This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach

José Luis Ordiales Coscia?, Marco Crasso!?3, Cristian Mateos!>3, Alejandro
Zunino'>3, and Sanjay Misra*

! ISISTAN Research Institute.
2 UNICEN University.
3 Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET).
4 Department of Computer Engineering, Atilim University, Ankara, Turkey

Abstract. The Service-Oriented Computing paradigm enables the construction
of distributed systems by assembling loosely coupled pieces of software called
services, which have clear interfaces to their functionalities. Service interface de-
scriptions have many aspects, such as complexity and quality, all of which can
be measured. This paper presents empirical evidence showing that services inter-
faces maintainability can be predicted by applying traditional software metrics in
service implementations. A total of 11 source code level metrics and 5 service
interface metrics have been statistically correlated using 154 real world services.

Keywords: SERVICE-ORIENTED COMPUTING; WEB SERVICES; CODE-FIRST; WEB SERVICE MAINTAIN-
ABILITY; OBJECT-ORIENTED METRICS; WEB SERVICE MAINTAINABILITY PREDICTION.

1 Introduction

Service-Oriented Computing (SOC).is-a paradigm that allows engineers to build new
software by composing loosely coupled pieces of existing software called services. A
distinguishing feature of SOC is that services may be provided by third-parties who
only expose services interfaces to the outer world. By means of these interfaces, po-
tential consumers can determine what a service does from a functional perspective and
remotely invoke it from their new applications.

The advances in distributed system technologies have caused engineers to materi-
alize SOC in environments with higher levels of distribution and heterogeneity. The
availability of broadband and ubiquitous connections enable to reach the Internet from
everywhere and at every time, creating a global scale marketplace of software services
where providers offer their services interfaces and consumers may invoke them regard-
less geographical aspects, using the current Web infrastructure as the communication
medium. Therefore, services are often implemented using standard Web-inspired lan-
guages and protocols and thus are called Web Services. Nowadays, Web Services are the
technology commonly used when migrating legacy systems [1] to modern platforms or
the technological protocol stack used for accessing information from smartphones [2].

Like any other software artifact, service interface descriptions have a size, com-
plexity and quality, all of which can be measured [3]. In fact, previous research [4,3,5]

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

has emphasized on the importance of the non-functional concerns of services inter-
faces. Particularly, the work of [4] proposes a catalog of common bad practices found
in services interfaces, which impact on the understandability and discoverability of the
associated services. Understandability is the ability of a service interface description
of being self-explanatory, which means a software engineer can reason about a service
purpose just by looking at its interface description. Discoverability refers to the ability
of a service of being easily retrieved, from a registry or repository, based on a partial
description of its intended functionality such as a Google-like query. At the same time,
in [3] the author describes a suite of metrics to assess the complexity and quality of
services interfaces with respect to various aspects. Likewise, [5] proposes a suite com-
prising 4 metrics to assess service maintainability from service interface descriptions.

Methodologically, in practice service interfaces are not build by hand, but instead
they are automatically generated by mapping programming languages constructors (and
hence service implementations) onto service interface descriptions expressed in the
Web Service Definition Language (WSDL). WSDL is an XML-based format for de-
scribing a service as a set of operations, which can be invoked via message exchange.
In the Java arena, this mapping is usually achieved by tools such as Axis’ Java2WSDL,
Java2WS, EasyWSDL, and WSProvide. The weak point of this methodology is that
engineers partially control WSDL specification and therefore resulting WSDL descrip-
tions may suffer from understandability, discoverability, complexity, quality and main-
tainability problems as measured by the aforementioned metrics catalogs.

We set forth the hypothesis that service developers can indirectly reduce the neg-
ative impact of some of these WSDL-level metrics by following certain programming
guidelines at service implementation time. Particularly, in an attempt to explain the root
causes of most understandability and discoverability problems associated with services
interfaces, in [6] a statistical correlation analysis between service implementation met-
rics and service interface bad practices occurrences has been reported. In this paper,
we study the feasibility of obtaining more maintainable services by exploiting Object-
Oriented metrics (OO) values from the source code implementing services. Similarly
to [6], the approach in this work uses OO metrics as early indicators to guide software
developers towards obtaining more maintainable services.

