
This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Noname manuscript No.
(X)

Energy-efficient Job Stealing for CPU-intensive processing in
Mobile Devices

Juan Manuel Rodriguez · Cristian Mateos ·
Alejandro Zunino

the date of receipt and acceptance should be inserted later

Abstract Mobile devices have evolved from simple electronic agendas and mobile phones
to small computers with great computational capabilities. In addition, there are more than
2 billion mobile devices around the world. Taking these facts into account, mobile devices
are a potential source of computational resources for clusters and computational Grids. In
this work, we present an analysis of different schedulers based on job stealing for mobile
computational Grids. These job stealing techniques have been designed to consider energy
consumption and battery status. As a result of this work, we present empirical evidence
showing that energy-aware job stealing is more efficient than traditional random stealing
in this context. In particular, our results show that mobile Grids using energy-aware job
stealing might finish up to 11% more jobs than when using random stealing, and up to 24%
more jobs than when not using any job stealing technique. This means that using energy-
aware job stealing increases the energy efficiency of mobile computational Grids because it
increases the number of jobs that can be executed using the same amount of energy.

Keywords Mobile Grid · Mobile Devices · Job Stealing · CPU intensive application · Job
Scheduling

1 Introduction

Unlike years ago, today’s mobile devices have the capability of executing complex software
that requires large amount of CPU/memory and might also need other special capabilities,
such as 3D graphics rendering. In addition, current storage technologies make it possible
to store several gigabytes in a small card, which means that mobile devices have the ability
of storing large amount of data. In addition to mobile devices internal capabilities, they
have the capability of using wide-range wireless networking technologies [25] meaning that
mobile devices might be connected to Internet or to other devices most of the time. All

Juan Manuel Rodriguez · Cristian Mateos · Alejandro Zunino
ISISTAN Research Institute. UNICEN University.
Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina.
Tel.: +54 (249) 4439682 ext. 35. Fax.: +54 (249) 4439683
also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Juan Manuel Rodriguez E-mail: juanmanuel.rodriguez@isistan.unicen.edu.ar

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

2 Juan Manuel Rodriguez et al.

in all, mobile devices have evolved from simple agendas and PDAs to small computers
with similar capabilities to few year-old computers [45]. Furthermore, there are more than
2 billion mobile device owners, and people in established markets usually own 2 or more
mobile devices [42].

Taking into account these facts, several researchers [17,33,26,14,27,42,44,45,12,19,1,
11] have studied how to scavenge mobile devices resources to solve complex computational
problems, such as scientific problems [43]. Although mobile devices capabilities are limited
when compared to server or desktop machines, the large amount of mobile devices might
compensate their limitations [45]. In fact, these works [27,42,45] present mobile devices
as part of distributed computer environments, such as traditional computational Grids or
clusters. By “computational” we mean Grids whose main purpose is to offer CPU processing
time to user applications, while “traditional” means distributed environments relying on
fixed (and not mobile) computing resources, such as PCs or servers. As this paper concerns
CPU-intensive applications, computational Grids will be referred simply to as “Grids”.

Although there are plenty of works, such as [38,51,47,35,37,49], studying traditional
Grid and clusters, mobile devices introduce new research issues to current distributed envi-
ronments [45]. Some of the issues are intrinsic to mobile devices, while others emerge from
combining mobile devices with traditional distributed computing. For instance, a typical is-
sue in mobile devices is their different software platforms [2] with different APIs and the
fragmentation within each unique platform [15]. This issue makes it difficult to run the same
software in different mobile devices even when they are running the same operating system.
Moreover, a problem of merging mobile devices with fixed distributed environments is se-
curity because different mobile devices are owned by different people to keep their personal
data, such as pictures and contacts. Therefore, each mobile device owner wants to have their
data as well as their communications with their services secure [46]. This usually does not
happen in some traditional distributed environments, such as clusters or Clouds, where all
of their components are owned by a single organization, so intra-net communication is more
controlled.

A recurrent problem when dealing with mobile devices is energy consumption. This is
because mobile devices energy source are batteries, and when a mobile device consumes all
its battery, the mobile device cannot remain functional. An interesting fact is that in gen-
eral mobile device capabilities have been exponentially growing, but battery capacity has
barely improved [41,43]. This issue affects mobile devices when connected to distributed
environments irrespective of the distributed environment purpose. For instance, some re-
searchers have studied the viability of connecting mobile devices through wireless networks
to peer-to-peer (P2P) network overlays, such as Kademlia, and the impact of these connec-
tions on battery consumption [22]. This work is oriented to content sharing, such as music
or video. In addition, other researchers aim at minimizing battery consumption during data
transfer [40] within a program, for example transferring a serialized object, which usually
requires less data transfer than content itself.

Furthermore, there is a line of research that aims at reducing battery consumption by of-
floading complex computational tasks from mobile devices into distributed environments [42,
24]. In particular, [24] analyzes the possibility of offloading mobile devices processing into
Cloud Computing environments, such as Amazon EC21. The authors discuss different us-
age scenarios and how the associated privacy and security mechanisms might affect this
approach efficiency.

1 http://aws.amazon.com/ec2/

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 3

In contrast, several researchers [33,14,26,12,44,30,45,8,1] have proposed using mo-
bile devices as resources to execute complex computational tasks. These researchers argue
that mobile devices are a considerable source of computational resources and they are able
to handle this kind of tasks [43]. However, these works have identified two main issues
that are not present in distributed environments where only fixed servers and desktops ma-
chines are connected. The first problem is that wireless networks are not as fast, reliable
and low-latency as wired networks. The second issue is again that mobile devices run on
battery. Hence, when using mobile device resources, the distributed environment have to
take into account this factor to avoid draining mobile devices batteries, while not hurting the
distributed environment global performance.

This work is focused on the second issue, i.e., considering battery consumption when
scavenging mobile devices resources. In particular, this work analyzes how to apply the
well-known job stealing [3] technique to balance load in distributed environments where
mobile devices are used to perform CPU-intensive computational tasks. Basically, a job is
an atomic unit of work that is assigned to a particular node, which executes the job. In job
stealing, an unloaded node tries to take jobs from loaded nodes in an attempt to balance the
workload across the nodes. In this case, the goal is to determine whether job stealing also
balances battery consumption and therefore to try to maximize the amount of jobs that can
be executed by a set of mobile devices without requiring incrementing their battery capacity.

This work is based on the Simple Energy-Aware Scheduler (SEAS) [44], a job scheduler
for CPU-intensive processing in mobile Grids [12], or Grids comprising mobile devices
only. The SEAS was designed to assign jobs to mobile devices taking into account their
computational capabilities, their battery current charge and their battery consumption rate.
When a job is assigned to a mobile device, the job is enqueued until the mobile device can
execute it. In addition, battery consumption rate varies according to several factors, such
as workload and network usage, and mobile devices battery sensors are not very accurate.
As a result of these facts, the scheduler choice might not be the best possible choice, but re-
scheduling is not supported. Hence, a bad choice made by SEAS cannot be corrected and this
might have a negative impact on the global mobile Grid energy efficiency. In this context, job
stealing might rebalance the distributed environment as job execution progresses, improving
the energy efficiency of the mobile Grid as a whole.

In brief, the main contribution of this paper is the assessment of different job stealing
algorithms in SEAS to reduce overall battery consumption in mobile Grids, which is a major
issue in the area [28]. Therefore, the goal of our study is twofold: reduce energy consump-
tion by improving job scheduling in mobile Grids, but also obtaining better throughput by
using the energy potentially saved to execute a larger number of jobs. Interestingly, the an-
alyzed job stealing algorithms, which were originally proposed for traditional Grids, can be
implemented easily in current devices. This is a key feature because some of the existing
scheduling algorithms specifically proposed for mobile Grids [27,30] require to know too
much about the mobile Grid environment making them difficult, or sometimes impossible,
to be implemented in real systems [45]. According to our experiments, a mobile Grid using
job stealing might solve up to 24% more jobs that the same mobile Grid using SEAS. This
means that with the same amount of energy, the mobile Grid finished more jobs when using
job stealing.

The rest of this paper is organized as follows. Section 2 surveys related works on mo-
bile Grids as well as job stealing algorithms. Section 3 presents our approach for using job
stealing in mobile Grids, which focuses on efficient energy usage. Then, Section 4 discusses
the experiments performed to validate our approach. Finally, Section 5 concludes the paper
and outlines future research lines.

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

4 Juan Manuel Rodriguez et al.

2 Related works

Since mobile devices gained the ability of connecting to the Internet through wireless net-
works, researchers have been studying how to exploit them in distributed computing envi-
ronments. Firstly, mobile devices were proposed as visualization and management devices
of this kind of environments [13]. Although some researchers still put mobile devices only
in this role [19], others are studying mobile devices capabilities for scientific computing [43,
32,21]. These researches aim at not only determining whether mobile devices are capable of
executing scientific computation tasks, but also providing guidelines of how to implement
this kind of software efficiently.

Although [43] pointed out that mobile devices are considerable slower than desktop ma-
chines, which is expected, [43] showed that mobile devices can perform a substantial amount
of work when on battery. This means that they deliver a good task percentage execution per
energy unit ratio. This is important because in mobile Grids, mobile devices are supposed
to belong to different mobile device owners, which might together contribute to perform a
larger work that can be divided in smaller execution units.

The motivation of mobile device owners for contributing can be different. Some mo-
bile device owners might be willing to freely contribute to some project. This scheme has
proved to be successful in traditional Grid projects, such as the ones carried out by the World
Community Grid2 or SETI@home3. Besides, mobile device owners might share resources
because they expect to also use other mobile device resources when they need them [29].
Even more, potential mobile Grid users might consider paying external mobile device users
for using this latter’s mobile devices [14]. Since encouraging mobile device owners to share
is a main factor for mobile Grids to suceed, there are some works [12,10,31] discussing
alternatives towards achieving this goal. However, this topic is out of this paper scope and
constitutes in itself a fresh research line in the area.

Apart from sharing issues, for which as pointed out interesting advances have been
achieved, developing mobile Grids is also challenging because of mobile devices’ resource
limitations and intermittent network connectivity [9]. At the same time, there is a clear mo-
tivation of supporting computational mobile Grids since they are promising mainly because
tree facts:

– mobile devices computational capabilities are significant [43],
– these capabilities can be used by scavenging unused mobile devices capabilities [1], and
– the ubiquity of mobile devices [42].

However, the success of computational mobile Grid heavily depends on the ability of us-
ing mobile device resources without draining the batteries. Therefore, the selection of the
resource to use is very important [18,12,30,8]. This problem is still open mainly because
the information needed for taking optimal scheduling decisions is not usually available in
real mobile Grids. In this context, our goal is to improve the amount of jobs executed us-
ing mobile Grids. To do this, we have extended the SEAS algorithm [44] with job stealing
techniques.

The next section presents background on mobile Grid schedulers, and in particular, de-
scribes the SEAS, which is the scheduler this work is based on. Then, Section 2.2 discusses
related works on job stealing, i.e., the techniques used to increase the energy efficiency and
throughput of SEAS.

