
This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Reactive Mobility by Failure: When Fail

Means Move

Alejandro Zunino Marcelo Campo∗ Cristian Mateos†

ISISTAN Research Institute - UNICEN University

Campus Universitario (B7001BBO), Tandil, Bs. As., Argentina

TEL: +54 (2293) 440363 int. 35

FAX: +54 (2293) 440363 int. 52

azunino@exa.unicen.edu.ar

∗Also National Council for Scientific and Technical Researchof Argentina (CONICET).
†Also Council for Scientific Research of Buenos Aires, Argentina (CIC).

1

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Abstract

Mobile agent development is mainly supported by Java-basedplatforms

and tools. However, the weak mobility model they use, the lack of ade-

quate support for developing inference and reasoning mechanisms, added to

the inherent complexity of building location-aware software, impose strong

limitations for developing mobile intelligent agent systems. In this article

we present MoviLog, a platform for building Prolog-based mobile agents

with a strong mobility model. MoviLog is an extension of JavaLog, an inte-

gration of Java and Prolog, that allows us to take advantage of the best fea-

tures of the programming paradigms they represent. MoviLogagents, called

Brainlets, are able to migrate among different Web sites, either proactively

or reactively, to use the available knowledge in order to finda solution. The

major contribution of MoviLog is itsReactive Mobility by Failure(RMF)

mechanism. RMF is a mechanism that acts when an agent needs a resource

or service that is not available at the current executing site. RMF uses a

distributed multi-agent system to transparently transport the executing agent

to the site where the resource/service is available, thus reducing the devel-

opment effort with respect to the traditional mobile agent approach, while

maintaining its advantages.

Keywords: mobility, mobile agents, intelligent agents, logic programming

2

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

1 Introduction

Many researchers envision the future Web as a global community where people and intelli-

gent agents interact and collaborate (Hendler, 2001), sharing interests as well as resources.

In this scenario consisting of sites providing highly dynamic content, mobile users using

unreliable connections and small devices such as PDAs and cell phones, mobile agents

will have a fundamental role (Gray et al., 2001). A mobile agent is a computer program

which represents a user in a computer network and is capable of migrating autonomously

between hosts to perform some computation on behalf of the user. Such a capability is

particularly interesting when an agent makes sporadic use of a valuable shared resource.

Also, efficiency can be improved by moving agents to different hosts to query a large

database. This approach may also improve the response time and the availability when

compared to performing the interactions over network linksthat are subject to long delays

or interruptions.

Despite the well known advantages of mobile agents (Lange and Oshima, 1999), their

usage is still limited to small applications, mainly due to the following factors:

Development effort: mobile agents are inherently more complex than traditionalsta-

tionary systems. Clearly, mobile agent developers have to provide mechanisms to

decide an agent’s itinerary. Therefore, though agents’ location awareness may be

very beneficial, it also adds further complexity to the development of intelligent

mobile agents, specially with respect of stationary applications (Picco et al., 1997;

Silva et al., 2001).

Lack of standards for accessing resources,including legacy systems: there is a need

for developing mechanisms to allow agents to access resources offered by sites. In

particular, mobile agent technology should be capable of using existent resources

such as Web pages and Web-accessible programs and devices.

Security concerns: this has been deeply studied, and some good results have beenachieved (Gray

et al., 1998; Tripathi et al., 2002). Though recent platforms have shown that it is

perfectly feasible to build secure mobile agent systems, there are still psycholog-

ical reasons against mobile agents (Wagner and Turban, 2002), thus we will limit

the scope of the paper to the first two points.

In this paper we describe MoviLog, a platform for mobile agents that aims at reducing the

development effort by automating decisions onwhenandwhereto move an agent, based

3

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

on resource needs. MoviLog is an extension of the JavaLog framework (Amandi et al.,

1999; Zunino et al., 2001) which implements an extensible integration between Java and

Prolog (see Appendix A for an introduction to Prolog).

MoviLog provides mobility enabling mobile logic-based agents, called Brainlets, to

migrate between Web sites by using astrong mobilitymechanism. Strong mobility im-

plies that an agent’s execution state is transferred and resumed at the remote site. On the

other hand,weak mobility, the mechanism implemented by most Java-based mobile agent

platforms, is not able to transfer the execution state thus the agentforgets the point at

where its execution was. Besides extending Prolog with operators to implement proactive

strong mobility, the most interesting aspect of MoviLog is the incorporation of the notion

of reactive mobility by failure(RMF). This mechanism acts when a specially declared

Prolog goal fails, by transparently moving a Brainlet to another Web site to satisfy its

resource and service needs.

The article is structured as follows. The next section briefly describes the JavaLog

framework. Section 3 introduces the MoviLog platform. Section 3.3 presents the inte-

gration of MoviLog with Web services. In Section 3.4 the evaluation algorithm is briefly

described. Section 4 reports some experimental results. Then, Section 5 discusses the

most relevant related works. Finally, in Section 6 concluding remarks and future works

are presented.

2 The JavaLog Framework

Intelligent agents are usually developed by using general purpose object oriented lan-

guages such as C++ or Java due to the advantages that encapsulation and inheritance

offer (Crnogorac et al., 1997). Despite these advantages, object-oriented languages do

not provide specific abstractions for building agents such as reasoning mechanisms, infer-

ence, learning or knowledge representation. As a consequence, developers are forced to

use programming abstractions not well suited for agents or hand code these mechanisms

before building agents.

On the other hand, a logic-oriented programming approach isa straightforward conse-

quence of the requirement of managing knowledge and reasoning. For this reason, logic

languages such as Prolog (Nilsson and Maluszynaski, 1995),Agent0 (Shoham, 1997),

Metatem (Fisher, 1994) and Gaea (Noda et al., 1999) are considered good alternatives for

programming intelligent agents (Dix, 1998).

Certainly, multi-paradigm languages integrating both logic and object-oriented paradigms

are convenient choices for the definition of agent programming languages because they

4

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

offer the best of both worlds. Examples of multi-paradigm languages appropriate for pro-

gramming agents are discussed in (Van Roy and Haridi, 1999; Yamazaki et al., 2001; Lee

and Pun, 1997; Ng et al., 1998; Amandi et al., 1999).

JavaLog is a multi-paradigm language that integrates Java and Prolog (Amandi et al.,

1999; Zunino et al., 2001). The JavaLog support is based on anextensible Prolog inter-

preter designed as a framework (Fayad and Johnson, 1999). This means that the basic Pro-

log engine can be extended to accommodate different extensions, such as multi-threading,

modal logic operators, or mobility, for example.

