This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

Are smartphones really useful for scientific
computing?

No Author Given

No Institute Given

Abstract. Smartphones are a new kind of mobile devices that allow
users to take their office anywhere and anytime with them. The num-
ber of smartphones is rapidly growing. For instance, almost 400,000 new
Android smartphones are activated every day. Most of the time their
capabilities are underused, therefore several authors have studied how
to exploit smartphones for assisting scientific computing. However, to
the best of our knowledge, there is no previous study aimed at deter-
mining whether smartphones can do a significant contribution to this
area in terms of providing aggregated computing resources. This paper
shows that conventional smartphones are not that slow when compared
to standard mobile devices, such as notebooks. Furthermore, a notebook
running on battery only performs 8 times more work than a low-end
smartphone before their batteries run out. However, the low-end smart-
phone is 145 times slower than the notebook, while the smartphone’s
battery has less capacity than the notebook’s battery. Since smartphones
can effectively execute an interesting amount of work running on battery,
and as a result of their large and ever increasing availability, we think
that smartphones can have a major role in building the next-generation
HPC infrastructures.

1 Introduction

Mobile devices have recently evolved from simple mobile phones and Personal
Digital Assistants (PDAs) to small “computers” with everywhere Internet access
using wireless technology, such as 3G or 802.11 wireless LANs (commonly called
WiF1i). In addition to this evolution, mobile devices are probably the commonest
form of technological device in the world with more than 2 billion people owning
at least one of them. Furthermore, people in established markets frequently own
two or more mobile devices [12].

Nowadays, mobile devices have a remarkable amount of computational re-
sources that allows them to execute complex applications, such as 3D games,
and to store large amounts of data. Besides, the capability of mobile devices to
be connected everywhere makes it possible to do on-the-way tasks that tradi-
tionally required a desktop computer, like checking and sending e-mails. This
kind of mobile devices that, aside from placing phone calls, allow users to access
the Internet, play games, and listen to music, among other features, are known
as smartphones. Another kind of mobile devices focused on gaming and Inter-
net browsing are called tablets. Tablets have similar computational capabilities

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

to smartphones, but bigger screens to improve the user’s experience. However,
smartphones and tablets can be treated as equal concerning the goal of this
paper.

Due to their new capabilities, which are not present in traditional devices,
there are emergent research lines that aim at integrating smartphones and other
mobile devices into traditional distributed computational environments such as
clusters and Grids [14]. Since smartphones have a wide variety of sensors, such
as GPS, microphone and accelerometer, they are usually seen as providers of a
new kind of context-dependent information, which was previously unavailable [1].
Another common role of smartphones in distributed computational environments
is as resource consumers. Offloading computational work to fixed servers and
accessing the results through smartphones allows end users to perform complex
computational tasks without draining their smartphones’ batteries [7].

Although the capabilities of smartphones have increased at an exponential
rate [11], little research has been carried out to study the viability of using
them to contribute to solving complex computational problems from the engi-
neering or scientific communities. This is due to the fact that practitioners tend
to disregard smartphone capabilities [14] because they are very limited when
compared to desktop computers or servers. However, they somehow fail to con-
sider the stunning amount of mobile devices currently available that together
can represent an interesting pool of computational resources. These limited ca-
pabilities combined with the large amount of available smartphones are aligned
with the concept of cluster computing, which is basically using a large number of
low/mid-end devices to emulate the performance of a high-end computer. In this
sense, an interesting use of smartphones might be to increase the computational
capabilities of clusters, and eventually Grids at a low cost.

This work studies the viability of using smartphones for performing complex
computations to contribute to scientific clusters and Grids. Concretely, this pa-
per presents a comparison among different Android-based smartphones/tablets
and Linux netbooks/notebooks in terms of their computational capabilities. In
addition, this work analyzes how different types of eperations typically used
in scientific computing, such as integer and floating-point arithmetic and ar-
ray management, perform in the different devices. This analysis goal is to have
prelimminary hints on which scientific applications smartphones might run ef-
fectively.

