
This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Balancing Throughput and Response Time in Online Scientific
Clouds via Ant Colony Optimization

Elina Pacinia, Cristian Mateosb,∗, Carlos García Garinoa,c

aITIC - UNCuyo University. Mendoza, Argentina
bISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil (B7001BBO). Tel.: +54 (249)
4439682 ext. 35. Fax.: +54 (249) 4439681 - Also Consejo Nacional de Investigaciones Científicas y Técnicas

(CONICET).
cFacultad de Ingeniería - UNCuyo University. Mendoza, Argentina

Abstract

The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infras-
tructures (Clouds) delivering execution and storage services. The paradigm, with its promise
of virtually infinite resources, seems to suit well in solving resource greedy scientific computing
problems. The goal of this work is to study private Clouds to execute scientific experiments com-
ing from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model
where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud.
Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient
scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling
problem is however NP-complete, and therefore many heuristics have been developed. In this
work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO).
The main performance metrics to study are the number of serviced users by the Cloud and the
total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number
of intra-Cloud network messages sent are evaluated. Simulated experiments performed using
CloudSim and job data from real scientific problems show that our scheduler succeeds in bal-
ancing the studied metrics compared to schedulers based on Random assignment and Genetic
Algorithms.

Keywords: Cloud Computing, scientific problems, job scheduling, Swarm Intelligence, Ant
Colony Optimization, Genetic Algorithms

1. Introduction

Scientific computing is a field of study that applies computer science to solve typical sci-
entific problems in disciplines such as Bioinformatics [44], Earth Sciences [23], High-Energy
Physics [7], Molecular Science [53] and even Social Sciences [5]. Scientific computing is usually

∗Corresponding author.
Email addresses: epacini@itu.uncu.edu.ar (Elina Pacini), cmateos@conicet.gov.ar (Cristian

Mateos), cgarcia@itu.uncu.edu.ar (Carlos García Garino)

Preprint submitted to Advances in Engineering Software October 2, 2014

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

associated with large-scale computer modeling and simulation, and often requires large amounts
of computer resources to satisfy the ever-increasing resource intensive nature of its experiments.
An example of these experiments is parameter sweep experiments (PSEs), which we have exten-
sively described in previous works [19, 30, 36].

Cloud Computing [11] is a paradigm which suits well in solving the above cited computing
problems, because of its promise of provisioning infinite resources. Within a Cloud, resources
can be effectively and dynamically managed using virtualization technologies. Cloud Computing
comes in three flavors: infrastructure, platform, and software as services. In commercial Clouds,
these services are made available to customers on a subscription basis using pay-as-you-use
models. Although the use of Clouds finds its roots in IT environments, the idea is gradually
entering scientific and academic ones [37].

Currently, there are several commercial Clouds that offer computing/storage resources, plat-
form-level services or applications. Moreover, it is possible to build private Clouds (i.e., intra-
datacenter) using open-source Cloud Computing solutions. This work is focused on the Infras-
tructure as a Service (IaaS) model, where physical resources are exposed as services. Under this
model, users request virtual machines (VM) to the Cloud, which are then associated to physical
resources. However, in order to achieve the best performance, VMs have to fully utilize the phys-
ical resources by adapting to the Cloud environment dynamically. To perform this, scheduling the
processing units of a Cloud (hosts) is an important issue and it is necessary to develop efficient
scheduling strategies to appropriately allocate the VMs in physical resources. Here, scheduling
refers to the way VMs are allocated to run on the available computing resources, since there are
typically many more VMs running than physical resources. The VM allocation is responsibility
of a software component called scheduler. However, scheduling is an NP-complete [52] prob-
lem and therefore it is not trivial from an algorithmic perspective. In this context, scheduling
may also refer to two goals, namely delivering efficient high performance computing or sup-
porting high throughput computing. High performance computing (HPC) focuses on decreasing
job execution time whereas high throughput computing (HTC) aims at increasing the processing
capacity of the system. As will be shown, the studied ACO scheduler attempts to balance both
aspects.

Swarm Intelligence (SI) metaheuristics have been suggested as interesting techniques to solve
combinatorial optimization problems –e.g., job scheduling– by simulating the collective be-
haviour of social insects swarms [10]. Within these, the ACO metaheuristic proposed by Marco
Dorigo [16] was inspired by the ability of real ant colonies to efficiently organize the foraging
behaviour of the colony using external chemical pheromone trails for communication. Since
then, ACO algorithms have been widely used for solving many combinatorial optimization prob-
lems [17], many of them closely related to the problem at hand. A review of the literature about
the uses of ACO algorithms for scheduling problems can be found in the work of Tavares Neto
and Godinho Filo [46]. Moreover, since scheduling in Clouds is also a combinatorial optimiza-
tion problem, some schedulers in this line that exploit ACO have been surveyed in our previous
work [35]. In this paper, we describe a scheduler based on ACO to allocate VMs to physical
Cloud resources.

Unlike previous work of our own [19, 30], the aim of this paper is to experiment with the
ACO scheduler in an online Cloud (non-batch) scenario in which multiple users connect to the

2

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Cloud at different times to execute their PSEs. In this paper, by extending the preliminary results
first reported in a previous work presented at the Pareng 2013 Conference [36], we have deepened
the experimental analysis by incorporating two new pure HTC and HPC scenarios. Moreover,
we measure network resources consumed by the scheduler and its competitors when handling
VM requests issued by users.

Experiments have been conduced in order to evaluate the trade-off between the number of
serviced users (which relates to throughput) among all users that are connected to the Cloud, and
the total number of VMs that are allocated by the scheduler (which relates to response time). The
more the users served, the more the executed PSEs, and hence throughput increases. Moreover,
when more VMs can be allocated, more physical resources can be taken advantage of, and hence
PSE execution time decreases. The main performance metric to study in this paper is a weighted
metric in which the results obtained from different scheduling algorithms have been normalized
and weighted in order to determine, from the evaluated algorithms, which one better balances the
aforementioned metrics. For this, two weights have been assigned to the individual metrics, i.e.,
a weigh for the number of serviced users (weightSU) and a weight for the number of created VMs
(weightVMs). Each pair of weight combinations (weightSU, weightVMs) represent a different
scenario. In this paper we evaluate two pure HTC and HPC scenarios by assigning the weight
combinations (1, 0) and (0, 1), and a mixed HTC/HPC scenario by assigning weights (0.5, 0.5)
with the aim of balancing these two basic metrics.

In addition, similarly to the preliminary results reported in [36], we study how the number
of serviced users and created VMs is affected when using an exponential back-off strategy to
retry allocating failing VMs. Experiments were performed with job data obtained from a real-
world PSE [21] based on 3D finite element study whereas our previous results [19, 30, 36] were
computed from 2D finite element simulations. In computational terms, this problem led to much
more computing intensive jobs. It is worth mentioning that we have deliberately included some
of the explanations from [36], specially the description of our ACO scheduler, so as to make this
paper self-contained.

The comparisons have been performed against alternative Cloud schedulers, namely a Ran-
dom allocation algorithm and a Cloud scheduler based on Genetic Algorithms [1]. Results show
that our ACO scheduler performs competitively with respect to the number of serviced users and
allows for a fair assignment of VMs. In other words, our scheduler provides a good balance
to the number serviced users, i.e., the number of Cloud users that the scheduler is able to suc-
cessfully serve, and the created VMs. The common ground for comparison is an ideal scheduler
that always achieves the best possible allocation of VMs to physical resources according to these
metrics. Experiments were performed by using CloudSim [12], a Cloud simulator that is widely
employed for assessing Cloud schedulers.

The rest of the paper is structured as follows. Section 2 gives some background necessary
to understand the concepts underpinning our scheduler. Then, Section 3 presents the scheduler.
Section 4 reports the experimental evaluation. Then, Section 5 surveys relevant related works.
Lastly, Section 6 concludes the paper and delineates future research opportunities.

3

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

2. Background

Cloud Computing [11] is a computing paradigm that has been recently incepted in the aca-
demic community [4]. Within a Cloud, services that represent computing resources, platforms or
applications are provided across (sometimes geographically) dispersed organizations. Moreover,
a Cloud provides resources in a highly dynamic and scalable way and offers to end-users a va-
riety of services covering the entire computing stack. Particularly, within IaaS Clouds, slices of
computational power in networked hosts are offered with the intent of reducing the owning and
operating costs of having such resources in situ. Besides, the spectrum of configuration options
available to scientists, such as PSEs scientific users, through Cloud services is wide enough to
cover any specific need from their research.

2.1. Cloud Computing basics
The growing popularity of Cloud Computing has led to several definitions, as previously

indicated by Vaquero et al. [48]. Some of the definitions given by scientists in the area include:

• Buyya et al. [11] define Cloud Computing in terms of its utility to end users: “A Cloud
is a market-oriented distributed computing system consisting of a collection of intercon-
nected and virtualized computers that are dynamically provisioned and presented as one or
more unified computing resource(s) based on service-level agreements established through
negotiation between the service provider and consumers”.

• On the other hand, Mell and Grance [32] define Cloud Computing as “a model for en-
abling ubiquitous, convenient, on demand network access to a shared pool of configurable
computing resources (i.e. networks, servers, storage, applications and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction. This Cloud model is composed of five essential characteristics, three services
models (Software / Platform / Infrastructure as a Service), and four deployment models,
whereas the five characteristics are: on-demand self-service, broad network access, re-
source pooling, rapid elasticity, and measured services. The deployment models include
private, community, public and hybrid Clouds”.

As suggested, central to Cloud Computing is the concept of virtualization, i.e., the capability of a
software system of emulating various operating systems. In a Cloud, virtualization is an essential
mechanism for providing resources flexibly to each user and isolating security and stability issues
from other users. Clouds allow the dynamic scaling of users applications by the provisioning of
computing resources via machine images, or VMs. In addition, users can customize the execution
environments or installed software in the VMs according to the needs of their experiments.

Virtualization technologies allows a Cloud infrastructure to remap VMs to physical resources
according to the change in resources load [43]. In order to achieve good performance, VMs
have to fully utilize its services and resources by adapting to the Cloud Computing environment
dynamically. Proper allocation of resources must be guaranteed in order to improve resource
utility [14].

A Cloud offer its services according to three fundamental models [49] as shown in Figure 1:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

4

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Web browser, mobile app, thin client, terminal,

emulator, ...

Cloud Client

SaaS

PaaS

IaaS

CRM, Email, virtual desktop, communication,

games, ...

Execution runtime, database, web server,

development tools, programming models, ...

Virtual machines, servers, storage, load

balancers, network, ...

Infrastructure

Platform

Application

Figure 1: Cloud computing offerings by services

IaaS is the most basic but at the same time ubiquitous model in which an IT infrastructure is de-
ployed in a datacenter as VMs. With the growing popularity of IaaS Clouds, many tools and
technologies are emerging, which can transform an organization’s existing infrastructure into a
private (intra-datacenter) or hybrid Cloud. An IaaS Cloud enables on-demand provisioning of
computational resources in the form of VMs deployed in a datacenter, minimizing or even elim-
inating associated capital costs for Cloud consumers, and letting those consumers add or remove
capacity from their IT infrastructure to meet peak or fluctuating service demands. Moreover,
PaaS implementations supply users with an application framework and APIs that can be used
to program or compose applications for the Cloud. Finally, SaaS is a software delivery model
that provides end users with an integrated service comprising hardware, development platforms,
and applications. Users are not allowed to customize the service but to get access to a specific
application hosted in the Cloud.

