
This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

Towards a computer assisted approach for migrating
legacy systems to SOA

Gonzalo Salvatierra2, Cristian Mateos1,2,3, Marco Crasso1,2,3, and Alejandro
Zunino1,2,3

1 ISISTAN Research Institute.
2 UNICEN University.

3 Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET).

Abstract. Legacy system migration to Service-oriented Architectures (SOA) has
been identified as the right path to the modernization of enterprise solutions need-
ing agility to respond to changes and high levels of interoperability. However, one
of the main challenges of migrating to SOA is finding an appropriate balance be-
tween migration effort and the quality of resulting service interfaces. This paper
describes an approach to assist software analysts in the definition of produced
services, which bases on the fact that poorly designed service interfaces may be
due to bad design and implementation decisions present in the legacy system.
Besides automatically detecting common design pitfalls, the approach suggests
refactorings to correct them. Resulting services have beencompared with those
that resulted from migrating a real system by following two classic approaches.

Keywords: SERVICES-ORIENTEDARCHITECTURE, WEB SERVICES, LEGACY
SYSTEM MIGRATION, DIRECT MIGRATION, INDIRECT MIGRATION, SEMI-
AUTOMATIC COBOL MIGRATION

1 Introduction

From an operational standpoint, many enterprises and organizations rely on out-dated
systems developed using old languages such as COBOL. These kind of systems are
known aslegacy systems. Still, enterprises have to face high costs for maintainingtheir
legacy systems mainly because three factors [1]. First, these systems usually run on
(expensive) mainframes that must be rented. Second, it is necessary to continuously
hire and retain developers specialized in legacy technologies, which is both expensive
and rather difficult. Third, in time these old systems have suffered modifications or
upgrades for satisfying variable business goals. For example, most banks nowadays
offer Home Banking services, though most bank systems were originally written in
COBOL. Therefore, it is common to find a pre-Web, 50 year old technology working
alongside modern platforms (e.g. JEE or .Net) within the same information system.

In this sense, migration becomes a necessity. Currently, the commonest target for
migrating legacy systems is SOA (Service-Oriented Architecture) [2], by which systems
are composed of pieces of reusable functionalities calledservices. Services are usually
materialized through independent server-side “components” –i.e. Web Services [3]–

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

that are exposed via ubiquitous Web protocols. Once built, Web Services can be re-
motely composed by heterogeneous client applications, calledconsumers.

Recent literature [4] identifies two broad approaches for migrating a legacy system:
direct migrationandindirect migration. The former consists of simply wrapping legacy
system programs with Web Services. This practice is cheap and fast, but it does not
succeed in completely replacing the legacy system by a new one. On the other hand, in-
direct migration proposes completely re-implementing a legacy system using a modern
platform. This is intuitively expensive and time consumingbecause not only the system
should be reimplemented and re-tested, but also the business logic should be reverse-
engineered because system documentation could have been lost or not kept up-to-date.

In SOA terms, an important difference between direct migration and indirect mi-
gration is the quality of theSOA frontier, or the set of WSDL documents exposed to
potential consumers after migration. Web Service Description Language (WSDL) is
an XML standard for describing a service interface as a set ofoperations with input
and output data-types. Although service interfaces quality is a very important factor
for the success of a SOA system [5,6,7], most enterprises usedirect migration because
of its inherent low cost and shorter time-to-market, but derived WSDLs are often a
mere low-quality, Web-enabled representation of the legacy system program interfaces.
Then, services are not designed with SOA best design practices, which ensure more
reusable interfaces. On the other hand, indirect migrationprovides the opportunity to
introduce improvements into the legacy logic (e.g., unusedparameters and duplicate
code elimination) upon migrating the system, therefore improving the SOA frontier.

In this paper, we propose an approach calledassisted migrationthat aims at semi-
automatically obtaining SOA frontiers with similar quality levels to that of indirect
migration but by reducing its costs. The approach takes as input a legacy system mi-
grated using direct migration, which is a common scenario, and performs an analysis
of possible refactoring actions to increase the SOA frontier quality. Although assisted
migration does not remove the legacy system, the obtained SOA frontier can be used as
a starting point for re-implementing it. This allows for a smoother system replacement
because the (still legacy) implementation can be replaced with no harm to consumers
since the defined service interfaces remain unmodified.

To evaluate our approach, we used two real SOA frontiers obtained by directly as
well as indirectly migrating the same legacy COBOL system [1], which is owned by
a large Argentinean government agency. We applied the assisted migration approach
by feeding it with the direct migration version of the original system. After that, we
compared the three obtained SOA frontiers in terms of cost, time, and quality. The re-
sults show that our approach produces a SOA frontier nearly as good as that the indirect
migration, but at a cost similar to that of direct migration.

