This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

Towards a computer assisted approach for migrating
legacy systems to SOA

Gonzalo Salvatierfa Cristian Mateos%3, Marco Crassb?2, and Alejandro
Zuning-%3

1 ISISTAN Research Institute.
2 UNICEN University.
3 Consejo Nacional de Investigaciones Cientificas y Técr{iC&NICET).

Abstract. Legacy system migration to Service-oriented Archite@&0A) has
been identified as the right path to the modernization ofrprige solutions need-
ing agility to respond to changes and high levels of interapiity. However, one
of the main challenges of migrating to SOA is finding an appedp balance be-
tween migration fort and the quality of resulting service interfaces. Thipgra
describes an approach to assist software analysts in thatidefiof produced
services, which bases on the fact that poorly designedcseinierfaces may be
due to bad design and implementation decisions presentitetiacy system.
Besides automatically detecting common design pitfalis,approach suggests
refactorings to correct them. Resulting services have beerpared with those
that resulted from migrating a real system by following tvassic approaches.

Keywords: SERVICES-ORIENTED ARCHITECTURE, WEB SERVICES, LEGACY
SYSTEM MIGRATION, DIRECT MIGRATION, INDIRECT MIGRATION, &£MI-
AUTOMATIC COBOL MIGRATION

1 Introduction

From an operational standpoint, many enterprises and @aj@ons rely on out-dated
systems developed using old languages such as COBOL. Thas®fksystems are
known adegacy systemstill, enterprises have to face high costs for maintaitiveir
legacy systems mainly because three factors [1]. Firssetlsgstems usually run on
(expensive) mainframes that must be rented. Second, itdgssary to continuously
hire and retain developers specialized in'legacy techimegogvhich'is both expensive
and rather dficult. Third, in time these old systems-havdisted modifications or
upgrades for satisfying variable business goals. For el@mpost banks nowadays
offer Home Banking services, though most bank systems weraillig written in
COBOL. Therefore, it is common to find a pre-Web, 50 year o@tht®logy working
alongside modern platforms (e.g. JEE or .Net) within theesarformation system.

In this sense, migration becomes a necessity. Currendycdimmonest target for
migrating legacy systems is SOA (Service-Oriented Arahitee) [2], by which systems
are composed of pieces of reusable functionalities caledices Services are usually
materialized through independent server-side “compaieste. Web Services [3]-

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

that are exposed via ubiquitous Web protocols. Once buiéh \Bervices can be re-
motely composed by heterogeneous client applicationtgdebnsumers

Recent literature [4] identifies two broad approaches f@rating a legacy system:
direct migrationandindirect migration The former consists of simply wrapping legacy
system programs with Web Services. This practice is chedpfast, but it does not
succeed in completely replacing the legacy system by a nem@mnthe other hand, in-
direct migration proposes completely re-implementinggaty system using a modern
platform. This is intuitively expensive and time consumiiggause not only the system
should be reimplemented and re-tested, but also the bgdiogis should be reverse-
engineered because system documentation could have st@n tot kept up-to-date.

In SOA terms, an important flerence between direct migration and indirect mi-
gration is-the quality of th&OA frontier or the set of WSDL documents exposed to
potential consumers after migration. Web Service Dedonptanguage (WSDL) is
an XML standard for describing a service interface as a sefpefations with input
and output data-types. Although service interfaces quaifa very important factor
for the success of a SOA system [5,6,7], most enterprisediuse migration because
of its inherent low cost and shorter time-to-market, butiaet WSDLs are often a
mere low-quality, Web-enabled representation of the leggstem program interfaces.
Then, services are not designed with SOA best design peactichich ensure more
reusable interfaces. On the other hand, indirect migrgiironides the opportunity to
introduce improvements into-the legacy logic (e.g., unysa@meters and duplicate
code elimination) upon migrating the system, thereforerouimg the SOA frontier.

In this paper, we propose an approach cadlssisted migratiothat aims at semi-
automatically obtaining SOA frontiers with similar quglikevels to that of indirect
migration but by reducing its costs. The approach takes @ ia legacy system mi-
grated using direct migration, which is-a.common scenand, @erforms an analysis
of possible refactoring actions to increase the SOA fromfiality. Although assisted
migration does not remove the legacy system, the obtainédff@tier can be used as
a starting point for re-implementing it. This allows for asnther system replacement
because the (still legacy) implementation can be replagddne harm to consumers
since the defined service interfaces remain unmodified:

To evaluate our approach, we used two real SOA frontiersruddaby directly as
well as indirectly migrating the same legacy COBOL systeinjhich is owned by
a large Argentinean government agency. We applied thetedsgisigration approach
by feeding it with the direct migration version of the origlrsystem. After that, we
compared the three obtained SOA frontiers'in terms of cimsg, tand quality. The re-
sults show that our approach produces a'SOA frontier neaigpad as that the indirect
migration, but at a cost similar to that of direct migration.