2 World Community Gridhttp://www.worldcommunitygrid.org/
3 SETI@homehttp://setiathome.berkeley.edu/

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 5

2.1 Mobile Grid schedulers

Mobile Grids present new challenges when compared with traditional Grids because mobile
devices are too different from servers and desktop computers. One of these issues is how to
schedule jobs for maximizing the number of executed jobs with the same battery capacity.
Intuitively, existing schedulers aim at finishing as many jobs as possible before the mobile
devices batteries become depleted [26,27,28,12,44,45,30].

Examples of these kinds of schedulers are presented in [26,27,30] where different op-
timal job schedulers for Grids of mobile devices are proposed. These schedulers take into
consideration different important variables, but all of them aim at optimizing job assignation
to minimize energy consumption while maximizing utilities. Utility is defined by giving a
value to each job, i.e., the value of executing a job “A” might be different from the value
of executing a job “B”. To know whether a job can be assigned, these schedulers need to
know exactly how many work-units, e.g., operations, are necessary for completing each job,
how much energy a work-unit consumes in each device, the time limits for each job and
the amount of available energy in each device. Assuming all this information is known, the
scheduler assigns the jobs using a non-linear optimization function that aims at maximizing
the utility, while minimizing energy consumption. In particular, the optimization method is
based on Lagrange multipliers. The main drawback of this approach is that these assump-
tions are very unlikely to hold in real-life deployments. In addition, these schedulers do not
take into account owners’ usage of the mobile devices, i.e., these latter are assumed to be
dedicated computing nodes.

In [12], the authors propose another scheduling and pricing strategy. The authors as-
sume that the connection between a Grid and the mobile devices is an edge router, called
Grid controller. This mobile Grid model is frequently used, and the Grid controllers are
generically known as Proxies [45]. The proposed scheduler operates as a market, where
mobile devices offer their computational capabilities to the Grid. In this market, the Grid
controller works as a broker, selecting a mobile device based on historical information of
price and the probability of accepting a job. Then, the Grid controller makes an offer for
having the job executed. The mobile device might accept the offer, reject it or negotiate for
a better price. If the offer is accepted or rejected, the scheduling process finishes. But in case
the negotiation continues, the Grid controller re-offers and the process continues until the
job is accepted by the mobile device, or until the Grid controller or the mobile device finish
the negotiation. To perform the negotiation, the Grid controller must know the work-units
required by the job, the mobile device processing rate, the mobile device remaining uptime
estimation and the CPU time price.

Although there are other proposed schedulers, in general, they all share the same as-
sumptions [44,45]. As a result, they all inherit the same weaknesses. Firstly, battery esti-
mation is one of the most important problems. Although there are models for estimating
this [4,16], they require to know several variables about the battery, such as electrolyte
concentration, electrolyte potential, or solid-phase potential, usually not available in real
mobile devices. In addition, these models are based on complex mathematical models that
might represent complex jobs themselves for mobile devices, making them unsuitable to be
used as part of mobile Grid schedulers because scheduling decisions also consume battery.
The other problem is knowing how long it would take to execute a job in a mobile device.
In general, this problem is impossible to solve because solving it would mean solving the
halting problem [50]. However, [7] aims at estimating both time and battery consumption
for executing a particular application. Yet, this approach uses other complex models that

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

6 Juan Manuel Rodriguez et al.

make it unsuitable for scheduling because in some cases it may take longer to perform the
model simulation than to actually run the applications, thus wasting energy.

Furthermore, the SEAS [44] is an algorithm that uses simple mathematical models to
estimate how many energy units per job are assigned in a particular mobile device. Having
this information, the SEAS tries to keep this proportion balanced across all mobile devices
connected to the Grid. Since this work is heavily based on the SEAS, APPENDIX A present
a comprehensive description of the scheduler.

Interestingly, the SEAS has proven to be more suitable for mobile Grids than traditional
scheduling algorithms for Grids, such as Round Robin, or Random assignation. However,
the SEAS might experience serious performance loss under certain common conditions.
Firstly, if all jobs arrive at the initial time, the battery estimation might not be good enough
because the estimation algorithm has not enough data yet to make an accurate estimation.
Secondly, the SEAS does not take into account mobile devices workload from user ap-
plications. Finally, if jobs present too much variation in computational requirements, the
required resources per job estimation might be biased. Since using a resource consumes
energy, wrongly performing the required resources per job estimation means wrongly esti-
mating the required energy for a job, which might in turn result in an energy waste.

In order to overcome these issues, we evaluated the outcome of equipping SEAS with
traditional job stealing techniques. Job stealing is a well-known paradigm for job schedul-
ing in parallel and distributed environments that has proven to be effective, algorithmically
simple, and easy to implement. The next section introduces related works in the job stealing
area.

2.2 Job stealing

Broadly speaking, regardless the parallel or distributed environment targeted, the problem
of scheduling a set of jobs on several computational resources can be addressed by follow-
ing two paradigms: work sharing and work stealing. In work sharing, whenever a resource
or node has some jobs to execute, it attempts to move some of the jobs to underutilized
resources. In opposition, in work stealing –from now on job stealing– idle resources period-
ically try to take jobs from overloaded resources.

The benefits of one approach over the other have been in the past subject of long de-
bates [3]. In traditional Grid environments, job stealing is very popular, as evidenced by a
number of job schedulers proposed to efficiently harness Grid resources based on determin-
istic resource victim selection (e.g., [38]) or those that rely on random decisions (e.g. [51,
47,49]). Within the former group, the Javelin 3 [38] middleware arranges Grid resources
as a unique tree, and includes a scheduling algorithm by which whenever a resource runs
out of jobs to execute, selects a neighboring resource to request jobs from based on the tree
structure. In other words, an idle resource first attempts to steal job from its children, if any,
and if unsuccessful, from its parent. This ensures that all the jobs assigned to the subtree
rooted at a resource are processed before that resource takes new jobs from its parent.

With respect to random job stealing algorithms, the JCluster platform [51] proposes
Transitive Random Stealing, by which each resource remembers the originating resource
(history information) from which a job was last received after a steal attempt and sends
requests directly to that resource (the short-cut path). In addition, the stealer resource also
forwards this history information to other resources which want to take a job from the stealer
node (the transitive policy). On the other hand, the WSPE (Work Stealing Programming En-
vironment) [47] Grid programming environment proposes Round Stealing, which enhances

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 7

the original Random Stealing algorithm. Instead of randomly selecting a neighbor resource
to send a steal request, the resource sends individual asynchronous steal requests to each
neighbor in rounds. As soon as the first reply (i.e., job to execute) arrives, the obtained job is
pushed onto the resources local job queue. As the communication demands of the proposed
algorithm are high, WSPE complements its scheduler with a peer-to-peer network overlay
that arranges resources based on network latency.

Furthermore, Satin [49] is a Grid platform that includes the Cluster-aware Random task
Stealing mechanism (CRS). With CRS, when a Grid resource becomes idle, it attempts
to steal an unfinished task both from resources belonging to the same local cluster or ex-
ternal resources (i.e., from clusters reached via WAN links), however intra-cluster steals
have higher priority than inter-cluster ones, minimizing expensive WAN communication.
This job stealing mechanism is indirectly exploited by some Grid meta-schedulers such
as JGRIM (Java GRidifying by Injecting Metaservices) [35] and BYG (BYtecode Gridi-
fier) [37], which partially rely on Satin for handling job execution.

3 Energy-efficient job stealing

In traditional distributed computing environments, job stealing is used as a computational
load balancing mechanism [49]. Basically, this technique aims at minimizing unused nodes
in such environments. In addition, this prevents jobs from waiting to be executed when there
are idle resources, which improves throughput. Since these are important concerns in mobile
Grids as well, job stealing might be applied in this context. However, it is necessary to con-
sider the potential energy efficiency levels offered by these techniques [45] to successfully
apply job stealing in mobile Grids.

Mobile devices

Proxy Mobile-Grid

GRID

Fig. 1 Proxy-based mobile Grid

Fig. 1 depicts the mobile Grid architecture on which this work is based. Basically, this
infrastructure is centralized from the mobile devices point of view. The central component,
called proxy, is the one that handles the interaction between the traditional Grid and the
mobile devices as well as mobile devices interactions. In this infrastructure, nodes from the
traditional part of the Grid see the mobile Grid as a single virtual resource [26,44,12] to
which they can ask for executing jobs, but internally it is a distributed environment. From
now on, this work is focused on the proxy and mobile devices. In this context, the former
receives jobs to execute, and it assigns them to the mobile devices to perform the execution.

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

8 Juan Manuel Rodriguez et al.

It is worth mentioning that, in its present form, the proxy based architecture has two main
drawbacks [45]: scalability and reliability. Firstly, the number of mobile devices that can be
connected to a proxy is limited by the computational capabilities of the proxy. Secondly, if
a proxy fails, all the mobile devices connected to that proxy would become unavailable to
the Grid. Yet, the scalability problem can be easily solved by adding new and independent
proxies to the Grid. On the other hand, the reliability issue might be solved using redundancy
or reconnecting the mobile devices to other proxies. Although these issues are out of this
paper scope, notice that they have been tackled in different previous works [18,17,23,20].
Some of these advances could be then applied in the near future to ensure scalability and
reliability to the architecture.

As mentioned above, this work is based on the SEAS algorithm. This means that when
the proxy receives a job execution request, it uses the SEAS algorithm to assign the job to
a mobile device. Notice that the SEAS assumes that the jobs are independent and atomic
computational units, which means that a job never depends on other jobs’ output and the job
cannot be divided for executing in several mobile devices. In the original SEAS approach,
there are only two possible outcomes for the job. One of them is that the job is executed in
the mobile device and it returns the execution result to the proxy. In this case, if the mobile
device has no more jobs assigned, it remains idle until the proxy assigns it a new job. The
other one is that the mobile device runs out of battery before finishing the job execution,
which means that the job execution is canceled. In addition, when a node runs out of battery,
it does not only cancel the currently executing job, but also all the jobs enqueued in that
node waiting to be executed. Notice that when a mobile device runs out of battery, several
jobs might be canceled at once, namely the ones which are executing and the ones which
are enqueued waiting to be executed in the device.

By introducing job stealing, mobile devices are more active during job assignation. Ac-
cording to this fact, the proxy works as described above receiving jobs and assigning them to
mobile devices. However, mobile devices behave differently because when a mobile device
finishes executing all its assigned jobs, it looks at other mobile devices to steal their jobs.
Essentially, when a mobile device becomes idle, it selects another mobile device, which is
called victim, and tries to offload it.

The first issue is how an idle mobile device, called stealer, selects a victim. We have
analyzed three different strategies for selecting the victim:

Random Stealing (RS): This selection strategy consists on choosing a random mobile de-
vice as a victim. We selected this strategy because it is widely used in job stealing
algorithms for traditional Grids [51,47,49]. This strategy usually performs well in many
scenarios and its computational cost is very low.