We have two main reasons for choosing the Android platform as the base
for our study. The first reason is that, since Android is widespread, there are
plenty of available Android-based devices. According to Google 1/0O 2011 an-
nouncements', there are 310 Android-based smartphone models produced by
36 manufacturers. In addition, there are more than 100 million devices active,
with 400,000 devices activated daily. This makes our results significant to a broad
user community. The other reason is that Android-is-an open platform that does
not restrain developers from using any available feature, such as multi-tasking.

! Google I/O 2011 announcements: http://www.google.com/events/io/2011/
announcements—-archive.html

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

It is even possible to change the default applications, for example the phone
dialer, which is a very uncommon feature [2]. As a result of this flexibility, a de-
veloper can tune a device to perform different (user) foreground and (scientific)
background tasks.

The rest of the paper is organized as follows. Section 2 surveys previous
works aiming at integrating smartphones and traditional mobile devices into dis-
tributed systems. Section 3 discusses the motivations behind our vision of using
smartphones in the HPC scientific computing. Section 4 presents an experimental
comparison of different devices in terms of their computing capabilities. Finally,
Section 5 concludes the paper and delineates future research opportunities.

2 Background

From the beginings of the mobile Internet, mobile devices have been seen as
administrative tools for distributed computing infrastructures [6]. This idea is
followed even in recent approaches, such as [7], in which the authors discuss a
fluid simulator implemented on a super-computer that offers a result visualizer
application that runs on Android. In particular, this visualizer was tested on a
Nexus One and uses OpenGL ES —a reduced version of OpenGL for embedded
systems— to draw tri-dimensional graphics. The fluid simulator solves several
differential equations in the super-computer. When the simulation completes, a
user can access the results through his smartphone. Although this work shows
that Android smartphones can be used to access the results of this kind of appli-
cations, there isno study about using Android smartphones to actually execute
computing intensive parts of scientific applications on it. Furthermore, this par-
ticular work does not provide empirical evidence about battery consumption
when accessing to simulation results. Intuitively, this is important since, in this
context, users do not want the visualizer to drain their smartphones’ battery [11].

Other recent studies have proposed using mobile devices (including smart-
phones) as partial or full members of Grid Computing infrastructures [14]. Sev-
eral roles for mobile devices in distributed computing were analyzed, which vary
from sensors to nodes that perform computations. These new roles were proposed
because today’s mobile devices have more features,; and their hardware capabil-
ities have increased at an exponential rate [11]. However, this is not the case
with energy density in batteries. As a result of the disparity between computa-
tional power and energy density increase rate, most existent research is focused
on minimizing battery use.

As suggested, some works have tried to integrate mobile devices as work-
ing nodes in Grids. In particular, several researchers [5, 9, 13, 14] have studied
task scheduling algorithms for mobile Grids. In this context, a large computa-
tional problem is split into several parts, which are computed independently by
using many mobile devices. In particular, both [9] and [5] propose scheduling
algorithms in which assigning resources to tasks involves solving large equa-
tions systems with variables that are difficult, if not impossible, to determine. In
contrast, the work presented in [13] uses simple equations and easily estimable

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

variables. Although these works have their differences, these schedulers have not
been evaluated with real mobile devices. Instead, all of them have been evaluated
through simulation, thereby there is no real assessment of using mobile devices
for HPC computing viability.

Another research line strongly related to using smartphones in distributed
computing, regardless their role, is the reduction of network usage [15]. This is
important because mobile devices tend to be connected to slow and unreliable
networks. Furthermore, some mobile devices, particularly smartphones, are usu-
ally connected to expensive data networks such as 3G networks. Interestingly,
3G data transmission needs to actively send radio signals that requires signifi-
cant battery power. Therefore, sending large amounts of data might result in a
fast battery depletion.