2 Automatic detection of SOA frontier improvement opportunities

We have explored the hypothesis that enhancing the SOAidrasfta migrated system
can be done in a fast and cheap manner by automatically anglifz legacy source
code, and supplying software analysts with guidelines fannally refining the WSDL

documents of the SOA frontier based on the bad smells presthd source code. This

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

is because many of the design problems that occur in migssedce interfaces may
be due to design and implementation problems of the legastgsy

The input of the proposed approach is a legacy system soodz=and the SOA
frontier that result from its direct migration to SOA, coataly the CICBCOBOL files
and associated WSDL documents. Then, this approach caerragéviely executed for
generating a new SOA frontier at each iteration. The maia ig¢o iteratively improve
the service interfaces by removing tha8&DL anti-patternpresent in them.

A WSDL anti-pattern is a recurrent practice that preventd\8ervices from be-
ing discovered and understood by third-parties. In [8] ththars present a catalog of
WSDL anti-patterns and define each of them way by includingscdption of the un-
derlying problem, its solution, and an illustrative exampCounting the anti-patterns
occurrences within a WSDL-based SOA frontier then givesantjtative idea of fron-
tier quality, because the fewer the occurrences are, thertibe WSDL documents are
in terms of reusability, thus removing WSDL anti-patterostrcauses represents SOA
frontierimprovement opportunities. Note that this kindagsessment also represents a
mean to compare various SOA frontiers obtained from the sstem.

The proposed approach starts by automatically detectingngial WSDL anti-
patterns root causes within the migrated system given ag if{nti-patterns root
causes detection” activity). Then, the second activityegates a course of actions to
improve the services frontier based on the root causes f¢\@O refactorings sug-
gestion” activity). The third activity (“OO refactoringgplication”) takes place when
software analysts apply all or some of the suggested refagtactions. Accordingly, at
each iteration a new SOA frontier is obtained, which fedslthe first activity to refine
the anti-patterns root causes detection analysis. Figdepitts the proposed approach.

[Improvement
opportunities detected?]

<<AUTOMATIC>>
Anti-patterns root causes
detection

<<AUTOMATIC>> <<MANUAL>>
0O refactorings suggestion OO refactorings application

Fig. 1. Software-assisted SOA frontier definition activities.

2.1 WSDL anti-patterns root causes detection

The anti-pattern root causes detection activity is peratmutomatically, since manu-
ally revising legacy system source code is a cumbersomeagaddo do this, we have
defined and implemented the ten heuristics summarized ite TabA defined heuris-
tic receives the implementation or the WSDL document of aratayl transaction and
outputs whether specific evidence of anti-patterns roaesis found.

We based on the work of [7] for designing most of the heursticoposed in this
paper, since [7] presents heuristics for automaticallecdetg the anti-patterns in a
given WSDL document. Additionally, we have specially cawed heuristics 7 and 8

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

Table 1.Heuristics for detecting evidence of WSDL anti-patterrst icauses.

Id and description Input True when

1. Look for comments in WSDL WSDL

. At least one operation lacks documentation.
<documentation elements document

The length of a name token is lower than 3 characters, or wdlemtrefers to a
technology, or when an operation name contains two or mates\va an
argument name contains a verb.

2. Search inappropriate names WSDL
for service elements document

3. Detect operations that receiveWWSDL

At least one operation inpfaiutput has more than P parameters.
or return too many parametersdocument

4. Look for error information. WSDL An output message part has any of the tokens: “error”, "stydfault”, "faults”,
being exchanged as output dadocument "fail”, "fails”, "exception, "exceptions, "overflow”, "mstake”, "misplay”.

5. Look for redundant data-type WSDL

_ At least two XSD data-types are syntacticly identical.
definitions document

6. Look for data-types with WSDL The name of a parameter denotes a quantity but it is not @sdavith a
inconsistent names and typesdocument numerical data-type (e.g. numberOfChildren:String).

COBOL
7. Detect not used parameters 4 At least one parameter is not associated with a COBOL MOViestant.
code

8. Look for shared dependencie€OBOL - The list of COBOL programs that are copied, or included, dieddrom two or
among services implementations code more service implementations is not empty.

9. Look for data-types that -~ WSDL An XSD.complex data-type contains another complex XSD tigte; or a list
subsumes other data-types document of parameters subsumes another list of parameters.