2 Automatic detection of SOA frontier improvement opportunities

We have explored the hypothesis that enhancing the SOA frontier of a migrated system
can be done in a fast and cheap manner by automatically analyzing its legacy source
code, and supplying software analysts with guidelines for manually refining the WSDL
documents of the SOA frontier based on the bad smells presentin the source code. This

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

is because many of the design problems that occur in migratedservice interfaces may
be due to design and implementation problems of the legacy system.

The input of the proposed approach is a legacy system source code and the SOA
frontier that result from its direct migration to SOA, concretely the CICS/COBOL files
and associated WSDL documents. Then, this approach can be iteratively executed for
generating a new SOA frontier at each iteration. The main idea is to iteratively improve
the service interfaces by removing thoseWSDL anti-patternspresent in them.

A WSDL anti-pattern is a recurrent practice that prevents Web Services from be-
ing discovered and understood by third-parties. In [8] the authors present a catalog of
WSDL anti-patterns and define each of them way by including a description of the un-
derlying problem, its solution, and an illustrative example. Counting the anti-patterns
occurrences within a WSDL-based SOA frontier then gives a quantitative idea of fron-
tier quality, because the fewer the occurrences are, the better the WSDL documents are
in terms of reusability, thus removing WSDL anti-patterns root causes represents SOA
frontier improvement opportunities. Note that this kind ofassessment also represents a
mean to compare various SOA frontiers obtained from the samesystem.

The proposed approach starts by automatically detecting potential WSDL anti-
patterns root causes within the migrated system given as input (“Anti-patterns root
causes detection” activity). Then, the second activity generates a course of actions to
improve the services frontier based on the root causes found(“OO refactorings sug-
gestion” activity). The third activity (“OO refactorings application”) takes place when
software analysts apply all or some of the suggested refactoring actions. Accordingly, at
each iteration a new SOA frontier is obtained, which feds back the first activity to refine
the anti-patterns root causes detection analysis. Figure 1depicts the proposed approach.

Anti-patterns root causes

detection

<<AUTOMATIC>>

OO refactorings suggestion

<<AUTOMATIC>>

OO refactorings application

<<MANUAL>>

[Improvement

opportunities detected?]

[NO]

[YES]

Fig. 1. Software-assisted SOA frontier definition activities.

2.1 WSDL anti-patterns root causes detection

The anti-pattern root causes detection activity is performed automatically, since manu-
ally revising legacy system source code is a cumbersome endeavor. To do this, we have
defined and implemented the ten heuristics summarized in Table 1. A defined heuris-
tic receives the implementation or the WSDL document of a migrated transaction and
outputs whether specific evidence of anti-patterns root causes is found.

We based on the work of [7] for designing most of the heuristics proposed in this
paper, since [7] presents heuristics for automatically detecting the anti-patterns in a
given WSDL document. Additionally, we have specially conceived heuristics 7 and 8

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

Table 1.Heuristics for detecting evidence of WSDL anti-patterns root causes.

Id and description Input True when

1. Look for comments in WSDL

<documentation> elements

WSDL

document
At least one operation lacks documentation.

2. Search inappropriate names

for service elements

WSDL

document

The length of a name token is lower than 3 characters, or when token refers to a

technology, or when an operation name contains two or more verbs or an

argument name contains a verb.

3. Detect operations that receive

or return too many parameters

WSDL

document
At least one operation input/output has more than P parameters.

4. Look for error information

being exchanged as output data

WSDL

document

An output message part has any of the tokens: “error”, ”errors”, ”fault”, ”faults”,

”fail”, ”fails”, ”exception, ”exceptions, ”overflow”, ”mistake”, ”misplay”.

5. Look for redundant data-type

definitions

WSDL

document
At least two XSD data-types are syntacticly identical.

6. Look for data-types with

inconsistent names and types

WSDL

document

The name of a parameter denotes a quantity but it is not associated with a

numerical data-type (e.g. numberOfChildren:String).

7. Detect not used parameters
COBOL

code
At least one parameter is not associated with a COBOL MOVE statement.

8. Look for shared dependencies

among services implementations

COBOL

code

The list of COBOL programs that are copied, or included, or called from two or

more service implementations is not empty.

9. Look for data-types that

subsumes other data-types

WSDL

document

An XSD complex data-type contains another complex XSD data-type, or a list

of parameters subsumes another list of parameters.