Interestingly, we have found that there is a statistically significant, high correlation
between several traditional (source code-level) OO metrics and the catalog of (WSDL-
level) service metrics described in [5]. This is the most comprehensive and rigorously
evaluated catalog of metrics for measuring service maintainability from WSDL inter-
faces. A corollary of this finding is that software developers could consider applying
simple early code refactorings to avoid obtaining non-maintainable services upon gen-
erating service descriptions. Although our findings do not depend on the programming
language in which services are implemented, we focus on Java, which is widely used
in back-end and hence service development. To evaluate our approach, we performed
experiments with a data-set of 154 real services, and the most popular Java-to-WSDL
mapping tool, i.e. Java2WSDL (http://ws.apache.org/axis/java).

The rest of the paper is organized as explained next. Section 2 provides the back-
ground necessary to understand the goals and results of our research. Section 3 surveys
related works. Section 4 presents detailed analytical experiments that evidence the cor-

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

relation of OO metrics with the Web Service metrics proposed in [5]. Section 5 explains
how this correlation can be exploted to predict and early improve service maintainabil-
ity. Section 6 concludes the paper and describes future research opportunities.

2 Basic concepts

WSDL is a language that allows providers to describe two main aspects of a service,
namely what it does (its functionality) and how to invoke it (its binding-related in-
formation). The former aspect reveals the functional service interface that is offered
to potential consumers. The latter aspect specifies technological details, such as trans-
port protocols and network addresses. Consumers use the former part to match third-
party services against their needs, and the latter part to actually interact with the se-
lected service. With WSDL, service functionality is described as a port-type W =
{Ov(1y, Rp), .., On(Iy, Ry)}, which lists one or more operations O; that exchange input
and return messages I; and R;, respectively. Port-types, operations and messages are
labeled with unique names, and optionally they might contain some comments.

Messages consist of parts that transport data between providers and consumers of
services, and vice-versa. Exchanged data is represented by using data-type definitions
expressed in XML Schema Definition (XSD), a language to define the structure of an
XML construct. XSD offers constructors for defining simple types (e.g. integer and
string), restrictions, and both encapsulation and extension mechanisms to define com-
plex constructs. XSD code might be included in a WSDL document using the fypes
element, but alternatively it-‘might be put into a separate file and imported from the
WSDL document or external WSDL documents so as to achieve type reuse.

A requirement inherent to manually creating and manipulating WSDL and XSD
definitions is that services are built in a contract-first manner, a methodology that en-
courages designers to first derive the WSDL interface of a service and then supply an
implementation for it. However, the most used approach to build Web Services in the
industry is code-first, which means that one firstimplements a service and then gener-
ates the corresponding service interface by automatically deriving the WSDL interface
from the implemented code. This means that WSDL documents-are not directly created
by developers but are instead automatically derived via language-dependent tools. Such
a tool performs a mapping 7 [6], formally T : C-— W.

T maps the main implementation class of a service (C = {M(ly, Ro), .., My(Iy, Ry)})
to the WSDL document describing the service (W = {Oy(ly, Ry), -, On(Iy, Ry)}). Then,
T generates a WSDL document containing a port-type for the service implementation
class, having as many operations O as public methods M the class defines. Moreover,
each operation of W is associated with one input message / and another return mes-
sage R, while each message comprises an XSD data-type representing the parameters
of the corresponding class method. Tools like WSDL.exe, Java2WSDL, and gSOAP [7]
rely on a mapping 7 for generating WSDLs from C#, Java and C++, respectively.

Fig. 1 shows the generation of a WSDL document using Java2WSDL. The map-
ping 7T in this case has associated each public method from the service code to an
operation containing two messages in the WSDL document and these, in turn, are asso-
ciated with an XSD data-type containing the parameters of that operation. Depending

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 3

on the tool used some minor differences between the generated WSDL documents may
arise [6]. For instance, for the same service Java2WSDL generates only one port-type
with all the operations of the Web Service, whereas WSDL.exe generates three port-
types each bound to a different transport protocol.