10. Detect semantically similar WSDL A vectorial representation of the names and associatechuetation of two
services and operations document services or operations, are near in a vector space model.

for analyzing COBOL source, while heuristics 6 and 9 for sapipg two relevant
anti-patterns that had not been identified in [7]. Concyetible heuristic 6 analyzes
names and data-types of service operations parameterskidéoioknown relationships
between names and types. Given a parameter, the heuribtictbp parameter name
by basing on classic programmers’ naming conventions, siscBamel Casing and
Hungarian notation. Each name token is'compared to a lisepivkrds with which
a data-type is commonly associated. For example, the tolietinday”is commonly
associated with the XSD built-in xsd:date data-type, battken “number” with the
xsd:int data-type. Therefore, the heuristic in turn cheskether at least one name
token is wrongly associated with the data-type.

The heuristic 7 receives the COBOL code of a migrated progwraahthecks whether
every parameter of the program output COMMAREA is assodiatih the COBOL
MOVE assignation statement. In other words, given-a COBQigm@m, the heuristic
retrieves its output COMMAREA, then gets every paramet@mfivithin it (including
parameters grouped by COBOL records), and finally looks f@\M# statements hav-
ing the declared parameter. One temporal limitation of higigristic is that the search
for MOVE statements is only performed in the main COBOL peogywhereas copied

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

or included programs are left aside, and those parametgrarh assigned by the exe-
cution of an SQL statement are ignored by this heuristic.

The heuristic 8 receives two COBOL programs as input. Tharhéth programs
it separately builds a list of external COBOL programs, egpand includes, which are
called (it looks for the CALL reserved word) from the main gram, and finally checks
whether the intersection of both lists is empty or not.

The heuristic 9 receives a WSDL document as input and detteeticlusion of
one or more parameters of a service operation in the opasatibanother service. To
do this, parameter names and data-types are compared. irpadag names classic
text preprocessing techniques are applied, namely sptibated words, remove stop-
words, and reduce names to stems. For comparing data-typéetiristic employs the
algorithm namedRedundant Data Modelyhich is presented in [7].

Once we have all the evidence gathered by the heuristicantte presence of
anti-pattern root causes represent opportunities to imgeoSOA frontier. Formally,
id — opportunity means thad pportunity may be present when the heuristicdetects
its associated root causes (i.e. outputs 'true’):

4’ — Improveerror handlingdefinitions
8 — Expose shared programsas services
10 - Improve service operationscohesion

The first rule is-for relating the opportunity to split an outpnessage in two, one
for the output data and another for fault data, when therevideace of the output
message conveying error data (heuristic 4). The secondinvieils the opportunity to
expose shared programs as Web Services operations, wheB@lO@ogram is called
from many other programs, i.e. its fan-in is higher than asholdT (heuristic 8). The
third rule associates the opportunity to improve the cajresf a service with evidence
showing low cohesion among service operations (heuri§fic 1

In the cases shown below, however, the evidence gathered bguaistic does not
support improvement opportunities by itself, and two h&tigs must output 'true’:

8and9 — Removeredundantoperations
land2 — Improve namesand comments

The first rule is for detecting the opportunity to remove medant operations, and
is fired if two or more COBOL programs share the same depemgefceuristic 8)
but also the parameters of one program subsume the pararoétbe other program
(heuristic 9). The rationale behind this rule is that whea $grvice operations not only
call the same programs, but also expose the same data ad eitpapective of the
amount of exposed data— there is an opportunity to abstrasetoperations in another
unique operation. The second rule indicates that thereispportunity to improve the
descriptiveness of a service operation when it lacks doatetien (heuristic 1) and its
name or the names of its parameters are inappropriate gtieu).

Finally, the rule 3or 50r 6 or 7 — Improve business ob ject de finitionembines
more than one evidence for readability purposes, and itnsemed with detecting an
opportunity to improve the design of the operatiofoirt data-types. The opportunity
is suggested when the operation exchanges too many parargietaristic 3), there are

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

repeated data-type definitions (heuristic 5), the type aframeter is inconsistent with
its name (heuristic 6), or there are unused parametersigkieur).

2.2 Supplying guidelines to improve the SOA frontier

The second activity of the proposed approach consists efging practical guidelines
to apply detected improvement possibilities. These gindslconsist of a sequence of
steps that should be revised and potentially applied byvsoét analysts. The proposed
guidelines are not meant to be automatic, since there is notcae approach to build
or modify a WSDL document and, in turn, a SOA frontier [9].

The cornerstone of the proposed guidelines is that classjed®Oriented (OO)
refactorings can be employed to remove anti-patterns rudes from a SOA frontier.
This stems from the fact that services are described as @@aoes exchanging mes-
sages, whereas operation data-types are described usihgkgh provides some op-
erators for expressing encapsulation and inheritancen, Mrehave organized a sub-set
of Fowler et al.'s catalog of OO refactorings [10], to provial sequence of refactorings
that should be performed for removing each anti-patterhcaose.