Best Ranking Aware Stealing (BRAS): This selection strategy consists on picking up the
mobile device that is best ranked according to the SEAS ranking criteria and naturally
has enqueued or unfinished jobs. This strategy aims at offloading the least overloaded
mobile devices.

Worst Ranking Aware Stealing (WRAS): This selection strategy is also based on the SEAS
ranking strategy, but, instead of selecting the best ranked mobile device, it selects the
worst ranked one. In this case, the goal is to globally balance the load because the mobile
devices that have no load take the load from the most loaded ones.

Notice that the SEAS ranking formula uses three variables: a benchmark factor of each
device, the estimated uptime of a device, and the number of jobs assigned to that device
(please refer to APPENDIX A for details on the formula). Basically, the ranking consists in
multiplying the benchmark by the estimated uptime to determine how many units of work

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 9

the mobile device can perform in a given time. Then, this number is divided by number of
jobs plus one in order to determine how many units of work would be available, on average,
to execute each job if other job is assigned to that mobile device. In this context, BRAS tries
to offload nodes that are likely to finish their jobs, so they become idle and start stealing
jobs quickly. As a result, victims are more likely to become idle, and, in turn, they would
be themselves able to further offloading other mobile devices. Essentially, this strategy is
expected to generate an offloading chain-reaction. In contrast, WRAS offloads the nodes
that are overloaded to make more likely that this mobile device can finish all the remaining
jobs assigned to them. As a result, we expect that if more nodes are more likely to finish all
their jobs, more jobs would be finished by the time all mobile devices run out of battery.

In addition to selecting a victim, the stealer should also determine how many jobs it will
steal. Stealing several jobs at once might reduce the networking overhead because it requires
establishing only one connection. Since networking requires using a lot of energy [25,22]
reducing the need for that might extend the battery life. For this issue, we have analyzed two
policies:

Fixed Number: In this policy, a stealer always steals the same (statically determined) num-
ber of jobs. In this model, the stealer always behaves the same upon each steal attempt.
In these experiments, we fixed this number to one because is the maximum number of
jobs that a node can execute at once. As will be explained in the next Section, we em-
ployed single-core mobile devices in the experiments. For n-core mobile devices, each
steal attempt might actually try to retrieve around n jobs.

Exponential: This policy exponentially increases the number of stolen jobs based on how
many times the node became idle. Basically, if a mobile device becomes idle for the
nth time, it would steal 2n jobs. For example, the first time, the stealer steals one
job (20), the second time, the stealer steals two jobs (21), and so on.

One victim selection strategy and one offloading policy represent a particular combination
that can be used in a mobile Grid. The next section presents an evaluation of the six possible
combinations between strategies and policies in terms of throughput and energy usage when
applied to mobile Grids.

4 Evaluation

In order to evaluate the different job stealing algorithms, we have performed several sim-
ulations. Simulation is a common method to evaluate different algorithms for distributed
computing [5,6] because it reduces time and costs, making it possible to test approaches
before a large-scale deploy is carried out. In addition, simulation makes experiments easily
replicable.

For making the simulations as real as possible, we have profiled different mobile de-
vices battery consumption under several CPU load conditions. Then, we used the profiles
to extrapolate how mobile devices would behave when working as part of a mobile Grid.
Therefore, Section 4.1 outlines the procedure followed to profile mobile device battery con-
sumption, as it is a crucial aspect of our assessment. Then, Section 4.2 presents our simula-
tion approach. Finally, Section 4.3 discusses the experimental results.

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

10 Juan Manuel Rodriguez et al.

4.1 Mobile device profiling

For performing intra-mobile device profiling, we developed an application to take into ac-
count three variables: time, CPU load and battery charge. Although the profiler was imple-
mented for Android, the profiling method can be easily adapted to any other mobile device
platform. The proposed profiler measures two of them, namely time and battery charge,
while it tries to keep a constant CPU load (Target CPU Load), which is given as a param-
eter. To measure time, the profiler uses the mobile device internal clock. For measuring
battery, the profiler uses the event based system battery report, in this case via the Android
Intent API. Essentially, the profiler saves the battery charge and the time upon each new
battery event issued by the Android system.

To assure that the measures are consistent with a particular CPU load, the profiler must
force the mobile device to keep a particular Target CPU Load. To do this, we have de-
signed a subsystem that generates CPU load by performing floating-point operations in a
dedicated thread. However, constantly executing floating-point operations consumes 100%
of the CPU. Therefore, a monitoring component constantly adjusts a delay time between the
operations.

Algorithm 1 shows the logic of the thread that consumes CPU. Basically, the thread that
executes this algorithm sleeps during a period of time and then executes a set of floating-
point operations, and it repeats this process until the thread is externally killed. The sleeping
time is being constantly adjusted by the Algorithm 2, which runs in another thread. In con-
trast, the number of operations executed in each cycle is fixed in the constant CYCLES.
This constant had to be defined because the granularity of the time in the method “wait” is
milliseconds. Since current mobile devices processors are relatively fast, it was impossible
to control the CPU load by only executing a floating-point operation and sleeping. In all the
profiles we executed, the CYCLES constant was fixed in one million. Yet, this number could
not work well with slower or faster processors.

Algorithm 2 shows the algorithm of the thread that adjusts the sleep time for generating
the target CPU load. As mentioned, this algorithm runs in another thread and adjusts the
CPU usage. Firstly, it measures the CPU use by calculating the average of 30 measures
taken in 200 milliseconds. Each measure is calculated using the information reported by
Android through the /proc/stats file, in the same way as the Linux command top4 .
Then, the thread calculates the rate between the current CPU use and the target CPU use.
Using this rate, it modifies the sleep time in the CPU loader thread in the same proportion
in an attempt to move the CPU usage closer to the target. Notice that when the target CPU
usage is 0%, none of these threads are started.

To obtain the profiles, we ran the software in some mobile devices with fully charged
batteries and plugged to the electrical power line. Then, when the CPU load was near to
the Target CPU Load by a threshold of 5%, we unplugged the mobile devices and left the
profiler running without human interaction until the batteries were depleted. The profiler
logged all the recollected data in a file on each mobile devices SD card.

From a technical point of view, we had to take some precautions to minimize Android
scheduler and power manager impact on the profiles. The first problem is that the Android
scheduler is very aggressive and might terminate the profiler, which intensively uses the
CPU, especially when the mobile device screen is locked. To prevent this situation from
happen, both threads, the CPU loader and the CPU loader adjuster, run within a Service in

4 Linux top command: http://procps.sourceforge.net/

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 11

Algorithm 1 CPU loader thread
1: procedure CPULOADER
2: while true do ▷ Never ends
3: if SLEEP > 0 then
4: WAIT(SLEEP) ▷ Waits for SLEEP milliseconds without using CPU
5: end if
6: count← 0
7: while count < CY CLES do
8: PERFORMFLOATINGPOINTOPS ▷ Uses CPU
9: count← count+ 1

10: end while
11: end while
12: end procedure

Algorithm 2 CPU loader adjuster
1: procedure CPULOADERADJUSTER(TargetCPULoad, Threshold)
2: while true do ▷ Never ends
3: cpuLoad← GETCPUUSAGE ▷ Average 30 measurements separated by 200 ms
4: diff ← cpuLoad/TargetCPULoad
5: if −Threshold < 1− diff < Threshold then
6: NOTIFYSTABLE ▷ Informs that the CPU load is near the target CPU load
7: LOG(cpuLoad)
8: else
9: sleep← CPULoader.GETSLEEP() ▷ Gets the current value of the variable SLEEP in the

CPU loader thread
10: if sleep = 0 then
11: sleep← 1
12: end if
13: CPULoader.SETSLEEP(sleep ∗ diff) ▷ Adjust the sleeping time ▷ Adjust the value of

SLEEP in the CPU loader thread
14: end if
15: end while
16: end procedure

foreground. Basically, a Service5 is a special class of the Android framework that represents
a component that performs long-running operations without providing any graphical inter-
face. In particular, when a Service is in foreground, it tells the Android scheduler that this
latter should avoid killing the Service unless extremely necessary6.

The other main issue is that Android might reduce the CPU speed to preserve battery.
However, we assume that the CPU will be fully used when processing computations within a
mobile Grid, which must be took into account in our profiling application. Android provides
a mechanism, called power locks, that allows applications to tell whether it needs to keep
some part of the system to be active. In particular, the above service asks for a partial wake
lock7 that keeps the CPU active, but not the screen or the keyboard light on. We also keep
a WiFi connection active and connected to the Internet so that bundled applications, such
as e-mail, can stay active. Besides, a mobile device connected to a Grid is expected to be
connected to a wireless network.

5 Android Services: http://developer.android.com/guide/topics/fundamentals/
services.html

6 Android Processes and Threads: http://developer.android.com/guide/topics/
fundamentals/processes-and-threads.html

7 Android Power Lock: http://developer.android.com/reference/android/os/
PowerManager.html

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

12 Juan Manuel Rodriguez et al.

Device Target
CPU load

Total Profiling Time
(hh:mm:ss)

of Mea-
surements

Average
CPU load

Standard
deviation

Samsung
I5500

0%8 35:23:47.082 7034 3.83% 1.08%
30% 22:57:43.507 4831 30.26% 3.92%
75% 11:15:20.006 2385 75.28% 4.04%

100% 9:45:28.792 2066 99.98% 0.04%

ViewPad
10s

0%8 27:15:39.293 5476 10.23% 2.26%
30% 19:29:27.824 4154 30.11% 2.01%
75% 13:49:49.690 2951 76.92% 1.76%

100% 13:57:44.642 2977 99.99% 0.03%

Table 1 Profiler CPU load

Table 1 outlines the results obtained by the profiler in regard to the injected CPU load.
Firstly, it can be noticed that the profiled mobile devices have always the CPU slightly loaded
when the Target CPU Load is 0%. This might result from the fact that bundled applications
can periodically perform some operations, such as fetching e-mails or look for software
updates. On the other hand, the Android platform has a very active role on application life-
cycle, such as managing Intents, which also use CPU. Despite these facts, the other profiles
were generated with a CPU load very approximated to the Target CPU Load. In addition, the
standard deviation is very low, indicating that the dispersion of the measurements is small.

Finally, we executed Java versions of the well-known Linpack and SciMark 2.0 bench-
marks on the Samsung I5500 and ViewPad 10s. These benchmarks were used to determine
how fast these mobile devices are for performing scientific computational tasks [43]. As a
result of these benchmarks, we have determined that the Samsung I5500 has 7.6 megaflops,
while the ViewSonic ViewPad 10s has 35.49 megaflops. Although these are the Linpack
results, the SciMark 2.0 results were very similar, being these results 7.24 and 35.06 for the
Samsung I5500 and the ViewSonic ViewPad 10s respectively.

4.2 Mobile Grid simulation

As stated earlier, simulation is a widely accepted practice for evaluating distributed sys-
tems performance [5,6]. This is because it is difficult to deploy a distributed environment
to evaluate different approaches. In addition, simulated environments allow researchers to
fairly compare different approaches. Hence, we used a simulated environment to assess job
stealing in mobile Grids, which is also an accepted practice in mobile Grids [26,27,30].