3 Smartphones for Scientific Computing

Traditionally, research efforts based on conceiving mobile devices as being part of
an HPC environment have been focused on moving expensive computations from
devices to fixed servers, thus saving energy at the expense of potentially having
greater communication cost. In this sense, computational offloading [8] has been
recently proposed as a way of running resource intensive computations originated
in a mobile device (e:g. a rendering algorithm integrated with the camera) to a
Cloud infrastructure. Once the computation is done, the associated results are
transferred back to the device. Particularly, this work addresses Clouds but is
arguably also applicable to other distributed enviroments.

Alternatively, there are a number of research efforts that conceive mobile
devices as an active processing element within a distributed enviroment [14,
10]. Under this approach, devices do not only harness the computational power
offered by fixed computing infrastructures such as super-computers, clusters and
Clouds, but also act as resource providers. However, works in this line are still
under development, since there are in principle two important open questions
that need to be answered before materializing this approach:

— Do real smartphones have appropriate resources to be exploited for executing
computing intensive tasks?
— If so, what are the best techniques for scheduling tasks on real smartphones?

With respect to the former issue, particularly, the amount of CPU cycles that
can be delivered and eventually donated by a single device intuitively depends
on its battery availability. This latter is in turn subject to smartphone usage
profiles. For illustrative purposes, Table 1 shows the fraction of time spent by
four real smartphones in performing common activities. Collected data spans
over several months?. Clearly, although generalization is not possible, the data
suggests that there is a fraction of resources available in everyday smartphones
that remain unused.

2 Data was collected by using the Android System Info application, which is available

at http://www.appbrain.com/app/android-system-info/com.electricsheep.
asi

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

Star A3000 Samsung Samsung| Nexus One

I5700 15500
Running 50.8 13.5 8.3 23.2
Screen on 8.3 7.5 5.1 2.3
Phone on 0.2 0.6 0.4 0.5
WiFi on 93.3 55.0 66.7 100.0
WiFi running 33.2 26.2 19.1 32.3

Table 1. Real-life smartphone activity (in percentage with respect to total usage time)

In addition, even when smartphones still have limited hardware capabilities,
they are very energy-efficient. Therefore, we believe that answering this issue
boils-down to determining whether smartphones individually provide the nec-
essary computing capabilities. Our main hyphotesis is that smartphones offer
a good balance between the computing capabilities and battery depletion rate
tradeoff inherent to mobile devices making them suitable for HPC computing.
In the following paragraphs we focus on providing empirical evidence to test
this hyphotesis. Methodologically, the followed experimental approach consisted
in comparing smartphones and standard mobile devices, namely netbooks and
notebooks, interms of hardware capabilities by employing classical scientific
benchmarks. As mentioned earlier, the experiments targeted smartphones run-
ning Android 2.2 (codenamed “Froyo”).

It is worth mentioning that answering the second question is out of the scope
of this paper. Nevertheless, several authors [5, 9, 13, 14] have pointed out that
adapting and modifying traditional distributed scheduling algorithms to make
them battery-aware might be a good starting point for answering this question.

4 Experimental results

To assess the computing capabilities versus energy capacity tradeoff of Android-
powered smartphones compared to traditional mobile devices, we have used a
notebook, a netbook, a tablet that has similar hardware compared to a high-end
smartphone, a mid-end smartphone, and a low-end smartphone. Table 2 specifies
the devices used during this evaluation, which were selected because they are
good referents of currently available mobile devices and smartphones. Note that
the benchmarks were implemented in a single thread for fairness reasons.

To compare the computational capabilities of the different devices, we ex-
ecuted several well-known scientific benchmarks in every device. We selected
benchmarks written in Java because the notebook and the netbook can run
Java applications, and the base programming language for Android applications
is also Java. Although Android applications are usually written in Java, they
are compiled to a different virtual machine, called Dalvik, that is optimized
for smartphones. Therefore, before executing the experiments, we compiled the
source code of the benchmarks using either Java compilers to ensure fairness.