Table 2. Association between SOA frontier refactorings and Fowlexl & refactorings.

SOA Frontier Refactoring Object-Oriented Refactoring
Remove redundant operations 1: Extract Metboéxtract Class
Improve error handling definition 1: Replace Error Code VEkteption

1: Convert Procedural Design to Objeatd Replace Conditional with Polymorphism
2: Inline Class
Improve business objects definition _3: Extract Clasd Extract Subclasand Extract Superclasand Collapse Hierarchy
4: Remove Control Flagnd Remove Parameter
5: Replace Type Code with Claasd Replace Type Code with Subclasses

Expose shared programs as services 1: Extract Meth&xtract Class

Improve names and comments 1: Rename Metirddreserve Whole Objecrr
Introduce Parameter Objeat Replace Parameter with Explicit Methods

Improve service operations 1: Inline Classand Rename Method
cohesion 2: Move Methodor Move Class

The proposed guidelines associate a SOA frontier improm¢mgportunity (Ta-
ble 2, first column) with one or more OO refactorings, which aranged in sequences
of optional or mandatory refactoring combinations (Tahlestond column). Moreover,
for “Improve business objects definiticand “Improve service operations cohesipn
the associated refactorings comprise more than one stegeliat each individual step
analysts should apply the associated refactorings conibitsaas explained.

Regarding how to apply OO refactorings, it depends on hoWB®L documents
of the SOA frontier have been built. Broadly, there are twdnrapproaches to build

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

WSDL documents, namelyode-firstand contract-first[9]. Code-first refers to auto-
matically extract service interfaces from their undertyimplementation. On the other
hand, with the contract-first approach, developers shordtidefine service interfaces
using WSDL, and supplying them with implementations afemde. Then, when the
WSDL documents of a SOA frontier have been implemented ucalde-first, the pro-
posed guidelines should be applied on the outermost cormg®ogthe services imple-
mentation. Instead, when contract-first has been follotiedproposed OO refactorings
should be applied directly on the WSDL documents.

For instance, to remove redundant operations from a costeViieb Service, de-
velopers should apply the “Extract Method” or the “Extrata$3” refactorings on the
underlying class that implements the service. In case oh&ract-first Web Service, by
extracting-an operation or a port-type from the WSDL docunoéthe service, devel-
opers-apply the “Extract Method” or the “Extract Class” attaings, but developers
should also update service implementations for each mdd¥8DL document.

To sum up, in this section we presented an approach to aut@ihasuggest how
to improve the SOA frontier of a migrated system. This appholaas been designed
for reducing the costs of supporting an indirect migratitterapt, while achieving a
better SOA frontier than with a direct migration one. In teEnse, the next section
provides empirical evidence on the SOA frontier qualityiaedd by modernizing a
legacy system using the direct, indirect, and this propaggdoach to migration.

3 Evaluation

We have compared the service frontier quality achieved ctiand indirect (i.e. man-
ual approaches), and our software-assisted migrationi{@etomatic) by migrating a
portion of a real-life COBOL system comprising 32 progra&1(,688 lines of source
code) accessing a database of around 0.8 Petabytes. THieyerdiservice frontiers
were obtained: Direct Migration”, “Indirect' Migration”, and “Assisted Mjration”.
The comparison methodology consisted of analyzing:

— Classical metricsWe employed traditional software metrics, i.e. lines ade@_OC),
lines of comments, and number dfered operations in the service frontiers. In this
context higher values means bigger WSDL documents, whiofpcomises clarity
and thus consuming services is morffidult to application developers.

— Data model Data model management is crucialdata-centricsoftware systems
such as the one under study. We analyzed the data-typesgeabty each migra-
tion approach to get an overview of data-type quality witthie service frontiers.
For example, we have analyzed business object definitiarserby counting re-
peated data-type definitions across WSDL documents.

— Anti-patterns We used the set of service interface metrics for measurigpw
anti-patternsoccurrences described in WSDL [8]. We used anti-pattermsirec
rences as an inverse quality indicator (i.e. fewer occwegemeans better WSDLS).

— Required Fort: We used classic time and human resources indicators.

