are subject to long delays
or-interruptions.

Despite the well known advantages of mobile agents (Lande&ashima, 1999), their
usage is still limited to small applications, mainly duehte following factors:

Development effort: mobile agents are inherently more complex than traditicat
tionary systems. Clearly, mobile agent developers havedage mechanisms to
decide an agent’s itinerary. Therefore, though agentsition awareness may be
very beneficial, it also adds further complexity to the depetent of intelligent
mobile agents, specially with respect of stationary apitims (Picco et al., 1997,
Silva et al., 2001).

Lack of standards for accessing resourcesincluding legacy systems: there is a need
for developing mechanisms to allow agents to access respoftered by sites. In
particular, mobile agent technology should be capable ioigusxistent resources
such as Web pages and Web-accessible programs and devices.

Security concerns: this has been deeply studied, and some good results havatidened (Gray
et al., 1998; Tripathi et al., 2002). Though recent plat®imave shown that it is
perfectly feasible to build secure mobile agent systenergetlre still psycholog-
ical reasons against mobile agents (Wagner and Turban),2002 we will limit
the scope of the paper to the first two points.

In this paper we describe MoviLog, a platform for mobile agehat aims at reducing the
development effort by automating decisionsvanenandwhereto move an agent, based

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

on resource needs. MoviLog is an extension of the JavalLogefnark (Amandi et al.,
1999; Zunino et al., 2001) which implements an extensibiegration between Java and
Prolog (see Appendix A for an introduction to Prolog).

MoviLog provides mobility enabling mobile logic-based atg called Brainlets, to
migrate between Web sites by usingteong mobilitymechanism. Strong mobility im-
plies that an agent’s execution state is transferred anohes at the remote site. On the
other handyeak mobility the mechanism implemented by most Java-based mobile agent
platforms, is not able to transfer the execution state thesagentorgetsthe point at
where its execution was. Besides extending Prolog withaipes to implement proactive
strong mobility, the most interesting aspect of MoviLoghe tncorporation of the notion
of reactive mobility by failurgRMF). This mechanism acts when a specially declared
Prolog goal fails, by transparently moving a Brainlet to theo Web site to satisfy its
resource and service needs.

The article is structured as follows. The next section kyidiscribes the JavalLog
framework. Section 3 introduces the MoviLog platform. $mtt3.3 presents the inte-
gration of MoviLog with Web services. In Section 3.4 the enadilon algorithm is briefly
described. Section 4 reports some experimental resulten, Thection 5 discusses the
most relevant related works. Finally, in Section 6 conalgdiemarks and future works
are presented.

2 The JavalLog Framework

Intelligent agents are usually developed by using genargdgse object oriented lan-
guages such as C++ or Java due to the advantages that eatiapsahd inheritance
offer (Crnogorac et al., 1997). Despite these advantaggscteoriented languages do
not provide specific abstractions for building agents swafeasoning mechanisms, infer-
ence, learning or knowledge representation. As a consequervelopers are forced to
use programming abstractions not well suited for agentsanditode these mechanisms
before building agents.

On the other hand, a logic-oriented programming approaelstsaightforward conse-
quence of the requirement of managing knowledge and reagoRior this reason, logic
languages such as Prolog (Nilsson and Maluszynaski, 12gfnt0 (Shoham, 1997),
Metatem (Fisher, 1994) and Gaea (Noda et al., 1999) aredsmasi good alternatives for
programming intelligent agents (Dix, 1998).

Certainly, multi-paradigm languages integrating bothd@mnd object-oriented paradigms
are convenient choices for the definition of agent programgntanguages because they

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

offer the best of both worlds. Examples of multi-paradigmglaages appropriate for pro-
gramming agents are discussed in (Van Roy and Haridi, 198@a¥aki et al., 2001; Lee
and Pun, 1997; Ng et al., 1998; Amandi et al., 1999).

Javal.og is a multi-paradigm language that integrates Jad@eolog (Amandi et al.,
1999; Zunino et al., 2001). The JavalLog support is based ax@msible Prolog inter-
preter designed as a framework (Fayad and Johnson, 1998)m€&hns that the basic Pro-
log engine can be extended to accommodate different ertesissuch as multi-threading,
modal logic operators, or mobility, for example.

Javalog defines thimgic module(a list of Prolog clauses) as its basic concept of
manipulation. In this sense, both objects and methods fhenobject-oriented paradigm
are considered as modules encapsulating data and behagpectively. The elements
manipulated by the logic paradigm are also mapped to modules

Each agent possesses an object cdikagh. This object is an instance of an extended
Prolog interpreter implemented in Java which enables dpeet to use objects within
logic clauses, as well as to embed logic modules within Jada cln this way, each agent
is an instance of a class that can define part of its methods/anahd part in Prolog. The
definition of a class can include several logic modules ddfimhin methods as well as
referenced by instance variables.

The JavalLog language defines some interaction constragtigebn object-oriented
and logic modules. These interaction constrains are @iegdy referring, communica-
tion and composition constraints. Referring constraipecgy the composition limits of
different modules. Communication constraints specifyrifie of objects in logic mod-
ules and the role of logic variables in methods. Compositmmstraints specify how logic
modules can be combined.

3 The MoviLog Platform

MoviLog is an extension of the JavalLog framework to supparbite agents on the Web.
MoviLog implements strong mobility for a special type of atecalledBrainlets The
MoviLog inference engine is able to process several copatithreads and to restart the
execution of an incoming Brainlet at the point where it migda either pro-actively or
reactively, in the original host. Some early ideas aboutildoy are described in (Zunino
et al., 2002). This paper is mainly focused on the novel nitghihechanism supported
by MoviLog and the conceptual model behind it.

In order to enable mobility across sites, each Web servembelg to a MoviLog
network have to be extended with a MARIet (Mobile Agent Resel A MARIet is a

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Java servlet encapsulating the MoviLog inference engidgoaoviding services to access
it through the Web. In this way, a MARIet represents a Web docBrainlets. Addition-
ally, a MARIet is able to provide intelligent services undequest, such as adding and
deleting logic modules, activating and deactivating meduand answering logic queries.
In this sense, a MARlet can also be used to provide inferesdievices to legacy Web
applications or agents.