JavaLog defines thelogic module(a list of Prolog clauses) as its basic concept of

manipulation. In this sense, both objects and methods from the object-oriented paradigm

are considered as modules encapsulating data and behavior,respectively. The elements

manipulated by the logic paradigm are also mapped to modules.

Each agent possesses an object calledbrain. This object is an instance of an extended

Prolog interpreter implemented in Java which enables developers to use objects within

logic clauses, as well as to embed logic modules within Java code. In this way, each agent

is an instance of a class that can define part of its methods in Java and part in Prolog. The

definition of a class can include several logic modules defined within methods as well as

referenced by instance variables.

The JavaLog language defines some interaction constraints between object-oriented

and logic modules. These interaction constrains are classified by referring, communica-

tion and composition constraints. Referring constraints specify the composition limits of

different modules. Communication constraints specify therole of objects in logic mod-

ules and the role of logic variables in methods. Compositionconstraints specify how logic

modules can be combined.

3 The MoviLog Platform

MoviLog is an extension of the JavaLog framework to support mobile agents on the Web.

MoviLog implements strong mobility for a special type of agents calledBrainlets. The

MoviLog inference engine is able to process several concurrent threads and to restart the

execution of an incoming Brainlet at the point where it migrated, either pro-actively or

reactively, in the original host. Some early ideas about MoviLog are described in (Zunino

et al., 2002). This paper is mainly focused on the novel mobility mechanism supported

by MoviLog and the conceptual model behind it.

In order to enable mobility across sites, each Web server belonging to a MoviLog

network have to be extended with a MARlet (Mobile Agent Resource). A MARlet is a

5

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Java servlet encapsulating the MoviLog inference engine and providing services to access

it through the Web. In this way, a MARlet represents a Web dockfor Brainlets. Addition-

ally, a MARlet is able to provide intelligent services underrequest, such as adding and

deleting logic modules, activating and deactivating modules, and answering logic queries.

In this sense, a MARlet can also be used to provide inferential services to legacy Web

applications or agents.

From the mobility point of view, MoviLog provides support toimplement Brainlets

with typical pro-active capabilities, but more interesting yet, it implements a mechanism

for transparent reactive mobility by failure (RMF). This support is based on a number of

stationary agents distributed across the network. These agents provide intelligent mech-

anisms to automatically migrate Brainlets based on their resource requirements. Further

details on this will be explained in Section 3.2.

3.1 Proactive Strong Mobility

MoviLog strong mobility mechanism allows a Brainlet to proactively migrate its execu-

tion. Migration is achieved by invoking a MoviLog predicatemoveTo(S), whereS is the

destination site. The migration mechanism implemented bymoveTo works as follows.

Before transport, MoviLog serializes the Brainlet and its execution state - i.e. its knowl-

edge base and code, current goal to satisfy, instantiated variables, choice points, etc. Then,

it sends the serialized form to its counterpart on the destination host. In the remote host,

MoviLog reconstructs the Brainlet and its execution state,and then its execution is re-

sumed. Eventually, after performing some computation, theBrainlet can return to the

originating host by calling thereturn predicate.

The following example presents a simple Brainlet for e-commerce whose goal is to of

find and buy an article in the network according to a number of preferences provided by a

user. Thebuy clause looks for offers available in different sites of the network, selects the

best and calls a generic predicate to buy the article (this process is not relevant here). The

lookForOffers predicate implements the process of moving around through anumber of

sites looking for the available offers for the article (we assume that we get the first offer).

If there is no offer in the current site, the Brainlet goes to the next one in the list:

sites([www.offers.com,www.freemarket.com,...]).

preference(car,[ford, Model, Price]) :- Model > 1998, Price < 60000.

preference(tv,[sony, Model, Price]) :- Model = 21in, Price < 1500.

lookForOffers(A,[],_,[]).

lookForOffers(A,[S| R], [O|RO], [O|Roff]):-

6

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

moveTo(S), article(A, Offer, URL), O= (S,Offer,URL),

lookForOffers(A, R, RO,ROff).

lookForOffers(A,[S| R], [O|RO], [O| Roff]):- lookForOffers(A, R, RO,ROff).

buy(Art):-

sites(Sites), lookForOffers(Art, Sites,R,Offers), selectBest(Offers, (S,O,E)),

moveTo(S), buy_article(O,E), return.

?- buy(#Art).

Although proactive mobility provides a powerful tool to take advantage of network re-

sources, in the case of Prolog, it also adds extra complexitydue to its procedural nature.

Particularly, when the mobile behavior depends on the failure or not of a given predi-

cate, solutions tend to be more complicated. This fact led usto develop a complementary

mobility mechanism, calledreactive mobility by failure.

3.2 Reactive Mobility by Failure

Intelligent agents have been traditionally considered as systems possessing several di-

mensions of attributes (Nwana, 1996; Shoham, 1997; Genesereth and Ketchpel, 1994).

For example, (Bradshaw, 1997) described mobile intelligent agents in terms of a three

dimensional space defined byagency, intelligenceandmobility: agencyis the degree of

autonomy and authority vested in the agent;intelligenceis the degree of reasoning and

learning behavior;mobility is the degree to which agents themselves travel through the

network.

Based on these views we consider a mobile agent as composed oftwo separated and

orthogonal behaviors: stationary behavior and mobile behavior; the first one is concerned

with the tasks performed by an agent on specific places of the network, and the second one

is in charge of making decisions about mobility. The MoviLogplatform provides a new

form of mobility called Reactive Mobility by Failure (RMF) that is based on the idea that

those two functionalities or concerns can be treated independently at the implementation

level (Garcia et al., 2001).

RMF aims at reducing the effort of developing mobile agents by automating some

decisions about mobility. In this way, programmers focus their efforts on the stationary

functionality of mobile agents, and delegate mobility on RMF.

RMF is a reactive migration mechanism able to automate decisions on when and

where to migrate a Brainlet based on its resource needs. Reactive migration mechanism

are based on the idea that an entity external to the Brainlet triggers mobility. In RMF those

external entitiesare stationary agents (not able to move between sites) that are part of the

7

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

MoviLog platform thus provide runtime support for RMF. Stationary agents interfere with

the normal execution of a Brainlet when afailure occurs.