Others non-functional requirements, such as performaeliahility or scalability, have
not been considered since we were interested in WSDL docuooetity only.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

3.1 Classical metrics analysis

Table 3. Classical metrics and data model analysis: Obtained sesult

i # of files . Average LOC
Frontier Total operations i .
WSDL XSD Perfile Per operation
Direct migration 32 0 39 157 129
Indirect migration 7 1 45 495 88
Assisted migration 16 1 41 235 97
Definitions per data-type Unique data-types
Data-set Defined data-types _p yp .) P
(less is better) (more is better)
Direct Migration 182 1.29 (18241) 141 (73%)
Indirect Migration 235 1.00 (23235) 235 (100%)
Assisted Migration 191 1.13 (1169) 169 (88%)

As Table 3 (top) shows, the Direct Migration data-set cosgiti32 WSDL docu-
ments, i.e. one WSDL document per migrated program. Calytréire Indirect Migra-
tion and Assisted Migration data-sets had 7 WSDL documemisl® WSDL docu-
ments, respectively. Having less WSDL documents meansévatal operations were
grouped in the same WSDL document, which improves cohesimme shese WSDL
documents were designed to define functional related dpasatAnother advantage
observed inthe Indirect Migration and Assisted Migratiatedsets over the Direct
Migration data-set was the existence of an XSD file for slgacimmmon data-types.

Secondly, the number ofi@red operations was 39, 45, and 41 for Direct Migration,
Indirect Migration, and Assisted Migration frontiers. Atiugh there were 32 programs
to migrate, the first frontier had 39 operations because peefic program was divided
into 8 operations. This program used a large registry of iptessearch parameters
plus a control couple to select which parameters to use upamtecular search. After
migration, this program was further wrapped with 6 operaiwith more descriptive
names each calling the same COBOL program withfi@idint control couple.

The second and third frontiers generated even more opesdtio the same 32 pro-
grams. This was mainly caused famctionality disaggregatiomndroutine servifica-
tion were performed during frontier generation. The former lmge mapping COBOL
programs that returned too many output parameters witlowarnpurposes to several
purpose-specific service operations. Furthermore, ther le¢fers to exposing as ser-
vices “utility” programs called by many other programs. mh&hat used to be COBOL
internal routines also become part of the SOA frontier.

Finally, although the Indirect Migration frontier had theghest LOC per file, it
also had the lowest LOC per operation. The Assisted Migndtiontier had a slightly
higher LOC per operation than the Indirect Migration frentin contrast, the LOC per
operation of the Direct Migration frontier was twice as mwshthat of the other two
frontiers. Then, more code has to be read by consumers im mrdederstand what an
operation does and how to call it, and hence WSDL documeatsare cryptic.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

3.2 Data model analysis

Table 3 (bottom) quantitatively illustrates data-type wigifin, reuse and composition
in the three frontiers. The Direct Migration frontier comead 182 diferent data-types,
and 73% of them were defined only once. In contrast, there nerduplicated data-
types for the WSDL documents of the Indirect Migration fientConcretely, 104 data-
types represented business objects, including 39 definsidhade XSD types (mostly
enumerations) and 65 defined as complex XSD types. Fin8lyektra data-types were
definitions introduced to be compliant with the Web Serviteloperability standards
(http://www.ws-i.org/Profiles/BasicProfile-1.1.html), which definerules
for making Web Services interoperable amonfiedtent platforms. Last but not least,
191 data-types were defined in the Assisted Migration fevniticluding 118 definitions
in the form of business objects (34 simple XSD type84 complex XSD types), and
73 definitions for WS-l compliance reasons.

Withrespect to data-type repetitions, the Direct Mignafi@ntier included 182 data-
types definitions of which 141 where unique. This means tB&b &f the definitions
were not necessary and could be substituted by other seraliynttompatible data-
type definitions. The Indirect Migration frontier, on théaet hand, included 23&nique
data-types. The Assisted Migration frontier had 191 dgpes, and 169 of them were
unique. Then, ourtool generated WSDL documents almostes @®the ones obtained
afterindirectly migrating the system completely by handefall, the average data-type
definitions per fective data-type across WSDL documents in the frontiergwe29
(Direct Migration), 1 (Indirect Migration), and 1.13 (Asséd Migration).

Moreover, the analyzed WSDL frontiers contained 182, 16d,¥18 diterent def-
initions of business object data-types, respectively. [Mid@ect Migration frontier had
fewer data-type definitions associated to business ohj#atH than the Direct Migra-
tion frontier (182) and the Assisted Migration frontier 8) 1land therefore a better level
of data model reutilization and a proper utilization of thBIXcomplex andelement
constructors for WS-I related data-types. However, theéstead Migration frontier in-
cluded almost the same number of business objects thandiredhMigration frontier,
which shows the féectiveness of the data-type derivation techniques of alr to

Figure 2 illustrates how the WSDL documents of the Indiredgsition and As-
sisted Migration frontiers reused the data-types. ThedDixigration frontier was left
out because its WSDL documents did not share data-typesgithem. Unlike the
Assisted Migration graph, the Indirect Migration frontleas a reuse graph withoigt
lands This is because using our tool is not as good as exhaustiesédeting candidate
reusable data-types by hand. Nevertheless, only 2 semwieas not connected to the
bigger graph, thus our tool adequately exploits data-tgpse.