From the mobility point of view, MoviLog provides support implement Brainlets
with typical pro-active capabilities, but more interegtiyet, it implements a mechanism
for transparent reactive mobility by failure (RMF). Thispgort is based on a number of
stationary agents distributed across the network. Thesetagrovide intelligent mech-
anisms to automatically migrate Brainlets based on theurce requirements. Further
details on this will be explained in Section 3.2.

3.1 Proactive Strong Mobility

MoviLog strong mobility mechanism allows a Brainlet to pcteely migrate its execu-
tion. Migration is achieved by invoking a MoviLog predicateveTo(S), wheres is the
destination site. The migration mechanism implementednbyeTo works as follows.
Before transport, MoviLog serializes the Brainlet and kea@ition state - i.e. its knowl-
edge base and code, current goal to satisfy, instantiatébles, choice points, etc. Then,
it sends the serialized form to its counterpart on the dastin host. In the remote host,
MoviLog reconstructs the Brainlet and its execution statg] then its execution is re-
sumed. Eventually, after performing some computation,Bhenlet can return to the
originating host by calling theeturn predicate.

The following example presents a simple Brainlet for e-carwa whose goal is to of
find and buy an article in the network according to a numberefigsences provided by a
user. Thebuy clause looks for offers available in different sites of tiedwork, selects the
best and calls a generic predicate to buy the article (tlusgss is not relevant here). The
lookForOffers predicate implements the process of moving around througimzber of
sites looking for the available offers for the article (we@®e that we get the first offer).
If there is no offer in the current site, the Brainlet goedi® mext one in the list:

sites([www.offers.com,www.freemarket.com,...]).
preference(car,[ford, Model, Price]) :- Model > 1998, Price < 60000.
preference(tv,[sony, Model, Price]) :- Model = 21in, Price < 1500.
lookForOffers(A,[l._.[])-

lookForOffers(A,[S| R], [O|RO], [O|Roff]):-

6

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

moveTo(S), article(A, Offer, URL), O= (S,Offer,URL),
lookForOffers(A, R, RO,ROff).
lookForOffers(A,[S| R], [O|RO], [O] Roff]):- lookForOffers(A, R, RO,ROff).
buy(Art):-
sites(Sites), lookForOffers(Art, Sites,R,Offers), selectBest(Offers, (S,0,E)),
moveTo(S), buy_article(O,E), return.
?- buy(#Art).

Although proactive mobility provides a powerful tool to &akdvantage of network re-
sources, in the case of Prolog, it also adds extra complexiyto its procedural nature.
Particularly, when the mobile behavior depends on the riaitur not of a given predi-

cate, solutions tendto be more complicated. This fact | develop a complementary
mobility' mechanism, calleteactive mobility by failure

3.2 Reactive Mobility by Failure

Intelligent agents have been traditionally consideredyasems possessing several di-
mensions of attributes (Nwana, 1996; Shoham, 1997; Gestbsand Ketchpel, 1994).
For example, (Bradshaw, 1997) described mobile inteltigagents in terms of a three
dimensional space defined bgency intelligenceand mobility. agencyis the degree of
autonomy and authority vested in the agentelligenceis the degree of reasoning and
learning behaviormobility is the degree to which agents themselves travel through the
network.

Based on these views we consider a mobile agent as composed séparated and
orthogonal behaviors: stationary behavior and mobile \iehahe first one is concerned
with the tasks performed by an agent on specific places ofdtveank, and the second one
is in charge of making decisions about mobility. The Moviljggtform provides a new
form of mobility called Reactive Mobility by Failure (RMFhat is based on the idea that
those two functionalities or concerns can be treated inutdgaly at the implementation
level (Garcia et al., 2001).

RMF aims at reducing the effort of developing mobile agentsaabtomating some
decisions about mobility. In this way, programmers focuertiefforts on the stationary
functionality of mobile agents, and delegate mobility on RM

RMF is a reactive migration mechanism able to automate id&sison when and
where to migrate a Brainlet based on its resource needs.tiReaugration mechanism
are based on the idea that an entity external to the Brafdgers mobility. In RMF those
external entitiesire stationary agents (not able to move between sites)ringiat of the

7

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

MoviLog platform thus provide runtime support for RMF. Staiary agents interfere with
the normal execution of a Brainlet wherfialure occurs.

Conceptually, a failure occurs when a Brainlet tries to asae resource that is lo-
cated at a remote site. In terms of Prolog, a failure occursrwdnBrainlet evaluates a
specially declared goal that cannot be deduced from theetgorovided by the local site,
as depicted in the step i of Fig. 1. At this point, the statrgregents obtain a list of sites
to try to probe the goal and migrate the Brainlet to one ofdhgtes (ii of Fig. 1). In
addition, stationary agents may build an itinerary for tmaiBet in order to visit the sites
according to some policy.

(iii) strong migration

\ - 'S
Mobil \ ; —>
obre ()\Requested access Brainlet) o | Server DB
Agents
to p noplocal resource
(i) mve ta hdst2

) -Jocal interactions
MoviLog b Fen _mobility agerts —
Platform —Z >

stationary age stationary agents
hostl host2

Figure 1: Reactive Mobility by Failure

To sup up, RMF is able to automate two types of decisions anotility:

e where to migrate RMF selects the next destination of the mobile agent. Tég-d
sion can take into account factors such as network traffit) [0Bd, etc. Moreover,
it may be necessary to visit several sites in a certain séi@liender. For example,
hostl host2andhost3 or host2 hostlandhost3 A problem here is that Brainlets
might not know the location of resources. Asa consequencé& Rd% to manage
information about resources provided by sites capable @f@ing Brainlets.

e when to migratein the example, when a failure occurs, RMF migrate the neobil
agent tohost2 However, it could be convenient to copy the required cladsam
host2to hostl Those decisions can be taken considering network traftidiare.

As shown in Fig. 1, RMF consists of:

e executing units or mobile agents callBcainlets

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

e mechanisms enabling Brainlets to specify on which reseuRMF is allowed to
act.

e a platform supporting the execution of Brainlets and resjiba for taking deci-
sions about mobility.