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

Device CPU RAM Storage Battery
name
Dell Intel Core i3 M-380 4 GB 250 GB 6 Cells 4600
Inspiron (2.53 GHz) mAh
Samsung Intel ATOM processor | 1 GB 160 GB 6 Cells 5900
N150 N270 (1.60 GHz) mAh
ViewPad NVidia Tegra 250 T20 512 512 MB Lithium Ion
10s (1 GHz) MB up to 32 GB 3300 mAh
Nexus One| Qualcomm QSD 8250 512 512 MB Lithium Ion
Snapdragon (1 GHz) MB up to 32 GB 1400 mAh
Samsung MSM7227-1 ARM11 256 170 MB Lithium Ion
15500 (600 MHz) MB up to 16 GB 1200 mAh

Table 2. Devices features

Firstly, we compared the different devices by using the Linpack [4] and the
SciMark 2.0 [3] benchmarks, which are very popular within the HPC community
and provide an estimation of the number of Megaflops (million of operations per
second) a machine can perform. Figure 1 depicts the results of the benchmarks

10000

1000 ¢

100 ¢

XX
s

QCRHAKR

55

o%

Megaflops (logaritmic scale, more is better)
%

S0
BSOS

B

Linpack SciMark 2.0

Dell Inspiron kxxx:
Samsung N150 szess
ViewPad 10S mm—

Nexus One
Nexus One Overclocked /7.
Samsung 15500 i

Fig. 1. Linpack and SciMark 2.0 benchmarks: Results

executed in the different devices. The Linpack benchmark results indicate that
the netbook, the ViewPad 10s, the Nexus One, and the Samsung 15500 are 10,
31, 36, and 145 times slower than the notebook, respectively. In contrast, the
SciMark 2.0 benchmark, which emulates real-life numerical applications, resulted
slightly better for the smartphones. In this case, the ViewPad 10s performed
24 times slower than the notebook, while the Nexus One and the Samsung
15500 performed 26 and 127 times slower, respectively. Finally, we executed the
benchmarks using the same Nexus One with its CPU overclocked to 1.113 GHz.
Although it performed marginally better, this configuration resulted in a battery

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

overheating when the benchmarks were run several times in a row. Consequently,
we were unable to complete the experiments.

Secondly, we compared the power consumption from resolving various com-
plex computations. To do the associated experiment, we selected five benchmarks
of the JGrande section 2 [3]:

— EPBench: Is a Java implementation of the NAS Embarrisingly Parallel bench-
mark, which generates pseudo-random numbers with a Gaussian probability
distribution:

— PrimeBench: Verifies whether a large number is prime.

— FFTBench: Is a Java implementation of the NAS Fast Fourier Transform
(FFT) benchmark, which computes both a 3D FFT and inverse FFT. FFTs
are commonly used in scientific computations, and require extensive floating-
point arithmetic and data shuffling.

— HanoiBench: Solves the 25-disk Tower of Hanoi problem, which is a well-
known combinatorial sorting puzzle.

— SieveBench: Calculates prime numbers using the Sieve of Erasthosthenes. It
consists in integer arithmetic operations with a lot of array accesses.

The experiment-consisted in executing the five benchmarks in a round robin
fashion repeatedly until the battery of each individual device was empty. Basi-
cally, the idea was to measure how many computational tasks could be completed
using the standard battery. To-ensure fairness, this experiment was performed
with all the devices connected to the Internet through a WiFi network. However,
the benchmarks did not need Internet access, and no standard system applica-
tion that requires Internet was deactivated, such as update managers. Figure 2

1000

X

KKK
XX XX XXX
9% XX KKK
ZRRRRREES

<5
<%
255X

Executed benchmarks before battery draining
(more is better)
5
3
T
RRBRIRKR
IKIKK
SOSSARBEE,
SERRERREK

X
1!