/Service code N Port-types N
publiclinterface GimageWebservice { <wsdl:portType name:“GimageWebserv1ceServ1cePortType“>
public void helloWorld(); <wsdl:operation name="helloWorld">
<wsdl:input message="ns: helloWwIdRequest —

wsaw:Action="urn:helloWorld"
. </wsdl:operation>
public boolean needNextGa(); <wsdl:operation name=" needNextGa >
<wsdl:input message="ns:needNextGaRequest" -—
wsaw:Action="urn:needNextGa"/>
<wsdl: output message="ns: needNextGaResponse
aw:Action="urn:needNextGaResponse"/>
X X </wsdl: operat10n>
public void reloadGenAlgo(); <wsdl:operation name="reloadGenAlgo">
<wsdl:input message="ns: reloadGenAlgoRequest”
wsaw:Action="urn:reloadGenAlgo"
. . . . </wsdl:operation>
public void setInfo(String info); <wsdl:operation name="setInfo">
<wsdl:input message="ns: setInfoRequest”
wsaw:Action="urn:setInfo"/>
</wsdl:operation>

\\ ,/ \\ </wsdl:portType> 4/
4 R
Types Messages
<ff:e}eme”f Wﬁmef:SEtI”f°”> <wsdl:message name="setInfoRequest">
xi;cs()-’lpeqi);nyczi <wsdl:part name="parameters"
?] {y —ine. f
<xs:element min@cCurs="0" name="args0" </wsd1'meelsesmaegi>_ ns:setInfo"/>
nillable="true" type="xs:.string"/> . 9
</xs:Sequence> <wsdl:message name="reloadGenAlgoRequest"/>
</xs:complexType>
</xs:element> <wsdl:message name="needNextGaResponse"
<wsdl:part> name="parameters"
<xs:element name="needNextGaResponse*s D element="ns:needNextGaResponse" />
<xs:complexType> </wsdl:message>
<xs:sequence> . B
<xs:element minOccurs="@" name="refurn" <wsdl:message name="needNextGaRequest"/>
type="xs Quglean>7> <wsdl:message name="helloWorldRequest"/>
</xs:isequence>
</xs:complexType>
</xs:element> N J

Fig. 1. WSDL generation in Java through the Java2WSDL tool

The fact supporting our hypothesis is precisely that WSDL metrics in the general
sense are associated with API design attributes [6,4]. These latter have been throughly
studied by the software engineering community and as a result suites of OO class-level
metrics exist, such as the Chindamber and Kemerer’s catalog [8]. Consequently, these
metrics tell providers about how a service implementation conforms to specific design
attributes. For example, the CBO (Coupling Between Objects) metric gives a hint on
data model quality in terms of code development and maintenance facilities. Moreover,
the LCOM (Lack of Cohesion Methods) metric measures how well the methods of a
class are semantically related to each other, or the cohesion design attribute.

An interesting approach is then to assess whether a desired design attribute as mea-
sured by an appropriate OO metric is ensured after WSDL generation as measured by a
WSDL-level metric suitable for the attribute (e.g. [S] when targeting maintainability or
[3] when targeting complexity). As a corollary, by using well-known software metrics
on a service code C, a service developer might have an estimation of how the result-
ing WSDL document W will be like in terms of maintainability and complexity since
a known mapping T deterministically relates C with W. Then, based on these code

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

metric/WSDL metric relationships, it is possible to determine a wider range of metric
values for C so that T generates W without undesirable WSDL-level metric values.

3 Related efforts

Although there has been a substantial amount of research to improve services interfaces
quality [3,4,5], the approach to predict quality by basing on traditional OO metrics at
development time remains rather unexplored. Indeed, this approach has been recently
and exclusively explored in [6] to anticipate potential quality problems in services in-
terfaces. Conceptually, the work presented in [6] studies the relationships between ser-
vice implementation metrics and a key quality attribute of target services interfaces in
WSDL, namely discoverability [4].

From services implementations the authors gathered 6 classic OO metrics, namely
Chindamber and Kemerer’s [§] CBO, LCOM, WMC (Weighted Methods Per Class),
RFC (Response for Class), plus the CAM (Cohesion Among Methods of Class) metric
from the work of Bansiya and Davis [9] and the well-known lines of code (LOC) metric.
Additionally, they gathered 5 ad-hoc metrics, namely TPC (Total Parameter Count),
APC (Average Parameter Count), ATC (Abstract Type Count), VTC (Void Type Count),
and EPM (Empty Parameters Methods).