On an IaaS environment, unlike traditional job scheduling (e.g., on clusters) where the ex-
ecuting units are mapped directly to physical resources at one level (execution middleware),
resources are scheduled at two levels (Figure 2): Cloud-wide or Infrastructure-level, and VM-
level. At the Cloud-wide level, one or more Cloud infrastructures are created and through a VM
scheduler the VMs are allocated into real hardware. Then, at the VM-level, by using job schedul-
ing techniques, jobs are assigned for execution into virtual resources. Broadly, job scheduling
is a mechanism that maps jobs to appropriate resources to execute, and the delivered efficiency
will directly affect the performance of the whole distributed environment. Furthermore, Figure 2
illustrates a Cloud where one or more scientific users are connected via a network and require

5

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Job1 Job2 Job3 JobN

User M

LAN/WAN

Job Scheduler

VM Scheduler

Job4
...

Logical, user-owned

clusters (VMs)

Physical

resources

User 1 User 2

...

Figure 2: High-level view of a Cloud

the creation of a number of VMs for executing their experiments (a set of jobs).
For scientific applications in general, virtualization has shown to provide many useful bene-

fits, including user-customization of system software and services, check-pointing and migration,
better reproducibility of scientific analyses, and enhanced support for legacy applications [25].
The value of Cloud Computing as a tool to execute complex scientific applications in gen-
eral [50, 51] has been already recognized within the scientific community. Although the use
of Cloud infrastructures helps scientific users to run complex applications, job and VM man-
agement is a key concern that must be addressed. Particularly, in this work we focus on the
Infrastructure-level in order to more efficiently solve the allocation of VMs to physical resources
in an online, multi-user Cloud. However, job scheduling is NP-complete [52], and therefore
approximation heuristics are necessary.

2.2. Swarm Intelligence (SI) techniques for Cloud scheduling
SI techniques [10] are increasingly used to solve optimization problems, and thus they result

good alternatives to achieve the goals proposed in this work. SI is a discipline that deals with

6

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

natural and artificial systems composed of many individuals that coordinate themselves using
decentralized control and self-organization. In particular, SI focuses on the collective behaviors
that result from the local interactions of the individuals with each other and with their environ-
ment. Examples of systems studied by SI are ants colonies, fish schools, flocks of birds, and
herds of land animals, where the whole group of agents perform a desired task (i.e. feeding),
which might not be made individually. The advantage of these techniques derives from their
ability to explore solutions in large search spaces in a very efficient way along with little ini-
tial information. Moreover, using SI techniques is an interesting approach to cope in practice
with the NP-completeness of job scheduling [35, 46]. In particular, the great performance of ant
colony optimization (ACO) algorithms for job scheduling problems was first shown in [33].

ACO [16] arises from the way real ants behave in nature. Real ants initially wander randomly,
and upon finding food return to their colony while laying down pheromone trails. If other ants
find such a path, they are likely not to keep traveling at random, but to follow the trail instead,
returning and reinforcing it if they eventually find food. Thus, when one ant finds a short path
from the colony to a food source, other ants are more likely to follow that path, and positive
feedback eventually leaves all the ants following a single path. However, if over time ants do not
visit a certain path, pheromone trails start to evaporate, thus reducing their attractive strength.
The more the time an ant needs to travel down the path and back again, the less the pheromone
trails are reinforced. From an algorithmic point of view, the pheromone evaporation process is
useful for avoiding the convergence to a local optimum solution.

Figure 3 shows two possible paths from the nest to the food source, but one of them is longer
than the other one. Figure 3 (a) shows how ants will start moving randomly at the beginning to
explore the ground and then choose one of two paths. The ants that follow the shorter path will
naturally reach the food source before the others ants, and in doing so the former group of ants
will leave behind them a pheromone trail. After reaching the food, the ants will turn back and try
to find the nest. Moreover, the ants that perform the round trip faster, strengthen more quickly
the quantity of pheromone in the shorter path, as shown in Figure 3 (b). The ants that reach the
food source through the slower path will find attractive to return to the nest using the shortest
path. Eventually, most ants will choose the left path as shown in Figure 3 (c).

Nest Nest Nest

Figure 3: Adaptive behaviour of ants

The above behavior of real ants has inspired ACO. One of its main ideas is exploiting the
indirect communication among the individuals of an ant colony. Intuitively, this mechanism
is based on an analogy with the above mentioned trails of pheromone which real ants use for

7

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

communication. ACO employs pheromone trails as a kind of distributed numerical information
which is modified by ants to reflect their accumulated experience while solving a particular
problem. At each execution step, ants compute a set of feasible moves and select the best one
(according to some probabilistic rules) to carry out all the tour. The transition probability for
moving from a place to another is based on the heuristic information and pheromone trail level
of the move. The higher the value of the pheromone and the heuristic information, the more
profitable it is to select this move and resume the search.

All ACO algorithms adapt the algorithm scheme explained next. After initializing the phero-
mone trails and control parameters, a main loop is repeated until a stopping criterion is met
(e.g., a certain number of iterations to perform or a given time limit without improving the
result). In this loop, ants construct feasible solutions and update the associated pheromone trails.
Furthermore, partial problem solutions are seen as nodes (an abstraction for the location of an
ant): each ant starts to travel from a random node and moves from a node i to another node j
of the partial solution. At each step, the ant k computes a set of feasible solutions to its current
node and moves according to a probability distribution. For an ant k the probability pkij to move
from a node i to a node j is:{

pkij =
τij .ηij∑

q∈allowedkτiqηiq
if j ∈ allowedk

pkij = 0 otherwise
(1)

where ηij is the attractiveness of the move as computed by some heuristic information indicating
a prior desirability of that move. τij is the pheromone trail level of the move, indicating how
profitable it has been in the past to make that particular move (it represents therefore a posterior
indication of the desirability of that move). Finally, allowedk is the set of remaining feasible
nodes.

The higher the pheromone value and the heuristic information, the more profitable it is to
include j in the partial solution. The initial pheromone level is a positive integer τ0. In nature,
there is not any pheromone on the ground at the beginning (i.e., τ0 = 0). However, the ACO
algorithm requires τ0 > 0, otherwise the probability to chose the next state would be pkij = 0
and the search process would stop from the beginning. Furthermore, the pheromone level of the
elements of the solutions is changed by applying the following update rule:

τij ← ρ.τij + ∆τij (2)

where 0 < ρ < 1 models pheromone evaporation and ∆τij represents additional added pheromone.
Normally, the quantity of the added pheromone depends on the quality of the solution.

2.3. Computational Mechanics Parameter Sweep Experiments (PSEs)
From the seminal paper on Computational Mechanics due to Bathe and Oden [34], many

advances can indeed be addressed. Non linear solid mechanics in general, and Finite Strain
Plasticity in particular, have been benefited from the works of Simo and Ortiz [40, 41, 42]. In the
literature different problems can be found where it is important to study the sensitivity of results
in terms of changes of variable data. For instance, García Garino et al. [20] have discussed
the sensitivity of results of the necking problem of circular cylindrical bars in terms of applied
imperfections.

8

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

539 seconds 379 seconds 354 seconds

η = 1.e4 η = 1.e6 η = 1.e8

Figure 4: Deformed shapes for 2 m stretching: sensitivity of results in terms of viscosity parameter value

A concrete example of a PSE is the one presented by Careglio et al. [13], which consists in
analyzing the influence of size and type of geometric imperfections in the response of a simple
tensile test on steel bars subject to large deformations. To conduct the study, the authors nu-
merically simulate the test by varying some parameters of interest, namely using different sizes
and types of geometric imperfections. By varying these parameters, several study cases were
obtained, which was necessary to analyze and run on different machines in parallel. More re-
cently, García Garino et al. [21] have discussed a large strain viscoplastic constitutive model. A
plane strain plate with a central circular hole under imposed displacements stretching the plate
has been studied. Different values were considered for viscosity and other constitutive model
parameters in order to adjust the model response. As can be seen in Figure 4 rather different
deformation patterns have been found for different values of viscosity η.

Consequently, different results can be expected for the different values of constitutive param-
eters considered, which in practice can led to significantly different CPU times in order to com-
plete the execution of the associated numerical simulations. Even in the case of static assignation
of computing resources [19, 30], a rather complex scheduling problem has to be solved. Partic-
ularly, the simulations in this work are based on a large strain elastoplastic/elastoviscoplastic
constitutive model written in terms of internal variables theory and a hyperelastic free energy
function [18, 21], following the ideas of Simo, Ortiz and co-authors [40, 41, 42]. It is important
to mention that only few works devoted to Finite Elements on Cloud Computing infrastructures
can be found in the literature [3, 19, 30, 36, 55].

3. Proposed scheduler

Our scheduler deals with the problem described next. A number of users are connected to the
Cloud at different times to execute their PSEs, and each user requests to the Cloud the creation
of v VMs. A PSE is formally defined as a set of N = 1, 2, ..., n independent jobs, where each
job corresponds to a particular value for a variable of the model being studied by the PSE. The

9

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

jobs are distributed and executed on the v VMs created by the corresponding user. Since the
total number of VMs required by all users is usually greater than the number of Cloud physical
resources (i.e., hosts), a strategy that achieves a good use of these physical resources is needed.
This strategy is implemented at the Infrastructure-level by means of a support that allocates user
VMs to hosts. Moreover, a strategy for assigning user jobs to allocated VMs is also necessary
(currently we use FIFO).

To implement the Infrastructure-level strategy, AntZ, the algorithm proposed in [29] to solve
the problem of load balancing in Grid environments has been adapted to be used in Clouds (see
Algorithm 1). AntZ combines the idea of how ants cluster objects with their ability to leave
pheromone trails on their paths so that it can be a guide for other ants passing their way.

Algorithm 1 ACO-based allocation algorithm for individual VMs

Procedure A C O a l l o c a t i o n P o l i c y (vm , h o s t L i s t)
Begin

i n i t i a l i z e L o a d T a b l e ()
a n t = g e t A n t P o o l (vm)
i f (a n t == n u l l) then

s u i t a b l e H o s t s = g e t S u i t a b l e H o s t s F o r V m (h o s t L i s t , vm)
a n t =new Ant (vm , s u i t a b l e H o s t s)
a n t P o o l . add (vm , a n t)

end i f
r ep ea t

a n t . An tAlgor i thm ()
u n t i l a n t . i s F i n i s h ()
a l l o c a t e d H o s t = h o s t L i s t . g e t (a n t . g e t H o s t ())
i f (! a l l o c a t e d H o s t . a l loca teVM (a n t . getVM ()))

r ep ea t
A C O a l l o c a t i o n P o l i c y (a n t . getVM () , h o s t L i s t)
numberOfRe t r i e s−−

u n t i l s u c c e s s f u l or n u m b e r O f R e t r i e s ==0
End

In our adapted algorithm (see Algorithm 1), each ant works independently and represents
a VM “looking” for the best host to which it can be allocated. When a VM is created, an
ant is initialized. A master table containing information on the load of each host is initial-
ized (initializeLoadTable()). Subsequently, if an ant associated to the VM that is
executing the algorithm already exists, the ant is obtained from a pool of ants through the
getAntPool(vm) method. If the VM does not exist in the ant pool, then a new ant is cre-
ated. To do this, first, a list of all suitable hosts in which can be allocated the VM is obtained. A
host is suitable if it has an amount of processing power, memory and bandwidth greater than or
equal to that of required by the unallocated VM.