Each of these elements is described in detail in the follgvgections.
3.2.1 Brainlets
A Brainlet is composed of the following parts:

e code and dataconsist of Prolog clauses and Java objects implementinmgialBt's
behavior and knowledge.

e execution stateone ore more threads encompassing a program counter, gaick
able bindings and choice points. It is worth noting that ¢h#seads persist after
migrating an agent to-a remote host.

e protocol clausesare used to delegate mobility decisions on RMF.

The code of a Brainlet consists of two sections: Protocots@lauses. This first section
contains protocol declarations. The second section amntdauses expressed in JavalLog.
Syntactically, the code of a Brainlet has the following form

PROTOCOLS

CLAUSES

The next section is concerned with protocols and its usage.
3.2.2 Protocols

A protocol describes an interface used to access a resotaitatde at any site of the net-
work. When a Brainlet accesses one of these resources, amdsiburce is not available
at the local site, the stationary agents are activated.

In terms of Prolog, protocol declarations have the symtaxocol(functor, arity).
Such a declaration enables RMF to act on failures of goals tivé form:

functor(<argument1>, <argument2>,, <argumentArity>).

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

In this way, when a goal declared as a protocol by a Brainl&t, fstationary agents
transparently move the Brainlet to another site having difits for such a protocol.
Thereatfter it continues the normal execution to try to sdheegoal.

The following code shows the implementation of the custoagemt combining both
mobility mechanisms. This solution collects through bestking the matching articles
from the database until no more articles are left. @hecle protocol makes the Brainlet
to try all the sites offering the same protocol before rangrio the origin site to collect
(by usingfindall) all the offers in the local database of the Brainlet. Oneeltst offer is
selected the Brainlet proactively moves to the site oftgtimat article to buy it. As can
be noted, the solution using RMF looks much like a commondgrprogram. Certainly,
this solution is simpler than the one using just proactivéititg.

PROTOCOLS
protocol(article, 3).
CLAUSES
preference(car, [ford, Model, Price]) :- Model > 1998, Price < 20000.
preference(tv,[sony, Model, Price]) :- Model = 21in, Price < 1500.
lookForOffers(A, [OJRO], [O|Roff]) :- article(A, Offer, URL),
thisSite(ThisSite), assert(offer(ThisSite, Offer, URL)), fail.
lookForOffers(A, _, Offers) :- !, findAll(offer(S,0,E)), Offers).
buy(Art) :- lookForOffers(Art,R,Offers), selectBest(Offers,(S,0,E)),
moveTo(S), buy_article(O, E), return.

?- buy(Art).

It is worth noting that the protocairticle is only a description of a resource. The concrete
realization of the resource may be a set of Prolog clauseayariethod, a relational
database or a Web service. MoviLog abstracts the complekégcessing these resources
by providing a simple access method.

RMF allows a programmer to adapt and extend the differenisidec mechanisms
that act when a failure is detected. For example, it is péssidouse several pre-defined
or user-defined algorithms and metrics for building and tipgean agent’s itinerary.

3.2.3 RMF Execution Support

RMF is implemented through a Multi-Agent System (MAS) corsga of stationary agents
in charge of mobility. It is worth noting that these agents@dy when a failure occurs
on a goal declared as a protocol. The MAS consists of two tgpstationary agents:

10

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

e Protocol Name Servers (PN$ach host capable of executing Brainlets has one
PNS. PNS are responsible for managing information on potgoaffered at each
site. When a Brainlet needs a resource not hosted at thedibieaRMF queries
the PNS of the site to obtain a list of sites offering that teee. A site offering
resources registers with its PNS the protocols of the ressurThen, the PNS an-
nounces the new protocols to other sites by using a mukizzstd communication
mechanism.

e Mobility agents Mobility agents collaborate with PNSs in order to seleet text
destination of a Brainlet that failed, building an itingravhen a resource is hosted
in more that one site. All these decisions take into accouotitips based on net-
work traffic, link speed or user-defined metrics. In additiomobility agents are
able to decide whether to migrate an agent or to transferauress from other
sites-to the site where the Brainlet is located.

3.3 RMF and Web Services

Let us suppose a scenario consisting of a Notebook with a Emdlwidth connection
to a network. Server§;,S,..., § residing in this network have good connectivity with
the Internet (Fig. 2). In addition, these servers are abkxéxute Brainlets. A Brainlet
running at the Notebook requires accessing to a serviceedffey a serveP located at
the Internet. Due to connectivity constraints, it might lilvamtageous to migrate the
Brainlet toP. However,P does not support the execution of Brainlets, so this approac
is unfeasible. An alternative is to migrate the Brainlet he @f the server§ with good
connectivity. From there, the Brainlet will-interact wikhby using a fast network link,
returning to the Notebook afterwards.

MoviLog supports interaction with Web Services to enabteubage of RMF in cases
where the site hosting a required service cannot executel8tsa Web Service§/aughan-
Nichols, 2002) — Web-accessible programs and devices —eaietved as a set of pro-
grams interacting cross a network with no explicit humaerattion during the transac-
tion. In order for programs to exchange data, it is necedsadgfine the communications
protocol, the data transfer syntax, and the location of tigpeint. For building large,
complex systems, such service definitions must be done igoaoas manner: ideally,
a machine-readable language with well-defined semanticepposed to parochial and
imprecise natural languages.

The Web Services Description Language (WSDL) is an XML-Haseguage for
describing Web services as a set of network endpoints tlemtitgoon messages. A WSDL

11

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

S1 acts as a proxy

Brainlet) 7 (MARIet

e . EI; migration (MRF)

slow/unreliable

S1

(i) remote /
.)
interaction

slow/unreliabre
connection

Figure 2: MARIet acting as a proxy of a Web accessible service

service description contains an abstract definition fortaseperations and messages, a
concrete protocol binding for these operations and messag® a network endpoint
specification for the binding.

From a WSDL description a program can determine the serpicesded by a server
and how to invoke and use these services, independentlye afdtwork protocol or pro-
gramming language. Asa complement to WSDL, the WWW Congsortieveloped the
Universal Description, Discovery and Integration (UDDpgesification. UDDI provides
a method for publishing and finding service descriptiongtemiin WSDL or any other
service description mechanism.