Conceptually, a failure occurs when a Brainlet tries to access a resource that is lo-

cated at a remote site. In terms of Prolog, a failure occurs when a Brainlet evaluates a

specially declared goal that cannot be deduced from the clauses provided by the local site,

as depicted in the step i of Fig. 1. At this point, the stationary agents obtain a list of sites

to try to probe the goal and migrate the Brainlet to one of these sites (ii of Fig. 1). In

addition, stationary agents may build an itinerary for the Brainlet in order to visit the sites

according to some policy.

host1

(iii) strong migration

ServerBrainlet

host2

Brainlet
DB(i) Requested access

to a non-local resource

stationary agents stationary agents

(ii) move to host2

non-local interactions
between mobility agentsMoviLog

Platform

Mobile
Agents

Figure 1: Reactive Mobility by Failure

To sup up, RMF is able to automate two types of decisions aboutmobility:

• where to migrate: RMF selects the next destination of the mobile agent. This deci-

sion can take into account factors such as network traffic, CPU load, etc. Moreover,

it may be necessary to visit several sites in a certain sequential order. For example,

host1, host2andhost3, or host2, host1andhost3. A problem here is that Brainlets

might not know the location of resources. As a consequence RMF has to manage

information about resources provided by sites capable of executing Brainlets.

• when to migrate: in the example, when a failure occurs, RMF migrate the mobile

agent tohost2. However, it could be convenient to copy the required clauses from

host2to host1. Those decisions can be taken considering network traffic and time.

As shown in Fig. 1, RMF consists of:

• executing units or mobile agents calledBrainlets.

8

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

• mechanisms enabling Brainlets to specify on which resources RMF is allowed to

act.

• a platform supporting the execution of Brainlets and responsible for taking deci-

sions about mobility.

Each of these elements is described in detail in the following sections.

3.2.1 Brainlets

A Brainlet is composed of the following parts:

• code and data: consist of Prolog clauses and Java objects implementing a Brainlet’s

behavior and knowledge.

• execution state: one ore more threads encompassing a program counter, stack, vari-

able bindings and choice points. It is worth noting that these threads persist after

migrating an agent to a remote host.

• protocol clauses: are used to delegate mobility decisions on RMF.

The code of a Brainlet consists of two sections: Protocols and Clauses. This first section

contains protocol declarations. The second section contains clauses expressed in JavaLog.

Syntactically, the code of a Brainlet has the following form:

PROTOCOLS

...

CLAUSES

...

The next section is concerned with protocols and its usage.

3.2.2 Protocols

A protocol describes an interface used to access a resource available at any site of the net-

work. When a Brainlet accesses one of these resources, and the resource is not available

at the local site, the stationary agents are activated.

In terms of Prolog, protocol declarations have the syntaxprotocol(functor, arity).

Such a declaration enables RMF to act on failures of goals with the form:

functor(<argument1>, <argument2>,, <argumentArity>).

9

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

In this way, when a goal declared as a protocol by a Brainlet fails, stationary agents

transparently move the Brainlet to another site having definitions for such a protocol.

Thereafter it continues the normal execution to try to solvethe goal.

The following code shows the implementation of the customeragent combining both

mobility mechanisms. This solution collects through backtracking the matching articles

from the database until no more articles are left. Thearticle protocol makes the Brainlet

to try all the sites offering the same protocol before returning to the origin site to collect

(by usingfindall) all the offers in the local database of the Brainlet. Once the best offer is

selected the Brainlet proactively moves to the site offering that article to buy it. As can

be noted, the solution using RMF looks much like a common Prolog program. Certainly,

this solution is simpler than the one using just proactive mobility.

PROTOCOLS

protocol(article, 3).

CLAUSES

preference(car, [ford, Model, Price]) :- Model > 1998, Price < 20000.

preference(tv,[sony, Model, Price]) :- Model = 21in, Price < 1500.

lookForOffers(A, [O|RO], [O|Roff]) :- article(A, Offer, URL),

thisSite(ThisSite), assert(offer(ThisSite, Offer, URL)), fail.

lookForOffers(A, _, Offers) :- !, findAll(offer(S,O,E)), Offers).

buy(Art) :- lookForOffers(Art,R,Offers), selectBest(Offers,(S,O,E)),

moveTo(S), buy_article(O, E), return.

...

?- buy(Art).

It is worth noting that the protocolarticle is only a description of a resource. The concrete

realization of the resource may be a set of Prolog clauses, a Java method, a relational

database or a Web service. MoviLog abstracts the complexityof accessing these resources

by providing a simple access method.

RMF allows a programmer to adapt and extend the different decision mechanisms

that act when a failure is detected. For example, it is possible to use several pre-defined

or user-defined algorithms and metrics for building and updating an agent’s itinerary.

3.2.3 RMF Execution Support

RMF is implemented through a Multi-Agent System (MAS) composed of stationary agents

in charge of mobility. It is worth noting that these agents act only when a failure occurs

on a goal declared as a protocol. The MAS consists of two typesof stationary agents:

10

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

• Protocol Name Servers (PNS): Each host capable of executing Brainlets has one

PNS. PNS are responsible for managing information on protocols offered at each

site. When a Brainlet needs a resource not hosted at the localsite, RMF queries

the PNS of the site to obtain a list of sites offering that resource. A site offering

resources registers with its PNS the protocols of the resources. Then, the PNS an-

nounces the new protocols to other sites by using a multicast-based communication

mechanism.

• Mobility agents: Mobility agents collaborate with PNSs in order to select the next

destination of a Brainlet that failed, building an itinerary when a resource is hosted

in more that one site. All these decisions take into account policies based on net-

work traffic, link speed or user-defined metrics. In addition, mobility agents are

able to decide whether to migrate an agent or to transfer a resources from other

sites to the site where the Brainlet is located.

3.3 RMF and Web Services

Let us suppose a scenario consisting of a Notebook with a low bandwidth connection

to a network. ServersS1,S2,. . ., Sn residing in this network have good connectivity with

the Internet (Fig. 2). In addition, these servers are able toexecute Brainlets. A Brainlet

running at the Notebook requires accessing to a service offered by a serverP located at

the Internet. Due to connectivity constraints, it might be advantageous to migrate the

Brainlet toP. However,P does not support the execution of Brainlets, so this approach

is unfeasible. An alternative is to migrate the Brainlet to one of the serversSi with good

connectivity. From there, the Brainlet will interact withP by using a fast network link,

returning to the Notebook afterwards.