Each working ant and its associated VM are added to the ant pool (antPool.add(vm,ant))
and the ACO-specific mechanism starts to operate (see Algorithm 2). In each iteration of the

10

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Algorithm 2 ACO-specific logic: Core logic

Procedure AntAlgor i thm ()
Begin

s t e p =1
ne tworkMessages =0
i n i t i a l i z e ()
While (s t e p < maxSteps) do

c u r r e n t L o a d = g e t H o s t L o a d I n f o r m a t i o n ()
A n t H i s t o r y . add (c u r r e n t L o a d)
l o c a l L o a d T a b l e . u p d a t e ()
i f (c u r r e n t L o a d = 0 . 0)

b r e a k
e l s e
i f (random () < m u t a t i o n R a t e) then

n e x t H o s t = randomlyChooseNextS tep ()
e l s e

n e x t H o s t = c h o o s e N e x t S t e p ()
end i f
m u t a t i o n R a t e = m u t a t i o n R a t e−decayRa te
ne tworkMessages = ne tworkMessages +1
s t e p = s t e p +1
moveTo (n e x t H o s t)

end whi l e
de l ive rVMtoHos t ()

End

sub-algorithm, the ant collects the load information of the host that is visiting and adds this
information to its private load history. The ant then updates a load information table of visited
hosts (localLoadTable.update()), which is maintained in each host. This table contains
information of the own load of an ant, as well as load information of other hosts, which were
added to the table when other ants visited the host. Here, load refers to the total CPU utilization
within a host and is calculated taking into account the number of VMs that are executing at a
given time in each physical host. To calculate the load, the original AntZ algorithm receives the
number of jobs that are executing in the resource in which the load is being calculated, and it is
calculated taking into account the amount available of million instructions per second (MIPS) in
each CPU. MIPS is a metric that indicates how fast a computer processor runs. In our scheduler,
the load is calculated on each host taking into account the CPU utilization made by all the VMs
that are executing on each host. This metric is useful for an ant to choose the least loaded host to
allocate its VM.

When an ant moves from one host to another it has two choices: moving to a random host
using a constant probability or mutation rate, or using the load table information of the current
host (chooseNextStep()). The mutation rate decreases with a decay rate factor as time

11

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

passes, thus, the ant will be more dependent on load information than to random choice. This
process is repeated until the finishing criterion is met. The completion criterion is equal to a
predefined number of steps (maxSteps). Finally, the ant delivers its VM to the current host and
finishes its task. Due to the fact that each step performed by an ant involves moving through the
network, we have added a control to minimize the number of steps that an ant performs: every
time an ant visits a host that has not yet allocated VMs, then the ant allocates its associated VM
to it directly without performing further steps. The number of messages sent over the network
by an ant to hosts to obtain information regarding their availability is accumulated every time an
ant takes a step.

When the ant has not completed its work, i.e., the ant can not allocate its associated VM to a
host, then an exponential back-off strategy may be activated. The allocation of each failing VM
in the queue is re-attempted every s seconds and retried n times.

Algorithm 3 ACO-specific logic: The ChooseNextStep procedure

Procedure ChooseNextStep ()
Begin

b e s t H o s t = c u r r e n t H o s t
b e s t L o a d = c u r r e n t L o a d
f o r each e n t r y in h o s t L i s t

i f (e n t r y . l o a d < b e s t L o a d) then
b e s t H o s t = e n t r y . h o s t

e l s e i f (e n t r y . l o a d = b e s t L o a d) then
i f (random . n e x t < p r o b a b i l i t y) then

b e s t H o s t = e n t r y . h o s t
end i f

end i f
end f o r

End

Every time an ant visits a host, it updates the host load information table with the information
of other hosts, but at the same time the ant collects the information already provided by the table
of that host, if any. The load information table acts as a pheromone trail that an ant leaves while
it is moving, to guide other ants to choose better paths rather than wandering randomly in the
Cloud. Entries of each local table represent the hosts that ants have visited on their way to deliver
their VMs together with load information.

When an ant processes the information from a load table in a host via the Algorithm 3, the
ant selects the lightest loaded host in the table, i.e., each entry of the load information table is
evaluated and compared with the current load of the visited host. If the load of the visited host is
smaller than any other host stored in the load information table, the ant chooses the host with the
smallest load. On the other hand, if the load of the visited host is equal to any host in the load
information table, the ant chooses any of these hosts randomly.

Once the VMs have been allocated to physical resources, the scheduler proceeds to assign
the jobs to these VMs. To do this, jobs are assigned to VMs according to the Algorithm 4.

12

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Algorithm 4 The SubmitJobsToVMs procedure

Procedure SubmitJobsToVMs (j o b L i s t)
Begin

vmIndex =0
whi le (j o b L i s t . s i z e () > 0)

j o b = j o b L i s t . g e t N e x t J o b ()
vm= getVMsLis t (vmIndex)
vm . scheduleJobToVM (j o b)
to ta lVMs = getVMsLis t () . s i z e ()
vmIndex=Mod(vmIndex +1 , to ta lVMs)
j o b L i s t . remove (j o b)

end whi l e
End

This represents the second scheduling level of the scheduler proposed as a whole. This sub-
algorithm uses two lists, one containing the jobs that have been sent by the user, i.e., a PSE,
and the other list contains all user VMs that are already allocated to a physical resource and
hence are ready to execute jobs. The algorithm iterates the list of all jobs –jobList– and then,
through getNextJob() method retrieves jobs by a FIFO policy. Each time a job is obtained
from jobList, it is submitted to be executed in a VM in a round robin fashion. The VM where
the job is executed is obtained through the method getVMsList(vmIndex). Internally, the
algorithm maintains a queue for each VM that contains its list of jobs to be executed. The
procedure is repeated until all jobs have been submitted for execution, i.e., when the jobList
is empty.

4. Evaluation

To assess the effectiveness of our proposal in a non-batch Cloud environment where multiple
users dynamically connect to request VMs, we processed a real case study for solving a well--
known benchmark problem discussed for instance in [21]. Methodologically, we first executed
the problem in a real single machine by varying an individual problem parameter by using a finite
element solver, called SOGDE [18], in order to gather real job processing times and input/output
data sizes. By means of the generated job data, we performed the experimental setup by config-
uring the CloudSim simulation toolkit. Details on the experimental methodology are provided in
Section 4.1. After that, we compared our proposal with some Cloud scheduling alternatives in
terms of the metrics of interest. The results are explained in Subsection 4.4.

4.1. Experimental methodology
A classical benchmark problem cited in the literature, see [2] for instance, involves studying

a plane strain plate with a central circular hole (see Figure 5). The dimensions of the plate
were 18 x 10 m, with R = 5 m. On the other hand, material constants considered were E =
2.1 105 Mpa, ν = 0.3, σy = 240 Mpa and H = 0. A linear Perzyna viscoplastic model with

13

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Figure 5: Plane strain plate: Finite element mesh of 1,152 elements

m = 1 and n = ∞ was considered. The 3D finite element mesh used had 1,152 elements
and H1/P0 elements were chosen. Imposed displacements (at y = 18m) were applied until a
final displacement of 2,000 mm was reached in 400 equal time steps of 0.05 mm each. Lastly,
∆t = 1 has been set for all the time steps. Unlike previous studies of our own [13], in which
a geometry parameter –particularly imperfection– was chosen to generate the PSE jobs, in this
case a material parameter was selected as the variation parameter. Then, 25 different viscosity
values for the η parameter were considered, namely x.10y Mpa, with x = 1, 2, 3, 4, 5, 7 and y =
4, 5, 6, 7, plus 1.108 Mpa. Useful and introductory details on viscoplastic theory and numerical
implementation can be found in [21]. The tests were solved using the SOGDE 3D finite element
solver software [18].

After that, we employed a single real machine to run the parameter sweep experiment by
varying the viscosity parameter η as indicated and measuring the execution time for the 25 dif-
ferent experiments, which resulted in 25 input files with different input configurations and 25
output files. The experiment were processed using an AMD Athlon(tm) 64 X2 Dual Core Pro-
cessor 3600+ machine, 2 GB of RAM, equipped with the Ubuntu 12.04 operating system. The
information regarding machine processing power was obtained from the native benchmarking
support of Linux and is expressed in MIPS. The machine has 4,008.64 MIPS. It is worth noting
that only one core was used during the experiments, since SOGDE supports sequential program
execution.

Once the execution times were obtained from the real machine, we approximated for each
experiment the number of executed instructions by the following formulaNIi = mipsCPU ∗Ti,
where NIi is the number of million instructions associated to job i, mipsCPU is the processing
power of the CPU of our real machine measured in MIPS, and Ti is the time that took to run
job i on the real machine. For example, for a job taking 539 seconds to execute, the approx-
imated number of instructions for the job was 2,160,657 MI (Million Instructions). Resulting

14

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

jobs execution times and lengths are shown in Table 1.
After gathering real job data, the CloudSim simulation toolkit [12] was configured with a

Cloud composed of a single machine (“host” in CloudSim terminology) with similar character-
istics as the real machine where the above experiments were performed. We used more cores
(“processing elements” or “PEs” in CloudSim), each one with the same processing power than
the real machine, and more memory capacity. Table 2 (left) shows the characteristics of the con-
figured host. Once configured, we checked that the execution times obtained by the simulation
coincided or were close to real times for each independent job performed on the real machine.
The results were successful in the sense that one experiment (i.e., a variation in the value of η)
took 539 seconds to be solved in the real machine, while in the simulated machine the elapsed
time was 539.086 seconds. The range of differences between simulated times and real times for
all jobs was [0.054-0.086]. Once the execution times have been validated for a single machine on
CloudSim, a new simulation scenario was set. This new scenario consisted of a datacenter with
10 hosts, where each had the same hardware capabilities as the host in Table 2 (left). Then, each
user connecting to the Cloud requests v VMs to execute their PSE. Each VM has the character-
istics specified in Table 2 (right). This is a moderately-sized, homogeneous datacenter likely to
be found in many real scenarios [30].