Regarding discoverability, the authors used a sub-set of the WSDL metrics listed
in [4], which are focused on measuring aspects that affect discoverability, namely the
legibility, conciseness, and understandability of WSDL descriptions [?,?,?]. Then, the
authors collected a data-set of publicly available code-first Web Services projects, which
by itself has been a valuable contribution to the field, and in turn analyzed the statistical
relationship among metrics.

In the same direction that [6], this paper analyzes whether there are relations be-
tween service implementation metrics and the suite of metrics proposed by Baski and
Misra [5], which comprises 4 novel metrics for measuring the complexity of the infor-
mation exchanged by Web Services. As will be explained later, these metrics can be
statically computed from a service interface in WSDL, since this metric suite is purely
based on WSDL and XSD schema elements occurrences.

3.1 Data weight metric

Baski and Misra [5] defined the data complexity as “‘the complexity of data flowed to
and from the interfaces of a Web service and can be characterized by an effort required
to understand the structures of the messages that are responsible for exchanging and
conveying the data”. The definition of the Data Weight (DW) metric is based on the
above, and computes the complexity of the data-types conveyed in services messages.
To the sake of brevity, we will refer to the complexity of amessage C(m) as an indicator
of the effort required to understand, extend, adapt, and test m, by basing on its struc-
ture. C(m) counts how many elements, complex types, restrictions and simple types are
exchanged by messages parts, as it is deeply explained in [5]. Formally:

C(m;) (1)
i=1

DW(wsdl) =

n

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

where n,, is the number of messages that the WSDL document exchanges. For the
purposes of this paper, we have assumed n,, to consider only those messages that are
linked to an offered operation of the WSDL document, thus it does not take into account
dangling messages. The DM metric always returns a positive integer. The bigger the
DM of a WSDL document, the more complex its operations messages are.

3.2 Distinct message ratio metric

The Distinct Message Ratio (DMR) metric complements DW by attenuating the im-
pact of having similar-structured messages within a WSDL document. As the num-
ber of similar-structured messages increases the complexity of a WSDL document de-
creases, since it is easier to understand similar-structured messages than that of various-
structured ones as a result of gained familiarity with repetitive messages [5]. Formally:

DM I
DMR(wsdl) = w)

where the Distinct Message Count (DMC) metric can be defined as the number of
distinct-structured messages represented by [C(m),] pair, i.e. the complexity value
C(m) and total number of arguments 7,4 that the message contains [5]. The DMR
metric always returns a number in the range of [0,1], where 0 means that all defined
messages are similar-structured, and 1 means that messages variety increases.

3.3 Message entropy metric

The Message Entropy (ME) metric exploits the probability of similar-structured mes-
sages to occur within-a given WSDL document. Compared with the DMR metric, ME
also bases on the fact that repetition of the same messages makes a developer more fa-
miliar with the WSDL document and results in ease of maintainability, but ME provides
better differentiation among WSDL documents in terms of complexity. Formally:

DMC(wsdl)
ME(wsdl) =~ Z P(m;) * logs P(m;) 3)
i=1

nom;
P(m;) =

m

where nom; is the number of occurrences of the i message, and in turn P(m;) represents
the probability that such a message occurs within the given WSDL. document. The
ME metric outputs values greater or equal than zero. A low ME value shows that the
messages are consistent in structure, which means that data complexity of a WSDL
document is lower than that of the others having equal DMR values.

3.4 Message repetition scale metric

The Message Repetition Scale (MRS) metric analyses variety in structures of WSDL
documents. By considering frequencies of [C(m), nares] pairs, MRS measures the con-
sistency of messages as follows:

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 3

DMC(wsdl) 2
nomi
MRS (wsdl) = Z)

n
i=1 "

The possible values for MRS are in the range 1 < MRS < n,,. When comparing two
or more WSDL documents, a higher MRS and lower ME show that the developer makes
less effort to understand the messages structures owing to the repetition of similar-
structured messages.