MoviLog supports interaction with Web Services to enable the usage of RMF in cases

where the site hosting a required service cannot execute Brainlets.Web Services(Vaughan-

Nichols, 2002) – Web-accessible programs and devices – can be viewed as a set of pro-

grams interacting cross a network with no explicit human interaction during the transac-

tion. In order for programs to exchange data, it is necessaryto define the communications

protocol, the data transfer syntax, and the location of the endpoint. For building large,

complex systems, such service definitions must be done in a rigorous manner: ideally,

a machine-readable language with well-defined semantics, as opposed to parochial and

imprecise natural languages.

The Web Services Description Language (WSDL) is an XML-based language for

describing Web services as a set of network endpoints that operate on messages. A WSDL

11

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Notebook

S1

(i) migration (MRF)
MARlet

Brainlet

Brainlet

P

Service

slow/unreliable
connection

fast connection

(ii) remote
interactions

S1 acts as a proxy

slow/unreliable
connection

Figure 2: MARlet acting as a proxy of a Web accessible service

service description contains an abstract definition for a set of operations and messages, a

concrete protocol binding for these operations and messages, and a network endpoint

specification for the binding.

From a WSDL description a program can determine the servicesprovided by a server

and how to invoke and use these services, independently of the network protocol or pro-

gramming language. As a complement to WSDL, the WWW Consortium developed the

Universal Description, Discovery and Integration (UDDI) specification. UDDI provides

a method for publishing and finding service descriptions written in WSDL or any other

service description mechanism.

In order to integrate MoviLog with Web services, we extendedthe PNS agents with

capabilities of querying UDDI registries, parsing WSDL documents and mapping Prolog

clauses to and from Web services. When a PNS detects a failure, it first obtains the

resources directly available as Prolog predicates, then itqueries a UDDI registry and

obtains a list of Web-accessible services that match the protocol of the predicate causing a

failure. When the mobile agent effectively tries to access to a Web-accessible resource, a

PNS agent determines whether to travel to the remote site or not, depending on its support

for mobile agents, network load, size of the mobile agent, etc.

Let us consider the usage of Web services not registered in UDDI. A Brainlet can in-

voke Web services by using a special code section namedserviceswhich contains, among

other things:

• pointers to WSDL descriptions of the services, including their names, parameters

12

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

and access points. For example,registerServices(’http://soap.amazon.com/

schemas/AmazonWebServices.wsdl’) registers the services provided by Ama-

zon (amazonComKeywordSearchRequest, amazoncomAuthorSearchRequest, etc.)

and associates these services to Prolog clauses.

• a number of user-defined clauses to adapt a protocol clause toa Web service. This

involves at least the following steps:

– given a protocol clause and its parameters, the programmer has to map these

parameters to the input parameters of a given Web service.

– the output of the Web service has to be converted to Prolog structures. MoviLog

assumes that Web services output XML. MoviLog provides two alternatives:

the usage of XPath1 to query the XML output, or the usage of XSL Transfor-

mations to transform the XML output to Prolog terms.

Let us consider, for example, the keyword search service provided by Amazon. The

WSDL2 description of the serviceKeyWordSearchRequestdescribes its parameters and

types. The most important parameters arekeywordsandtype(brief or detailed response).

In addition a WSDL document includes a description of the invocation method of the ser-

vice. In this case, the service has to be invoked through a HTTP SOAP-encoded request to

the URLhttp://soap.amazon.com/onca/soap. By knowing this details it is easy for

MoviLog to invokeKeyWordSearchRequestor any other service. Now, the previous ex-

ample of RMF can be extended to search and buy books in both Amazon and the MoviLog

network:

SERVICES

registerServices(’http://soap.amazon.com/-schemas/-Amazon-Web-

Services.wsdl’).

articleAdapter(book(FeatureList), Offers, URLs) :-

% invokes the Web service

amazoncomKeywordSearchRequest([keyword:FeatureList, mode:books,

type:lite, format:xml, devtag: ’D26UGIDJJ9HCRX’], XMLresponse),

% transforms the XML response by using a XSL transformation

1XPath (Gottlob et al., 2003) is a language for addressing parts of an XML document.
2The Amazon.com Web Services software development kit is available at http://

associates.amazon.com/exec/panama/associates/join/developer/kit.html.

13

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

transformWith(XMLresponse, ’lite-data-to-prolog.xsl’, Offers),

% uses XPath to obtain the URLs of the books

xpath(XMLresponse, ’//ProductInfo/Details@url’), URLs).

PROTOCOLS

protocol(article, 3).

CLAUSES

preference(book, [author:A, keywords:[mystery, terror], price:P]) :-

(A == ’Stephen King’ ; A == ’Agatha Christie’), P < 20.

lookForOffers(A, [O|RO], [O|Roff]) :- article(A, Offer, URL),

thisSite(ThisSite), assert(offer(ThisSite, Offer, URL)), fail.

lookForOffers(A, _, Offers) :- !, findAll(offer(S,O,E)), Offers).

buy(Art) :- lookForOffers(Art,R,Offers), selectBest(Offers,(S,O,E)),

moveTo(S), buy_article(O, E), return.

...

?- buy(Art).

To sum up, in order to allow Brainlets to interact with legacysystems not able to run

mobile agents, MoviLog is able to invoke Web services. To do so, developers have to

provide a set of Prolog clauses that map a protocol description to a Web service and a

method to extract the information from the response.

3.4 Evaluation Algorithm

In this section we briefly describe the evaluation algorithmused by MoviLog. RMF can

be understood by considering a classical Prolog interpreter with a stackS, a databaseD,

and a goalg. Each entry ofS contains a reference to the clausec being evaluated, a

reference to the term ofc that is being proved, a reference to the preceding clause anda

list of variables and their values in the preceding clause tobe able to backtrack. MoviLog

extends this structure by adding information about the distributed evaluation mechanism.

The idea is to keep a history of visited MARlets and possibilities for satisfying a given

goal within a MARlet.

Protocol definitions create the notion of avirtual databasedistributed among several

Web sites. When a Brainlet defines a given protocol predicatein a MARlet hn, MoviLog

informs the PNS agents, which in turn inform the rest of registered MARlets that the new

protocol is available inhn. In this way, the database of a Brainlet can be defined as a set

D = {DL,DR}, whereDL is the local database andDR is a list of clauses stored in a remote

MARlet with the same protocol clause as the current goalg. Now, in order to probeg the

14

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

interpreter has to try with all the clausesc∈ DL such that the head ofc unifies withg. If

none of those lead to probeg, then it is necessary to try to probeg from one of the non-

local clauses inDR. To achieve this, MoviLog transfers the running Brainlet toone of

the hosts inDR by using the same mechanism used for implementing proactivemobility.