Table 2: Simulated Cloud machines characteristics. Host parameters (left) and VM parameters (right)

Host Parameters Value

Processing Power 4,008 MIPS

RAM 4 Gbytes

Storage 400 Gbytes

Bandwidth 100 Mbps

PEs 4

VM Parameters Value

Processing Power 4,008 MIPS

RAM 512 Mbytes

Machine Image Size 100 Gbytes

Bandwidth 25 Mbps

PEs 1

VMM (Virtual Machine Monitor) Xen

To evaluate the performance in the simulated Cloud we have modeled an online Cloud sce-
nario in which new users connect to the Cloud every 600 seconds. We have set to 600 seconds
the connection gap of users to have an approximate time to the longest job execution time which
was 539 seconds (see Table 1, first job). The aim was to establish a time that does not completely
saturate the system with the load, and further that the load is manageable. Furthermore, each user
requires the creation of 10 VMs in which they run their PSE –a set of 10 ∗ 25 jobs–. This is, the
real base job set comprising 25 jobs that was obtained by varying the value of η was cloned to ob-
tain more jobs. The number of users who connect to the Cloud varies as u = 10, 20, ..., 120, and
since each user executes one PSE –100 jobs–, the total number of jobs to execute is n = 100 ∗ u
at each time. Likewise, the total number of requested VMs is m = 10 ∗ u at each time.

Each job, called cloudlet by CloudSim, had the characteristics shown in Table 3 (left), where
the Length parameter is the number of instructions to be executed by a cloudlet, which varied

15

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Table 1: Real jobs execution times and lengths

Parameter η Execution Time (seconds) Length (MI)

1.104 539 2,160,657

2.104 458 1,835,957

3.104 454 1,819,923

4.104 436 1,747,767

5.104 399 1,599,447

7.104 395 1,583,413

1.105 401 1,607,465

2.105 356 1,427,076

3.105 365 1,463,154

4.105 361 1,447,119

5.105 381 1,527,292

7.105 375 1,503,240

1.106 379 1,495,223

2.106 340 1,362,938

3.106 342 1,370,955

4.106 344 1,378,972

5.106 367 1,471,171

7.106 357 1,431,084

1.107 359 1,439,102

2.107 354 1,419,059

3.107 350 1,403,024

4.107 351 1,407,033

5.107 351 1,407,033

7.107 355 1,423,067

1.108 354 1,419,059

16

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

between 1,362,938 and 2,160,657 MIPS (see Table 1). Each cloudlet required only one PE since
as explained above real jobs are not multi-threaded. Input size and Output size are the input file
size and output file size, respectively, measured in bytes.

Table 3: Cloudlet configuration used in the experiments

Cloudlet parameters Value

Length (MIPS) 1,362,938 to 2,160,657

PEs 1

Input size (bytes) 291,738

Output size (bytes) 5,662,310

4.2. Alternative schedulers considered
Here, we report the results when executing PSEs submitted by multiple users in the simulated

Cloud using our two-level scheduler and alternative Cloud scheduling policies for assigning VMs
to hosts. Due to their high CPU requirements, and the fact that each VM requires only one PE,
we assumed a 1-1 job-VM execution model, i.e., jobs within a VM waiting queue are executed
one at a time by competing for CPU time with other jobs from other VMs in the same hosts. In
other words, a time-shared CPU scheduling policy was used, which ensures fairness. Although
our scheduler is independent from the SI technique exploited at the Infrastructure-level, it will be
referred as “ACO” for simplicity. Moreover, our proposed algorithm is compared against another
three schedulers:

• Random allocation, a scheduling algorithm in which the VMs requested by the different
users are assigned randomly to different physical resources. Although this algorithm does
not provide an elaborated criterion to allocate the VMs to physical resources, it provides a
good benchmark to evaluate how our scheduler performs compared to random assignment.

• A Cloud scheduler based on Genetic Algorithm (GA) proposed in [1], in which the popu-
lation structure is represented as the set of physical resources that compose a datacenter, as
illustrated in Figure 6. Each chromosome is an individual in the population that represents
a part of the searching space. Each gene (field in a chromosome) is a host in the Cloud,
and the last field in this structure is the fitness field, which is updated in each chromosome
for each VM allocation request. The fitness field indicates the result of the fitness function
and it is calculated as the inverse of the accumulated load of all hosts composing the chro-
mosome. The load in each is host is calculated taking into account the number of VMs that
are executing in it. A chromosome with higher fitness indicates that its associated set of
hosts has the most free CPUs to perform the current allocation. Each chromosome keeps
combinations of hosts and the fitness of the current allocation.

The Algorithm 5 shows the pseudo-code of this scheduler. The initiation step of the pop-
ulation (createPopulation(size)) outputs the set of hosts available in the Cloud.

17

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

VM1 VM2 VMn...

...

...1

2

34

5 3

6

7

6

8

Host combinations

Queue of requests to allocations

Fitness to current

VM allocation

Population

Fitness

chromosome

H1 H2 H3 Hm

Figure 6: Genetic encoding of VM scheduling to physical hosts

This is, as illustrated in Figure 6, the population is represented as a set of hosts. Each
chromosome keeps combinations of hosts and its associated fitness. This fitness value is
updated every time a VM is requested by an user to indicate the suitability of the hosts
in each chromosome (evaluatePopulation(P)). In each generation, a new popu-
lation P2 originated from the initial population P is formed by selecting chromosomes
using a Roulette method [27] (select(P)), given a probability of selection proportional
to the chromosome fitness. This P2 population is recombined using a uniform crossover
(reproduce(P2)) with the aim of exploring more possible hosts with better fitness than
the current allocation. The evaluation step (evaluate(P2)) is done over the P2 popula-
tion to update the fitness field of this new recombined population. Chromosomes with low
fitness in P are replaced by the better individuals in P2 (renewPopulation(P,P2)).
Thus, the algorithm preserves the best individuals to increase the probability of a better al-
location. At the end of generations, two sorting steps are done: one local (localSort(P))
to provide a sorted list of hosts in the chromosome with higher fitness, and a global sort
(globalSort(P)), to provide a sorted list of individuals with better fitness. The alloca-
tion of VMs will begin in the first host of the first chromosome. If this host is not able to
perform this operation, the next host in the chromosome with better fitness is selected.

In our experiments, the GA-specific parameters were set to the following values: chro-
mosome size = 8, population size = 10 and number of iterations = 10. In [1] the authors
have set the chromosome size equal to the number of available hosts, but in this paper we
have reduced this number in order to reduce the network consumption, and because in a
population of size 10 still almost all chromosomes are reached to consider all available
hosts.

• An ideal scheduler, which achieves the best possible allocation of VMs to physical re-
sources in terms of the studied metrics. To allocate all the VMs, the scheduler uses a

18

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Algorithm 5 Genetic algorithm pseudo-code

Procedure GAalgor i thm ()
Begin

g e n e r a t i o n =1
P= c r e a t e P o p u l a t i o n (s i z e P o p u l a t i o n)
e v a l u a t e P o p u l a t i o n (P)
While (g e n e r a t i o n < maxGene ra t i ons) do

P2= s e l e c t (P)
r e p r o d u c e (P2)
e v a l u a t e (P2)
P= r e n e w P o p u l a t i o n (P , P2)
g e n e r a t i o n = g e n e r a t i o n +1

end whi l e
i =1
While (i < s i z e P o p u l a t i o n) do

l o c a l S o r t (P)
end whi l e
j =1
While (j < s i z e P o p u l a t i o n) do

g l o b a l S o r t (P)
end whi l e

End

back-off strategy until it is able to serve all users. The number of enough retries to serve
all users and create all requested VMs was 20. This scheduler has been implemented in
this way to obtain the ideal values to which all its competitors, including ACO, should be
compared against.

In our ACO scheduler, we have set the ACO-specific parameters –i.e., mutation rate, decay rate
and maximum steps– with values within the range of values studied in [29]: mutation rate = 0.6,
decay rate = 0.1 and maximum steps = 8. In all cases, the considered algorithms use the same
policy for handling jobs within VMs (i.e., FIFO with round robin), and the VMs allocated to a
single host (i.e., time-shared [37]). Using time-shared means there is not limit on the number of
VMs a host can handle in terms of CPU time. A host can, however, reject the creation of a new
VM because of insufficient RAM or disk space.

4.3. Evaluation metrics
In our previous works [19, 30], a batch scenario was considered and the goal was minimizing

the flowtime and makespan of all jobs submitted by one user. Flowtime is the sum of job finish
times minus job start times of a set of jobs. Makespan is the maximum execution time of a set
of jobs. Here, an online Cloud [36] scenario is employed. An online Cloud is a Cloud which
is available all the time and to which different users connect at different times to submit their
experiments. The experiments have been performed with the aim of measuring the trade-off

19

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

between the number of serviced users by the Cloud –among all users that are connected to the
Cloud– and the total number of created VMs among all users. The basis for these metrics is that
the more the number of serviced users, the higher the end-user throughput, and the greater the
number of created VMs, the greater the parallelism and therefore the lower the flowtime [30].
The number of serviced users increases every time the scheduler successfully allocates any of
the requested VMs. A user is considered “serviced” if the scheduler can create at least one VM
from its requirement jobs.

Based on these two metrics, we derived a weighted metric, by which the results obtained
from the different algorithms have been normalized and weighted with numerical weights. The
normalized values for each metric and each user group U connected to the Cloud are computed
as:

NormalV alueUi=10,20,...,120 = 1−
(

Max(valueUi)− valueUi
Max(valueUi)−Min(valueUi)

)
(3)

where valueU represents the obtained value for each one of the basic metrics –serviced users and
created VMs– and for each user group connected to the Cloud, Max(valueU) and Min(valueU)
are the maximum and minimum values, respectively, for each basic metric among all the algo-
rithms –ACO, Random, GA, Ideal– and for each user group connected to the Cloud. Moreover,
the weighted metric is computed as:

WeightedMetricUi=10,..,120 = (weightSU ∗NormalSU i + weightVMs ∗NormalVMsUi) (4)

where weightSU is the weight applied to the number of serviced users by the Cloud (NormalSU)
and weightVMs weighs the total number of created VMs (NormalVMs). Based on these, three
weights combinations have been used. Each pair of weight combinations (weightSU, weightVMs)
represent a different scenario. We evaluate pure HTC/HPC scenarios by assigning the weight
combinations (1, 0)/(0, 1) (Subsections 4.4.1 and 4.4.2, respectively), and a mixed scenario by
assigning the weights (0.50, 0.50) with the aim of achieving a balance between the number of
serviced users and the number of created VMs (Subsection 4.4.3).

Finally, we study in more detail how the number of serviced users and the number of created
VMs behaves when using the exponential back-off strategy to retry the allocation of failing VMs.
The back-off strategy is activated every time a VM fails in their first attempt to creation, and
retries allocating the VM based on an exponential function. The number of retries is equal to 3.
In our previous work [36] we determined that 3 retries is a reasonable number when reallocating
VMs. More retries does not lead to more successful VM allocations, and the schedulers become
more inefficient.