%
%t

%

Executed Benchmarks
Dell Inspiron kxxx1
Samsung N150 ezzzzsz
ViewPad 10S mm—
Nexus One *
Samsung 15500 «7 771

Fig. 2. Executed benchmarks

presents how many benchmarks were executed by each device before they run
out of battery capacity. Basically, the notebook executed 2.22, 2.14, 6.50, and

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

8.90 times more benchmarks than the netbook, the ViewPad 10s, the Nexus
One, and the Samsung 15500, respectively.

Although both Linpack and SciMark 2.0 benchmarks pointed out that these
smartphones are considerably slower than the notebook, the amount of work that
they can perform using only one full charge of battery power does not depend
lineally on their computational capabilities. Despite being slower and having
less battery, the ViewPad 10s executed more benchmarks than the netbook.
This fact suggests that any smartphone can execute complex computational
calculations even when they are running on battery, which is the most likely
smartphone state [8]. On the other hand, this extrapolation is sound since the
Samsung [5500 is an entry-level smartphone which is very less powerful and
power-efficient compared to other smartphones available today in the market.

In addition to measuring how many benchmarks were performed before bat-
tery depletion, we also measured the average time that each benchmark took to
run. Figure 3 presents the result of these measurements. From this Figure, it is

450000

400000

350000 -

300000

250000

200000

150000

Time in miliseconds (less is better)

f
100000 | |
1

50000 -

8

2 4 X (. i
EPBench PrimeBench - FFTBench HanoiBench SieveBench

Dell Inspiron kXxx1
Samsung N150 =
ViewPad 108
Nexus One
Samsung 15500

Fig. 3. Average benchmark time

possible to observe that the different benchmarks performed quite different in
the employed devices. In this regard, Table 3 presents a comparative result re-
garding how slower the different devices, including a notebook, a tablet, and two
smartphones, executed the benchmarks compared to the notebook. This table
shows that there are noticeable differencies among the benchmarks’ slowdown
within the same device. These variations can be appreciated in the obtained
standard deviations that are significant with respect-to the average in each case.
For example, the largest standard deviation is delivered by the Samsung 15500,
which is 42% of the average. Since the implementation used in the different
benchmarks was the same, the difference in these results suggests that these de-
vices performed some operations faster than others. This does not contradict the
results obtained when executing Linpack and SciMark 2.0 because both bench-
marks consist in two similar sets of operations (mostly related to floating point

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

Samsung ViewPad | Nexus One Samsung

N150 10s I5500

EPBench 3.34 7.61 12.04 72.99

PrimeBench 8.40 20.49 26.38 51.07

FFTBench 4.46 8.17 13.64 34.69

HanoiBench 5.84 15.10 21.89 50.01

SieveBench 2.10 6.96 8.74 20.62

Average 4.83 11.66 16.54 45.88

Standard 2.42 5.92 7.33 19.63
deviation

Table 3. Average benchmark execution times with respect to a notebook

operations-and loops). On the other hand, the JGrande section 2 benchmark has
algorithms that solve inherently complex problems, thereby they excercise other
operations, for example object creation or array manipulation.

The final experiment therefore consisted in analyzing the performance differ-
ences of several common statements, such as adding integers, creating objects
or arrays, etc. To do this,’ we used the JGrande section 1 benchmark, which
measures the performance of these kind of micro-operations. We have used the
following statement-level micro-benchmarks:

— Arith: Execution of arithmetic operations.

— Assign: Variable assignment.

Create: Creating objects and arrays.

— Math: Execution of commonly used mathematical library functions.
Method: Method invocation in/the same or another class/object.

There are some other micro-benchmarks in JGrande section 1, but we did not
use them for different reasons. The benchmarks designed to measure casting,
looping and exception throwing did not provide useful information because the
notebook performs these operationstoo fast and the benchmark informs that the
notebook can perform infinite-operations of this kind. Another benchmark that
were left out of the analysis was the serialization benchmark because it needs a
lot of memory, which Android applications cannot request without using native
code.