3.3 Anti-pattern analysis

We performed an anti-pattern analysis in the WSDL documiestaded in the three
frontiers. We found the following anti-patterns in at lease of the WSDL documents:

— Inappropriate or lacking comments [114R;): A WSDL operation has no com-
ments or the comments do ndfectively describe its purpose.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

Indirect migration data-type reuse Assisted migration data-type reuse

WL

||, .-\\ o ./\.’- o’

B L & " e .

.
L]
L]
.
g n
.
.

@ Complex data-type definition
|

Web Service interface (WSDL documents)
The Web Service interface exchanges the data-type. Grey links mean that the WSDL associated with the

B — @ service includes just one explicit reference to the data-type, while a black link means that the WSDL document
references two or more occurrences of the data-type.

Fig. 2. Data-type reuse in the Indirect Migration and Assisted Islign frontiers.

— Ambiguous names [SIAP.): WSDL operation or message names do not accurately
represent their intended semantics.

— Redundant port-typedAPs): A port-type is repeated within a WSDL document,
usually in the form of one port-type instance per bindingt{g@.g. HTTP or SOAP).

— Enclosed data modeRf,): The data model in XSD describing inpotitput data-
types are defined within a WSDL document instead of separate fles, which
makes data-type reuse across several Web Services vicuyldi

— Undercover fault information within standard messageg46J}s): Error informa-
tion is returned using output messages rather than buMSDL fault messages.

— Redundant data model&Pg): A data-type is redundantly defined in a document.
— Low cohesive operations in the same port-tyA@4): Occurs in services that place
operations for checking service availability (e.g. “pingsAlive”) of the service
and operations related together with its main functiopétito a single port-type.

Table 4 summarizes the outcomes of the analysis. When aipaitéirn #fected only
a portion of the WSDL documents in a frontier, we analyzedchhs the diference
between these WSDL documents and the rest of the WSDL dodsrirethe same
frontier. Hence, the inner cells present under which cirstamces the former situation
applies. Since spotting some of the anti-patterns &Ry.and AP,) is inherently sub-
jective [7], we performed a peer-review methodology to prenbiases.

The Direct Migration frontier wasfbected by more anti-patterns than the Assisted
Migration frontier, while the Indirect Migration frontievas free from anti-patterns. The
first two rows describe anti-patterns that impact on sesvimEmmentfmames. These
anti-patternsfiiected the Direct Migration frontier since all WSDL docuneinicluded
in it were derived from code written in COBOL, which does nfieoa standard way to
indicate from which portions and scope of a code existingroemts can be extracted

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

Table 4. Anti-patterns analysis: Obtained results.

Anti-pattern /Frontier Direct Migration Indirect Migration Assisted Migration

When the original COBOL
APy Always Never
programs use control couples
When the original COBOL

AP, Always Never
programs use control couples
AP3 When supporting several protocols Never Never
APy Always Never Never
APs Always Never Never
When two operations use the same
APg Never Never

data-type

When several related programs
AP; Never Never)
link to non-related operations

and reused. Besides, COBOL names have length restrictiogsyp to 4 characters
in some flavors). Therefore, names in the resulting WSDL duwmnts were too short
and dificult to be read. In contrast, these anti-patteriscéed WSDL documents in
Assisted Migration frontier only for those COBOL programsing control couples,
because properly naming and commenting such couples is pleotask [12].

The third row analyzes the anti-pattern that ties abstewice interfaces (WSDL
port-types) to concrete implementations (WSDL bindingsj as such hinders black-
box reuse [8]. We observed that this anti-pattern was caogeéke WSDL generation
tools supporting the migration process that resulted inDhvect Migration frontier.
Unless properly configured, these tools by default prodademdant port-types when
deriving WSDLs from COBOL programs. Likewise, the fourthwdescribes an anti-
pattern that is generated by this tool as well as many sinidals, which involves
forcing data models to be included within the generated W$IBtuments, making
cross-WSDL data-type reusdiitcult. Alternatively, neither the Indirect Migration nor
the Assisted Migration frontiers werd&acted by these two anti-patterns.

The anti-pattern described in thefifth row of the table deatk errors being trans-
ferred as part of output messages, which for the Direct Migndrontier resulted from
the original COBOL programs that used the same data outpatddor returning both
output and error information. In contrast, the WSDL docuta@fithe Indirect Migra-
tion frontier and the Assisted Migration frontier had a propesigned error handling
mechanism based on standard WSault messages.