Once at the remote site, the execution continues trying to probe the goal. However, if the

interpreter at the remote site fails to probeg, it continues with the next host inDR. When

no more possibilities are left, the Brainlet is moved to the site from which the Brainlet

originated.

To better understand these ideas, let us give a more precise description of the eval-

uation mechanism. Lets = 〈c, ti ,V,H,L〉 be an element of the stack, wherec = h :

−t1, t2, . . . , tn is the clause being evaluated,ti is the term ofc being evaluated,V is a

set of variable substitutions (ex.X = 1,X = Z) andH = 〈Ht ,Hv,P〉, whereHt is a list of

MARlets not visited,Hv is a list of MARlets visited andP is a list of candidate clauses

at a given MARlet that match the protocol clause ofc; andL is a list of clauses with the

same name and arity asti (candidate clauses at the local database).

The interpreter has two states:call andredo. When the interpreter is in statecall, it

tries to probe a goal. On the other hand, in stateredo it tries to search for alternative ways

of evaluating a goal after the failure of a previous attempt.Given a goal ?− t1, t2, . . . , tn,

S= {} andstate= call,

1: if state== call then

2: the interpreter pushes into the stack:

〈t1, t2, . . . , tn, ti ,V = {},〈Ht = 〈〉 ,Hv = 〈〉 ,PHt = 〈〉〉〉

3: for all i such that 1≤ i ≤ n do

4: if The MARlet is visited for the first timethen

5: the interpreter searches into the local database for clauses with the same name

and arity asti . This result is stored intoP (a list of clausesc j at the current

MARlet).

6: else

7: P is updated with the clauses available at the current MARlet.

8: end if

9: Then, the more general unifier (MGU) forti and the head ofc j is calculated. If

there is no such unifier for a givenc j , thenc j is removed fromP. Otherwise,

the substitutions forti and the head ofc j are stored intoV. At this point, the

15

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

algorithm tries to probec j by jumping to line1. If everyti is successfully proved,

then the algorithm returnstrue.

10: If there is not a clausec j such as there is a more general unifier forti and the

head ofc j , the interpreter queries a PNS for a list of MARlets offeringthe same

protocol clause asti. This is stored intoHt . Then, the Brainlet is moved to the

first MARlet hd in Ht . The current MARlet is removed fromHv to avoid visit it

again.

11: If Hv is empty thenstate= redo

12: end for

13: else

14: This point of the execution is reached when the evaluation ofa goal fails at the

current MARlet. The step9 of the algorithm selected ac j from the local database

for proving ti . This selection was the source of the failure. Therefore, MoviLog

simply restores the clause by reversing the effects of applying the substitutions

in V, selects another clausec j , setsstate= call and jumps to line4.

15: If there are no more choices left inP, this implies that it is not possible to proveti

from the local database. Therefore the top of the stack is popped and the algorithm

returns false. This may require migrating the Brainlet to the site where the goal

failed for the first time.

16: end if

3.4.1 Distributed Backtracking and Consistency Issues

The RMF model generates several tradeoffs related to the standard Prolog execution se-

mantics. Backtracking is one of them. When a Brainlet moves around several places,

many backtracking points can be left untried, and the question is how the backtracking

mechanism should proceed. The solution adopted by MoviLog at the current version re-

sides in the stationary agents. These agents provide a sequential view of the multiple

choice points that is used by the routing mechanism to go through the distributed execu-

tion tree.

Also the evaluation of MoviLog code in a distributed manner may lead to inconsisten-

cies. For example, MARlets can enter or leave the system, mayalter their protocol clauses

or modify their databases. At this moment, MoviLog defines a policy that defines how the

local view of a Brainlet is updated when it arrives to a host. This involves automatically

querying the PNS agents to obtain a list of MARlets implementing a given protocol clause

and querying the current MARlet in order to obtain a list of clauses matching the protocol

16

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

clause being evaluated.

4 Experimental Results

In this section we report the results obtained with an application implemented by using

MoviLog, µCode (Picco, 1998) (a Java-based framework for mobile agents) and Jinni (Ta-

rau, 1998) (a Prolog-based language with support for strongmobility).

The application consists of a number of customer agents thatare able to select and

buy articles offered by sellers based on users’ preferences. Both, customers and sellers

reside in different hosts of a network. In this example, customers are ordered to buy books

that has to satisfy a number of preferences such as price, author, subject, etc.

The implementation of the application with MoviLog using RMF was easy (39 lines

of code). On the other hand, to develop the application by using µCode we had to provide

support for representing and managing users’ preferences.The size of the application was

741 lines of code3. Finally, the Jinni implementation was easier, although not as easy as

with MoviLog, due to the necessity of managing agents’ code and data closure by hand.

The size of the source code in this case was 353 lines. This shows that MoviLog provides

more powerful abstractions for developing intelligent mobile agents. From a design point

of view, the other platforms intend to be more general, as a consequence their usage for

building intelligent agents require more effort.

We tested the implementations on three Pentium III 850 Mhz with 128 MB RAM,

running Linux and Sun JDK 1.3.1. To compare the performance of the implementations

we distributed a database containing books in the three computers. We ran the agents with

a database of 1 KB, 600 KB and 1.6 MB. For each database we ran two test cases varying

the user’s preferences in order the verify the influence of the number of matched books

(state that an agent has to move) on the total running time. Oneach respective test case

the user’s preferences matched 0 and 5 books (1 KB database),3 and 1024 books (600 KB

database, 4004 books), and 2 and 1263 (1.6 MB, 11135 books approx.). We ran each test

case 20 times and measured the running time. Fig. 3 (right) shows the average running

time as a function of the size of the database and the number ofproducts found.

On a second battery of tests we measured the network traffic generated by the agents

using the complete database (1.6 MB, 11135 books approx.) distributed across three

hosts. Fig. 3 (left) shows the network traffic measured in packets versus the number of

books that matched the user’s preferences. From the figure wecan conclude that MoviLog

and its RMF do not affect negatively neither the performancenor the network traffic, while

3Not counting the size of a library for handling symbolic user’s preferences.