To perform the experiments, we then used an event based simulation software of our
own. This means that everything that might occur in the mobile Grid is considered by the
software as an event. For instance, a job arrival, battery notification, or job terminations
are all different kind of events for the simulator. Hence, we had to convert all the profiled
information to events for the simulator. In addition, we generated jobs with their associated
arrival time and requirements in terms of floating-point operations each input job needs to
finish.

In order to simulate a job execution in a mobile device, the simulator uses two profiles
of the same mobile device: the base profile –i.e., the default CPU consumption by Android
itself and the mobile device owner– and the 100% CPU load profile. The base profile rep-
resents the use of the mobile device when it is not running any job as a mobile Grid node.
The 100% CPU load profile is used when simulating that the mobile device is running a job

8 The CPU load registered is generated by the Android OS and bundle applications

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 13

assigned from the mobile Grid. As the reader can note, we assume that each job is optimized
and correctly coded to use as much CPU as it is available.

The intra-device model used to switch between profiles when a job is started or fin-
ished, and calculating how long it would take to finish the job, is based on the following
assumptions:

– A job uses the unused CPU of the base profile. For instance, if the user is currently using
31% of the CPU, the job will use the remaining 69%.

– The CPU used by a job might vary if a base profile CPU event occurs while the job is
executing. This is because we assume that the base profile represents user CPU usage
and the mobile Grid should not interfere with users’ tasks. Therefore, if a user requires
more CPU, the mobile Grid should allow it to happen.

– The CPU usage of a profile between events is constant. This means that the CPU load
only changes on registered events.

– The battery consumption between two battery events is lineal. This is because mobile
devices do not allow users to analyze what happens between battery events.To calculate
how long it takes to perform a job in a particular mobile device, the simulator analyzes
what occurs between events. Firstly, when the job arrives, it calculates using Equation 1
whether the job will finish before the next battery event or not:

job time =
job operations

device flops ∗ (1− currentCPU use)
(1)

If the job finished before the next battery event, the simulator adds the corresponding
event into the events queue. Otherwise, the simulator calculates how many operations will
be performed before the next CPU event and updates the number of operations in the job
(see Equation 2), so the simulator can perform the previous analysis when the new CPU
event arrives. This continues until either the job is finished or the mobile device depletes its
battery, leaving the mobile Grid.

updated operations = job operations−device flops∗(1−currentCPU use)∗time to battery event
(2)

As suggested, the model used to simulate profile switching is based on the assumption
that the remaining battery between two events can be calculated as a lineal function, and
a mobile device uses 100% of its CPU when it is running a job. Basically, when a mobile
device profile changes, the simulator calculates the actual battery charge and then calculates,
using the new profile, how long it would take until the next battery event. Therefore, the
simulator removes the actual battery event and adds a new one that will trigger later on.

Fig. 2 depicts how the simulator switches between the base profile, which is based on
a 30% CPU target profile, and the 100% CPU target profile. As it can be seen in the upper
part, battery events occur when the battery discharges by 1% or a job starts or finishes. This
figure also shows that the gradient of the remaining battery might vary when a battery event
unrelated to a job execution occurs (the third battery event from left to right). Finally, the
figure, in its bottom part, also shows that the base profile is used to determine the CPU
percentage a job will use.

4.3 Experimental results

To evaluate how the different job stealing techniques behave on mobile Grids, we defined
16 different execution scenarios. All these scenarios use a mobile Grid comprising 100 mo-

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

14 Juan Manuel Rodriguez et al.

98%

97%

100%

30%

C
P

U
B

a
tt
e

ry

Time
Baterry Events

Node profile

adjustment

Job Start

Event

Job Finished

Event

Using

30% CPU load

Profile

Using

100% CPU load

Profile

Using

30% CPU load

Profile

Base profile CPU events

Used

CPU

Used

CPU

Used

CPU

Free

CPU
Free

CPU

CPU assigned

to the Job

Fig. 2 Profile switch model

bile devices, following some of the profiles mentioned in the previous section as well as
different number of jobs. Firstly, we selected two types of mobile Grid deployments: one
consisting of 70 Samsung I5500 and 30 ViewPad 10s, the other consisting of 50 Sam-
sung I5500 and 50 ViewPad 10s. Secondly, we selected two base profiles for each type:
the 0% CPU load and the 30% CPU load. As a result, we obtained four different mobile
Grid configurations. Regarding to mobile Grid constitution, we considered two cases: one
were low-end devices are more common that high-end ones, and other were both types are
equally common. In addition, the two base profiles used represent one in which mobile de-
vices are not used at all and other in which they are used for non CPU intensive tasks, such
as reading mail or browsing the Web.

For each of these mobile Grid configurations, we generated two different job configura-
tions, namely short and long jobs. Short jobs take to execute an average of 5 minutes with a
standard deviation of 2.5 minutes in a normal distribution. In contrast, long jobs take to exe-
cute an average of 30 minutes with a standard deviation of 15 minutes in a normal distribu-
tion. In both cases, it is assumed that the mobile device load is 0%. Notice that the short/long
job configurations are instead different for each mobile Grid configuration because the num-
bers of operations for obtaining these times are different not because of the CPU profiles,
but the hardware. For instance, the short jobs for the 70 Samsung I5500 and 30 ViewPad 10s
Grid have 4790.97 million operations on average, while the short jobs for the 50 Samsung
I5500 and 50 ViewPad 10s Grid have 6464.55 million operations on average. The following
equation is used to obtain the number of operations for each configuration.

job average operations = time ∗ average flops (3)

where, the average flops is defined as the average mobile device flops:

average flops =

∑
mobile device flops

number of mobile devices
(4)

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 15

Grid nodes Base profile Job Configuration

70 Samsung I5500 - 30 ViewPad 10s

50 Samsung I5500 - 50 ViewPad 10s

0% CPU load

30% CPU load

Short Id.

Long Id.

Short Sat.

Long Sat.

Table 2 Grid simulation configurations

Finally, for each mobile Grid-job length combination, we generated another two config-
urations based on how much work is assigned to the Grid. The first configuration, which we
call ideal (id. for short), consists of assigning to the mobile Grid approximately the maxi-
mum number of jobs that the mobile Grid ideally could finish before depleting the overall
mobile devices energy capacities. The second configuration, which we call saturated (sat.
for short), consists of assigning to the mobile Grid approximately twice as much as the max-
imum number of jobs that the mobile Grid could handle according to the ideal configuration.
Basically in this case, what changes is not the mobile Grid hardware, but the number of jobs.
The following equation, in which uptime refers to the uptime in the 100% CPU use profile,
was used to estimate the ideal number of jobs:

ideal jobs =
V iewPad flops ∗ uptime+ I550 flops ∗ uptime

job average operations
∗(1−base profileCPU)

(5)
In each of these 16 scenarios, which are the combination of the different settings de-

scribed in the columns of Table 2, we tested the original SEAS [44] and the SEAS with job
stealing using the different strategy-policy combinations. This means that there were seven
schedulers: six with job stealing, which resulted from combining the three strategies (RS,
BRAS and WRAS) with the two policies (Fixed, Exponential or Exp), and one without job
stealing. All in all, 112 scenarios were evaluated during the simulations.

The simulations were designed to determine which approach executes more jobs using
the same mobile Grid configuration. This is because executing more jobs with the same
mobile Grid configuration means that the mobile Grid as a whole is using less energy per
job [26,27,12,45], meaning that the mobile Grid would be more energy-efficient. In other
words, given the same set of jobs and the same overall energy capacity, we evaluate which
stealing technique better improves the original SEAS under the designed scenarios, if ap-
plicable. Another issue we studied is how many job transferences (i.e., moving a job from
a device to another) each stealing strategy generates. This is important because in real life
mobile Grids each stealing attempt might represent extra energy consumption because it
might use network resources at both ends [25,22].

However, notice that networking is out of this paper evaluation. Hence, the simulations
presented in this Section assume a perfect network that means that a) data transfer are in-
stantaneous, b) there is no off-line time and c) using the network does not consume battery.
Although these assumptions do not hold in real life mobile Grids, they are commonly ac-
cepted in the research area when analyzing and experimenting with mobile Grid resource
managers [33,26,12,44,45], and schedulers in particular. In fact, a) and b) apply to all the
tested job stealing techniques, and thus a fair experimental testbed is used.

With regard to c), and according to [42], sending a small packet (1KB or less) from
a standard mobile device through a WiFi link requires around 0.02 Joules, while sending
a 10KB packet or higher requires 0.15 Joules. In our context, a job stealing request is a

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

16 Juan Manuel Rodriguez et al.

Metric Samsung I5500 ViewPad 10s
Volts 3.70 8.20
MAh 1,200 3,300

Wh 4.40 27.06
W-s (Joules) 15,984 97,416

Table 3 Battery-related characteristics of the mobile devices used

small packet, whereas transferring a job from a mobile node to another would require one
medium-sized packet as we are dealing with CPU-intensive (and not data-intensive) jobs.
As will be discussed later, the worst execution in terms of average steal requests resulted in
22,825 steals. Considering the worstcase scenario in which each job steal request leads to a
job transfer (i.e., all requests are successful) the total required energy in Joules is 22, 825 ∗
(0.02+0.15) = 3, 880.25. Then, considering the battery data shown in Table 3, this energy,
when compared to the amount of energy available in the two 100-node Grid configurations
(70 Samsung I5500/30 ViewPad 10s, and 50 Samsung I5500/50 ViewPad 10s) represents

3,880.25
70∗15,984+30∗97,416 = 0.068% and 3,880.25

50∗15,984+50∗97,416 = 0.096%, respectively. Indeed,
even when there is certainly some impact, these very small percentages confirm that ignoring
network energy consumption in our simulations does not compromise the significance of the
results. It is worth noting that, in the calculations, the energy necessary to maintain a WiFi
connection active (around 0.024 Joules [42]) is not computed as mobile device profiling was
performed with the WiFi connection active (see Section 4.1).

Turning to the simulations performed, we carried out 10 different runs for each scenario
In each run, two variables were analyzed: the percentage of finished jobs and the percentage
of stolen jobs. Table 4 presents the average percentage of finished jobs as well as the standard
deviation obtained in the 10 simulations. In all the cases, the standard deviation is less than
1.5%. This indicates that the results were fairly stable in regard to finished jobs across the
different simulation runs. An interesting fact is that in the saturated configurations, all the job
stealing techniques tend to finish approximately the same amount of jobs, which is always
higher than the amount finished by the SEAS.