In order to integrate MoviLog with Web services, we extentle PNS agents with
capabilities of querying UDDI registries, parsing WSDL dowents and mapping Prolog
clauses to and from Web services. When a PNS detects a failuiest obtains the
resources directly available as Prolog predicates, theueaties a UDDI registry and
obtains a list of Web-accessible services that match theguobof the predicate causing a
failure. When the mobile agent effectively tries to accesa YWeb-accessible resource, a
PNS agent determines whether to travel to the remote sitetpdepending on its support
for mobile agents, network load, size of the mobile ageut, et

Let us consider the usage of Web services not registered DIUDBrainlet can in-
voke Web services by using a special code section na@edcesvhich contains, among
other things:

e pointers to WSDL descriptions of the services, includingirtmames, parameters

12

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

and access points. For examptegisterServicgshtt p: // soap. amazon. com
schemas/ AmazonWebSer vi ces. wsdl ’) registers the services provided by Ama-
zon @mazonComKeywordSearchRegueshazoncomAuthorSearchRequest.)
and associates these services to Prolog clauses.

e a number of user-defined clauses to adapt a protocol clazs@/b service. This
involves at least the following steps:

— given a protocol clause and its parameters, the programassiohmap these
parameters to the input parameters of a given Web service.

— the output of the Web service has to be converted to Prolagtsties. MoviLog
assumes that Web services output XML. MoviLog provides tliieraatives:
the usage of XPatfto query the XML output, or the usage of XSL Transfor-
mations to transform the XML output to Prolog terms.

Let us consider, for example, the keyword search serviceigeed by Amazon. The
WSDL? description of the servicKeyWordSearchRequedescribes its parameters and
types. The most important parameters kpwordsandtype (brief or detailed response).
In addition a WSDL document includes a description of th@@ation method of the ser-
vice. In this case, the service has to be invoked through alHSOAP-encoded request to
the URLht t p: // soap. amazon. con onca/ soap. By knowing this detalils it is easy for
MoviLog to invoke KeyWordSearchRequest any other service. Now, the previous ex-
ample of RMF can be extended to- search and buy books in botlzémend the MoviLog
network:

SERVICES
registerServices(’http://soap.amazon.com/-schemas/-Amazon-Web-
Services.wsdl’).
articleAdapter(book(FeatureList), Offers, URLS) :-
% invokes the Web service
amazoncomKeywordSearchRequest([keyword:FeatureList, mode:books,
type:lite, format:xml, devtag: 'D26UGIDJJ9HCRX’], XMLresponse),
% transforms the XML response by using a XSL transformation

IXPath (Gottlob et al., 2003) is a language for addressint mdan XML document.
2The Amazon.com Web Services software development kit isiladla at http://
associ at es. amazon. conm exec/ panama/ associ at es/ j oi n/ devel oper/kit. htm .

13

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

transformWith(XMLresponse, ’lite-data-to-prolog.xsl’, Offers),
% uses XPath to obtain the URLs of the books
xpath(XMLresponse, '//Productinfo/Details@url’), URLS).
PROTOCOLS
protocol(article, 3).
CLAUSES
preference(book, [author:A, keywords:[mystery, terror], price:P]) :-
(A =="Stephen King’ ; A =='Agatha Christie’), P < 20.
lookForOffers(A, [O|RO], [O|Roff]) :- article(A, Offer, URL),
thisSite(ThisSite), assert(offer(ThisSite, Offer, URL)), fail.
lookForOffers(A, _, Offers) :- !, findAll(offer(S,0O,E)), Offers).
buy(Art) :- lookForOffers(Art,R,Offers), selectBest(Offers,(S,0O,E)),
moveTo(S), buy_article(O, E), return.

?- buy(Art).

To sum up, in order-to allow Brainlets to interact with legaystems not able to run
mobile agents; MoviLog is able to invoke Web services. To dodevelopers have to
provide a set of Prolog clauses that map a protocol desmnifgt a Web service and a
method to extract the information from the response.

3.4 Evaluation Algorithm

In this section we briefly describe the evaluation algoritised by MoviLog. RMF can
be understood by considering a classical Prolog intempreith a stackS, a databas®,
and a goalg. Each entry ofS contains a reference to the clauséeing evaluated, a
reference to the term afthat is being proved, a reference to the preceding claus@aand
list of variables and their values in the preceding claudeetable to backtrack. MoviLog
extends this structure by adding information about theidigied evaluation mechanism.
The idea is to keep a history of visited MARIets and posgibdi for satisfying a given
goal within a MARlet.

Protocol definitions create the notion o¥igtual databasedistributed among several
Web sites. When a Brainlet defines a given protocol predicaseMARIet h,, MoviLog
informs the PNS agents, which in turn inform the rest of negexd MARIlets that the new
protocol is available irn,. In this way, the database of a Brainlet can be defined as a set
D = {D.,DRr}, whereD, is the local database ailk is a list of clauses stored in a remote
MARIet with the same protocol clause as the current go&low, in order to probg the

14

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

interpreter has to try with all the clause& D, such that the head afunifies withg. If
none of those lead to prolgg then it is necessary to try to prolggfrom one of the non-
local clauses irDgr. To achieve this, MoviLog transfers the running Brainletotwe of
the hosts irDg by using the same mechanism used for implementing proatinlslity.
Once at the remote site, the execution continues tryingdbepthe goal. However, if the
interpreter at the remote site fails to praipet continues with the next host iDg. When
no more possibilities are left, the Brainlet is moved to the §om which the Brainlet
originated.

To better understand these ideas, let us give a more preessgigtion of the eval-
uation mechanism. Les = (c,t;,V,H,L) be an element of the stack, whete= h:
—t1,t2,...,ty is the clause being evaluategl,is the term ofc being evaluatedy is a
set of variable substitutions (eX = 1,X = Z) andH = (H, Hy, P), whereH; is a list of
MARIlets not visited,H, is a list of MARIets visited andP is a list of candidate clauses
at a given MARlet that match the protocol clausecpndL is a list of clauses with the
same name and arity §candidate clauses at the local database).