17

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

1 Kb 0 books
1 Kb 5 books

600 Kb 3 books

500 Kb 1024 books

1600 Kb 2 books

1600 Kb 1263 books

Books

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
et

w
or

k
tr

af
fic

 [I
P

 p
ac

ke
ts

]

0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
MoviLog
Jinni
µCode

100 200 300 400 500 600 700 800 900 1000
Books

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n
tim

e
[m

s]
 (

LA
N

)

200 400 600 800 1000
0

100

200

300

400

MoviLog
Jinni
µCode

200 400 600 800 1000
Books

0

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n
tim

e
[m

s]
 (

W
A

N
)

200 400 600 800 1000
0

1000

2000

3000
MoviLog
Jinni
µCode

Figure 3: Performance Comparisons

considerably reducing the development effort.

We also ran the application on the Internet by using a configuration of two hosts

connected to the same LAN and a third host connected to another LAN. Both LANs were

connected through the Internet by using a 256Kbps DSL link. The idea of this test was

to evaluate RMF in a real scenario, taking into account the overhead introduced by RMF

and its infrastructure. Results on this test are shown in Fig. 3 (bottom). As expected,

RMF introduces some overhead due to its PNSs. Despite this overhead, MoviLog is still

competitive with the others platforms.

The next section discusses previous work related to MoviLog.

5 Related Work

At present, the only agent programming language that supports interaction with Web ser-

vices is ConGolog (McIlraith et al., 2001). ConGolog is a model-based programming

language that has been used as a testbed for DAML-S (DARPA Agent Markup Language

for Web Services) in small applications. The main advantageof MoviLog is its support

for reactive mobility by failure that enables us to easily build mobile agents that use Web

18

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

services.

With respect to the plethora of work on mobile agents, the most important are the

Java-based platforms such as Aglets (Lange and Oshima, 1998), Ajanta (Tripathi et al.,

2002) andµCode (Picco, 1998). These systems provide a weak mobility model, forcing a

less elegant and more difficult to maintain programming style (Silva et al., 2001). Recent

works such as NOMADS (Suri et al., 2000) and WASP (Fünfrockenand Mattern, 1999)

extended the Java Virtual Machine (JVM) to support strong mobility. Despite the ad-

vantages of strong mobility, these extended JVM do not sharesome well known features

of the standard JVM, such as its ubiquity, portability and compatibility across different

platforms.

The logic programming paradigm represents an appropriate alternative to manage

agents’ mental attitudes. Examples of languages based on itare Jinni (Tarau, 1998) and

Mozart/Oz (Haridi et al., 1997). Jinni (Tarau, 1998) is based on a limited subset of Prolog.

Jinni lacks adequate support for mobile agents since its notion of code and data closure

is limited to the currently executing goal. As a consequencedevelopers have to program

mechanisms for saving and restoring an agent’s code and data. Mozart (Haridi et al., 1997)

is a multi-paradigm language combining objects, functionsand constraint logic program-

ming based on a subset of Prolog. Though the language provides some facilities such as

distributed scope and communication channels that are useful for developing distributed

applications, it only provides rudimentary support for mobile agents.

The main differences between MoviLog and other platforms are its support for RMF,

which reduces development effort by automating some decisions about mobility, and its

multi-paradigm syntax, which provides mechanisms for developing intelligent agents with

knowledge representation and reasoning capabilities integrated with Web services.

6 Conclusion and Future Work

Intelligent mobile agents represent one of the most challenging research areas due to the

different factors and technologies involved in their development. Strong mobility and in-

ference mechanisms are, undoubtedly, two important features that an effective platform

should provide. MoviLog represents a step forward in that direction. The main contribu-

tion of our work is thereactive mobility by failureconcept. It enables the development of

agents using common Prolog programming style, making in it easier thus for Prolog pro-

grammers. This concept, combined with proactive mobility mechanisms, also provides a

powerful tool for exploiting Web services and mobility.

MoviLog has been used in several research projects. For example, we have devel-

19

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

oped a distributed meeting scheduler that uses Brainlets toassist users on managing their

calendars. Those Brainlets migrate between sites in order to negotiate meetings with the

other users’ Brainlets. Each Brainlet manages user preferences including preferred places,

contacts, days, etc. These preferences are represented by aBayesian Network. Another

application related to RMF is MOVED, a debugger for mobile agents that supports the

concept of RMF. MOVED supports features found in most traditional debugger, but with

one very important difference: all these features operate in a distributed and mobile way.

This is, breakpoints and watchpoints are set on mobile code,thus MOVED has to take

into account mobility issues.

The weakest point of the approach for integrating MoviLog with Web services is that

it does not take into account the semantics of Web services. As a consequence, the pro-

grammer has to ensure, for example, that a protocol such asarticle, is mapped to Ama-

zon’s KeyWordSearchRequestor Google’sdoGoogleSearchin the category Shop. The

same applies for the arguments and responses. One approach to solve these limitations is

the usage of machine understable descriptions of the concepts involved in Web services.

We are enriching MoviLog’s protocols and services sectionswith ontologies based on the

technologies of the Semantic Web (Berners-Lee et al., 2001).

References

Amandi, A., Zunino, A., and Iturregui, R. (1999). Multi-paradigm languages support-

ing multi-agent development. In Garijo, F. J. and Boman, M.,editors,Multi-Agent

System Engineering, volume 1647 ofLecture Notes in Artificial Intelligence, pages

128–139, Valencia, Spain. Springer-Verlag.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic Web.Scientific Amer-

ican, 284(5):34–43.

Bradshaw, J. M. (1997).Software Agents. AAAI Press, Menlo Park, USA.

Crnogorac, L., Rao, A. S., and Kotagiri Ramamohanarao (1997). Analysis of inheritance

mechanisms in agent-oriented programming. InProc. of the15th International Joint

Conference on Artificial Intelligence (IJCAI), pages 647–654. Morgan Kaufmann

Publishers.

Dix, J. (1998). The Logic Programming Paradigm.AI Communications, 11(3):39–43.

Short version in Newsletter of ALP, Vol. 11(3), 1998, pages 10–14.

20

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Fayad, M. E. and Johnson, R., editors (1999).Domain-Specific Application Frameworks

: Frameworks Experience by Industry. Wiley & Sons.

Fisher, M. (1994). A survey of concurrent METATEM – the language and its applications.

In Gabbay, D. M. and Ohlbach, H. J., editors,Temporal Logic - Proceedings of

the First International Conference (LNAI Volume 827), pages 480–505. Springer-

Verlag: Heidelberg, Germany.

Fünfrocken, S. and Mattern, F. (1999). Mobile Agents as an Architectural Concept for

Internet-based Distributed Applications - The WASP Project Approach. InProceed-

ings of KiVS’99 (Kommunikation in Verteilten Systemen), pages 32–43. Springer-

Verlag.