The other variable analyzed is the number of stolen jobs over total jobs. Notice that
this metric can be more than 100% if the stealing technique produced more steals than jobs
are in the simulation, e.g., if each job is stolen 2 times on average, this metric value would
be 200%. Table 5 shows the average and standard deviation of this metric in the different
simulation scenarios. The standard deviation for this variable can be as high as 16.4%, but
this happens when the average is high, e.g., more than 130%. Therefore, these cases do
not affect the analysis because these values are far from optimal results. Yet, the average
standard deviation is 2.08%, which indicates that the deviation is not that high. In fact, the
Pearson correlation between the average of each scenario and the standard deviation is 0.875
(ρ < 0.0001). This means that in the best cases, i.e., when the number of steals is small, the
deviation tend to be small too, so the best cases did not vary in the different runs. Having
this into consideration, the following analyses were performed using the average values
previously discussed.

The first evaluation aims at studying the percentage of the ideal number of jobs each
scheduler can successfully execute. Therefore, the analysis is limited to the eight scenar-
ios with the ideal number of jobs. Fig. 3 outlines the results of this study. Basically, the
simulations revealed that in 64.28% of the cases more than 90% of the jobs were finished
and in 44.64% of the cases more than 95% of the jobs were executed implying that all the
presented techniques have a fair performance. Another interesting fact is that WRAS with

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 17

Configuration SEAS RS Fixed BRAS
Fixed

WRAS
Fixed

RS Exp BRAS
Exp

WRAS
Exp

30 ViewPad 70 I550 /
0% / Short Id

74.5% +/-
0.206%

96.8% +/-
0.173%

97.9% +/-
0.065%

98% +/-
0.078%

87% +/-
0.758%

93.9% +/-
1.477%

97.8% +/-
0.118%

30 ViewPad 70 I550 /
0% / Short Sat

27.4% +/-
0.082%

33.3% +/-
0.087%

33.3% +/-
0.117%

33.3% +/-
0.113%

33.3% +/-
0.084%

33.3% +/-
0.11%

33.3% +/-
0.108%

30 ViewPad 70 I550 /
0% / Long Id

77% +/-
0.486%

86.8% +/-
0.901%

92.6% +/-
0.442%

95% +/-
0.456%

86.2% +/-
1.64%

92.3% +/-
0.959%

94.7% +/-
0.441%

30 ViewPad 70 I550 /
0% / Long Sat

28.1% +/-
0.143%

34% +/-
0.314%

34.1% +/-
0.243%

34% +/-
0.295%

34% +/-
0.27%

34% +/-
0.21%

34% +/-
0.267%

50 ViewPad 50 I550 /
0% / Short Id

86.7% +/-
0.175%

97.9% +/-
0.084%

98.5% +/-
0.062%

98.6% +/-
0.122%

88.8% +/-
1.375%

95.3% +/-
0.482%

98.8% +/-
0.045%

50 ViewPad 50 I550 /
0% / Short Sat

33% +/-
0.064%

36.7% +/-
0.078%

36.7% +/-
0.071%

36.7% +/-
0.066%

36.7% +/-
0.076%

36.7% +/-
0.062%

36.7% +/-
0.074%

50 ViewPad 50 I550 /
0% / Long Id

89.4% +/-
0.423%

87.4% +/-
0.711%

95.3% +/-
0.635%

96.7% +/-
0.27%

88.6% +/-
0.781%

96.4% +/-
0.259%

96.5% +/-
0.348%

50 ViewPad 50 I550 /
0% / Long Sat

32.9% +/-
0.174%

37% +/-
0.228%

37.1% +/-
0.199%

37% +/-
0.175%

37% +/-
0.192%

37.1% +/-
0.213%

37% +/-
0.206%

30 ViewPad 70 I550 /
30% / Short Id

79.2% +/-
0.337%

95.9% +/-
0.206%

97.8% +/-
0.091%

97.8% +/-
0.051%

85.7% +/-
0.983%

97.4% +/-
0.26%

97.8% +/-
0.043%

30 ViewPad 70 I550 /
30% / Short Sat

32% +/-
0.125%

36.5% +/-
0.118%

36.5% +/-
0.125%

36.5% +/-
0.136%

36.5% +/-
0.13%

36.5% +/-
0.152%

36.5% +/-
0.131%

30 ViewPad 70 I550 /
30% / Long Id

79.9% +/-
0.632%

85.8% +/-
0.949%

92.1% +/-
0.726%

94.6% +/-
0.356%

85.9% +/-
0.684%

94.2% +/-
0.534%

95.4% +/-
0.128%

30 ViewPad 70 I550 /
30% / Long Sat

32% +/-
0.2%

36.5% +/-
0.24%

36.5% +/-
0.296%

36.4% +/-
0.31%

36.4% +/-
0.276%

36.4% +/-
0.24%

36.4% +/-
0.247%

50 ViewPad 50 I550 /
30% / Short Id

89.2% +/-
0.349%

97% +/-
0.182%

98.4% +/-
0.069%

98.6% +/-
0.037%

88.8% +/-
1.119%

97% +/-
0.493%

97.3% +/-
0.189%

50 ViewPad 50 I550 /
30% / Short Sat

37.4% +/-
0.157%

40.5% +/-
0.155%

40.5% +/-
0.119%

40.5% +/-
0.13%

40.5% +/-
0.133%

40.5% +/-
0.121%

40.5% +/-
0.107%

50 ViewPad 50 I550 /
30% / Long Id

89.1% +/-
0.814%

86.6% +/-
1.019%

93.3% +/-
1.044%

96.7% +/-
0.214%

88.9% +/-
0.786%

96.4% +/-
0.289%

96.8% +/-
0.287%

50 ViewPad 50 I550 /
30% / Long Sat

36.8% +/-
0.318%

40.6% +/-
0.29%

40.5% +/-
0.352%

40.5% +/-
0.354%

40.5% +/-
0.321%

40.5% +/-
0.406%

40.5% +/-
0.402%

Table 4 Rate of finished jobs over total jobs (average ± standard deviation)

Fixed Number policy finished 95% of the jobs in 6 out of the 8 scenarios, while WRAS with
Exponential policy finished 95% of the jobs in 7 out of the 8 scenarios.

Once we performed this simulation, we analyzed which of the job stealing techniques
executed more jobs in each one of the 16 scenarios. Basically, WRAS with the Fixed Num-
ber policy executed more works in 5 out of the 16 scenarios, while WRAS strategy with the
Exponential policy performed better in 4 out of the 16 simulations. Fig. 4 shows how the
different techniques behaved in the different scenarios. Each scenario is normalized by the
technique that finished more jobs, which is represented by the white color. This figure evi-
dences that WRAS in its two variations performed better that any other approach in general,
with a near best performance when it did not have the best performance.

The better performance of WRAS might be because when a mobile device becomes
idle, it offloads work from the worst ranked mobile device. Since the mobile device that
steals a job is idle, it is likely that its rank is much higher than the worst ranked device.
Therefore, the stealer’s rank would be slightly affected, while the victim’s rank might be
more affected. As a result of the stealing, rank dispersion will be reduced, while average
rank might increase in the best case. A better rank implies that is less likely that the mobile
devices have many jobs when their batteries become depleted. In contrast, BRAS did not

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

18 Juan Manuel Rodriguez et al.

 70

 75

 80

 85

 90

 95

 100

30 ViewPad
70 I550

0% Short

30 ViewPad
70 I550

0% Long

50 ViewPad
50 I550

0% Short

50 ViewPad
50 I550

0% Long

30 ViewPad
70 I550

30% Short

30 ViewPad
70 I550

30% Long

50 ViewPad
50 I550

30% Short

50 ViewPad
50 I550

30% Long

F
in

is
h
e
d
 j
o
b
s
 (

%
)

(m
o
re

 i
s
 b

e
tt
e
r)

SEAS
Random Stealing Fixed Number

Best Ranking Aware Stealing Fixed Number
Worst Ranking Aware Stealing Fixed Number