10. Detect semantically similar

services and operations

WSDL

document

A vectorial representation of the names and associated documentation of two

services or operations, are near in a vector space model.

for analyzing COBOL source, while heuristics 6 and 9 for supporting two relevant
anti-patterns that had not been identified in [7]. Concretely, the heuristic 6 analyzes
names and data-types of service operations parameters to look for known relationships
between names and types. Given a parameter, the heuristic splits the parameter name
by basing on classic programmers’ naming conventions, suchas Camel Casing and
Hungarian notation. Each name token is compared to a list of keywords with which
a data-type is commonly associated. For example, the token “birthday” is commonly
associated with the XSD built-in xsd:date data-type, but the token “number” with the
xsd:int data-type. Therefore, the heuristic in turn checkswhether at least one name
token is wrongly associated with the data-type.

The heuristic 7 receives the COBOL code of a migrated programand checks whether
every parameter of the program output COMMAREA is associated with the COBOL
MOVE assignation statement. In other words, given a COBOL program, the heuristic
retrieves its output COMMAREA, then gets every parameter from within it (including
parameters grouped by COBOL records), and finally looks for MOVE statements hav-
ing the declared parameter. One temporal limitation of thisheuristic is that the search
for MOVE statements is only performed in the main COBOL program, whereas copied

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

or included programs are left aside, and those parameters that are assigned by the exe-
cution of an SQL statement are ignored by this heuristic.

The heuristic 8 receives two COBOL programs as input. Then, for both programs
it separately builds a list of external COBOL programs, copies, and includes, which are
called (it looks for the CALL reserved word) from the main program, and finally checks
whether the intersection of both lists is empty or not.

The heuristic 9 receives a WSDL document as input and detectsthe inclusion of
one or more parameters of a service operation in the operations of another service. To
do this, parameter names and data-types are compared. For comparing names classic
text preprocessing techniques are applied, namely split combined words, remove stop-
words, and reduce names to stems. For comparing data-types the heuristic employs the
algorithm namedRedundant Data Model,which is presented in [7].

Once we have all the evidence gathered by the heuristics, themere presence of
anti-pattern root causes represent opportunities to improve a SOA frontier. Formally,
id→ opportunityi means thatopportunityi may be present when the heuristicid detects
its associated root causes (i.e. outputs ’true’):

4→ Improveerrorhandlingde f initions

8→ Expose shared programsas services

10→ Improve serviceoperationscohesion

The first rule is for relating the opportunity to split an output message in two, one
for the output data and another for fault data, when there is evidence of the output
message conveying error data (heuristic 4). The second ruleunveils the opportunity to
expose shared programs as Web Services operations, when a COBOL program is called
from many other programs, i.e. its fan-in is higher than a thresholdT (heuristic 8). The
third rule associates the opportunity to improve the cohesion of a service with evidence
showing low cohesion among service operations (heuristic 10).

In the cases shown below, however, the evidence gathered by an heuristic does not
support improvement opportunities by itself, and two heuristics must output ’true’:

8and9→ Removeredundantoperations

1and2→ Improvenamesandcomments

The first rule is for detecting the opportunity to remove redundant operations, and
is fired if two or more COBOL programs share the same dependencies (heuristic 8)
but also the parameters of one program subsume the parameters of the other program
(heuristic 9). The rationale behind this rule is that when two service operations not only
call the same programs, but also expose the same data as output –irrespective of the
amount of exposed data– there is an opportunity to abstract these operations in another
unique operation. The second rule indicates that there is the opportunity to improve the
descriptiveness of a service operation when it lacks documentation (heuristic 1) and its
name or the names of its parameters are inappropriate (heuristic 2).

Finally, the rule 3or 5 or 6 or 7→ Improve business ob ject de f initionscombines
more than one evidence for readability purposes, and it is concerned with detecting an
opportunity to improve the design of the operation in/out data-types. The opportunity
is suggested when the operation exchanges too many parameters (heuristic 3), there are

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

repeated data-type definitions (heuristic 5), the type of a parameter is inconsistent with
its name (heuristic 6), or there are unused parameters (heuristic 7).

2.2 Supplying guidelines to improve the SOA frontier

The second activity of the proposed approach consists of providing practical guidelines
to apply detected improvement possibilities. These guidelines consist of a sequence of
steps that should be revised and potentially applied by software analysts. The proposed
guidelines are not meant to be automatic, since there is not aunique approach to build
or modify a WSDL document and, in turn, a SOA frontier [9].

The cornerstone of the proposed guidelines is that classic Object-Oriented (OO)
refactorings can be employed to remove anti-patterns root causes from a SOA frontier.
This stems from the fact that services are described as OO interfaces exchanging mes-
sages, whereas operation data-types are described using XSD, which provides some op-
erators for expressing encapsulation and inheritance. Then, we have organized a sub-set
of Fowler et al.’s catalog of OO refactorings [10], to provide a sequence of refactorings
that should be performed for removing each anti-pattern root cause.