Garcia, A., Chavez, C., Silva, O., Silva, V., and Lucena, C. (2001). Promoting Ad-

vanced Separation of Concerns in Intra-Agent and Inter-Agent Software Engineer-

ing. In Workshop on Advanced Separation of Concerns in Object-Oriented Systems

at OOPSLA’2001.

Genesereth, M. R. and Ketchpel, S. P. (1994). Software agents. Communications of the

ACM, 37(7):48–53.

Gottlob, G., Koch, C., and Pichler, R. (2003). XPath processing in a nutshell.SIGMOD,

32(2):21–27.

Gray, R. S., Cybenko, G., Kotz, D., and Rus, D. (2001). Mobileagents: Motivations and

state of the art. In Bradshaw, J., editor,Handbook of Agent Technology. AAAI/MIT

Press.

Gray, R. S., Kotz, D., Cybenko, G., and Rus, D. (1998). D’Agents: Security in a multiple-

language, mobile-agent system. In Vigna, G., editor,Mobile Agents and Secu-

rity, volume 1419 ofLecture Notes in Computer Science, pages 154–187. Springer-

Verlag.

Haridi, S., Van Roy, P., and Smolka, G. (1997). An overview ofthe design of Distributed

Oz. In Proceedings of the Second International Symposium on Parallel Symbolic

Computation (PASCO ’97), pages 176–187, Maui, Hawaii, USA. ACM Press.

Hendler, J. (2001). Agents and the semantic web.IEEE Intelligent Systems, 16(2):30–36.

21

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Lange, D. B. and Oshima, M. (1998).Programming and Deploying Mobile Agents with

Java Aglets. Addison-Wesley, Reading, MA, USA.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents.Communi-

cations of the ACM, 42(3):88–89.

Lee, J. H. M. and Pun, P. K. C. (1997). Object logic integration: A multiparadigm design

methodology and a programming language.Computer Languages, 23(1):25–42.

McIlraith, S., Son, T. C., and Zeng, H. (2001). Semantic web services. IEEE Intelligent

Systems, Special Issue on the Semantic Web, 16(2):46–53.

Ng, K. W., Huang, L., and Sun, Y. (1998). A multiparadigm language for developing

agent-oriented applications. InProceedings of Technology of Object-Oriented Lan-

guages and Systems (TOOLS), Beijing, China. IEEE.

Nilsson, U. and Maluszynaski, J. (1995).Logic, Programming and Prolog. John Wiley

& Sons, New York, NY.

Noda, I., Nakashima, H., and Handa, K. (1999). Programming language Gaea and its

application for multiagent systems. InWorkshop on Multi-Agent System and Logic

Programming.

Nwana, H. (1996). Software agents: An overview.Knowledge Engineering Review,

11(3):205–244.

Picco, G. (1998).µCode: A Lightweight and Flexible Mobile Code Toolkit. In Rother-

mel, K. and Hohl, F., editors,Proceedings of the 2nd International Workshop on

Mobile Agents, volume 1477 ofLecture Notes in Computer Science, pages 160–171.

Springer-Verlag: Heidelberg, Germany.

Picco, G. P., Carzaniga, A., and Vigna, G. (1997). Designingdistributed applications with

mobile code paradigms. In Taylor, R., editor,Proceedings of the 19th International

Conference on Software Engineering, pages 22–32. ACM Press.

Shoham, Y. (1997). An overview of agent-oriented programming. In Bradshaw, J. M.,

editor,Software Agents, chapter 13, pages 271–290. AAAI Press / The MIT Press.

Silva, A., Romao, A., Deugo, D., and Mira da Silva, M. (2001).Towards a Reference

Model for Surveying Mobile Agent Systems.Autonomous Agents and Multi-Agent

Systems, 4(3):187–231.

22

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R., and Mitro-

vich, T. S. (2000). An Overview of the NOMADS Mobile Agent System. In 6th

ECOOP Workshop on Mobile Object Systems: Operating System Support, Security

and Programming Languages.

Tarau, P. (1998). Jinni: a lightweight java-based logic engine for internet programming.

In Sagonas, K., editor,Proceedings of JICSLP’98 Implementation of LP languages

Workshop, Manchester, U.K. invited talk.

Tripathi, A. R., Karnik, N. M., Ahmed, T., Singh, R. D., Prakash, A., Kakani, V., Vora,

M. K., and Pathak, M. (2002). Design of the Ajanta System for Mobile Agent

Programming.Journal of Systems and Software. to appear.

Van Roy, P. and Haridi, S. (1999). Mozart: A programming system for agent applications.

In International Workshop on Distributed and Internet Programming with Logic and

Constraint Languages. Part of International Conference on Logic Programming

(ICLP 99).

Vaughan-Nichols, S. J. (2002). Web services: Beyond the hype. Computer, 35(2):18–21.

Wagner, C. and Turban, E. (2002). Are intelligent e-commerce agents partners or preda-

tors? Communications of the ACM, 45(5):84–90.

Yamazaki, K., Yoshida, M., Amagai, Y., and Takeuchi, I. (2001). Implementation of logic

computation in a multi-paradigm language TAO.Information Processing Society of

Japan, 41(1).

Zunino, A., Berdún, L., and Amandi, A. (2001). Javalog: un lenguaje para la progra-

mación de agentes.Inteligencia Artificial, Revista Iberoamericana de I.A., 3(13):94–

99. ISSN 1337-3601.

Zunino, A., Campo, M., and Mateos, C. (2002). Simplifying mobile agent development

through reactive mobility by failure. In Bittencourt, G. and Ramalho, G., editors,

Proceedings of the16th Brazilian Symposium on Artificial Intelligence (SBIA’02),

volume 2507 ofLecture Notes in Computer Science, pages 163–174. Springer-

Verlag.

23

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Appendix A: Prolog

Prolog is a logic language that is particularly suited to programs that involve symbolic or

non-numeric computation. For this reason it is a frequentlyused language in Artificial

Intelligence where manipulation of symbols and inference about them is a common task.

Prolog, which stands for PROgramming in LOGic, is the most widely available lan-

guage in the logic programming paradigm. Logic and therefore Prolog is based on the

mathematical notions of relations and logical inference. Prolog is a declarative language

meaning that rather than describing how to compute a solution, a program consists of a

database of facts and logical relationships (rules) which describe the relationships which

hold for the given application. Rather than running a program to obtain a solution, the

user asks a question. When asked a question, the run time system searches through the

database of facts and rules to determine, by logical deduction, the answer.