4.4. Experimental results
Irrespective of the metric, in this work we show average results, which arise from averaging

20 times the execution of each algorithm. Previously, to select the appropriate number of execu-
tions for reporting the results, experiments were performed with different numbers of executions:
15, 20, 25 and 30. Although the more the number of executions, the more accurate the obtained
results, deviations in the order of 1/10000 were obtained in the results when the number of ex-
ecutions increased between 15 and 30. For example, with 15 executions, the standard deviation
with respect to the average results of 30 executions (the most accurate results) for the metric

20

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

serviced users varied between 0 and 0.13, and for 20 executions varied between 0 and 0.06. On
the other hand, for the metric created VMs the standard deviation varied between 0.02 and 1.56
for 15 executions, and between 0.26 and 1.40 for 20 executions.

4.4.1. Pure HTC scenario – weight combination (1, 0)
In HTC [8] environments, the main challenge is how to maximize the amount of resources

accessible to its users. These computing paradigm is more suited for running multiple indepen-
dent jobs on multiple computing resources at the same time. The HTC field is more interested in
how many jobs can be completed over a long period of time (throughput) instead of how fast an
individual job can complete. In this sense, we consider a pure HTC scenario as the one that pri-
oritizes to serve as many users as possible, i.e., the number of users that can be actually serviced
from those connected to the Cloud. In this context, “serviced” means those users for which at
least one VM can be allocated. Moreover, the reason that the schedulers can not serve some users
that connect to the Cloud is because the attempt to create all VMs requested by certain users fail.
This means that, if the scheduler fails to create any VMs requested by an user, then this user is
considered not served.

Table 4: Weighted metric with weight combinations (1,0)

Users connected to the Cloud Range of connection times (min)
Without retries of VM creation

ACO GA Random Ideal

10 [0-90] 0.62 0 0.84 1

20 [0-190] 0.55 0 0.58 1

30 [0-290] 0.37 0 0.56 1

40 [0-390] 0.33 0 0.45 1

50 [0-490] 0.32 0 0.39 1

60 [0-590] 0.31 0 0.38 1

70 [0-690] 0.29 0 0.33 1

80 [0-790] 0.25 0 0.31 1

90 [0-890] 0.22 0 0.28 1

100 [0-990] 0.20 0 0.26 1

110 [0-1090] 0.20 0 0.25 1

120 [0-1190] 0.19 0 0.24 1

Table 4 shows the weighted metric for the different algorithms. We have assigned the weights
combinations (weightSU, weightVMs) = (1, 0). First column illustrate the number of user trying
to connect to the cloud, and moreover, each row represents a different scenario. Specifically, the
first row represents the situation where up to 10 users are connected but not all can be serviced.

21

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

In the second row up to 20 users are connected, whereas in the third row up to 30 users connect,
and so on. Then, the second column indicates the range of times, in minutes, between each user
connects to the Cloud and actually issues the creation of their VMs. For example, in the first
row, the range of connection times [0-90] represents the scenario in which the first user connects
to the Cloud at time 0, the second user connects 10 minutes after, and so on until the last user is
connected (90 minutes after the first one). Finally, the last four columns shows the results of the
weighted metric for each one of the algorithms.

As shown in Table 4, among all approaches, Random is the algorithm that serves more users
with respect ACO and GA. However, as we will show in the next subsection, Random is the
algorithm that creates less VMs. It is important to note that, while Random serves many users, it
is in general not fair with the response times for users, producing a very large flowtime [30]. The
reason behind this is that the Random algorithm assigns the VMs to physical resources randomly,
and many of the creations of the VMs requested by users might fail. There are situations where
for a single user Random is able to create only one VM where all jobs of the user are executed.
This situation means that the user must wait too long to complete their jobs and thus loses the
benefit of using a Cloud. Note that the weighted metric is always zero for GA because it is the
less efficient algorithm in the number of users that achieves to serve.

Table 5: Weighted metric with weight combinations (1,0)

Users connected to the Cloud Range of connection times (min)
With 3 retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.43 0 0.43 1

20 [0 – 190] 0.43 0 0.36 1

30 [0 – 290] 0.25 0 0.26 1

40 [0 – 390] 0.25 0 0.23 1

50 [0 – 490] 0.20 0 0.25 1

60 [0 – 590] 0.18 0 0.19 1

70 [0 – 690] 0.19 0 0.20 1

80 [0 – 790] 0.15 0 0.17 1

90 [0 – 890] 0.15 0 0.16 1

100 [0 – 990] 0.13 0 0.16 1

110 [0 – 1090] 0.10 0 0.16 1

120 [0 – 1190] 0.12 0 0.16 1

Then, we evaluated the different algorithms when the back-off strategy is used. Table 5 shows
again the weighted metric for this experiment. As shown, Random again is the scheduler that

22

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

serve more users. Note that the values of the weighted metric for the number of serviced users
are lower when using the back-off strategy. This happens because the back-off strategy starts to

Table 6: Serviced Users: % Gain when using the back-off strategy

Users connected to the Cloud % Gain ACO % Gain GA % Gain Random % Gain ideal

10 -8.09 -3.57 -15.52 N/A

20 -8.00 -5.65 -12.70 N/A

30 -8.74 -4.13 -18.54 N/A

40 -6.43 -3.32 -14.18 N/A

50 -8.73 -2.39 -9.58 N/A

60 -8.74 -0.98 -11.93 N/A

70 -7.51 -1.74 -9.09 N/A

80 -6.64 -1.07 -9.36 N/A

90 -5.17 -1.15 -8.40 N/A

100 -6.11 -1.47 -7.55 N/A

110 -7.26 -1.26 -7.22 N/A

120 -5.67 -1.01 -6.43 N/A

try re-allocating VMs from the first VM that failed in their first attempt to creation. Moreover,
generally, the VMs that failed correspond to the first users connected to the Cloud. The back-
off strategy serves fewer users but with a greater number of VMs for each one of them (see
subsection 4.4.2). The reason is because when the schedulers are able to create a greater number
of VMs for the first users connected to the Cloud, the availability of physical resources decreases
earlier, and as a consequence, fewer users can be serviced.

Table 6 shows the gains obtained in the number of serviced users using the back-off strategy
for each algorithm with respect to not using it. The gains are calculated considering the number
of serviced users using the back-off strategy and for each group of users u = 10, 20, ..., 120:

%GainUsersu=10,20,...,120 = 100−
(numberServicedUsersWithoutRetriesu(ACO,GA,Random) ∗ 100)

(numberServicedUsersWithRetriesu(ACO,GA,Random))
(5)

As shown in Table 6 all gains are negative numbers, which means that instead of gains, losses are
obtained in the number of serviced users when the back-off strategy is used. Some observations
are that, when 10 users join to the Cloud the loss of ACO to use retries of VM creation is 8.09%,
the loss of GA is 3.57% and the loss of Random is 15.52%. For the ideal scheduler, gains are not
shown as the algorithm already reached the best possible values without the strategy. The highest
losses in terms of number of serviced users for all algorithms were obtained when the numbers
of users that try to connect to the Cloud were from 10 to 60 users. Random and GA present the
higher and the lower losses, respectively, in the number of serviced users. In the next subsection,

23

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

it can be seen that though the strategy of back-off serves fewer users, it is able to create more
VMs.

4.4.2. Pure HPC scenario – weight combination (0, 1)
HPC [8] environments are those who are evaluated in terms of executed floating-point oper-

ations per seconds, and hence their most important goal is to achieve the greater performance.
Therefore, in this work we consider that the greater number of VMs, the greater number of op-
erations per second that can be executed for PSEs, achieving better response times. Then, in this
subsection we evaluate the performance of a pure HPC scenario which only gives importance
to the number of created VMs. This is equivalent to assign the weights combinations of the
weighted metric such as (weightSU, weightVMs) = (0, 1).

Table 7: Weighted metric with weight combinations (0,1)

Users connected to the Cloud Range of connection times (min)
Without retrying VM creation

ACO GA Random Ideal

10 [0-90] 0.28 0.32 0 1

20 [0-190] 0.32 0.33 0 1

30 [0-290] 0.28 0.34 0 1

40 [0-390] 0.28 0.35 0 1

50 [0-490] 0.26 0.35 0 1

60 [0-590] 0.27 0.39 0 1

70 [0-690] 0.28 0.36 0 1

80 [0-790] 0.26 0.38 0 1

90 [0-890] 0.30 0.38 0 1

100 [0-990] 0.27 0.39 0 1

110 [0-1090] 0.26 0.39 0 1

120 [0-1190] 0.26 0.38 0 1

As shown in Table 7, among all approaches, excluding the ideal scheduler, GA is the al-
gorithm that creates more VMs. This is because the population size is equal to 10, and each
chromosome contains 7 different hosts, so after 10 iterations GA always finds the hosts with bet-
ter fitness, and can thus allocate more VMs to the first users who connect to the Cloud. However,
as we shown in previous subsection, GA is the algorithm that serves the smaller number of users.
Note that the weighted metric is always zero for Random because it is the less efficient algorithm
in the number of VMs that achieves to create.

The creation of some VMs fails at the moment an user issues the creation, due to all physical
resources are already fully busy with VMs belonging to other users, i.e., because the scheduler

24

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

not found an available resource where allocate the VM. Depending on the algorithm and accord-
ing to the results, some schedulers are able to find to some extent a host with free resources to
which at least one VM per user is allocated. It is for this reason that in this work we have also in-
corporated the back-off mechanism that attempts to improve the number of VMs that are created
for each user.

Table 8: Weighted metric with weight combinations (0,1)

Users connected to the Cloud Range of connection times (min)
With 3 retries of VM creation

ACO GA Random Ideal

10 [0-90] 0.20 0.20 0 1

20 [0-190] 0.29 0.30 0 1

30 [0-290] 0.26 0.29 0 1

40 [0-390] 0.30 0.32 0 1

50 [0-490] 0.27 0.32 0 1

60 [0-590] 0.29 0.36 0 1

70 [0-690] 0.30 0.32 0 1

80 [0-790] 0.31 0.36 0 1

90 [0-890] 0.34 0.36 0 1

100 [0-990] 0.31 0.36 0 1

110 [0-1090] 0.31 0.37 0 1

120 [0-1190] 0.34 0.36 0 1

Next, we evaluate the impact of the back-off strategy for each algorithm in the number of
VMs that each one is able to allocate. Table 8 shows the same weighted metric values for each
algorithm. Again, GA is the scheduler that achieves to create more VMs, but GA is not the
algorithm that achieves greater improvement levels when using the back-off strategy. Table 9
shows the gains obtained in the number of created VMs using the back-off strategy for each
algorithm with respect not using it. The gain is calculated considering the number of created
VMs for each algorithm using back-off strategy and for each group of users u = 10, 20, ..., 120:

%GainVMsu=10,20,...,120 = 100−
(numberCreatedVMsWithoutRetriesu(ACO,GA,Random) ∗ 100)

(numberCreatedVMsWithRetriesu(ACO,GA,Random))
(6)

As shown in Table 9, when the first 10 users join the Cloud the gain of ACO due to using the
back-off strategy is 3.50%, the gain of GA is 0.93% and the gain of Random is 12.15%. The
highest gains in terms of the number of created VMs for all algorithms were achieved when the
number of users connected to the Cloud were in the range of 60 to 120. Random presents higher
gains since it was the algorithm that created a lower number of VMs than ACO and GA without
using retries. It is for this reason that by using the strategy the algorithm has more chances of

25

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Table 9: Number of VMs: % Gain when using the back-off strategy

Users connected to the Cloud % Gain ACO % Gain GA % Gain Random % Gain ideal

10 3.50 0.93 12.15 N/A

20 8.31 9.17 21.27 N/A

30 10.67 6.08 22.93 N/A

40 15.18 8.45 26.63 N/A

50 15.85 8.38 28.42 N/A

60 18.22 8.19 31.14 N/A

70 18.57 8.56 33.33 N/A

80 19.87 8.97 30.42 N/A

90 19.94 9.56 34.59 N/A

100 21.16 8.75 35.90 N/A

110 22.35 8.48 35.80 N/A

120 24.35 8.09 33.50 N/A

finding a free host to assign a VM. However, the number of created VMs by Random is quite
lower compared to ACO and GA. The second position of gains is presented by ACO and GA
remains in the last place, but it is important to note that GA is the algorithm that achieves to
create more VMs, and therefore, the best scheduler to use in a pure HPC Cloud environment, at
least under the experimental conditions described so far.