As a result of this experiment, we have empirically confirmed that, compar-
atively, some operations performed better than others in the smartphones. For
example, the notebook can perform approximately 4 times more integer addi-
tions per time unit than the Nexus One, but the notebook, according to the
benchmark results, could create 62,051 more java.lang.Object objects per time
unit than the Nexus One. This does not necessarily implies that the Nexus One
is 62,051 times slower than the notebook when creating one object because,
when many short-lived object are created, the garbage collector is forced to run
intensively, which is not the case when creating only one object or even few
objects. Therefore, the garbage collector is probably introducing an important
noise in this case. Since the test consist in creating thousands of objects, it is

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

likely that the garbage collector in Android is launched many more times than
the garbage collector in standard Java because Android applications have rigid
memory constraints. Despite this, creating a large number of short-lived objects
is not a good practice for Android applications.

Samsung| ViewPad 10s| Nexus One Samsung
N150 15500
Arith 3.45 6.43 9.07 134.07
Assign 87.79 154.19 164.14 456.11
Create 7575.30 42,009.04 90,931.63 114,570.52
(Object)
Create 3.95 221.87 435.31 526.79
(Array)
Math 8.34 36.02 36.87 134.47
Method 189.93 23,983.98 9,362.91 14,532.00
(Same)
Method 1,490.04 33,002.55 14,546.75 20,852.60
(Other)

Table 4. Comparative operation performance

Table 4 shows how slower, in average, the different used micro-benchmarks
were processed in the netbook and the smartphones compared to the notebook.
The slowdown of an algorithm mostly depends on the necessary operations or
how the algorithm is implemented, thereby using Android smartphones for sci-
entific computing might require to slightly re-write the algorithms to minimize
the associated slowdown.

Interestingly, the micro-benchmarks shows that the ViewPad 10s is faster
than the Nexus One for Arith, Assign and Create, but the ViewPad 10s is slower
than the Samsung 15500 for calling methods. However, the benchmarks are de-
signed to evaluate the performance of a single-thread, single-process application
and the ViewPad 10s has a dual-core processor. Therefore, it is expectable the
ViewPad 10s to perform better when executing parallel applications.

Another result of the experiment is that different operations of the same kind
have different behavior depending on-where they are executed. For instance,
adding two long values in the notebook is almost (takes 0.006% more time) as
fast as adding two integers, but, in the Nexus One, adding two longs takes 33%
more time than adding two integers. In consequence, badly choosing the data
types of an application might not affect the performance in some platforms, but
in others the impact can be very important and subject of serious consideration.

5 Conclusions and future work

In this paper, through a number of rigurous experiments, we have empirically
shown that smartphones are able to execute complex computational tasks even

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

when their implementations have not been specifically adjusted to smartphone
resource restrictions. Moreover, these experiments have also shown that, when
smartphones are runing on battery, they can perform an interesting amount of
computing intensive code before the depletion of their batteries takes place.

In addition to this, preliminary results beyond this paper point out that
optimizing a code for the Android platform might better exploit smartphones’
capabilities when performing scientific computations. Improving code efficiency
not only decreases response time, but also might improve battery usage. There-
fore, scientific source code optimization for the Android platform is a prominent
research line.

In future research, we aim to study the performance of multi-thread and
multi-process applications. This is of vital importance because current mobile
device CPUs have multi-core capabilities. Hence, smartphone applications will
have better performance levels when using parallel programming paradigms to
exploit new CPUs.

Another research line consists in analyzing the performance of Android plat-
forms when using native code. Although native code is popular in the scientific
community and executes faster, it requires special cares to properly deploy it. For
instance, native code usage can introduce memory leaks. The Android platform
native languageis C. Therefore, we are analyzing different benchmarks written
in C to reproduce our findings when using native Android application codes.