Among the features of Prolog arelogical variablesmeaning that they behave like

mathematical variables, a powerful pattern-matching facility called unification, a back-

tracking strategy to search for proofs, uniform data structures, and interchangeable in-

put/output.

Facts

In Prolog we can make some statements by using facts. Facts either consist of a particular

item or a relation between items. For example we can represent the fact that it is sunny by

writing the program:

sunny.

Facts can have arbitrary number of arguments from zero upwards. A general model is

shown below:

relation(<argument1>, <argument2>,, <argumentN>).

Relation names must begin with a lowercase letter. For example, the following fact says

that a relationship likes links john and mary:

likes(john,mary).

It is worth noting that names of relations are defined by the programmer. With the ex-

ception of a few relations that are built-in, the system onlyknows about relations that

programmers define.

We can now ask a query by asking, for example,does john like mary?:

24

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

?- likes(john,mary)

To this query Prolog will answer “yes” because Prolog matches likes(john,mary) in its

database.

Variables

How do we say something likeWhat does Fred eat?Suppose we had the following fact

in our database:

eats(fred,apples).

To ask what Fred eats, we could type in something like:

?- eats(fred,what).

However Prolog will say “no”. The reason for this is thatwhatdoes not match with apples.

In order to match arguments in this way we must use aVariable. The process of matching

items with variables is known asunification. Variables are distinguished by starting with

a capital letter. Thus we can find out what fred eats by typing

?- eats(fred,What).

Prolog will answer “yes, What=apples”.

Rules

Rules allow us to make conditional statements about our world. Each rule can have several

variations, called clauses. These clauses give us different choices about how to perform

inference about our world. Let us show an example to make things clearer. Consider the

statementAll humans are mortal. We can express this as the following Prolog rule:

mortal(X) :- human(X).

The clause can be read asFor a given X, X is mortal if X is human. To continue let us

define a factfred is human:

human(fred).

25

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

If we now pose the question to Prolog?- mortal(fred). The Prolog interpreter would re-

spond “yes”.

In order to solve the query?- mortal(fred)., we used the rule we defined previously.

This said that in order to prove someone mortal, we had to prove them to be human.

Thus from the goal Prolog generates the subgoal of showinghuman(fred). Then Prolog

matchedhuman(fred) against the database. In Prolog we say that the subgoal succeeded,

and as a result the overall goal succeeded. We know when this happens because Prolog

prints “yes.”

Backtracking

Suppose that we have the following database:

eats(fred,oranges).

eats(fred,meat).

eats(fred,apples).

Suppose that we wish to answer the questionWhat are all the things that fred eats?. To

answer this we can use variables again. Thus we can type in thequery:

?- eats(fred, Food).

Prolog will answer “Food=oranges”. At this point Prolog allows us to ask if there are

other possible solutions. When we do so we get the following:“Food=meat”. Then, if we

ask for another solution Prolog will give us: “Food=apples”.

If we ask for further solutions, Prolog will answer “no”, since there are only three

ways to prove fred eats something. The mechanism for finding multiple solution is called

backtracking. This is an essential mechanism in Prolog.

We can also have backtracking in rules. For example considerthe following program.

likes(Person1,Person2):- hobby(Person1,Hobby), hobby(Person2,Hobby).

hobby(john,tennis).

hobby(tim,sailing).

hobby(helen,tennis).

hobby(simon,sailing).

If we now pose the query:

?- likes(X,Y).

Prolog will answer “X=john, Y=helen”. Then next solution that Prolog finds is “X=tim,

Y=simon”.

26

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

Lists

Lists always start and end with square brackets, and the items they contain are separated

by commas. Here is a simple list [a,simon,A_Variable,apple].

Prolog also has a special facility to split the first part of the list, called the head, away

from the rest of the list, known as the tail. We can place a special symbol | (pronounced

’bar’) in the list to distinguish between the first item in thelist and the remaining list. For

example, consider the following:

[first,second,third] = [A|B]

where A=first and B=[second,third]. The unification here succeeds. A is bound to the first

item in the list, and B to the remaining list.

Alejandro Zunino received a Ph.D. Degree in Computer Science from the Universidad

Nacional del Centro (UNICEN), Tandil, Argentina, in 2003, his MSc. in Systems

Engineering in 2000 and the Systems Engineer degree in 1998.He is a full time

research assistant at UNICEN. He has published over 15 papers in journals and

conferences. The main contributions of his recent Ph.D. dissertation are reactive

mobility by failure and MoviLog. His current research interests include develop-

ment tools for mobile agents, intelligent agents, and logicprogramming. He is the

chair of the VI Argentine Symposium on Artificial Intelligence (ASAI). More info

can be found at http://www.exa.unicen.edu.ar/~azunino.

Marcelo Campo received a Ph.D. Degree in Computer Science from the Universidade

Federal do Rio Grande do Sul, Porto Alegre, Brazil in 1997 andthe Systems En-

gineer degree from the Universidad Nacional del Centro (UNICEN), Tandil, Ar-

gentina in 1988. Currently he is an Associate Professor at Computer Science De-

partment and Head of the ISISTAN Research Institute of UNICEN. He is also a

research fellow of the National Council for Scientific and Technical Research of Ar-

gentina (CONICET). He has over 50 papers published in conferences and journals

about software engineering topics. His research interestsinclude intelligent aided

software engineering, software architectures and frameworks, agent technology

and software visualization. More info can be found at http://www.exa.unicen.edu.ar/~mcampo.

Cristian Mateos is a MSc. candidate at the Universidad Nacional del Centro, work-

ing under the supervision of Marcelo Campo and Alejandro Zunino. He holds

27

This is a preprint of the article: "A. Zunino, M. Campo and C. Mateos: "Reactive Mobility by Failure: When Fail Means Move". Information Systems
Frontiers. Special Issue on Mobile Computing and Communications: Systems, Models and Applications. Springer Science + Business Media B.V. Vol. 7,
Number 2, pp. 141-154. ISSN 1387-3326. 2005."

The original publication is available at http://dx.doi.org/10.1007/s10796-005-1475-2

a Systems Engineer degree from UNICEN. He has implemented part of the run-

time support for reactive mobility by failure in MoviLog. Heis investigating the

relationships between Semantic Web Services and mobile agents using reactive

mobility by failure.

28