Table 2.Association between SOA frontier refactorings and Fowler et al.’s refactorings.

SOA Frontier Refactoring Object-Oriented Refactoring

Remove redundant operations 1: Extract Methodor Extract Class

Improve error handling definition 1: Replace Error Code WithException

1: Convert Procedural Design to Objectand Replace Conditional with Polymorphism

2: Inline Class

Improve business objects definition 3: Extract Classand Extract Subclassand Extract Superclassand Collapse Hierarchy

4: Remove Control Flagand Remove Parameter

5: Replace Type Code with Classand Replace Type Code with Subclasses

Expose shared programs as services 1: Extract Methodor Extract Class

Improve names and comments 1: Rename Methodor Preserve Whole Objector

Introduce Parameter Objector Replace Parameter with Explicit Methods

Improve service operations

cohesion

1: Inline Classand Rename Method

2: Move Methodor Move Class

The proposed guidelines associate a SOA frontier improvement opportunity (Ta-
ble 2, first column) with one or more OO refactorings, which are arranged in sequences
of optional or mandatory refactoring combinations (Table 2, second column). Moreover,
for “ Improve business objects definition” and “Improve service operations cohesion”,
the associated refactorings comprise more than one step. Hence, at each individual step
analysts should apply the associated refactorings combinations as explained.

Regarding how to apply OO refactorings, it depends on how theWSDL documents
of the SOA frontier have been built. Broadly, there are two main approaches to build

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

WSDL documents, namelycode-firstandcontract-first[9]. Code-first refers to auto-
matically extract service interfaces from their underlying implementation. On the other
hand, with the contract-first approach, developers should first define service interfaces
using WSDL, and supplying them with implementations afterwards. Then, when the
WSDL documents of a SOA frontier have been implemented undercode-first, the pro-
posed guidelines should be applied on the outermost components of the services imple-
mentation. Instead, when contract-first has been followed,the proposed OO refactorings
should be applied directly on the WSDL documents.

For instance, to remove redundant operations from a code-first Web Service, de-
velopers should apply the “Extract Method” or the “Extract Class” refactorings on the
underlying class that implements the service. In case of a contract-first Web Service, by
extracting an operation or a port-type from the WSDL document of the service, devel-
opers apply the “Extract Method” or the “Extract Class” refactorings, but developers
should also update service implementations for each modified WSDL document.

To sum up, in this section we presented an approach to automatically suggest how
to improve the SOA frontier of a migrated system. This approach has been designed
for reducing the costs of supporting an indirect migration attempt, while achieving a
better SOA frontier than with a direct migration one. In thissense, the next section
provides empirical evidence on the SOA frontier quality achieved by modernizing a
legacy system using the direct, indirect, and this proposedapproach to migration.

3 Evaluation

We have compared the service frontier quality achieved by direct and indirect (i.e. man-
ual approaches), and our software-assisted migration (semi-automatic) by migrating a
portion of a real-life COBOL system comprising 32 programs (261,688 lines of source
code) accessing a database of around 0.8 Petabytes. Three different service frontiers
were obtained:“ Direct Migration”, “Indirect Migration”, and “Assisted Migration”.
The comparison methodology consisted of analyzing:

– Classical metrics: We employed traditional software metrics, i.e. lines of code (LOC),
lines of comments, and number of offered operations in the service frontiers. In this
context higher values means bigger WSDL documents, which compromises clarity
and thus consuming services is more difficult to application developers.

– Data model: Data model management is crucial indata-centricsoftware systems
such as the one under study. We analyzed the data-types produced by each migra-
tion approach to get an overview of data-type quality withinthe service frontiers.
For example, we have analyzed business object definitions reuse by counting re-
peated data-type definitions across WSDL documents.

– Anti-patterns: We used the set of service interface metrics for measuring WSDL
anti-patternsoccurrences described in WSDL [8]. We used anti-patterns occur-
rences as an inverse quality indicator (i.e. fewer occurrences means better WSDLs).

– Required Effort: We used classic time and human resources indicators.

Others non-functional requirements, such as performance,reliability or scalability, have
not been considered since we were interested in WSDL document quality only.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

3.1 Classical metrics analysis

Table 3.Classical metrics and data model analysis: Obtained results.