The interpreter has two statesall andredo. When the interpreter is in statall, it
tries to probe a goal. On the other hand, in statiit tries to search for alternative ways
of evaluating a goal after the failure of a previous attengpizen a goal 2-t3,t,...,t,,
S={} andstate= call,

1: if state== call then
2: the interpreter pushes into the stack:

(ti,to, .t 6,V ={}, (H = () ,Hy = () ,PH = ()))

3: forall i suchthat i <ndo

4 if The MARIlet is visited for the first timéhen

5: the interpreter searches intothe local database for dawitle the same name
and arity ad;. This result is stored int® (a list of clause<; at the current
MARIlet).

6: else

7: P is updated with the clauses available at the current MARIet.

8: end if

9: Then, the more general unifier (MGU) fgrand the head df; is calculated. If

there is no such unifier for a giver), thenc; is removed fromP. Otherwise,
the substitutions fot; and the head of; are stored intd/. At this point, the

15

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

algorithm tries to probe; by jumping to linel. If everyt; is successfully proved,
then the algorithm returrisue.

10: If there is not a clause; such as there is a more general unifiertfaand the
head ofc;, the interpreter queries a PNS for a list of MARets offerthg same
protocol clause ag. This is stored intdd;. Then, the Brainlet is moved to the
first MARIet hy in H;. The current MARIet is removed fromd, to avoid visit it

again.
11: If Hy is empty therstate= redo
12: endfor

13: else

14: This point of the execution is reached when the evaluatioa gbal fails at the
current MARIet. The step of the algorithm selected @ from the local database
for provingt;. This selection was the source of the failure. ThereforeyiMuy
simply restores the clause by reversing the effects of amplthe substitutions
inV, selects another clausg, setsstate= call and jumps to linet.

15: If there are no more choices left i this implies that it is not possible to protie
from the local database. -Therefore the top of the stack ipgupnd the algorithm
returns false. This may require migrating the Brainlet te site where the goal
failed for the first time.

16: end if

3.4.1 Distributed Backtracking and Consistency Issues

The RMF model generates several tradeoffs related to theatad Prolog execution se-
mantics. Backtracking is one of them. When a Brainlet movesiral several places,
many backtracking points can be left untried, and the qorest -how the backtracking
mechanism should proceed. The solution adopted by Moviltdgeacurrent version re-
sides in the stationary agents. These agents provide ardejudgew of the multiple
choice points that is used by the routing- mechanism to gagirahe distributed execu-
tion tree.

Also the evaluation of MoviLog code in a distributed manneyrtead to inconsisten-
cies. For example, MARlets can enter or leave the system att@ytheir protocol clauses
or modify their databases. At this moment, MoviLog definesl&cp that defines how the
local view of a Brainlet is updated when it arrives to a hogtisTinvolves automatically
querying the PNS agents to obtain a list of MARIets implermena given protocol clause
and querying the current MARIet in order to obtain a list @ugdes matching the protocol

16

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

clause being evaluated.

4 Experimental Results

In this section we report the results obtained with an appbo implemented by using
MoviLog, pCode (Picco, 1998) (a Java-based framework for mobile apant Jinni (Ta-
rau, 1998) (a Prolog-based language with support for stnooigility).

The application consists of a number of customer agentsatigasble to select and
buy articles offered by sellers based on users’ preferenBeth, customers and sellers
reside in different hosts of a network. In this example, aonsrs are ordered to buy books
that has to satisfy a number of preferences such as pridegrastibject, etc.

The implementation of the application with MoviLog using RMas easy (39 lines
of code). On the other hand, to develop the application hygygCode we had to provide
support for representing and managing users’ preferefid¢essize of the application was
741 lines of cod® Finally, the Jinni implementation was easier, althoughasoeasy as
with-MoviLog, due to the necessity of managing agents’ cautk @ata closure by hand.
The size of the source code in this case was 353 lines. Thigsstiat MoviLog provides
more powerful abstractions for developing intelligent m@hgents. From a design point
of view, the other platforms intend to be more general, asrs@guence their usage for
building intelligent agents require more effort.

We tested the implementations on three Pentium Il 850 Mhh w28 MB RAM,
running Linux and Sun JDK 1.3.1. To compare the performari¢bedimplementations
we distributed a database containing books in the three otarg We ran the agents with
a database of 1 KB, 600 KB and 1.6 MB. For each database we mtesiicases varying
the user’s preferences in order the verify the influence efnthmber of matched books
(state that an agent has to move) on the total running timeed@h respective test case
the user’s preferences matched 0 and 5 books (1 KB datal3zese), 1024 books (600 KB
database, 4004 books), and 2 and 1263 (1.6 MB, 11135 booksxapp/NVe ran each test
case 20 times and measured the running time. Fig. 3 (rigbtysihe average running
time as a function of the size of the database and the numlpgodéicts found.

On a second battery of tests we measured the network trafierged by the agents
using the complete database (1.6 MB, 11135 books approxsiribdited across three
hosts. Fig. 3 (left) shows the network traffic measured irkptcversus the number of
books that matched the user’s preferences. From the figucamveonclude that MoviLog
and its RMF do not affect negatively neither the performarmethe network traffic, while

3Not counting the size of a library for handling symbolic us@references.

17

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

g ‘ - — T T T T
16000 &—a Jinni -
- 350
| \EAM 7 &—8 Jinni
- 14000 r oo pCode /;/]
§ | _ 300 L
8 12000 Z
Q 3
n | 2
< 10000 ; -
E | E
5
= 8000 -)
i é :
%} 6000 -
| 8
: . 100 I N ;
| ,,,‘V:::;;,Li,,,,, —
2000 | ghs 7
7 50
0 ———) ‘ | |
00KS 00KS 00KS 00KS s e
" ’ R 500%° a 607 o 0¥ 1263 0
A

600 700 800 900 1000
Books Books

3500 . ; T
£—4 MoviLog 1
3000 =—a Jinni T
L c—o pCode E//%/]
2 2500 i
B
2 2000
P
£
£ 1500
3
3
& 1000 g%/% . *:% %
T — ——— %
0

200 400 600 800 1000
Books

Figure 3: Performance Comparisons

considerably reducing the development effort.