4 Statistical correlation among services metrics

We used the Spearman’s rank coefficient to analyze whether metrics taken on ser-
vice implementations are correlated with metrics from their WSDL documents or not.
Broadly, the experiment consisted on gathering OO metrics from real Web Services, cal-
culating the service interface metrics of the previous section from WSDL documents,
and analyzing the correlation among all pairs of metrics.

To perform the analysis, we employed a data-set of 154 WSDL documents from
open source projects, which was the newest version available of the data-set described
in [6] at the time of writing this article. All projects are written in Java, and were
collected via the source code search engines Merobase, Exemplar and Google Code.
Each project offers at least one Axis’ Java2WSDL Web Service description. Each ser-
vice within each project consists of the implementation code and dependency libraries
needed for compiling and generating WSDL documents. All in all, the generated data-
set provided the means to perform a significant evaluation in the sense that the different
Web Service implementations came from real-life software developers.

Regarding the correlation model, the independent variables were the WMC, CBO,
RFC, LCOM, CAM, TPC, APC, ATC, VTC, EPM, and LOC metrics. On the other
hand, the dependent variables were the DW, DMC, DMR, ME and MRS metrics. Met-
rics recollection is an extremely sensitive task for this experiment, but also a task that
would require a huge amount of time to be manually carried on. Therefore, all the em-
ployed metrics have been automatically gathered by using an extended version of the
ckjm [10] tool and a software library to automate the recollection of the WSDL metrics
(http://code.google.com/p/wsdl-metrics-soc-course/).

Table 1. Correlation between OO metrics and WSDL ones

Metric WMC CBO RFC LCOM LOC CAM TPC APC GTC VTC EPM

DW 047 0.80 047 047 047 -0.48 0.60 0.38 0.58 0.05 -0.03

DMC 0.82 0.53 0.82 0.82 0.82 -0.83 0.74 0.14 0.39 0.16 0.29

DMR -0.71 0.22 -0.71 -0.71 -0.71 0.43 -0.37 0.34 0.25 -0.10 -0.36

ME 0.72 0.62 0.72 0.72 0.72 -0.79 0.68 0.18 0.45 0.13 0.18

MRS 0.80 -0.13 0.80 0.80 0.80 -0.54 0.49 -0.28 -0.18 0.10 0.37

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

Table 1 and Fig. 2 show the existing relations between the OO metrics (independent
variables) and the WSDL metrics (dependent variables). For denoting those coefficients
that are statistically significant at the 5% level or p-value < 0.05, which is a common
choice when performing statistical studies [11], we employed bold numbers in Table 1,
and circles in Fig. 2. The sign of the correlation coefficients (+, -) are depicted using
black and white circles, respectively. A positive (black) relation means that when the
independent variable grows, the dependent variable grows too, and when the indepen-
dent variable falls the dependent goes down as well. Instead, a negative (white) relation
means that when independent variables grow, dependent ones fall, and vice versa. The
absolute value, or correlation factor, indicates the intensiveness of the relation regard-
less of its sign. Graphically, the diameter of a circle represents a correlation factor, i.e.
the bigger the correlation factor the bigger the diameter in Fig. 2.

o}

(e} = (&}
@ s o
8 3

. 00000 @
(e ()OO @O

- 90000 @
@ Q00 @

Fig. 2. Graphical representation of correlation analysis for rapidly identifying relations

Q
o

WMC
LCOM

5 A step towards early improving WSDL maintainability

By looking at Fig. 2 one could state that there is a high statistical correlation between
the analyzed OO metrics and, at least, one metric for assessing the maintainability of
services interfaces descriptions. Initially, this implies that every independent variable
should be somehow “controlled” by software engineers attempting to obtain maintain-
able target WSDL documents. However, as determining the best set of controllable
independent variables would deserve a deeper analysis within a-longer paper, we will
focus on determining a minimalist sub-set of OO metrics for this paper.