4.4.3. Mixed HTC/HPC scenario – the weight combination (0.50, 0.50)
Since throughput is often the primary limiting factor in many scientific and engineering ef-

forts, and moreover, many scientists and engineers are interested in obtaining their results as soon
as possible, it is important to achieve the best possible balance between the two previous scenar-
ios, i.e., HTC and HPC. In this subsection we evaluate the performance of a mixed computing
scenario with the weights combinations (weightSU, weightVMs) = (0.50, 0.50). The higher the
value of the weighted metric, the better the balance provided by an algorithm with respect to its
competitors. Some observations are that when the VMs are created without retries as in Table 10,
in all cases the weighted metric is more favorable to ACO, resulting in better values with respect
to Random and GA.

As shown in previous subsections, ACO achieves to serve a greater number of users than
GA, and create a greater number of VMs with respect to Random. But, as can be seen in this
scenario, our ACO scheduler offers the best balance with respect to the number of serviced users
and the total number of created VMs than GA and Random. Regardless of the weighted metric,
a greater throughput in terms of serviced users and a greater number of created VMs involves

26

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Table 10: Weighted metric with weight combinations (0.50,0.50)

Users connected to the Cloud Range of connection times (min)
Without retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.45 0.16 0.42 1

20 [0 – 190] 0.44 0.16 0.29 1

30 [0 – 290] 0.32 0.17 0.28 1

40 [0 – 390] 0.30 0.18 0.22 1

50 [0 – 490] 0.29 0.18 0.19 1

60 [0 – 590] 0.29 0.19 0.19 1

70 [0 – 690] 0.28 0.18 0.17 1

80 [0 – 790] 0.25 0.19 0.15 1

90 [0 – 890] 0.26 0.19 0.14 1

100 [0 – 990] 0.24 0.19 0.13 1

110 [0 – 1090] 0.23 0.20 0.13 1

120 [0 – 1190] 0.23 0.19 0.12 1

greater parallelism, and therefore, a greater rate of jobs per unit time can be executed. Again, the
Ideal scheduler has only been treated in these experiments as a fictitious algorithm that gets ideal
results, but is taken as a reference to determine how far each competitor is from the former.

Next, and as in previous subsections, we aggregately evaluate the number of serviced users
and the number of created VMs reached by the algorithms when using the back-off strategy.
Table 11 shows that ACO again achieves the best balance with respect to its competitors in all
cases. Although none of the schedulers were able to improve the number of serviced users (see
Table 6), all of them were able to improve the number of created VMs (see Table 9). Due to
the fact that ACO is in the second place in both gain tables, the weighted metric makes ACO
the algorithm that achieves the best balance of the proposed metrics, and also turns it in the
best approach to use for mixed high-computing Cloud scenarios, at least under the discussed
experimental conditions.

4.4.4. Evaluation of the number of network messages sent and conclusions
In this subsection we summarize the results obtained in the previous scenarios, and evaluate

the number of network messages sent by each one of the studied schedulers. To achieve allocate
the VMs into hosts, each scheduler must make a different number of “queries” to hosts to deter-
mine their availability upon each VM allocation attempt. These queries are performed through
messages sent to hosts over the network to obtain information regarding their availability. This
process has been modeled in CloudSim by counting the number of messages sent to hosts every

27

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

Table 11: Weighted metric with weight combinations (0.50,0.50)

Users connected to the Cloud Range of connection times (min)
With 3 retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.31 0.10 0.21 1

20 [0 – 190] 0.36 0.15 0.18 1

30 [0 – 290] 0.26 0.15 0.13 1

40 [0 – 390] 0.27 0.16 0.11 1

50 [0 – 490] 0.24 0.16 0.13 1

60 [0 – 590] 0.24 0.18 0.09 1

70 [0 – 690] 0.24 0.16 0.10 1

80 [0 – 790] 0.23 0.18 0.09 1

90 [0 – 890] 0.25 0.18 0.08 1

100 [0 – 990] 0.22 0.18 0.08 1

110 [0 – 1090] 0.21 0.18 0.08 1

120 [0 – 1190] 0.23 0.18 0.08 1

time an user request the allocation of a VM.
Figure 7 illustrates the number of network messages sent to hosts by each algorithm to allo-

cate the VMs. The Ideal scheduler needs to send messages to hosts every time a VM is allocated
to know the hosts states and to decide where to allocate the VM. Moreover, as mentioned earlier,
Ideal always performs a number of creation retries until all users are served, which makes the
number of messages sent even higher. It is important to note, however, that the Ideal algorithm
implementation was executed using the back-off strategy with a number of retries equal to 20 to
obtain the ideal values to reach. The number of network messages sent to hosts rose from 3,800
to 69,500 when the number of users connected to the Cloud went from 10 to 120.

On the other hand, since the GA algorithm contains a population size of 10 and chromosome
sizes of 8 (7 genes for hosts plus one gene for the fitness value), to calculate the fitness function,
the algorithm sends one message for each host of the chromosome to know its availability and
obtain the chromosome containing the best fitness value. This is, the VM is allocated to a host
belonging to the chromosome with the best fitness value. The number of messages to send is
equal to the number of host within each chromosome multiplied by the population size. As
shown in Figure 7, GA is the algorithm that makes greater use of network resources in respect
to the other algorithms. The number of network messages sent to hosts varied from 8,497.50 to
125,897.50 when the number of connected users was increased from 10 to 120.

The last competitor in this work is Random, which sends only one network message to a
random host for each attempt of VM creation and is the algorithm that makes the lowest network

28

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

 0

 20000

 40000

 60000

 80000

 100000

 120000

10 20 30 40 50 60 70 80 90 100 110 120

N
u

m
b

e
r

o
f

n
e

tw
o

rk
 m

e
s
s
a

g
e

s
 s

e
n
t

Number of users online

Without retries of VMs creation

ACO
GA

Random
Ideal

Figure 7: Results as the number of users increases: Number of network messages

resource usage. The number of network messages rose from 100 to 1,200 when the number of
connected users to the Cloud went from 10 to 120.

Our ACO algorithm, however, makes less use of the network resources than GA and the Ideal
scheduler. Due to the fact that we configure the maximum number of steps that an ant carries
out to allocate a single VM to 8, ACO sends a maximum of 8 messages per VM allocation.
Moreover, when ACO finds an unloaded host, it allocates the current VM and does not perform
any further step. This reduces the total number of network messages to send. The number of
network messages sent by ACO to hosts rose from 730 to 9,524.70 when the number of users
connected to the Cloud went from 10 to 120. One point in favor is that, unlike Ideal and GA, ACO
sent messages in the order of 100-1000 as Random did. Furthermore, the time taken to allocate
10 user VMs (i.e., sending at most 80 network messages) represents a very small fraction of
the time each user PSE took, which was around 158 minutes of effective computing time. This
fraction would be even smaller in Clouds with high-speed network connections.

Finally, when we configured the schedulers to operate with the back-off strategy the number
of network messages increased. This happens because for each VM that failed in their first
attempt to creation, the schedulers must be reactivated to allocate these VMs for a maximum
of 3 times. Figure 8 illustrates the number of network messages sent by each algorithm using
the back-off mechanism. The number of network messages sent by GA to hosts varied from
22,782.80 to 376,585.80 when the number of connected users was increased from 10 to 120.
In the case of Random the number of network messages also increased from [211.00-3,476.60]
when the number of users connected to the Cloud varied from 10 to 120. Finally, our ACO
algorithm makes again less use of the network resources than GA and the Ideal scheduler when

29

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10 20 30 40 50 60 70 80 90 100 110 120

N
u

m
b

e
r

o
f

n
e

tw
o

rk
 m

e
s
s
a

g
e

s
 s

e
n
t

Number of users online

With 3 retries of VMs creation

ACO
GA

Random
Ideal

Figure 8: Results as the number of users online increases: Number of network messages

using back-off strategy. The network messages rose from 2,150.1 to 29,848.6 when the number
of user connected to the Cloud went from 10 to 120.

To conclude, it is important to note that GA makes a greater use of network resources than
ACO, being ACO the scheduler that achieves the best balance for the mixed environment pro-
posed. Furthermore, an important consideration is that although Random sends few network
messages, and the use of the network can be very important in some distributed environments,
in most Clouds network interconnections are fast. Moreover, as we shown previously, Random
is a very inefficient algorithm in terms of performance because it creates few VMs, and more-
over, as we described in our previous work [30], Random gets the worse performance in terms of
makespan and flowtime in batch scenarios. These results are encouraging because they indicate
that ACO is close to obtaining the best possible solution balancing all the employed evaluation
metrics and making a reasonable use of the network resources.

5. Related work

Studying SI techniques, specially ACO [39], has been the focus of a lot of research in the last
ten years. A recent work [46] describes how ACO has been exploited to solve classical industrial
scheduling problems. In this work the authors conclude and suggest, based on the basis of the
literature reviewed, that ACO is a very viable approach to solve scheduling problems in general.
Moreover, the authors were able to derive certain guidelines for the implementation of ACO
algorithms. Furthermore, as evidenced by other surveys [54, 47], these techniques have been
applied to distributed job scheduling.

30

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

However, with regard to scheduling in Cloud environments, very few works can be found to
date [35]. Moreover, to the best of our knowledge, no effort aimed to job scheduling based on
SI for online Clouds where a large number of users are connected to submit their experiments
has been proposed. By online we mean non-batch scenarios, i.e., where the jobs to be executed
in the Cloud is not available beforehand. In these related works, it is important to note that, the
most SI techniques are used to solve the job scheduling problem, i.e., determining how the jobs
are assigned to VMs, and few efforts have aimed to solve VM scheduling problems, or how to
allocate VMs to physical resources. Among them we can mention a recent survey from Huang et
al. [24], which summarizes different methods to improve job execution performance, including
dynamic resource allocation strategies based on the law of failure, dynamic resource assignment
on the basis of credibility, ant colony optimization algorithms for resource allocation, optimized
genetic algorithm with dual fitness, among others. On the other hand, the objectives to optimize
considered by the authors are suitable when the execution of a set of jobs belong to the same user,
but when a large number of users make requests to the Cloud, fair mechanisms and normalized
evaluation metrics such as those discussed in this work are not considered.