Frontier
of files

Total operations
Average LOC

WSDL XSD Per file Per operation

Direct migration 32 0 39 157 129

Indirect migration 7 1 45 495 88

Assisted migration 16 1 41 235 97

Data-set Defined data-types
Definitions per data-type

(less is better)

Unique data-types

(more is better)

Direct Migration 182 1.29 (182/141) 141 (73%)

Indirect Migration 235 1.00 (235/235) 235 (100%)

Assisted Migration 191 1.13 (191/169) 169 (88%)

As Table 3 (top) shows, the Direct Migration data-set comprised 32 WSDL docu-
ments, i.e. one WSDL document per migrated program. Contrarily, the Indirect Migra-
tion and Assisted Migration data-sets had 7 WSDL documents and 16 WSDL docu-
ments, respectively. Having less WSDL documents means thatseveral operations were
grouped in the same WSDL document, which improves cohesion since these WSDL
documents were designed to define functional related operations. Another advantage
observed in the Indirect Migration and Assisted Migration data-sets over the Direct
Migration data-set was the existence of an XSD file for sharing common data-types.

Secondly, the number of offered operations was 39, 45, and 41 for Direct Migration,
Indirect Migration, and Assisted Migration frontiers. Although there were 32 programs
to migrate, the first frontier had 39 operations because one specific program was divided
into 8 operations. This program used a large registry of possible search parameters
plus a control couple to select which parameters to use upon aparticular search. After
migration, this program was further wrapped with 6 operations with more descriptive
names each calling the same COBOL program with a different control couple.

The second and third frontiers generated even more operations for the same 32 pro-
grams. This was mainly caused asfunctionality disaggregationandroutine servifica-
tion were performed during frontier generation. The former involves mapping COBOL
programs that returned too many output parameters with various purposes to several
purpose-specific service operations. Furthermore, the latter refers to exposing as ser-
vices “utility” programs called by many other programs. Then, what used to be COBOL
internal routines also become part of the SOA frontier.

Finally, although the Indirect Migration frontier had the highest LOC per file, it
also had the lowest LOC per operation. The Assisted Migration frontier had a slightly
higher LOC per operation than the Indirect Migration frontier. In contrast, the LOC per
operation of the Direct Migration frontier was twice as muchas that of the other two
frontiers. Then, more code has to be read by consumers in order to understand what an
operation does and how to call it, and hence WSDL documents are more cryptic.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

3.2 Data model analysis

Table 3 (bottom) quantitatively illustrates data-type definition, reuse and composition
in the three frontiers. The Direct Migration frontier contained 182 different data-types,
and 73% of them were defined only once. In contrast, there werenot duplicated data-
types for the WSDL documents of the Indirect Migration frontier. Concretely, 104 data-
types represented business objects, including 39 defined assimple XSD types (mostly
enumerations) and 65 defined as complex XSD types. Finally, 131 extra data-types were
definitions introduced to be compliant with the Web Service Interoperability standards
(http://www.ws-i.org/Profiles/BasicProfile-1.1.html),which define rules
for making Web Services interoperable among different platforms. Last but not least,
191 data-types were defined in the Assisted Migration frontier, including 118 definitions
in the form of business objects (34 simple XSD types+ 84 complex XSD types), and
73 definitions for WS-I compliance reasons.

With respect to data-type repetitions, the Direct Migration frontier included 182 data-
types definitions of which 141 where unique. This means that 23% of the definitions
were not necessary and could be substituted by other semantically compatible data-
type definitions. The Indirect Migration frontier, on the other hand, included 235unique
data-types. The Assisted Migration frontier had 191 data-types, and 169 of them were
unique. Then, our tool generated WSDL documents almost as good as the ones obtained
after indirectly migrating the system completely by hand. Overall, the average data-type
definitions per effective data-type across WSDL documents in the frontiers were 1.29
(Direct Migration), 1 (Indirect Migration), and 1.13 (Assisted Migration).

Moreover, the analyzed WSDL frontiers contained 182, 104, and 118 different def-
initions of business object data-types, respectively. TheIndirect Migration frontier had
fewer data-type definitions associated to business objects(104) than the Direct Migra-
tion frontier (182) and the Assisted Migration frontier (118), and therefore a better level
of data model reutilization and a proper utilization of the XSD complex andelement
constructors for WS-I related data-types. However, the Assisted Migration frontier in-
cluded almost the same number of business objects than the Indirect Migration frontier,
which shows the effectiveness of the data-type derivation techniques of our tool.

Figure 2 illustrates how the WSDL documents of the Indirect Migration and As-
sisted Migration frontiers reused the data-types. The Direct Migration frontier was left
out because its WSDL documents did not share data-types among them. Unlike the
Assisted Migration graph, the Indirect Migration frontierhas a reuse graph withoutis-
lands. This is because using our tool is not as good as exhaustivelydetecting candidate
reusable data-types by hand. Nevertheless, only 2 serviceswere not connected to the
bigger graph, thus our tool adequately exploits data-type reuse.