We employed two criteria for reducing the number of OO metrics. First, by basing
on the study presented in [6] that shows the existence of groups of statistically depen-
dent OO metrics, we select one representative metric for each group. In other words,
if a group of variables in a data-set are strongly correlated, these variables are likely to
measure the same underlying dimension (e.g. cohesion, complexity, or coupling). Ta-
ble 2 shows the statistical correlation among OO metrics for the employed version of
the data-set, which confirms that RFC, LCOM and LOC can be removed while keeping

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 3

WMC, since these are statistically correlated at the 5% level with correlation factor of 1.

Table 2. Correlation among OO metrics.

Metric WMC CBO RFC LCOM LOC CAM TPC APC GTC VTC EPM

WMC 1.00 0.20 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CBO - 1.00 0.20 0.20 0.20 -0.37 0.29 0.26 0.41 -0.07 -0.15
RFC - - 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41
LCOM - - - 100 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41
LOC - - - - 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41
CAM - - - - - 1.00 -0.63 0.08 -0.24 -0.35 -0.36
TPC - - - - - - 1.00 0.55 0.33 0.28 0.08
APC 7 - - - - - - 1.00 0.30 0.04 -0.33
GTC - - - - - - - - 1.00 0.03 -0.18
VTC > - - - - - - - - 1.00 0.38
EPM - 7 ™ - - - - - - - 1.00

Second, we removed the APC, GTC, VTC, and EPM metrics because they do not
have at least one relationship with its correlation factor above |0.6| at the 5% level. The
rationale of this criterion reduction was to keep only the highest correlated pairs of
variables.

Table 3. Minimalist sub-set of correlated OO and WSDL metrics

Metric WMC CBO-RFC LCOM LOC CAM TPC

DW --0.80 - - - - 0.74
DMC 0.82 --0.82 0.820.82 -0.83 0.68
DMR -0.71 --0.71 -0.71 -0.71 - 0.60

ME 0.72 0.62 0.72 . 0.72 0.72 -0.79 -

MRS 0.80 - 0.80 0.80 0.80 -

Table 3 represents a minimalist sub-set of correlated metrics, and shows that the
DW metric depends on two OO metrics, i.e. CBO and TPC. Then, the DW of a service
may be influenced by the number of classes coupled to its implementation, and by the
number of parameters their operations exchange. The results also show that DW is not

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_3

highly influenced by cohesion related metrics, such as LCOM and CAM, neither by
how many methods its implementation invokes (RFC) or methods complexity (WMC).

The DMC and ME metrics may be decreased by reducing the complexity of service
implementation methods. This means that if a software developer modifies his/her ser-
vice implementation and in turn this reduces the WMC, RFC and LOC metrics, such a
fall will cause a decrement in DMC and ME. At the same time, DMC and ME may be
reduced by improving the cohesion of services implementations. This is because when
the cohesion of services implementations is improved, LCOM falls and CAM rises,
which may produce a lower value for DMC and ME, by basing on the signs of their
respective statistical relations. ME is influenced by CBO as well.

The DMR metric has negative correlations with WMC, RFC, and LOC. Surpris-
ingly, this means that when the complexity of services implementations methods grows,
the ratio of distinct messages falls. Also, DMR has a positive correlation with TPC,
which means that the higher the number of operations parameters the higher the ratio
of distinct messages. The MRS metric presents high correlations with 3 complexity and
1 cohesion service implementation metrics.

The presented evidence shows that pursuing an improvement in the DMR metric
may conflict with other metric-driven goals. This means that if a software developer
modifies his/her service implementation and in turn this produces an increment in the
WMC, RFC, LOC or LCOM metrics, such an increment will cause that DMC, ME, and
MRS alert about an increment in the WSDL document complexity, however the DMR
will fall. Clearly, incrementing DMC, and ME would be undesirable, but this could be
the side-effect of a gaining in the DMR metric. As in general software literature, this
kind of situations could be treated as trade-offs, in which the software engineer should
analyze and select among different metric-driven implementation alternatives.