Random Stealing Exponential
Best Ranking Aware Stealing Exponential

Worst Ranking Aware Stealing Exponential

Fig. 3 Percentage of ideal number of jobs completed

’fullFinishedJobs.dat’ matrix

SEAS RS
Fixed

number

BRAS
Fixed

number

WRAS
Fixed

number

RS
Exponential

BRAS
Exponential

WRAS
Exponential

30 ViewPad 70 I5500/0 CPU/Short Id

30 ViewPad 70 I5500/0 CPU/Short Sat

30 ViewPad 70 I5500/0 CPU/Long Id

30 ViewPad 70 I5500/0 CPU/Long Sat

50 ViewPad 50 I5500/0 CPU/Short Id

50 ViewPad 50 I5500/0 CPU/Short Sat

50 ViewPad 50 I5500/0 CPU/Long Id

50 ViewPad 50 I5500/0 CPU/Long Sat

30 ViewPad 70 I5500/30 CPU/Short Id

30 ViewPad 70 I5500/30 CPU/Short Sat

30 ViewPad 70 I5500/30 CPU/Long Id

30 ViewPad 70 I5500/30 CPU/Long Sat

50 ViewPad 50 I5500/30 CPU/Short Id

50 ViewPad 50 I5500/30 CPU/Short Sat

50 ViewPad 50 I5500/30 CPU/Long Id

50 ViewPad 50 I5500/30 CPU/Long Sat

 0.75

 0.8

 0.85

 0.9

 0.95

 1

N
o
rm

ile
z
e
d
 F

in
is

h
e
d
 J

o
b

Fig. 4 Finished jobs

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 19

Configuration RS Max BRAS Max WRAS
Max

RS Exp BRAS Exp WRAS Exp

30 ViewPad 70 I550 / 0% / Short Id 68.1% +/-
2.2%

31.9% +/-
0.8%

29% +/-
0.2%

173.9% +/-
14.5%

59.4% +/-
6.5%

32.5% +/-
0.1%

30 ViewPad 70 I550 / 0% / Short Sat 15.5% +/-
0.2%

7.1% +/-
0%

7.1% +/-
0%

28.8% +/-
4.1%

11% +/-
0.1%

10.9% +/-
0.2%

30 ViewPad 70 I550 / 0% / Long Id 129% +/-
8.5%

81.8% +/-
4.4%

62.7% +/-
1.1%

153.5% +/-
8.5%

51.2% +/-
3.5%

34.8% +/-
0.6%

30 ViewPad 70 I550 / 0% / Long Sat 30.5% +/-
1.8%

10.7% +/-
0.2%

10.7% +/-
0.2%

30.5% +/-
2.3%

11.4% +/-
0.3%

11.5% +/-
0.5%

50 ViewPad 50 I550 / 0% / Short Id 35.9% +/-
1.5%

17.9% +/-
0.4%

15.4% +/-
0.1%

72.7% +/-
5.7%

33% +/-
2.6%

16.4% +/-
0.2%

50 ViewPad 50 I550 / 0% / Short Sat 8.7% +/-
0.4%

4.5% +/-
0.1%

4.4% +/-
0.1%

12.2% +/-
1.3%

4.9% +/-
0.1%

4.8% +/-
0.2%

50 ViewPad 50 I550 / 0% / Long Id 104.8% +/-
4.5%

62.8% +/-
9.9%

36.4% +/-
0.5%

62.9% +/-
4.2%

30.9% +/-
0.9%

21.6% +/-
0.7%

50 ViewPad 50 I550 / 0% / Long Sat 22.8% +/-
0.8%

15.9% +/-
0.1%

15.9% +/-
0.1%

15.7% +/-
1.3%

7.5% +/-
0.4%

7.3% +/-
0.4%

30 ViewPad 70 I550 / 30% / Short Id 63.1% +/-
2.4%

30.3% +/-
1%

24.6% +/-
0.3%

157.1% +/-
16.4%

30.1% +/-
1%

24.2% +/-
0.2%

30 ViewPad 70 I550 / 30% / Short
Sat

14.3% +/-
0.5%

6% +/-
0.2%

6% +/-
0.1%

25% +/-
5.2%

7.8% +/-
0%

7.8% +/-
0%

30 ViewPad 70 I550 / 30% / Long Id 178.2% +/-
6.7%

95.8% +/-
8%

58.5% +/-
1.2%

110.3% +/-
12.3%

50.8% +/-
2.7%

36.4% +/-
0.6%

30 ViewPad 70 I550 / 30% / Long
Sat

36.6% +/-
2%

15.7% +/-
0.4%

15.6% +/-
0.4%

24.5% +/-
2.1%

10.5% +/-
0.1%

10.4% +/-
0.1%

50 ViewPad 50 I550 / 30% / Short Id 36.6% +/-
1.9%

21.8% +/-
0.6%

14.4% +/-
0.1%

61.4% +/-
6.3%

24.1% +/-
2.4%

14.6% +/-
0.1%

50 ViewPad 50 I550 / 30% / Short
Sat

9.2% +/-
0.4%

4% +/-
0.1%

4% +/-
0.1%

9.5% +/-
0.7%

5.8% +/-
0.1%

5.8% +/-
0.1%

50 ViewPad 50 I550 / 30% / Long Id 122.5% +/-
10.7%

48.3% +/-
5.3%

30.6% +/-
0.6%

51.1% +/-
2.7%

23.5% +/-
1.8%

15.6% +/-
0.6%

50 ViewPad 50 I550 / 30% / Long
Sat

29.3% +/-
1.9%

22.3% +/-
0.3%

20.5% +/-
0.3%

14.6% +/-
1.5%

8% +/- 0% 8% +/-
0.1%

Table 5 Percentage of stolen jobs (average ± stDev)

work as well as WRAS did, but better than the original SEAS and RS though. This might
happen because stealing chain-reaction from the best ranked node does not manifest as fast
as expected. As a result of this, worst ranked nodes are never offloaded which leads to a lot
of job execution failures.

Fig. 5 presents more evidence that the WRAS strategy was the job stealing technique
that had the best performance on average. Basically, this figure depicts how many less jobs
on average a scheduler was able to finish when compared with the technique that performed
better. For instance, the value for SEAS is 13.36% meaning that on average, SEAS finished
89.36% of the jobs that the best scheduler for that scenario finished.

Another analysis consisted in determining the number of jobs transferred by the differ-
ent job stealing techniques. This is important because this kind of action requires network
usage. This, in practice, might have a negative impact on battery consumption [25,22,24,
45]. Therefore, we analyzed the number of steals per job in the simulation. Notice that we
only consider node-to-node transfers, which are generated by the stealing algorithm, and
we do not consider proxy-to-node transfers generated by jobs arrival. This decision allowed
us to eliminate noise and accurately measure the performance of the stealing algorithms in
respect to job steals. Fig. 6 illustrates the number of steals per job in each simulation. In

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

20 Juan Manuel Rodriguez et al.

 0

 2

 4

 6

 8

 10

 12

 14

SEAS Random
Stealing

Fixed Number

Best Ranking
Aware Stealing
Fixed Number

Worst Ranking
Aware Stealing
Fixed Number

Random
Stealing

Exponential

Best Ranking
Aware Stealing

Exponential

Worst Ranking
Aware Stealing

Exponential

A
v
e
ra

g
e
 %

 w
o
rs

e
 t
h
a
n
 t
h
e
 b

e
s
t
te

c
h
in

q
u
e
 (

le
s
s
 i
s
 b

e
tt
e
r)

Fig. 5 Finished jobs: Average difference with respect to the best technique

’fullStolenJobs.dat’ matrix

RS
Fixed number

BRAS
Fixed number

WRAS
Fixed number

RS
Exponential

BRAS
Exponential

WRAS
Exponential

30 ViewPad 70 I5500/0 CPU/Short Id

30 ViewPad 70 I5500/0 CPU/Short Sat

30 ViewPad 70 I5500/0 CPU/Long Id

30 ViewPad 70 I5500/0 CPU/Long Sat

50 ViewPad 50 I5500/0 CPU/Short Id

50 ViewPad 50 I5500/0 CPU/Short Sat

50 ViewPad 50 I5500/0 CPU/Long Id

50 ViewPad 50 I5500/0 CPU/Long Sat

30 ViewPad 70 I5500/30 CPU/Short Id

30 ViewPad 70 I5500/30 CPU/Short Sat

30 ViewPad 70 I5500/30 CPU/Long Id

30 ViewPad 70 I5500/30 CPU/Long Sat

50 ViewPad 50 I5500/30 CPU/Short Id

50 ViewPad 50 I5500/30 CPU/Short Sat

50 ViewPad 50 I5500/30 CPU/Long Id

50 ViewPad 50 I5500/30 CPU/Long Sat

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

S
te

a
ls

 p
e
r

J
o
b

(L
e
s
s
 i
s
 b

e
tt
e
r)

Fig. 6 Steals per job in each simulation

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 21

 0

 50

 100

 150

 200

 250

 300

Random
Stealing

Fixed Number

Best Ranking
Aware Stealing
Fixed Number

Worst Ranking
Aware Stealing
Fixed Number

Random
Stealing

Exponential

Best Ranking
Aware Stealing

Exponential

Worst Ranking
Aware Stealing

Exponential

A
v
e
ra

g
e
 %

 w
o
rs

e
 t
h
a
n
 t
h
e
 b

e
s
t
te

c
h
in

q
u
e
 (

le
s
s
 i
s
 b

e
tt
e
r)

Fig. 7 Average stolen jobs over the best technique

the worst case, the number of steals that were produced in the simulations where more than
two times the number of jobs. In contrast, the number of steals per job in the best scenario
was 0.039.

Again, WRAS in its two variants was the strategy that achieved the best results. WRAS
with the Fixed Number policy performed a steal, on average, 0.222 times per job. In this
case, the worst scenario was 0.627 steals per job, while the best scenario was 0.040 steals
per job. In contrast, WRAS with the Exponential policy performed better having an average
of 0.164 steals per job, while its worst and best scenarios had 0.364 steals per job and 0.048
steals per job, respectively. Finally, Fig. 7 depicts how many jobs, in percentage, over the
best scheduler, each particular scheduler stole on average. For example, the value for WRAS
with Exponential policy was 10.54% meaning that it performed 10.45% more steals than that
the best scheduler in an average scenario. Notice that in some scenarios that percentage is
zero because WRAS with Exponential policy was the best scheduler for that scenario.

In these simulations, the BRAS also performed worse than the WRAS. This might stem
from the fact that BRAS was expected to generate a stealing chain-reaction. Although this
chain-reaction was not fast enough to finish more jobs than WRAS, it is large enough to
issue more job steals. In brief, the BRAS strategy generates more steals than WRAS, but
not enough to outperform it with respect to finished jobs. Finally, RS finished fewer jobs
requiring a large amount of stealings. RS is a computationally costless alternative to the
other techniques because it performs well on traditional distributed environments. However,
according to our simulations, energy constrained distributed systems are very sensitive to
schedule decisions meaning that non-energy aware scheduling techniques are likely to result
in low energy efficiency.

Regarding to the policy, these simulations show that the Exponential policy worked
better than the Fixed Number policy for BRAS and WRAS, but not for RS. This might
be because the Exponential policy tends to offload overloaded nodes very quickly, while
increasing the load of underloaded ones. However, when this policy is used randomly, it is
likely that the offloaded node is not the best or worst producing more steals. As a result,
the offloaded node will produce another steal increasing the number of steals without really

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

22 Juan Manuel Rodriguez et al.

Configuration
SEAS RS Fixed BRAS Fixed WRAS Fixed RS Exp BRAS Exp WRAS Exp

F.J. F.J. S.J. F.J. S.J. F.J. S.J. F.J. S.J. F.J. S.J. F.J. S.J.
30 ViewPad 70 I550 /
0% / Short Id

! ! # # # # #

30 ViewPad 70 I550 /
0% / Short Sat

! # # # # # # !

30 ViewPad 70 I550 /
0% / Long Id

! # # # # # # !

30 ViewPad 70 I550 /
0% / Long Sat

! # # ! # # # # #

50 ViewPad 50 I550 /
0% / Short Id

! # # # # !

50 ViewPad 50 I550 /
0% / Short Sat

! ! # # # # #

50 ViewPad 50 I550 /
0% / Long Id

! # # # # # # !

50 ViewPad 50 I550 /
0% / Long Sat

! # # # # # # # # !

30 ViewPad 70 I550 /
30% / Short Id

! # # # ! # # # # !

30 ViewPad 70 I550 /
30% / Short Sat

! # # # # #

30 ViewPad 70 I550 /
30% / Long Id

! !

30 ViewPad 70 I550 /
30% / Long Sat

! # # # # # # # # !

50 ViewPad 50 I550 /
30% / Short Id

! ! # # # # #

50 ViewPad 50 I550 /
30% / Short Sat

! # # ! # # # # #

50 ViewPad 50 I550 /
30% / Long Id

! !

50 ViewPad 50 I550 /
30% / Long Sat

! # # # # # # # # ! #

Total best performance 0 1 0 5 1 5 7 1 0 0 1 4 7
Total best for both
metrics

N/A 0 0 3 0 0 2

F.J.: Finished jobs
S.J.: Stolen jobs

Table 6 Experimental scenarios: Summarized results

balancing the mobile Grid load. Briefly, the WRAS strategy with Exponential policy was the
best combination in most of the studied scenarios and it performed fairly well in the other
scenarios.

Table 6 shows which technique had the best performance in the simulations for each
scenario. This table takes into consideration two metrics, namely finished jobs and stolen
jobs. Firstly, it can be seen that the schedulers using job stealing techniques always outper-
formed the scheduler without job stealing, i.e., the SEAS. Secondly, RS in conjunction with
either policies only finished more jobs than other combinations two times and the former al-
ways stole more jobs than the other combinations, which is undesirable. Regarding finished
jobs, the best techniques were BRAS and WRAS with the Fixed number policy. On the other
hand, regarding stolen jobs, WRAS in its two variants performed better. However, when both
metrics are simultaneously taken into consideration, WRAS with Fixed number in particular,

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 23

and more importantly WRAS in general worked better (23 out of 32 scenario-metric combi-
nation). Besides, in contrast with what happens in traditional distributed environments [51,
47,49], RS performance was rather poor. Finally, regardless the particular scenario, the sim-
ulations using job stealing techniques always reported better results than the simulations
using only the SEAS regardless the Grid conformation or the size and number of jobs to be
solved.