Moreover, the works in [6, 56] propose ACO-based Cloud schedulers minimizing makespan
and maximizing load balancing, respectively. An interesting aspect of [6] is that it was evaluated
using real Cloud platforms (Google App Engine and Microsoft Live Mesh), whereas the other
work was evaluated through simulations. During the experiments, [6] used only 25 jobs and a
Cloud comprising 5 machines, while in [56] despite to be simulated the authors have not provided
all the information needed to reproduce their experiments. Interestingly, like our work, these two
efforts support dynamic resource allocation, i.e., the scheduler does not need to know the details
of the jobs to allocate and the available resources.

An approach based on Particle Swarm Optimization (PSO), another popular SI technique, is
proposed in [38]. PSO is inspired by the behavior of bird flocks, bee swarms and fish schools.
Contrary to [6, 56] and our scheduler, the approach is based on static resource allocation, which
forces users to feed the scheduler with the estimated running times of jobs on the set of Cloud
resources to be used. [38] is on the other hand targeted at paid Clouds, where users pay for
the physical resources they use. As such, the work only minimizes monetary cost, and does not
consider other metrics throughput or response time metrics.

Following to the above discussed approaches, another type of SI technique found in the lit-
erature is honey bee or bee colonies [15, 45]. The work proposed in [15] aims to achieve load
balancing across virtual machines of a Cloud for maximizing throughput. Also, this algorithm
balances the priorities of jobs on the machines in such a way that the amount of waiting time of
the jobs in the queue is minimal. On the other hand, the work in [45] proposes a mechanism to
efficiently schedule data-oriented jobs onto Grid nodes and replicate data files on storage nodes
with the objectives of minimizing both the makespan and the total datafile transfer time.

Finally, the works in [26, 22] address the problem of job scheduling in Clouds while reducing
energy consumption, which is a crucial problem [28] mainly because the environmental impact
in terms of carbon dioxide (CO2) emissions caused by high energy consumption. [26] focuses
however only on achieving competitive makespan. On the other hand, in [22] a new scheduling
policy that models and manages a virtualized datacenter is proposed. It focuses on the allocation
of VMs in datacenter nodes according to multiple facets to optimize the provider’s profit. In

31

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

particular, it considers energy efficiency, virtualization overheads, and SLA violation penalties,
and supports the outsourcing to external providers.

It is worth noting that all the mentioned works ignore multiple users, rendering difficult their
applicability to execute scientific experiments in online, shared Cloud environments.

6. Conclusions

Supporting experiments in engineering and scientific groups usually involves running a large
amount of independent jobs, which requires a lot of computing power. These jobs must be
efficiently processed in the different computing resources of a distributed environment such as the
ones provided by Cloud. Consequently, job scheduling in this context indeed plays a fundamental
role.

In recent years, SI has been received increasing attention in the research community. SI refers
to the collective behavior that emerges from a swarm of social insects, which helps in solving
complex combinatorial optimization problems. Particularly, ACO is an heuristic algorithm in-
spired by the behavior of real ants for solving such problems, which can be reduced to find
good paths through graphs. Moreover, Cloud job scheduling is an NP-complete optimization
problem, and many schedulers based on SI have been proposed. Basically, researchers have in-
troduced changes to the traditional bio-inspired techniques to achieve different Cloud scheduling
goals [35].

However, existing efforts do not address in general online environments where multiple users
connect to scientific Clouds to execute their scientific experiments. On the other hand, to the best
of our knowledge, no effort aimed at balancing the number of serviced users in a Cloud and
the total number of created VMs by the scheduler exists. Indeed, the greater the number of
serviced users, the better the throughput, and the more the created VMs, the higher the achieved
parallelism. More parallelism means executing a greater number of jobs, and hence a more agile
human processing of PSE job results. More serviced users means a more fair assignment of
Cloud computing resources.

In this work, we have described a two-level Cloud scheduler based on SI, particularly Ant
Colony Optimization, that operates under the IaaS model and pays special attention to the balance
both throughput and response time –a mixed HTC-HPC scenario– in an online Cloud, i.e., a
scenario in which several users are connected to the Cloud at different times. Moreover, both the
number of serviced users and the total number of created VMs are important.

By means of simulated experiments performed with the CloudSim simulation toolkit and real
PSE job data, we have evaluated three different scenarios through the use of a weighted metric
by assigning different weights combinations. We evaluated two pure HTC and HPC scenarios by
assigning the weights combinations (1,0)/(0,1) respectively, and a mixed scenario by assigning
the weights (0.50,0.50) with the aim of reaching a balance between the number of serviced users
and the number of created VMs.

Depending on the scenario, the different algorithms behave better or worse. For example,
when a pure HTC scenario is considered, Random is the algorithm that achieves the best perfor-
mance in terms of throughput (serviced users), but as we have shown in our previous work [30],
Random accomplishes in general very poor performance in terms of flowtime and makespan.

32

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

On the other hand, when a pure HPC scenario is considered, GA proves to be the algorithm that
achieves better performance in terms of response time. This happens because GA is the algorithm
that creates a larger number of VMs. However, we also shown that GA serves the least number
of users. Finally, when we evaluated the performance for a mixed HTC-HPC scenario with the
aim to balance both the number of serviced users and the number of created VMs, our ACO algo-
rithm is the one that best balances these two metrics with respect to Random and GA. Moreover,
another observation from the experimental results is that by the use of a back-off strategy that
retries the creation of VMs that have failed in their first attempt to creation, improvements in the
number of created VMs were obtained.

In this paper, we have also evaluated the number of network messages sent to the host by
each one of the studied schedulers to allocate the VMs. Results have shown that GA makes the
highest use of network resources. Random sends less network messages than ACO, but this latter
is the scheduler that achieves the best balance for the mixed environment proposed in this paper.
Moreover, although Random is the algorithm which sends the least amount of network messages,
it is a very inefficient algorithm in terms of performance because it creates few VMs and gets the
worse performance in terms of makespan and flowtime in batch scenarios [30]. Nevertheless, we
will in the future focus on heuristics for ACO to further reduce network consumption.

We are currently implementing another scheduler based on SI, specifically an adaptation
of the Particle Swarm Optimization Grird scheduler proposed in [29], to explore the ideas ex-
posed in this paper. Second, we plan to materialize the resulting schedulers on top of a real
Cloud platform, such as OpenNebula (http://opennebula.org/), which is designed for
extensibility. Third, we will consider other Cloud scenarios, e.g., federated Clouds with het-
erogeneous physical resources belong to different Cloud providers devoted to create an uniform
Cloud resource interface to users. Moreover, an interesting research line in federated domains
is the study of interconnection capacities –network links– among the domains. Indeed, in [1]
a GA-based solution for the problem has been proposed, and therefore we aim at studying the
usefulness of ACO and PSO in this context. Finally, we will evaluate and measure how the vari-
ation of the parameters of each algorithm (e.g., maxSteps, mutation rate and decay rate in ACO,
chromosome size, population size and number of iterations in GA) influence the performance
and network consumption. For instance, the more the maxSteps in our ACO scheduler, the more
the “migrations” of ants among Cloud hosts, which increases network consumption.

Since our work is focused on the IaaS model where custom VMs are launched to be executed
in the hosts available in a datacenter, energy consumption is another important issue. When sim-
pler scheduling policies are used, e.g., Random, the balance between throughput and response
time suffers, but CPU usage, access to memory and transfer through the network are less com-
pared to that of more complex policies such as ACO or GA. For example, to maintain the load
tables information for ants in ACO, or to maintain the chromosomes for populations in GA, we
need those resources. Therefore, to execute many jobs or create a large number of VMs, the
accumulated resource usage overhead may be significant, resulting in higher demands for en-
ergy. Then, we plan to quantify the trade-off between algorithm performance (as measured by
the weighted metric) and energy consumption.

Lastly, an aspect to further explore is solution quality. SI algorithms in general, and ACO
in particular, use indirect communication mechanisms to exchange information between enti-

33

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

ties. These mechanisms –e.g., pheromone update– usually lead to an undesirable “stagnation”
effect [31], whereby entities explore the same solution paths from early stages. This, in turn, pro-
duces locally optimal solutions and hence overall performance is suboptimal. To deal with this
problem, some direct communication mechanisms between entities have been studied [31, 9].
For example, in [31] a direct communication for ACO algorithms in which near ants can ex-
change information is proposed. We will explore these mechanisms in the context of our ACO
scheduler. We then expect to increase solution quality and therefore performance in terms of
serviced users and created VMs.

Acknowledgments

We acknowledge the financial support provided by ANPCyT through grants PAE-PICT 2007-
02311, PAE-PICT 2007-02312 and National University of Cuyo project 06/B253. The first au-
thor acknowledges her Ph.D. fellowships granted by the PRH-UNCuyo Project and the National
Scientific and Technological Research Council (CONICET).

References

[1] L. Agostinho, G. Feliciano, L. Olivi, E. Cardozo, E. Guimaraes, A Bio-inspired Approach
to Provisioning of Virtual Resources in Federated Clouds, in: Ninth International Confer-
ence on Dependable, Autonomic and Secure Computing (DASC), DASC 11, IEEE Com-
puter Socienty, Washington, DC, USA, 2011, pp. 598–604.

[2] G. Alfano, F. D. Angelis, L. Rosati, General solution procedures in elasto-viscoplasticity,
Computer Methods in Applied Mechanics and Engineering 190 (39) (2001) 5123–5147.

[3] I. Ari, N. Muhtaroglu, Design and implementation of a cloud computing service for finite
element analysis, Advances in Engineering Software In press.

[4] M. Armbrust, A. Fox, R. Griffithn, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, Above the Clouds: A Berkeley view of Cloud Computing,
Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California (Feb 2009).

[5] R. Axelrod, The dissemination of culture: A model with local convergence and global
polarization, Journal of Conflict Resolution 41 (2) (1997) 203–226.

[6] S. Banerjee, I. Mukherjee, P. Mahanti, Cloud Computing initiative using modified ant
colony framework, in: World Academy of Science, Engineering and Technology, WASET,
2009, pp. 221–224.

[7] J. Basney, M. Livny, P. Mazzanti, Harnessing the capacity of Computational Grids for
High Energy Physics, in: Conference on Computing in High Energy and Nuclear Physics,
Padova, Italy, 7-11, 2000, pp. 610–613.

[8] Beck, Alan (1997-06-27, High Throughput Computing: An Interview with Miron Livny,
url: http://research.cs.wisc.edu/htcondor/HPCwire.1 (1997).

34

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

[9] C. Beer, T. Hendtlass, J. Montgomery, Improving exploration in ant colony optimisation
with antennation, in: 2012 IEEE Congress on Evolutionary Computation (CEC), 2012, pp.
1–8.

[10] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, 1999.

[11] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future
Generation Computer Systems 25 (6) (2009) 599–616.