3.3 Anti-pattern analysis

We performed an anti-pattern analysis in the WSDL documentsincluded in the three
frontiers. We found the following anti-patterns in at leastone of the WSDL documents:

– Inappropriate or lacking comments [11] (AP1): A WSDL operation has no com-
ments or the comments do not effectively describe its purpose.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

Complex data-type definition

Web Service interface (WSDL documents)

The Web Service interface exchanges the data-type. Grey links mean that the WSDL associated with the

service includes just one explicit reference to the data-type, while a black link means that the WSDL document

references two or more occurrences of the data-type.

Keys:

Indirect migration data-type reuse Assisted migration data-type reuse

Fig. 2. Data-type reuse in the Indirect Migration and Assisted Migration frontiers.

– Ambiguous names [5] (AP2): WSDL operation or message names do not accurately
represent their intended semantics.

– Redundant port-types (AP3): A port-type is repeated within a WSDL document,
usually in the form of one port-type instance per binding type (e.g. HTTP or SOAP).

– Enclosed data model (AP4): The data model in XSD describing input/output data-
types are defined within a WSDL document instead of separate XSD files, which
makes data-type reuse across several Web Services very difficult.

– Undercover fault information within standard messages [6](AP5): Error informa-
tion is returned using output messages rather than built-inWSDL fault messages.

– Redundant data models (AP6): A data-type is redundantly defined in a document.
– Low cohesive operations in the same port-type (AP7): Occurs in services that place

operations for checking service availability (e.g. “ping”, “isAlive”) of the service
and operations related together with its main functionality into a single port-type.

Table 4 summarizes the outcomes of the analysis. When an anti-pattern affected only
a portion of the WSDL documents in a frontier, we analyzed which is the difference
between these WSDL documents and the rest of the WSDL documents in the same
frontier. Hence, the inner cells present under which circumstances the former situation
applies. Since spotting some of the anti-patterns (e.g.AP1 andAP2) is inherently sub-
jective [7], we performed a peer-review methodology to prevent biases.

The Direct Migration frontier was affected by more anti-patterns than the Assisted
Migration frontier, while the Indirect Migration frontierwas free from anti-patterns. The
first two rows describe anti-patterns that impact on services comments/names. These
anti-patterns affected the Direct Migration frontier since all WSDL documents included
in it were derived from code written in COBOL, which does not offer a standard way to
indicate from which portions and scope of a code existing comments can be extracted

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

Table 4.Anti-patterns analysis: Obtained results.

Anti-pattern /Frontier Direct Migration Indirect Migration Assisted Migration

AP1 Always Never
When the original COBOL

programs use control couples

AP2 Always Never
When the original COBOL

programs use control couples

AP3 When supporting several protocols Never Never

AP4 Always Never Never

AP5 Always Never Never

AP6
When two operations use the same

data-type
Never Never

AP7 Never Never
When several related programs

link to non-related operations

and reused. Besides, COBOL names have length restrictions (e.g. up to 4 characters
in some flavors). Therefore, names in the resulting WSDL documents were too short
and difficult to be read. In contrast, these anti-patterns affected WSDL documents in
Assisted Migration frontier only for those COBOL programs using control couples,
because properly naming and commenting such couples is a complex task [12].

The third row analyzes the anti-pattern that ties abstract service interfaces (WSDL
port-types) to concrete implementations (WSDL bindings),and as such hinders black-
box reuse [8]. We observed that this anti-pattern was causedby the WSDL generation
tools supporting the migration process that resulted in theDirect Migration frontier.
Unless properly configured, these tools by default produce redundant port-types when
deriving WSDLs from COBOL programs. Likewise, the fourth row describes an anti-
pattern that is generated by this tool as well as many similartools, which involves
forcing data models to be included within the generated WSDLdocuments, making
cross-WSDL data-type reuse difficult. Alternatively, neither the Indirect Migration nor
the Assisted Migration frontiers were affected by these two anti-patterns.

The anti-pattern described in the fifth row of the table dealswith errors being trans-
ferred as part of output messages, which for the Direct Migration frontier resulted from
the original COBOL programs that used the same data output record for returning both
output and error information. In contrast, the WSDL documents of the Indirect Migra-
tion frontier and the Assisted Migration frontier had a proper designed error handling
mechanism based on standard WSDLfault messages.