We also ran the application on the Internet by using a cordigur of two hosts
connected to the same LAN and a third host connected to aro#fi¢. Both LANS were
connected through the Internet by using a 256Kbps DSL lintke ilea of this test was
to evaluate RMF in a real scenario, taking into account thrertmad introduced by RMF
and its infrastructure. Results on this test are shown in Fifbottom). As expected,
RMF introduces some overhead due to'its PNSs. Despite teihead, MoviLog is still
competitive with the others platforms.

The next section discusses previous work related to MoviLog

5 Related Work

At present, the only agent programming language that stgppueraction with Web ser-
vices is ConGolog (Mcllraith et al., 2001). ConGolog is a medased programming
language that has been used as a testbed for DAML-S (DARPAtAdarkup Language
for Web Services) in small applications. The main advantafgdovilLog is its support
for reactive mobility by failure that enables us to easilyiddmobile agents that use Web

18

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

services.

With respect to the plethora of work on mobile agents, thetriroportant are the
Java-based platforms such as Aglets (Lange and Oshima),1®8@®&ta (Tripathi et al.,
2002) anduCode (Picco, 1998). These systems provide a weak mobiligeméorcing a
less elegant and more difficult to maintain programminges{§lilva et al., 2001). Recent
works such as NOMADS (Suri et al., 2000) and WASP (Funfrocked Mattern, 1999)
extended the Java Virtual Machine (JVM) to support strondititg. Despite the ad-
vantages of strong mobility, these extended JVM do not sbamee well known features
of the standard JVM, such as its ubiquity, portability andhpatibility across different
platforms.

The logic programming paradigm represents an appropriééenative to manage
agents’ mental attitudes. Examples of languages basedana dlinni (Tarau, 1998) and
Mozart/Oz (Haridi et al., 1997). Jinni (Tarau, 1998) is lther a limited subset of Prolog.
Jinni lacks adequate support for mobile agents since iismaif code and data closure
is limited to the currently executing goal. As a consequeatwelopers have to program
mechanisms for saving and restoring an agent’s code andMatzart (Haridi et al., 1997)
is a multi-paradigm language combining objects, functiand constraint logic program-
ming based on a subset of Prolog. Though the language peosatee facilities such as
distributed scope and communication channels that arellusefdeveloping distributed
applications, it only provides rudimentary support for ni@bgents.

The main differences between MoviLog and other platfornesitarsupport for RMF,
which reduces development effort by automating some detgsabout mobility, and its
multi-paradigm syntax, which provides mechanisms for tigvag intelligent agents with
knowledge representation and reasoning capabilitiegriated with \Web services.

6 Conclusion and Future Work

Intelligent mobile agents represent one of the most chgiltlgnresearch areas due to the
different factors and technologies involved in their depshent. Strong mobility and in-
ference mechanisms are, undoubtedly, two important festilmat an effective platform
should provide. MoviLog represents a step forward in thegadion. The main contribu-
tion of our work is thereactive mobility by failureconcept. It enables the development of
agents using common Prolog programming style, making iastez thus for Prolog pro-
grammers. This concept, combined with proactive mobiligchanisms, also provides a
powerful tool for exploiting Web services and mobility.

MoviLog has been used in several research projects. Formganve have devel-

19

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

oped a distributed meeting scheduler that uses Brainletssist users on managing their
calendars. Those Brainlets migrate between sites in oodeedotiate meetings with the
other users’ Brainlets. Each Brainlet manages user prefesaincluding preferred places,
contacts, days, etc. These preferences are representeBdyesian Network. Another
application related to RMF is MOVED, a debugger for mobilertg that supports the
concept of RMF. MOVED supports features found in most tradél debugger, but with
one very important difference: all these features operagedistributed and mobile way.
This is, breakpoints and watchpoints are set on mobile cials, MOVED has to take
into account mobility issues.

The weakest point of the approach for integrating MoviLoghwW\eb services is that
it does not take into account the semantics of Web servicesa éonsequence, the pro-
grammer has to ensure, for example, that a protocol sudhntiate, is mapped to Ama-
zon’s KeyWordSearchRequest Google’'sdoGoogleSearchn the category Shop. The
same applies for the arguments and responses. One appocaalkie these limitations is
the usage of machine understable descriptions of the ctmaeplved in Web services.
We are enriching MoviLog’s protocols and services sectisitls ontologies based on the
technologies of the Semantic Web (Berners-Lee et al., 2001)

References

Amandi, A., Zunino, A., and lturregui, R. (1999). Multi-atigm languages support-
ing multi-agent development. In Garijo, F. J. and Boman, éditors,Multi-Agent
System Engineeringolume 1647 oLecture Notes in Artificial Intelligencgages
128-139, Valencia, Spain. Springer-Verlag.

Berners-Lee, T., Hendler, J., and Lassila, O.(2001). Theas¢ic Web.Scientific Amer-
ican, 284(5):34-43.

Bradshaw, J. M. (1997)Software AgentsAAAIl Press, Menlo Park, USA.

Crnogorac, L., Rao, A. S., and Kotagiri Ramamohanarao (1997alysis of inheritance
mechanisms in agent-oriented programmingPioc. of thel5" International Joint
Conference on Artificial Intelligence (IJCAlpages 647-654. Morgan Kaufmann
Publishers.

Dix, J. (1998). The Logic Programming ParadigrAl Communications11(3):39-43.
Short version in Newsletter of ALP, Vol. 11(3), 1998, pagbs14.

20

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Fayad, M. E. and Johnson, R., editors (1999pmain-Specific Application Frameworks
. Frameworks Experience by Industriiley & Sons.

Fisher, M. (1994). A survey of concurrent METATEM —the laage and its applications.
In Gabbay, D. M. and Ohlbach, H. J., edito@mporal Logic - Proceedings of
the First International Conference (LNAI Volume 82ppges 480-505. Springer-
Verlag: Heidelberg, Germany.

Funfrocken, S. and Mattern, F. (1999). Mobile Agents as achi#ectural Concept for
Internet-based Distributed Applications - The WASP Profgaproach. InProceed-
ings of KiVS'99 (Kommunikation in Verteilten Systemgrages 32—-43. Springer-
Verlag.