[12] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, CloudSim: A toolkit for
modeling and simulation of Cloud Computing environments and evaluation of resource
provisioning algorithms, Software: Practice & Experience 41 (1) (2011) 23–50.

[13] C. Careglio, D. Monge, E. Pacini, C. Mateos, A. Mirasso, C. García Garino, Sensibilidad
de resultados del ensayo de tracción simple frente a diferentes tamaños y tipos de imper-
fecciones, in: M. G. E. Dvorkin, M. Storti (eds.), Mecánica Computacional, vol. XXIX,
AMCA, 2010, pp. 4181–4197.

[14] L. Cherkasova, D. Gupta, A. Vahdat, When virtual is harder than real: Resource allocation
challenges in virtual machine based it environments, Tech. rep., HP Laboratories. Technical
Report HPL-2007-25, Palo Alto (February 2007).
URL http://www.hpl.hp.com/techreports/2007/HPL-2007-25.html

[15] L. Dhinesh Babu, P. Venkata Krishna, Honey bee behavior inspired load balancing of tasks
in cloud computing environments, Applied Soft Computing 13 (5) (2013) 2292–2303.

[16] M. Dorigo, Optimization, Learning and Natural Algorithms, Phdthesis, Politecnico di Mi-
lano, Italy, Milano, Italy (1992).

[17] M. Dorigo, T. Stützle, The ant colony optimization metaheuristic: Algorithms, applications,
and advances, in: F. Glover, G. Kochenberger (eds.), Handbook of Metaheuristics, vol. 57
of International Series in Operations Research & Management Science, chap. 9, Springer,
New York, 2003, pp. 250–285.

[18] C. García Garino, F. Gabaldón, J. M. Goicolea, Finite element simulation of the simple
tension test in metals, Finite Elements in Analysis and Design 42 (13) (2006) 1187–1197.

[19] C. García Garino, C. Mateos, E. Pacini, Job scheduling of parametric computational
mechanics studies on cloud computing infrastructures, International Advanced Research
Workshop on High Performance Computing, Grid and Clouds. Cetraro (Italy). Available
online: http://www.hpcc.unical.it/hpc2012/pdfs/garciagarino.pdf (June 2012).

35

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

[20] C. García Garino, A. Mirasso, S. Raichman, J. Goicolea, Imperfection sensitivity analysis
of necking instability of circular cilyndrical bars, in: D. R. J. Owen et al. (ed.), Computa-
tional Plasticity: Fundamentals and Applications, vol. 1, International Center for Numerical
Methods in Engineering (CIMNE), 1997, pp. 759–764.

[21] C. García Garino, M. Ribero Vairo, S. Andía Fagés, A. Mirasso, J.-P. Ponthot, Numerical
simulation of finite strain viscoplastic problems, Journal of Computational and Applied
Mathematics 246 (2013) 174–184.

[22] I. Goiri, J. Berral, J. Oriol Fitó, F. Juliá, R. Nou, J. Guitart, R. Gavaldá, J. Torres, Energy-
efficient and multifaceted resource management for profit-driven virtualized data centers,
Future Generation Computer Systems 28 (5) (2012) 718–731.

[23] M. Gulamali, A. Mcgough, S. Newhouse, J. Darlington, Using ICENI to run parameter
sweep applications across multiple Grid resources, in: Global Grid Forum 10, Case Studies
on Grid Applications Workshop, Berlin, Germany, 2004.

[24] L. Huang, H. Chen, T. Hu, Survey on resource allocation policy and job scheduling algo-
rithms of cloud computing, Journal of Software 8 (2) (2013) 480–487.

[25] W. Huang, J. Liu, B. Abali, D. Panda, A case for high performance computing with virtual
machines, in: Proceedings of the 20th annual international conference on Supercomputing,
ICS ’06, ACM, New York, NY, USA, 2006, pp. 125–134.

[26] R. Jeyarani, N. Nagaveni, R. Vasanth Ram, Design and implementation of adaptive power-
aware virtual machine provisioner (APA-VMP) using swarm intelligence, Future Genera-
tion Computer Systems 28 (5) (2012) 811–821.

[27] A. Lipowski, D. Lipowska, Roulette-wheel selection via stochastic acceptance, Physica A:
Statistical Mechanics and its Applications 391 (6) (2012) 2193–2196.

[28] Y. Liu, H. Zhu, A survey of the research on power management techniques for high-
performance systems, Software Practice & Experience 40 (11) (2010) 943–964.

[29] S. Ludwig, A. Moallem, Swarm intelligence approaches for grid load balancing, Journal of
Grid Computing 9 (3) (2011) 279–301.

[30] C. Mateos, E. Pacini, C. García Garino, An ACO-inspired Algorithm for Minimizing
Weighted Flowtime in Cloud-based Parameter Sweep Experiments, Advances in Engineer-
ing Software 56 (2013) 38–50.

[31] M. Mavrovouniotis, S. Yang, Ant colony optimization with direct communication for
the traveling salesman problem, in: 2010 UK Workshop on Computational Intelligence
(UKCI), 2010, pp. 1–6.

[32] P. Mell, T. Grance, The NIST Definition of Cloud Computing, National Institute of Stan-
dards and Technology 53 (6) (2009) 50.

36

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

[33] D. Merkle, M. Middendorf, H. Schmeck, Ant colony optimization for resource-constrained
project scheduling, IEEE Transactions on Evolutionary Computation 6 (4) (2002) 333–346.

[34] J. T. Oden, K. J. Bathe, A Commentary on Computational Mechanics, Applied Mechanics
Reviews 31 (8) (1978) 1053–1058.

[35] E. Pacini, C. Mateos, C. García Garino, Schedulers based on ant colony optimization for pa-
rameter sweep experiments in distributed environments, in: Dr. Siddhartha Bhattacharyya,
Dr. Paramartha Dutta (ed.), Handbook of Research on Computational Intelligence for En-
gineering, Science and Business, vol. I, chap. 16, IGI Global, 2012, pp. 410–447.

[36] E. Pacini, C. Mateos, C. García Garino, Dynamic scheduling of scientific experiments on
clouds using ant colony optimization, in: B. H. V. Topping, P. Iványi (eds.), Proceedings of
the Third International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering, Civil-Comp Press, Stirlingshire, United Kingdom, 2013, paper 33.
URL \url{http://dx.doi.org/10.4203/ccp.101.33}

[37] E. Pacini, M. Ribero, C. Mateos, A. Mirasso, C. García Garino, Simulation on cloud com-
puting infrastructures of parametric studies of nonlinear solids problems, in: F.V. Cipolla-
Ficarra et al. (ed.), Advances in New Technologies, Interactive Interfaces and Communica-
bility (ADNTIIC 2011), vol. 7547 of LNCS, Springer-Verlag, 2011, pp. 58–70.

[38] S. Pandey, L. Wu, S. Guru, R. Buyya, A particle swarm optimization-based heuristic for
scheduling workflow applications in Cloud Computing environments, in: International
Conference on Advanced Information Networking and Applications, IEEE Computer So-
ciety, 2010, pp. 400–407.

[39] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony optimization,
Applied Soft Computing 11 (8) (2011) 5181–5197.

[40] J. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation
and the multiplicative decomposition: Part I. Continuum formulation, Computer Methods
in Applied Mechanics and Engineering 66 (1988) 199–219.

[41] J. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation
and the multiplicative decomposition. Part II: Computational aspects, Computer Methods
in Applied Mechanics and Engineering 68 (1) (1988) 1–31.

[42] J. Simo, M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on
the use hiperelastic constitutive equation, Computer Methods in Applied Mechanics and
Engineering 49 (1985) 221–245.

[43] B. Sotomayor, K. Keahey, I. Foster, T. Freeman, Enabling cost-effective resource leases
with virtual machines, in: Hot Topics session in ACM/IEEE International Symposium on
High Performance Distributed Computing 2007, Monterey Bay, CA, USA, 2007.

37

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

[44] C. Sun, B. Kim, G. Yi, H. Park, A Model of Problem Solving Environment for Integrated
Bioinformatics Solution on Grid by Using Condor, in: Grid and Cooperative Computing,
2004, pp. 935–938.

[45] J. Taheri, Y. C. Lee, A. Y. Zomaya, H. Siegel, A bee colony based optimization approach
for simultaneous job scheduling and data replication in grid environments, Computers and
Operations Research 40 (6) (2011) 1564–1578.

[46] R. Tavares Neto, M. Godinho Filho, Literature review regarding Ant Colony Optimization
applied to scheduling problems: Guidelines for implementation and directions for future
research, Engineering Applications of Artificial Intelligence 26 (1) (2013) 150–161.

[47] M. Tinghuai, Y. Qiaoqiao, L. Wenjie, G. Donghai, L. Sungyoung, Grid task scheduling:
Algorithm review, IETE Technical Review 28 (2) (2011) 158–167.

[48] L. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds: towards a
cloud definition, ACM SIGCOMM Computer Communication Review 39 (1) (2009) 50–
55.

[49] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: A view of scien-
tific applications, in: Proceedings of the 2009 10th International Symposium on Pervasive
Systems, Algorithms, and Networks, ISPAN 09, IEEE Computer Society, Washington, DC,
USA, 2009, pp. 4–16.

[50] L. Wang, M. Kunze, J. Tao, G. von Laszewski, Towards building a Cloud for scientific
applications, Advances in Engineering Software 42 (9) (2011) 714–722.

[51] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, W. Karl, Scientific cloud com-
puting: Early definition and experience, in: 10th IEEE International Conference on High
Performance Computing and Communications, IEEE Computer Society, Washington, DC,
USA, 2008, pp. 825–830.

[52] G. Woeginger, Exact Algorithms for NP-Hard Problems: A Survey, in: M. Junger,
G. Reinelt, G. Rinaldi (eds.), Combinatorial Optimization - Eureka, You Shrink!, vol. 2570
of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2003, pp. 185–207.

[53] J. Wozniak, A. Striegel, D. Salyers, J. Izaguirre, GIPSE: Streamlining the management of
simulation on the Grid, in: 38th Annual Simulation Symposium, 2005, pp. 130–137.

[54] F. Xhafa, A. Abraham, Computational models and heuristic methods for Grid scheduling
problems, Future Generation Computer Systems 26 (4) (2010) 608–621.

[55] B. Xiaoyong, High Performance Computing for Finite Element in Cloud, in: International
Conference on Future Computer Sciences and Application (ICFCSA), IEEE Computer So-
cienty, 2011, pp. 51–53.

38

This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcÃ-a Garino: ’Balancing Throughput and Response Time in Online Scientific Clouds via
Ant Colony Optimization’. Advances in Engineering Software. In press. Elsevier. 2014. ISSN 0965-9978."

The final publication is available at http://http://www.journals.elsevier.com/advances-in-engineering-software/

[56] Z. Zehua, Z. Xuejie, A load balancing mechanism based on ant colony and complex net-
work theory in open Cloud Computing federation, in: 2nd International Conference on
Industrial Mechatronics and Automation, IEEE Computer Socienty, 2010, pp. 240–243.

39