The anti-pattern described in the sixth row is related to badly designed data models.
Redundant data models usually arise from limitations or baduse of WSDL generation
tools. Therefore, this anti-pattern only affected the Direct Migration frontier. Although
there was not intra WSDL data-type repetition, the AssistedMigration frontier suffered
from inter WSDL repeated data-types. For example, theerror data-type –which consists
of a fault code, a string (brief description), a source, and adescription– was repeated in
all the Assisted Migration WSDL documents because the data-type was derived several
times from the different various programs. This problem did not affect the Indirect Mi-

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

gration frontier since its WSDL documents were manually derived by designers after
having a big picture of the legacy system.

The last anti-pattern stands for having no semantically related operations within a
WSDL port-type. This anti-pattern neither affected the Direct Migration nor the Indirect
Migration frontier because in the former case each WSDL document included only one
operation, whereas in the latter case WSDL documents were specifically designed to
group related operations. However, our approach is based onan automatic heuristic
that selects which operations should go to a port-type. In our case study, we found
that when several related operations used the same unrelated routines, such as text-
formatting routines, our assisted approach to migration suggested that these routines
were also candidate operations for that service. This resulted in services that had port-
types with several related operations but also some unrelated operations.

3.4 Required effort analysis

In terms of manpower, it took 1 day to train a developer on the method and tools used
for building the Direct Migration frontier. Then, a traineddeveloper migrated one trans-
action per hour. Thus, it only took 5 days for a trained developer to build the 32 WSDL
documents. Instead, building the Indirect Migration frontier demanded one year plus
one month, and 8 software analysts, and 3 specialists for migrating the same 32 trans-
actions, from which 5 months were exclusively dedicated to build its WSDL documents.

We also have empirically assessed the time needed to executeour semi-automatic
heuristics. The experiments have been run on a 2.8 GHz QuadCore Intel Core i7 720QM
machine, 6 Gb RAM, running Windows 7 on a 64 bits architecture. To mitigate noise
introduced by underlying software layers and hardware elements, each heuristic has
been executed 20 times and the demanded time was measured perexecution. Briefly, the
average execution time of an heuristic was 9585.78 ms, being55815.15 ms the biggest
achieved response time, i.e. the “Detect semantically similar services and operations”
was the most expensive heuristic in terms of response time.

Furthermore, we have assessed the time demanded for manually applying the OO
refactorings proposed by the approach on the Direct Migration frontier. To do this, one
software analyst with solid knowledge on the system under study was supplied with
the list of OO refactorings produced by the approach. It tooktwo full days to apply the
proposed OO refactorings. In this sense, the approach suggested to “Expose 14 shared
programs as services”, “Remove 7 redundant operations, “Improve the cohesion of 14
services”, and to “Improve error handling definition”, “Improve names and comments”,
and “Improve business objects definition” from all the migrated operations. It is worth
noting that OO refactorings have been applied at the interface level, i.e. underlying
implementations have not been accommodated to interface changes. The reason to do
this was we only want to generate a new SOA frontier and then compare it with the
ones generated by the previous two migration attempts. Therefore, modifying interfaces
implementation, which would require a huge development andtesting effort, would not
contribute to assessing service interfaces quality.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

4 Related work

Migration of mainframe legacy systems to newer platforms has been receiving lots of at-
tention as organizations have to shift to distributed and Web-enabled software solutions.
Different approaches have been explored, ranging from wrappingexisting systems with
Web-enabled software layers, to 1-to-1 automatic conversion approaches for converting
programs in COBOL to 4GL. Therefore, current literature presents many related experi-
ence reports. However, migrating legacy systems to SOA, while achieving high-quality
service interfaces instead of just “webizing” the systems,is an incipient research topic.

Harry Sneed has been simultaneously researching on automatically converting CO-
BOL programs to Web Services [13] and measuring service interfaces quality [14].
In [13] the author presents a tool for identifying COBOL programs that may beserv-
ified. The tool bases on gathering code metrics from the source to determine program
complexity, and then suggests whether programs should be wrapped or re-engineered.
As such, programs complexity drives the selection of the migration strategy. As re-
ported in [13], Sneed plans to inspect resulting service interfaces using a metric suite of
his own, which comprises 25 quantity, 4 size, 5 complexity and 5 quality metrics.

In [15] the authors present a framework and guidelines for migrating a legacy sys-
tem to SOA, which aims at defining a SOA frontier having only the “optimal” services
and with an appropriate level of granularity. The frameworkconsists of three stages.
The first stage is for modeling the legacy system main components and their interac-
tions using UML. At the second stage, service operations andservices processes are
identified. The third stage is for aggregating identified service elements, according to
a predefined taxonomy of service types (e.g. CRUD Services, Infrastructure services,
Utility services, and Business services). During the second and third stages, software
analysts are assisted via clustering techniques, which automatically group together sim-
ilar service operations and services of the same type.