The anti-pattern described in the sixth row is related tdyodesigned data models.
Redundant data models usually arise from limitations orussedof WSDL generation
tools. Therefore, this anti-pattern onlffected the Direct Migration frontier. Although
there was not intra WSDL data-type repetition, the AssiMégtation frontier sdfered
from inter WSDL repeated data-types. For examplegthar data-type —which consists
of a fault code, a string (brief description), a source, adéscription—was repeated in
all the Assisted Migration WSDL documents because the t§gawas derived several
times from the dierent various programs. This problem did nfieat the Indirect Mi-

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

gration frontier since its WSDL documents were manuallyieet by designers after
having a big picture of the legacy system.

The last anti-pattern stands for having no semanticallgteel operations within a
WSDL port-type. This anti-pattern neithefected the Direct Migration nor the Indirect
Migration frontier because in the former case each WSDL dwmt included only one
operation, whereas in the latter case WSDL documents werfgmlly designed to
group related operations. However, our approach is baseshautomatic heuristic
that selects which operations should go to a port-type. incase study, we found
that when several related operations used the same umretaténes, such as text-
formatting routines, our assisted approach to migratiaygested that these routines
were also candidate operations for that service. Thistexirh services that had port-
types with several related operations but also some ueckgierations.

3.4 “Required dfort analysis

In terms of manpower, it took 1 day to train a developer on tle¢hod and tools used
for building the Direct Migration frontier. Then, a trainddveloper migrated one trans-
action per-hour. Thus, it only took 5 days for a trained depetdo build the 32 WSDL
documents. Instead, building the Indirect Migration fientlemanded one year plus
one month, and 8 software analysts, and 3 specialists faratiig the same 32 trans-
actions, from which 5 months were exclusively dedicateditmlits WSDL documents.

We also have empirically assessed the time needed to exawugemi-automatic
heuristics. The experiments have been run on a 2.8 GHz Quadi@el Core i7 720QM
machine, 6 Gb RAM, running Windows-7 on a 64 bits architectlicemitigate noise
introduced by underlying software layers and hardware eigs) each heuristic has
been executed 20 times and the demandedtime was measue@petion. Briefly, the
average execution time of an heuristic was 9585.78 ms, &£6835.15 ms the biggest
achieved response time, i.e. the “Detect semanticallylairservices and operations”
was the most expensive heuristicin terms of response time.

Furthermore, we have assessed the time demanded for maapplying the OO
refactorings proposed by the approach on the Direct Migndtiontier. To do this, one
software analyst with solid knowledge on the system undetystvas supplied with
the list of OO refactorings produced by the approach. It twakfull days to apply the
proposed OO refactorings. In this sense; the approach stegh® “Expose 14 shared
programs as services”, “Remove 7 redundant operationqrtue the cohesion of 14
services”, and to “Improve error handling definition”, “Imgwve names and comments”,
and “Improve business objects definition” from all the migchoperations. It is worth
noting that OO refactorings have been applied at the interfavel, i.e. underlying
implementations have not been accommodated to interfaamgels. The reason to do
this was we only want to generate a new SOA frontier and thempewe it with the
ones generated by the previous two migration attempts €ftwer, modifying interfaces
implementation, which would require a huge developmentastihg éfort, would not
contribute to assessing service interfaces quality.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

4 Related work

Migration of mainframe legacy systems to newer platfornssiieen receiving lots of at-
tention as organizations have to shift to distributed ant-\&eabled software solutions.
Different approaches have been explored, ranging from wrapgisting systems with
Web-enabled software layers, to 1-to-1 automatic convrigdproaches for converting
programsin COBOL to 4GL. Therefore, current literaturesergs many related experi-
ence reports. However, migrating legacy systems to SOAgvelthieving high-quality
service interfaces instead of just “webizing” the systeisan incipient research topic.

Harry Sneed has been simultaneously researching on autaihatonverting CO-
BOL programs to Web Services [13] and measuring servicefades quality [14].
In [13] the author presents a tool for identifying COBOL pras that may beerv-
ified. The tool bases on gathering code metrics from the sourcetrdine program
complexity, and then suggests whether programs should &eped or re-engineered.
As such, programs complexity drives the selection of theratign strategy. As re-
ported in [13], Sneed plans to inspect resulting servieariates using a metric suite of
his own, which comprises 25 quantity, 4 size, 5 complexity amuality metrics.

In [15] the authors present a framework and guidelines fgrating a legacy sys-
tem to SOA, which aims at defining a SOA frontier having only tbptimal” services
and with an appropriate level of granularity. The framewooksists of three stages.
The first stage is for modeling the legacy system main commpisrend their interac-
tions using - UML. At the second stage, service operationssandices processes are
identified. The third stage is for aggregating identified/ser elements, according to
a predefined taxonomy of service types (e.g. CRUD Serviodssdtructure services,
Utility services, and Business services). During the sdcamd third stages, software
analysts are assisted via clustering techniques, whidnaatically group together sim-
ilar service operations and services of the same type.