5 Conclusions

Several authors [13,14,22,24,26,44,27,45] have recognized that mobile devices are the
new frontier for distributed systems. These authors have proposed using mobile devices in
different ways ranging from simple front-end applications for accessing extra-device com-
putational resources [13,24,19] to fully integrated devices [33,12,30]. In this context, this
paper presents an analysis of different job stealing strategies when applying them in mobile
Grids.

This work results show that job stealing can increase the jobs that a mobile Grid can
execute. This means that job stealing improves the energy efficiency of mobile Grids be-
cause they can execute more jobs with the same amount of energy. As a corollary, energy
is managed more efficiently by using energy aware job stealing. In addition, this work ana-
lyzes several job stealing techniques to determine which of them are applicable for mobile
Grids. Notice that the analyzed job stealing techniques can be implemented on mobile de-
vices because they do not need information that is complex to be obtained [45], such as job
execution time or the battery required for executing jobs [30].

Traditional distributed computing environments using RS for selecting a job stealing
victim have proven to be a viable option to CPU-intensive computing with good results [51,
47,49]. However, RS has not had a good performance in mobile Grids according to the
experimental results reported in this paper. Although RS executed more works than SEAS in
general, RS in its two variants performed, on average, worst than WRAS in its two versions.
In addition, RS stole up to 759% more works than the best technique for each scenario,
stealing on average 240% more works than the best technique for each scenario. Since each
steal requires using network and in turn networking requires energy [22,24], a technique
that requires more steals might be less energy efficient that other techniques which require
less steals.

In order to better assess how the job stealing process might impact on energy efficiency,
we will extend this work to take into account the network usage and its impact on mobile
devices batteries. Currently, our simulator assumes that transferring a job from one device
to another does not consume energy, which is not the case in real devices. The reason of
assuming this in this paper is to move forward towards evaluating the feasibility of job
stealing in mobile Grids by considering jobs with rather high CPU processing times but
very little bandwidth requirements, which make our results significant. Data intensive sci-
entific applications such as sequence alignment or ray tracing [36], pose new challenges to
Grid scheduling systems that must be addressed so as to achieve good energy efficiency.
Complementary, apart from network energy consumption, we will also study more realistic
networking scenarios taking into account network latency, speed and failure possibility [25].
In addition, one of the most important network-related aspects to cover and study in the fu-
ture is scenarios with nodes leaving and joining the Grid, which is unpredictable. Certainly,
autonomic computing refers to the capability of a distributed platform of self-managing and
self-adapting to unpredictable environmental changes, and hence this paradigm is in prin-

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

24 Juan Manuel Rodriguez et al.

ciple a good path towards building more elaborated schedulers capable of coping with this
aspect. In fact, autonomic computing is often materialized via bio-inspired algorithms such
as Ant Colony Optimization, which have proved to be useful when managing resources in
conventional Grids [34,39]. Then, bio-inspired techniques remain a possible solution to ex-
plore to tackle this problem. The support for experimenting with this new scenarios will be
added to the current version of our simulation software.

In addition, we will develop a real mobile Grid system that implements both the ar-
chitecture of Fig. 1 and the different studied job stealing techniques to evaluate them in
a real environment. To this end, we are currently developing a job execution mobile Grid
middleware for master-worker applications based on Android 2.3 and higher, which is a
platform version used by more than half of all active devices9. Finally, we will analyze dif-
ferent payment schemes for encouraging mobile device owners to share their mobile device
resources [14]. To do this, we are considering adding price negotiation into the job stealing
and the SEAS [12].

References

1. Aron, J.: Harness unused smartphone power for a computing boost. New Scientist 215(2880), 18 (2012).
DOI 10.1016/S0262-4079(12)62255-6. URL http://www.sciencedirect.com/science/
article/pii/S0262407912622556

2. Blom, S., Book, M., Gruhn, V., Hrushchak, R., Köhler, A.: Write once, run anywhere - a survey of mobile
runtime environments. Grid and Pervasive Computing, International Conference on 0, 132–137 (2008).
DOI 10.1109/GPC.WORKSHOPS.2008.19

3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In: Foundations
of Computer Science, Annual IEEE Symposium on, vol. 0, pp. 356–368. IEEE Computer Society, Los
Alamitos, CA, USA (1994). DOI 10.1109/SFCS.1994.365680

4. Boovaragavan, V., Harinipriya, S., Subramanian, V.R.: Towards real-time (milliseconds) pa-
rameter estimation of lithium-ion batteries using reformulated physics-based models. Journal
of Power Sources 183(1), 361 – 365 (2008). DOI 10.1016/j.jpowsour.2008.04.077. URL
http://www.sciencedirect.com/science/article/B6TH1-4SFS0MD-4/2/
e4746e187e06b4aebb77c9a930f56b7f

5. Buyya, R., Murshed, M.: GridSim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing. Concurrency and Computation: Practice and Experi-
ence 14(13), 1175–1220 (2002)

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit for model-
ing and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41(1), 23–50 (2011). DOI 10.1002/spe.995

7. Callou, G., Maciel, P., Tavares, E., Andrade, E., Nogueira, B., Araujo, C., Cunha, P.: Energy con-
sumption and execution time estimation of embedded system applications. Microprocessors and Mi-
crosystems 35(4), 426 – 440 (2011). DOI 10.1016/j.micpro.2010.08.006. URL http://www.
sciencedirect.com/science/article/pii/S0141933110000529

8. Choi, S., Lee, J., Yu, H., Lee, H.: Replication and checkpoint schemes for task-fault tolerance in campus-
wide mobile grid. In: T.h. Kim, H. Adeli, H.s. Cho, O. Gervasi, S.S. Yau, B.H. Kang, J.G. Villalba
(eds.) Grid and Distributed Computing, Communications in Computer and Information Science, vol.
261, pp. 455–467. Springer Berlin Heidelberg (2011). URL http://dx.doi.org/10.1007/
978-3-642-27180-9_56

9. Chu, D.C., Humphrey, M.: Mobile ogsi.net: Grid computing on mobile devices. In: Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, pp. 182–191. IEEE Computer
Society, Washington, DC, USA (2004). DOI 10.1109/GRID.2004.44

10. Duan, L., Kubo, T., Sugiyama, K., Huang, J., Hasegawa, T., Walrand, J.: Incentive mechanisms for smart-
phone collaboration in data acquisition and distributed computing. In: INFOCOM, 2012 Proceedings
IEEE, pp. 1701 –1709 (2012). DOI 10.1109/INFCOM.2012.6195541

9 Platform Versions: http://developer.android.com/resources/dashboard/
platform-versions.html

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 25

11. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future Generation Com-
puter Systems 29(1), 84 – 106 (2013). DOI 10.1016/j.future.2012.05.023. URL http://www.
sciencedirect.com/science/article/pii/S0167739X12001318

12. Ghosh, P., Das, S.K.: Mobility-aware cost-efficient job scheduling for single-class grid jobs in a generic
mobile grid architecture. Future Generation Computer Systems 26(8), 1356 – 1367 (2010). DOI
10.1016/j.future.2009.05.003. URL http://www.sciencedirect.com/science/article/
pii/S0167739X09000648

13. González-Castaño, F.J., Vales-Alonso, J., Livny, M., Costa-Montenegro, E., Anido-Rifón, L.: Condor
grid computing from mobile handheld devices. SIGMOBILE Mobile Computing and Communications
Review 7(1), 117–126 (2003). DOI 10.1145/881978.882005

14. Gray, J.: Distributed computing economics. Queue 6(3), 63–68 (2008). DOI 10.1145/1394127.1394131
15. Ham, H.K., Park, Y.B.: Mobile application compatibility test system design for android fragmentation.

In: T.h. Kim, H. Adeli, H.k. Kim, H.j. Kang, K.J. Kim, A. Kiumi, B.H. Kang (eds.) Software Engineering,
Business Continuity, and Education, Communications in Computer and Information Science, vol. 257,
pp. 314–320. Springer Berlin Heidelberg (2011)

16. Hu, Y., Yurkovich, S.: Battery cell state-of-charge estimation using linear parameter varying system tech-
niques. Journal of Power Sources 198(0), 338 – 350 (2012). DOI 10.1016/j.jpowsour.2011.09.058. URL
http://www.sciencedirect.com/science/article/pii/S0378775311018295

17. Huang, Y., Venkatasubramanian, N.: Supporting mobile multimedia applications in mapgrid. In: Pro-
ceedings of the 2007 international conference on Wireless communications and mobile computing,
IWCMC ’07, pp. 176–181. ACM, New York, NY, USA (2007). DOI 10.1145/1280940.1280978. URL
http://doi.acm.org/10.1145/1280940.1280978

18. Huang, Y., Venkatasubramanian, N., Wang, Y.: MAPGrid: A New Architecture for Empowering Mobile
Data Placement in Grid Environments. In: Cluster Computing and the Grid, 2007. CCGRID 2007.
Seventh IEEE International Symposium on, pp. 725 –730 (2007). DOI 10.1109/CCGRID.2007.69

19. Huynh, D., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed plat-
forms. Computers & Fluids 43(1), 74 – 81 (2011). DOI 10.1016/j.compfluid.2010.07.007. URL
http://www.sciencedirect.com/science/article/pii/S0045793010001829

20. Ibrohimovna, M., Groot, S.: Proxy-based fednets for sharing personal services in distributed environ-
ments. In: Wireless and Mobile Communications, 2008. ICWMC ’08. The Fourth International Confer-
ence on, pp. 150 –157 (2008). DOI 10.1109/ICWMC.2008.25

21. Kaushik, A., Vidyarthi, D.P.: A cooperative cell model in computational mobile grid. International
Journal of Business Data Communications and Networking 8, 19–36 (2012). DOI 10.4018/jbdcn.
2012010102

22. Kelenyi, I., Nurminen, J.: Energy aspects of peer cooperation measurements with a mobile dht system.
In: Communications Workshops, 2008. ICC Workshops ’08. IEEE International Conference on, pp. 164–
168 (2008). DOI 10.1109/ICCW.2008.36

23. Khalaj, A., Lutfiyya, H., Perry, M.: The proxy-based mobile grid. In: Y. Cai, T. Magedanz, M. Li,
J. Xia, C. Giannelli, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi,
S. Palazzo, S. Sahni, X.S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson (eds.) Mobile Wireless
Middleware, Operating Systems, and Applications, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 48, pp. 59–69. Springer Berlin Heidelberg
(2010). URL http://dx.doi.org/10.1007/978-3-642-17758-3_5

24. Kumar, K., Lu, Y.H.: Cloud Computing for Mobile Users: Can Offloading Computation Save Energy?
Computer 43(4), 51 –56 (2010). DOI 10.1109/MC.2010.98