Although Android smartphones might not be suitable for all scientific com-
putational problems, this paper provides evidence about smartphones utility for
solving computing intensive computational problems on the grounds of employ-
ing established scientific performance benchmarks. We think that if the problems
are carefully chosen and implemented, Android smartphones can be considered
as useful processing elements. For instance; Android smartphones would be help-
ful for solving iterative algorithms with preponderance of integer operations. On
the other hand, Android smartphones would not be useful if the algorithms are
recursive or require a lot of double operations. All in all, as a result of their
popularity, Android smartphones might actually have a positive impact on con-
tributing with resources to large distributed systems;, such as Grids. In this sense,
we have developed a battery-aware task scheduler that is able to submit indi-
vidual tasks to many smartphones for execution. At present, we have evaluated
the scheduler through simulation, but an Android implementation is underway.

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

Bibliography

[1] Y. Anokwa, C. Hartung, W. Brunette, G. Borriello, and A. Lerer. Open
source data collection in the developing world. Computer, 42(10):97-99,
2009.

[2] S. Blom, M. Book, V. Gruhn, R. Hrushchak, and A. Kohler. Write once, run
anywhere - a survey of mobile runtime environments. In International Con-
ference on Grid and Pervasive Computing, pages 132-137, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[3] J. Bull, L. Smith; M. Westhead, D. Henty, and R. Davey. A benchmark
suite for high performance Java. Concurrency: Practice and FExperience,
12:375-388, 2000.

[4] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: Past,
present and future. Concurrency and Computation: Practice and Experi-
ence, 15(9):803-820, 2003.

[5] P. Ghosh and S. Das. Mobility-aware cost-efficient job scheduling for single-
class grid jobs in a generic mobile grid architecture. Future Generation
Computer Systems; 26:1356-1367, 2010.

[6] F. Gonzalez-Castano, J. Vales-Alonso, M. Livny, E. Costa-Montenegro,
and L. Anido-Rifén. Condor grid computing from mobile handheld de-
vices. ACM SIGMOBILE Mobile Computing and Communications Review,
7(1):117-126; 2003.

[7] D. Huynh, D. Knezevic, J. Peterson, and A. Patera. High-fidelity real-time
simulation on deployed platforms. Computers & Fluids, 43(1):74-81, 2011.

[8] K. Kumar and Y.-H. Lu. Cloud Computing for mobile users: Can offloading
computation save energy? Computer, 43:51-56, 2010.

[9] C. Li and L. Li. Energy constrained resource allocation optimization for
mobile grids. Journal of Parallel and Distributed Computing, 70(3):245-258,
2010.

[10] D. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The case for crowd
computing. In 2nd ACM SIGCOMM Workshop on Networking, Systems,
and Applications on Mobile Handhelds, pages 39-44, New York, NY, USA,
2010. ACM Press.

[11] J. Paradiso and T. Starner. Energy scavenging for mobile and wireless
electronics. IEEFE Pervasive Computing, 4(1):18-27, 2005.

[12] A. Rice and S. Hay. Measuring mobile phone energy consumption for 802.11
wireless networking. Pervasive and Mobile Computing, 6(6):593-606, 2010.

[13] J. M. Rodriguez, A. Zunino, and M. Campo. Mobile grid SEAS: Simple
Energy-Aware Scheduler. In 3rd High-Performance Computing Symposium
- 39th JAIIO, 2010.

[14] J. M. Rodriguez, A. Zunino, and M. Campo. Introducing mobile devices into
Grid systems: A survey. International Journal of Web and Grid Services,
7(1):1-40, 2011.

This is a preprint of the article: "Are smartphones really useful for scientific computing?. (J. M. Rodriguez, C. Mateos, A. Zunino). Lecture Notes in
Computer Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547:38-47, 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_4

[15] C.-L. Tsai, H.-W. Chen, J.-L. Huang, and C.-L. Hu. Transmission reduction
between mobile phone applications and restful apis. In 2011 ACM Sympo-
stum on Applied Computing, pages 445-450, New York, NY, USA, 2011.
ACM.