5 Conclusions and Future work

Organizations are often faced with the problem of legacy systems migration. The target
paradigm for migration commonly used is SOA since it provides interoperability and
reusability. However, migration to SOA is in general a daunting task.

We proposed a semi-automatic tool to help development teamsin migrating COBOL
legacy systems to SOA. Our tool comprises 10 heuristics thatdetect bad design and im-
plementation practices in legacy systems, which in turn arerelated to some early code
refactorings so that services in the final SOA frontier are asclear, legible and discover-
able as possible. Through a real-world case study, we showedthat our approach dramat-
ically reduced the migration costs required by indirect migration achieving at the same
time a close service quality. In addition, our approach produced a SOA frontier much
better in terms of service quality than that of “fast and cheap” approach to migration
(i.e. direct migration). The common ground for comparison and hence assessing costs
and service quality was some classical software engineering metrics, data-type related
metrics, and a catalog of WSDL anti-patterns [8] that hinderservice reusability.

At present, we are refining the heuristics of our tool to improve their accuracy.
Second, we are experimenting with an RM-COBOL system comprising 319 programs

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

and 201,828 lines of code. In this line, we will investigate whether is possible to adapt
all the evidences heuristics to be used with other COBOL platforms. Lastly, even when
direct migration has a negative incidence in service quality and WSDL anti-patterns,
there is recent evidence showing that many anti-patterns are actually introduced by the
WSDL generation tools used during migration [16]. Our goal is to determine to what
extent anti-patterns are explained by the approach to migration itself, and how much of
them depend on the WSDL tools used.

References

1. Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo
Campo. Bottom-up and top-down COBOL system migration to WebServices: An experi-
ence report.IEEE Internet Computing, 2011. To appear.

2. Martin Bichler and Kwei-Jay Lin. Service-Oriented Computing. Computer, 39(3):99–101,
2006.

3. John Erickson and Keng Siau. Web Service, Service-Oriented Computing, and Service-
Oriented Architecture: Separating hype from reality.Journal of Database Management,
19(3):42–54, 2008.

4. Shing-Han Li, Shi-Ming Huang, David C. Yen, and Cheng-Chun Chang. Migrating legacy
information systems to Web Services architecture.Journal of Database Management,
18(4):1–25, 2007.

5. M. Brian Blake and Michael F. Nowlan. Taming Web Services from the wild.IEEE Internet
Computing, 12(5):62–69, 2008.

6. Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Jack, and Brad A. Myers. Usability
challenges for enterprise service-oriented architectureAPIs. In IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 193–196, Sept. 2008.

7. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Automat-
ically detecting opportunities for Web Service descriptions improvement. InSoftware Ser-
vices for e-World, volume 341, pages 139–150. SADIO - IFIP, Springer Boston, 2010.

8. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Improving
Web Service descriptions for effective service discovery.Science of Computer Programming,
75(11):1001–1021, 2010.

9. Cristian Mateos, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Separation of con-
cerns in service-oriented applications based on pervasivedesign patterns. InWeb Technology
Track (WT) - 25th ACM Symposium on Applied Computing (SAC ’10), pages 2509–2513.
ACM Press, 2010.

10. Martin Fowler. Refactorings in Alphabetical Order, 1999.
11. Jianchun Fan and Subbarao Kambhampati. A snapshot of public Web Services.SIGMOD

Rec., 34(1):24–32, 2005.
12. Edward Yourdon and Larry L. Constantine.Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Design. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1979.

13. Harry Sneed. A pilot project for migrating COBOL code to Web Services.International
Journal on Software Tools for Technology Transfer, 11:441–451, 2009. 10.1007/s10009-
009-0128-z.

14. Harry Sneed. Measuring Web Service interfaces. In12th IEEE International Symposium on
Web Systems Evolution, pages 111 –115, sept. 2010.

This is a preprint of the article: "G. Salvatierra, M. Crasso, C. Mateos and A. Zunino: "Towards a Computer Assisted Approach for Migrating Legacy
Systems to SOA". Lecture Notes in Computer Science (12th International Conference on Computational Science and Its Applications - ICCSA 2012). Vol.
7336, pp. 484-497. Springer-Verlag. 2012. ISSN 0302-9743."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_36

15. Saad Alahmari, Ed Zaluska, and David De Roure. A service identification framework for
legacy system migration into SOA. InProceedings of the IEEE International Conference on
Services Computing, pages 614–617. IEEE Computer Society, 2010.

16. Cristian Mateos, Marco Crasso, Alejandro Zunino, and José Luis Ordiales Coscia. Detecting
WSDL bad practices in code-first Web Services.International Journal of Web and Grid
Services, 7(4):357–387, 2011.