5 Conclusions and Future work

Organizations are often faced with the problem of legaciesys migration. The target
paradigm for migration commonly used is SOA since it progideeroperability and
reusability. However, migration to SOA is in general a daumtask.

We proposed a semi-automatictool to help development teamigrating COBOL
legacy systems to SOA. Our tool comprises 10 heuristiciaict bad design and im-
plementation practices in legacy systems, which in turrreleged to some early code
refactorings so that services in the final SOA frontier arelear, legible and discover-
able as possible. Through a real-world case study, we shthaédur approach dramat-
ically reduced the migration costs required by indirectmatigpn achieving at the same
time a close service quality. In addition, our approach poedl a SOA frontier much
better in terms of service quality than that of “fast and gliespproach to migration
(i.e. direct migration). The common ground for comparisod Aence assessing costs
and service quality was some classical software engingengtrics, data-type related
metrics, and a catalog of WSDL anti-patterns [8] that hirstgwice reusability.

At present, we are refining the heuristics of our tool to invgréheir accuracy.
Second, we are experimenting with an RM-COBOL system cosim@i319 programs

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

and 201,828 lines of code. In this line, we will investigatesther is possible to adapt
all the evidences heuristics to be used with other COBOlfquiats. Lastly, even when

direct migration has a negative incidence in service gualitd WSDL anti-patterns,

there is recent evidence showing that many anti-pattemactually introduced by the

WSDL generation tools used during migration [16]. Our gaatia determine to what

extent anti-patterns are explained by the approach to wograself, and how much of

them depend on the WSDL tools used.

References

1. Juan Manuel Rodriguez, Marco Crasso, Cristian MateosjaAtiro Zunino, and Marcelo
Campo. Bottom-up and top-down COBOL system migration to \@elvices: An experi-
ence reportlEEE Internet Computing2011. To appear.

2. Martin Bichler and Kwei-Jay Lin. Service-Oriented Cortipg. Computey 39(3):99-101,
2006.

3. John Erickson and Keng Siau. Web Service, Service-Grik@tomputing, and Service-
Oriented Architecture: Separating hype from realityournal of Database Management
19(3):42-54, 2008.

4. Shing-Han Li, Shi-Ming Huang, David C. Yen, and Cheng-€k&hang. Migrating legacy
information systems-to Web Services architecturgournal of Database Management
18(4):1-25, 2007.

5. M. Brian Blake and Michael F..Nowlan. Taming Web Servigesifthe wild.IEEE Internet
Computing 12(5):62-69, 2008.

6. Jack Beaton, Sae Young Jeong, Yingyu Xigfrdg Jack, and Brad A. Myers. Usability
challenges for enterprise service-oriented architecditks. InIEEE Symposium on Visual
Languages and Human-Centric Computing ACC), pages 193-196, Sept. 2008.

7. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunind,Marcelo Campo. Automat-
ically detecting opportunities for Web Service descripidmprovement. IiSoftware Ser-
vices for e-Worldvolume 341, pages 139-150. SADIO - IFIP, Springer Bostoap2

8. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunind,Marcelo Campo. Improving
Web Service descriptions foffective service discoversgcience of Computer Programming
75(11):1001-1021, 2010.

9. Cristian Mateos, Marco Crasso, Alejandro Zunino, andddiar Campo. Separation of con-
cerns in service-oriented applications based on pervasisign patterns. Ieb Technology
Track (WT) - 25th ACM Symposium on Applied Computing (SAL fdges 2509-2513.
ACM Press, 2010.

10. Martin Fowler. Refactorings in Alphabetical Order, 299

11. Jianchun Fan and Subbarao Kambhampati. A snapshot b pubb Services.SIGMOD
Rec, 34(1):24-32, 2005.

12. Edward Yourdon and Larry L. Constantirfgtructured Design: Fundamentals of a Discipline
of Computer Program and Systems DesidPrentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1979.

13. Harry Sneed. A pilot project for migrating COBOL code t@MServices.International
Journal on Software Tools for Technology Transfet:441-451, 2009. 10.106720009-
009-0128-z.

14. Harry Sneed. Measuring Web Service interfaced.2th IEEE International Symposium on
Web Systems Evolutippages 111 —-115, sept. 2010.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 36

15. Saad Alahmari, Ed Zaluska, and David De Roure. A serdeatification framework for
legacy system migration into SOA. Rroceedings of the IEEE International Conference on
Services Computingages 614-617. IEEE Computer Society, 2010.

16. Cristian Mateos, Marco Crasso, Alejandro Zunino, arse Jaiis Ordiales Coscia. Detecting
WSDL bad practices in code-first Web Servicdsternational Journal of Web and Grid
Services7(4):357-387, 2011.