6 Conclusions

We have empirically shown that when developing code-first Web Services, there is a
high statistical correlation between several traditional code-level OO metrics and some
WSDL-related metrics that measure maintainability at the WSDL level. This enforces
the findings reported in [6], in which a correlation between some OO metrics and met-
rics that measure service discoverability was also found:

As discussed in Section 5, this would allow software engineers and developers to
early adjust OO metrics, for example via M. Fowler’s code refactorings, so that result-
ing WSDLs and hence services are more maintainable. Moreover, modern IDEs provide
specific refactorings that can be employed to adjust the value of metrics such as WMC,
CBO and RFC. For metrics which are not very popular among developers and therefore
have not associated a refactoring (e.g. CAM), indirect refactorings may be performed.
For example, CAM is negatively correlated to WMC (see Table 2), and hence refactor-
ing for WMC means indirectly refactoring for CAM.

At present, we are generalizing our results by analyzing correlation for WSDL doc-
uments built via code-first tools other than Java2WSDL. Besides, we are studying the
correlation of OO metrics and the WSDL metrics proposed by Harry Sneed [3], which
is a comprehensive catalog of metrics for measuring Web Service complexity.

This is a preprint of the article: "J. L. Ordiales Coscia, M. Crasso, C. Mateos, A. Zunino and S. Misra: "Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-based Approach”. Lecture Notes in Computer Science (4th International Workshop on Software Engineering
Processes and Applications - ICCSA 2012). Vol. 7336, pp. 29-39. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4 3

We are also planning to deeply study the aforementioned trade-offs so as to provide
more decision support to engineers. Indeed, refactoring for a particular OO metric may
yield good results as measured by some WSDL metrics but bad results with respect
to other WSDL metrics in the same catalog. Preliminary experiments with the WSDL
complexity metrics catalog presented in [3] also suggest that reducing the value of some
0O metrics from Table 2 positively impacts on several complexity metrics, but at the
same time negatively affects others. It is then necessary to determine to what extent
these OO metrics are modified upon code refactoring so that a balance with respect to
(ideally) all WSDL metrics in the catalog is achieved. This is however difficult specially
when trying to balance the values of metrics of different catalogs, i.e. when attempting
to build a service that is more maintainable according to Baski and Misra, but less
complex according to Sneed.

Acknowledgments

We acknowledge the financial support provided by ANPCyT (PAE-PICT 2007-02311).
We thank Martin Garriga for his predisposition and valuable help towards building the
software tool that computes the studied Web Service maintainability metrics. We also
thank Taiyun Wei, the author of the R script for drawing the correlation matrix of Fig. 2.

References

1. Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo
Campo. Bottom-up and top-down COBOL system migration to Web Services: An experi-
ence report. [EEE Internet Computing, 17(2):44-51, 2013.

2. Guadalupe Ortiz and Alfonso Garcia De Prado. Improving device-aware Web Services and
their mobile clients through an aspect-oriented, model-driven approach. Information and
Software Technology, 52(10):1080-1093, 2010.

3. Harry M. Sneed. Measuring Web Service interfaces. In 12th IEEE International Symposium
on Web Systems Evolution (WSE), 2010, pages 111 —115, September 2010.

4. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Improving
Web Service descriptions foreffective service discovery. Science of Computer Programming,
75(11):1001-1021, 2010.

5. D. Basci and S. Misra. Metrics suite for maintainability of extensible markup language Web
Services. IET Software, 5(3):320-341, 2011.

6. Cristian Mateos, Marco Crasso, Alejandro Zunino, and José Luis Ordiales Coscia. Detecting
WSDL bad practices in code-first Web. Services. International Journal of Web and Grid
Services, 7(4):357-387, 2011.

7. Robert A. Van Engelen and Kyle A. Gallivan. The gsoap toolkit for web services and peer-
to-peer computing networks. In 2nd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pages 128—-135. IEEE Computer Society, 2002.

8. S. Chidamber and C. Kemerer. A metrics suite for Object Oriented design. IEEE Transac-
tions on Software Engineering, 20(6):476—493, 1994.

9. Jagdish Bansiya and Carl G. Davis. A hierarchical model for Object-Oriented design quality
assessment. /[EEE Transactions on Software Engineering, 28:4—17, January 2002.

10. Diomidis Spinellis. Tool writing: A forgotten art? IEEE Software, 22:9-11, 2005.
11. Stephen Stigler. Fisher and the 5% level. Chance, 21:12-12, 2008.