25. Lehr, W., McKnight, L.W.: Wireless Internet access: 3G vs. WiFi? Telecommunications Policy 27, 351–
370 (2003)

26. Li, C., Li, L.: Utility-based scheduling for grid computing under constraints of energy budget and
deadline. Computer Standards & Interfaces 31(6), 1131–1142 (2009). DOI 10.1016/j.csi.2008.12.
004. URL http://www.sciencedirect.com/science/article/B6TYV-4V70RB2-4/
2/65554f30c6e3068ba1697c540f160003

27. Li, C., Li, L.: Energy constrained resource allocation optimization for mobile grids. Jour-
nal of Parallel and Distributed Computing 70(3), 245–258 (2010). DOI 10.1016/j.jpdc.2009.06.
003. URL http://www.sciencedirect.com/science/article/B6WKJ-4WKTWWB-1/
2/7f0834c24e7b7dd44adae8e22ce49ad5

28. Li, C., Li, L.: Energy efficient resource management in mobile Grid. Mobile Information Systems 6,
193 –211 (2010). DOI 10.3233/MIS-2010-0099. URL http://iospress.metapress.com/
content/3R214MM142481741

29. Li, C., Li, L.: A multi-agent-based model for service-oriented interaction in a mobile grid com-
puting environment. Pervasive and Mobile Computing 7(2), 270 – 284 (2011). DOI 10.1016/
j.pmcj.2010.10.006. URL http://www.sciencedirect.com/science/article/pii/
S1574119210001173

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

26 Juan Manuel Rodriguez et al.

30. Li, C., Li, L.: Tradeoffs between energy consumption and qos inÂ mobile grid. The Journal of Super-
computing 55, 367–399 (2011). URL 10.1007/s11227-009-0330-5

31. Li, Z., Shen, H.: Game-theoretic analysis of cooperation incentive strategies in mobile ad hoc networks.
Mobile Computing, IEEE Transactions on 11(8), 1287 –1303 (2012). DOI 10.1109/TMC.2011.151

32. Lin, C.M., Lin, J.H., Dow, C.R., Wen, C.M.: Benchmark dalvik and native code for android system. In:
Innovations in Bio-inspired Computing and Applications (IBICA), 2011 Second International Confer-
ence on, pp. 320 –323 (2011). DOI 10.1109/IBICA.2011.85

33. Litke, A., Skoutas, D., Tserpes, K., Varvarigou, T.: Efficient task replication and management for adap-
tive fault tolerance in mobile grid environments. Future Generation Computer Systems 23(2), 163
– 178 (2007). DOI 10.1016/j.future.2006.04.014. URL http://www.sciencedirect.com/
science/article/pii/S0167739X0600080X

34. Ludwig, S., Moallem, A.: Swarm intelligence approaches for grid load balancing. Journal of Grid Com-
puting 9(3), 279–301 (2011)

35. Mateos, C., Zunino, A., Campo, M.: On the evaluation of gridification effort and runtime aspects of
JGRIM applications. Future Generation Computer Systems 26(6), 797–819 (2010)

36. Mateos, C., Zunino, A., Hirsch, M., Fernández, M., Campo, M.: A software tool for semi-automatic grid-
ification of resource-intensive java bytecodes and its application to ray tracing and sequence alignment.
Advances in Engineering Software 42(4), 172–186 (2011)

37. Mateos, C., Zunino, A., Trachsel, R., Campo, M.: A Novel Mechanism for Gridification of Compiled
Java Applications. Computing and Informatics 30(6), 1259–1285 (2011)

38. Neary, M.O., Cappello, P.: Advanced eager scheduling for java-based adaptive parallel computing. Con-
currency and Computation: Practice and Experience 17(7-8), 797–819 (2005). DOI 10.1002/cpe.v17:7/8

39. Pacini, E., Mateos, C., García Garino, C.: Schedulers based on ant colony optimization for parameter
sweep experiments in distributed environments. In: S. Bhattacharyya, P. Dutta (eds.) Research on Com-
putational Intelligence for Engineering, Science and Business. IGI Global (2012). In Press.

40. Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Ibis for mobility: solving challenges of mobile computing
using grid techniques. In: HotMobile ’09: Proceedings of the 10th workshop on Mobile Computing
Systems and Applications, pp. 1–6. ACM, New York, NY, USA (2009). DOI 10.1145/1514411.1514426

41. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive
Computing 4(1), 18–27 (2005). DOI 10.1109/MPRV.2005.9

42. Rice, A., Hay, S.: Measuring Mobile Phone Energy Consumption for 802.11 Wireless Networking.
Pervasive and Mobile Computing 6(6), 593–606 (2010). DOI 10.1016/j.pmcj.2010.07.005. URL
http://www.sciencedirect.com/science/article/pii/S1574119210000593

43. Rodriguez, J., Mateos, C., Zunino, A.: Are smartphones really useful for scientific computing? Lecture
Notes In Computer Science 7547, 38–47 (2012)

44. Rodriguez, J.M., Zunino, A., Campo, M.: Mobile grid seas: Simple energy-aware scheduler. In: 3rd
High-Performance Computing Symposium. 39th JAIIO (2010)

45. Rodriguez, J.M., Zunino, A., Campo, M.: Introducing mobile devices into grid systems: a survey. Inter-
national Journal of Web and Grid Services 7(1), 1–40 (2011)

46. Rosado, D.G., Fernández-Medina, E., López, J., Piattini, M.: Systematic design of secure mobile
grid systems. Journal of Network and Computer Applications 34(4), 1168 – 1183 (2011). DOI
10.1016/j.jnca.2011.01.001. URL http://www.sciencedirect.com/science/article/
pii/S1084804511000026

47. Rosinha, R.B., Geyer, C.F.R., Vargas, P.K.: WSPE: a peer-to-peer grid programming environment. Con-
currency and Computation: Practice and Experience 21(13), 1709–1724 (2009). DOI 10.1002/cpe.v21:
13

48. Shen, W.X., Chan, C.C., Lo, E.W.C., Chau, K.T.: Estimation of battery available capacity under
variable discharge currents. Journal of Power Sources 103(2), 180 – 187 (2002). DOI 10.1016/
S0378-7753(01)00840-0. URL http://www.sciencedirect.com/science/article/
B6TH1-44V3JXV-2/2/77bf800f9c9901c16d550f67a4a31e6b

49. Van Nieuwpoort, R., Wrzesińska, G., Jacobs, C., Bal, H.: Satin: A high-level and efficient Grid program-
ming model. ACM Transactions on Programming Languages and Systems 32(3), 9:1–9:39 (2010)

50. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C.,
Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case
execution-time problem – overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.
7(3), 36:1–36:53 (2008). DOI 10.1145/1347375.1347389

51. Zhang, B.Y., Yang, G.W., Zheng, W.M.: Jcluster: an efficient Java parallel environment on a large-
scale heterogeneous cluster. Concurrency and Computation: Practice and Experience 18(12), 1541–1557
(2006). DOI 10.1002/cpe.v18:12

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices 27

APPENDIX A: Simple Energy Aware Scheduler (SEAS)

The SEAS [44] is a scheduling algorithm for mobile Grids that is designed to perform
scheduling along with as few estimations, such as device estimated remaining battery, as
possible. The SEAS is a centralized scheduler, i.e., all the mobile devices that are consid-
ered by the scheduler must be connected to a central server which is called proxy. Basically,
the proxy receives a job execution request and assigns the job to a mobile device. In order
to select a mobile device, it ranks them according to which might assign more resources per
job. For a mobile device m, this value is calculated as follows:

resources per jobm =
estimated uptimem × benchmarkm

number jobsm + 1
(6)

where estimated uptimem is the estimated uptime for the mobile device with the remain-
ing battery power, benchmarkm is the value obtained using some benchmark that repre-
sents the MIPS (Million Instructions Per Second) the device is able to perform, which in
scientific computing might be the Linpack or the SciMark 2.0 [43], and number jobsm
represents the number of jobs assigned to that particular device. This function adds one to
the number of jobs because it calculates which would be the node rank if a new job is added
to it.

The only estimation the SEAS needs is each mobile device remaining uptime. The pro-
posed estimation algorithm is based on the fact that battery APIs are event-based and the
battery information is reported as a discrete variable. Examples of this are the iOS10, An-
droid11 and ACPI12 battery APIs. A basic way of estimating remaining uptime with this
event system is assuming a lineal discharge rate. Therefore, it is possible to calculate the
discharge rate when two consecutive battery events happen. For two events i− 1 and i, the
discharge rate dr can be calculated as follows:

dr =
ci − ci−1

ti − ti−1
(7)

where, ci and ci−1are the battery charge reported by the events i and i − 1, respectively.
ti and ti−1are the times when these events occurred. Therefore, the remaining uptime ut
might be estimated as follows:

ut =
ci
dr

(8)

However, the discharge rate is actually not lineal [48] and hence the estimation heavily
varies from event to event. Thus, the SEAS uses a modified version of the estimator that re-
turns an average remaining time instead of returning the previously defined remaining time.
This average is calculated using the estimated uptime, which is defined as the current uptime
plus the estimated remaining time as defined above. Therefore, the new estimated remaining
time is the average estimated uptime minus the current uptime. Algorithm 3 describes how
the remaining time is calculated. According to [44], this algorithm tends to work better over
time and is suitable for the SEAS purpose.

10 iOS battery discharge notification: https://developer.apple.com/library/ios/
#documentation/UIKit/Reference/UIDevice_Class/Reference/UIDevice.html#//
apple_ref/c/data/UIDeviceBatteryStateDidChangeNotification

11 Android Battery Intent: http://developer.android.com/reference/android/
content/Intent.html#ACTION_BATTERY_CHANGED

12 Advanced Configuration and Power Interface Specification version 5: http://acpi.info/
DOWNLOADS/ACPIspec50.pdf

This is a preprint of the article: "J. M. Rodriguez, C. Mateos and A. Zunino: "Energy-efficient Job Stealing for CPU-intensive Processing in Mobile
Devices". Computing. Vol. 96, Number 2, pp. 87-117. Springer. 2014. ISSN 0010-485X."

The original publication is available at http://dx.doi.org/10.1007/s00607-012-0245-5

28 Juan Manuel Rodriguez et al.

Algorithm 3 SEAS: Enhanced battery time estimation algorithm
1: procedure BATTERYESTIMATIONTHREAD(battery, clock)
2: startT ime← clock.getT ime
3: oldT ime← clock.getT ime
4: oldCharge← battery.getCharge
5: previousEstimations← new Vector ▷ Empty Array
6: while true do ▷ Never ends
7: WAITFORBATTERYCHARGEUPDATE
8: newTime← clock.getT ime
9: newCharge← battery.getCharge

10: dischargeRate← (newTime− oldT ime)/(oldCharge− newCharge)
11: estimatedUptimeT ime← newTime− startT ime+ newCharge ∗ dischargeRate
12: ADD(estimatedUptimeT ime, previousEstimations)
13: newEstimatedUptimeT ime ← AVERAGE(previousEstimations) − (newTime −

startT ime)
14: UPDATEESTIMATEDUPTIMETIME(newEstimatedUptimeT ime)
15: oldT ime← newTime
16: oldCharge← newTime
17: end while
18: end procedure