Garcia, A., Chavez, C., Silva, O., Silva, V., and Lucena, ZD0(). Promoting Ad-
vanced Separation of Concerns in Intra-Agent and Inter@oftware Engineer-
ing. In Workshop on Advanced Separation of Concerns in Objectr@ieSystems
at OOPSLA'2001

Genesereth, M. R. and Ketchpel, S. P. (1994). Software sg@ammunications of the
ACM, 37(7):48-53.

Gottlob, G., Koch, C., and Pichler, R. (2003). XPath process a nutshel.SIGMOD,
32(2):21-27.

Gray, R. S., Cybenko, G., Kotz, D., and Rus, D.(2001). Mohagents: Motivations and
state of the art. In Bradshaw, J., editdandbook of Agent Technolag&AAI/MIT
Press.

Gray, R. S., Kotz, D., Cybenko, G., and Rus, D. (1998). D'Agefecurity in a multiple-
language, mobile-agent system. In Vigna, G., ediMgbile Agents and Secu-
rity, volume 1419 ot ecture Notes in-Computer Scienpages 154-187. Springer-
Verlag.

Haridi, S., Van Roy, P., and Smolka, G. (1997). Anoverviewhefdesign of Distributed
Oz. InProceedings of the Second International Symposium on [Ba@&ymbolic
Computation (PASCO '97pages 176-187, Maui, Hawaii, USA. ACM Press.

Hendler, J. (2001). Agents and the semantic WEEE Intelligent System46(2):30-36.

21

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Lange, D. B. and Oshima, M. (1998Programming and Deploying Mobile Agents with
Java Aglets Addison-Wesley, Reading, MA, USA.

Lange, D. B. and Oshima, M. (1999). Seven good reasons forenadpents.Communi-
cations of the AC\42(3):88-89.

Lee, J. H. M. and Pun, P. K. C. (1997). Object logic integratid multiparadigm design
methodology and a programming langua@emputer Language23(1):25-42.

Mcllraith, S., Son, T..C., and Zeng, H. (2001). Semantic watvises. IEEE Intelligent
Systems, Special Issue on the Semantic 1\&(12):46-53.

Ng, K. W., Huang, L.,-and Sun, Y. (1998). A multiparadigm laage for developing
agent-oriented applications. Rroceedings of Technology of Object-Oriented Lan-
guages and Systems (TOOLBgijing, China. IEEE.

Nilsson, U. and Maluszynaski, J. (19989)ogic, Programming and PrologJohn Wiley
& Sons, New York, NY.

Noda, I., Nakashima, H., and Handa, K. (1999). Programmamguage Gaea and its
application for multiagent systems. Workshop on Multi-Agent System and Logic
Programming

Nwana, H. (1996). Software agents: An overvielnowledge Engineering Review
11(3):205-244.

Picco, G. (1998).uCode: A Lightweight and Flexible Mobile Code Toolkit. In Ret-
mel, K. and Hohl, F., editorsProceedings-of the 2nd International Workshop on
Mobile Agentsvolume 1477 ot-ecture Notes in Computer Scienpages 160-171.
Springer-Verlag: Heidelberg, Germany.

Picco, G. P, Carzaniga, A., and Vigna; G. (1997). Desigdistributed applications with
mobile code paradigms. In Taylor, R., editBroceedings of the 19th International
Conference on Software Engineerjqmages 22—-32. ACM Press.

Shoham, Y. (1997). An overview of agent-oriented prograngmiln Bradshaw, J. M.,
editor, Software Agenichapter 13, pages 271-290. AAAI Press / The MIT Press.

Silva, A., Romao, A., Deugo, D., and Mira da Silva, M. (200Towards a Reference
Model for Surveying Mobile Agent System#utonomous Agents and Multi-Agent
Systems4(3):187-231.

22

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, &, Jeffers, R., and Mitro-
vich, T. S. (2000). An Overview of the NOMADS Mobile Agent $gs1. In &"
ECOOP Workshop on Mobile Object Systems: Operating Sysigpo8, Security
and Programming Languages

Tarau, P. (1998). Jinni: a lightweight java-based logicieador internet programming.
In Sagonas, K., editoRroceedings of JICSLP’98 Implementation of LP languages
WorkshopManchester, U.K. invited talk.

Tripathi, A. R., Karnik, N. M., Ahmed, T., Singh, R. D., Praka A., Kakani, V., Vora,
M. K., and Pathak, M. (2002). Design of the Ajanta System fasbNe Agent
Programming.Journal of Systems and Softwate appear.

Van Roy, P. and Haridi, S. (1999). Mozart: A programming sgstor agent applications.
In International Workshop on Distributed and Internet Progmaing with Logic and
Constraint Languages Part of International Conference on Logic Programming
(ICLP 99).

Vaughan-Nichols, S. J. (2002).-Web services: Beyond the hi@pmputey 35(2):18-21.

Wagner, C. and Turban, E. (2002). Are intelligent e-commegents partners or preda-
tors? Communications of the ACM5(5):84—90.

Yamazaki, K., Yoshida, M., Amagai, Y., and Takeuchi, I. (2pdmplementation of logic
computation in a multi-paradigm language TARformation Processing Society of
Japan 41(1).

Zunino, A., Berdun, L., and Amandi,“A. (2001). Javalog: ungeaje para la progra-
macion de agentemteligencia Artificial, Revista Iberoamericana de I.8(13):94—
99. ISSN 1337-3601.

Zunino, A., Campo, M., and Mateos, C. (2002). Simplifyingbite agent development
through reactive mobility by failure. In Bittencourt, G.cdaRRamalho, G., editors,
Proceedings of tha6" Brazilian Symposium on Artificial Intelligence (SBIA'02)
volume 2507 ofLecture Notes in Computer Sciengeages 163-174. Springer-
Verlag.

23

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Appendix A: Prolog

Prolog is a logic language that is particularly suited togoams that involve symbolic or
non-numeric computation. For this reason it is a frequensigd language in Artificial
Intelligence where manipulation of symbols and infererfoeus them is a common task.

Prolog, which stands for PROgramming in LOGic, is the mostali available lan-
guage in the logic programming paradigm. Logic and theesfarolog is based on the
mathematical notions of relations and logical inferencaldg) is a declarative language
meaning that rather than describing how to compute a soludigrogram consists of a
database of facts and logical relationships (rules) whadtdbe the relationships which
hold for the given application. Rather than running a progta obtain a solution, the
user asks a question. When asked a question, the run tinesgsiarches through the
database of facts and rules to determine, by logical demtudiie answer.

Among the features of Prolog ategical variablesmeaning that they behave like
mathematical variables, a powerful pattern-matchinglifpatalled unification a back-
tracking strategy to search for proofs, uniform data stmes, and interchangeable in-
put/output.

Facts

In Prolog we can make some statements by using facts. Féots edbnsist of a particular
item or a relation between items. For example we can représefact that it is sunny by
writing the program:

sunny.

Facts can have arbitrary number of arguments from zero wswvah general model is
shown below:

relation(<argument1>, <argument2>,, <argumentN>).

Relation names must begin with a lowercase letter. For el@rtie following fact says
that a relationship likes links john and mary:

likes(john,mary).

It is worth noting that names of relations are defined by tteg@mmer. With the ex-
ception of a few relations that are built-in, the system daipws about relations that
programmers define.

We can now ask a query by asking, for examgliees john like mary.?

24

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

?- likes(john,mary)
To this query Prolog will answer “yes” because Prolog maidies(john,mary) in its
database.
Variables
How do we say something lik&/hat does Fred eat®uppose we had the following fact
in our database:

eats(fred,apples).
To ask what Fred eats, we could type in something like:

?--eats(fred,what).

However Prolog will say “no”. The reason for this is thrdtatdoes not match with apples.

In order to match arguments in this way we must uSargable The process of matching

items with variables is known asmification Variables are distinguished by starting with
a capital letter. Thus we can find out what fred eats by typing

?- eats(fred,What).

Prolog will answer “yes, What=apples”.
Rules

Rules allow us to make conditional statements about ourdv&dch rule can have several
variations, called clauses. These clauses give us differesices about how to perform
inference about our world. Let us show an example to makegshitearer. Consider the
statemenill humans are mortalWe can express this as the following Prolog rule:

mortal(X) :- human(X).

The clause can be read Bar a given X, X is'mortal if X is humanTo continue let us
define a facfred is human

human(fred).

25

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

If we now pose the question to Prol@g mortal(fred). The Prolog interpreter would re-
spond “yes”.

In order to solve the query- mortal(fred)., we used the rule we defined previously.
This said that in order to prove someone mortal, we had toepthem to be human.
Thus from the goal Prolog generates the subgoal of showingn(fred). Then Prolog
matchedhuman(fred) against the database. In Prolog we say that the subgoalesiexte
and as a result the overall goal succeeded. We know whendpjizens because Prolog
prints “yes.”

Backtracking
Suppose that we have the following database:

eats(fred,oranges).
eats(fred,meat).
eats(fred,apples).

Suppose that we wish to answer the questidimat are all the things that fred eats7o
answer this we can use variables again. Thus we can type quiry:

?- eats(fred, Food).

Prolog will answer “Food=oranges”. At this point Prologoals us to ask if there are
other possible solutions. When we do so we get the followiRgond=meat”. Then, if we
ask for another solution Prolog will give us: “Food=apples”

If we ask for further solutions, Prolog will answer “no”, s there are only three
ways to prove fred eats something. The mechanism for findini¢jpte solution is called
backtracking. This is an essential mechanism in Prolog.

We can also have backtracking in rules. For example consiédpllowing program.

likes(Personl,Person2):- hobby(Personl,Hobby), hobby(Person2,Hobby).
hobby(john,tennis).

hobby(tim,sailing).

hobby(helen,tennis).

hobby(simon,sailing).
If we now pose the query:
?- likes(X,Y).
Prolog will answer “X=john, Y=helen”. Then next solutionathProlog finds is “X=tim,

Y=simon”.

26

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

Lists

Lists always start and end with square brackets, and thesiteay contain are separated
by commas. Here is a simple list [a,simon,A_Variable,apple

Prolog also has a special facility to split the first part @& list, called the head, away
from the rest of the list, known as the tail. We can place aiapsgmbol | (pronounced
‘bar’) in the list to distinguish between the first item in s and the remaining list. For
example, consider the following:

[first,second,third] = [A|B]

where A=first and B=[second,third]. The unification herecaszls. A is bound to the first
item in the list, and B to the remaining list.

Alejandro Zunino received a Ph.D. Degree in Computer Science from the Undaets
Nacional del Centro (UNICEN), Tandil, Argentina, in 2008 MSc. in Systems
Engineering in 2000 and the Systems Engineer degree in 1988s a full time
research assistant at UNICEN. He has published over 15 papgournals and
conferences. The main contributions of his recent Ph.Bediation are reactive
mobility by failure and MoviLog. His current research irdsts include develop-
ment tools for mobile agents, intelligent agents, and Ipgagramming. He is the
chair of the VI Argentine Symposium on Artificial Intelligea (ASAI). More info
can be found at http://www.exa.unicen.edu.ar/~azunino.

Marcelo Campo received a Ph.D. Degree in Computer Science from the Undlae
Federal do Rio Grande do Sul, Porto Alegre, Brazil in 1997 thedSystems En-
gineer degree from the Universidad Nacional del Centro CBN), Tandil, Ar-
gentina in 1988. Currently heis-an Associate Professor aifiter Science De-
partment and Head of the ISISTAN Research Institute of UNNCHe is also a
research fellow of the National Council for Scientific andfeical Research of Ar-
gentina (CONICET). He has over 50 papers published in cenfars and journals
about software engineering topics. His research intemashsde intelligent aided
software engineering, software architectures' and framksyagent technology
and software visualization. More info can be found at hitygwAv.exa.unicen.edu.ar/~mcampo.

Cristian Mateos is a MSc. candidate at the Universidad Nacional del Centiarkw
ing under the supervision of Marcelo Campo and Alejandroi@un He holds

27

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems

Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.d0oi.org/10.1007/s10796-005-1475-2

a Systems Engineer degree from UNICEN. He has implementedpthe run-
time support for reactive mobility by failure in MoviLog. He investigating the

relationships between Semantic Web Services and mobiletagsing reactive
mobility by failure.

28

