
This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

A Suite of Cognitive Complexity Metrics

Sanjay Misra1, Murat Koyuncu1 , Marco Crasso2, Cristian Mateos2 and

Alejandro Zunino2

1 Department of Computer Engineering, Atilim University, Ankara, Turkey

{smisra, mkoyuncu}@atilim.edu.tr

2 ISISTAN Research Institute. UNICEN University, Tandil, Argentina. Also

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

{mcrasso|cmateos|azunino}@conicet.gov.ar

Abstract. In this paper, we propose a suite of cognitive metrics for evaluating

complexity of object-oriented (OO) codes. The proposed metric suite evaluates

several important features of OO languages. Specifically, the proposed metrics

are to measure method complexity, message complexity (coupling), attributes

complexity and class complexity. We propose also a code complexity by

considering the complexity due to inheritance for the whole system. All these

proposed metrics (except attribute complexity) use the cognitive aspect of the

code in terms of cognitive weight. All the metrics have critically examined

through theoretical and empirical validation processes.

Keywords: software metrics, methods, messages, attributes, class, coupling,

inheritance, cognitive complexity, validation.

1 Introduction

IEEE defines the software quality as „Software quality is the degree to which software

possesses a desired combination of attributes (e.g., reliability, interoperability)‟ [1].

Software quality is controlled by software metrics. Software metrics are tools to

control the complexity of software. Through metrics, one can easily observe the

several weaknesses of a software system and therefore, by means of it, quality can be

estimated. This is the reason why metrics are indispensable tool in software

development life cycle for achieving the quality.

The recent decades have witnessed the successes of the object-oriented (OO)

languages. Most of the projects are being developed in JAVA, C++ or in Python. The

need to control the complexity of the projects developed in these language is

important. For this purpose, since the beginning of the 1990 several object-oriented

metrics e.g. Chidamber and Kemerer (CK) metrics suite [2], MOOD metrics for OO

Design [3], design metrics for testing [4], product metrics for object-oriented design

[5-6], Lorenz and Kidd metrics [7], Henderson–Seller metrics [8], (slightly) modified

mailto:smisra,%20mkoyuncu%7D@atilim.edu.tr

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

CK metrics [9], size estimation of OO systems[10] , weighted class complexity metric

[11] and several other metrics[12-17] can be found in the literature. All the above

metrics tried to cover some features of the OO languages and used for some quality

attributes. The quality attributes, are such as correctness, reliability, efficiency,

integrity, usability, maintainability, testability, flexibility, portability, reusability, and

interoperability [18]. Amongst the given quality attributes, maintainability is treated

as the most necessary attribute for software products [19]. In fact, majority of the

metrics are developed for this most important attribute.

In our previous work, we have presented metrics for OO codes [11]. For

inheritance complexity, we have first calculated the cognitive weights of all the

methods of a class, sum up them and then multiply with the weight of their parent

classes (due to inheritance). However, later, we have observed that while considering

complexity due to inheritance, we should not only consider the method complexity

but the complexity due to attributes. In this point of view, while estimating the

complexity of the entire OO codes, we have to calculate the complexity of a class by

considering the impact due to method complexity, message complexity and also due

to attributes [11]. Then, we have to establish a relation between classes to capture the

complexity due to inheritance property. The mentioned requirement is the starting

point of this work and we present a suite of metrics which capture most of features of

the OO programming paradigm in this paper.

The paper is organized as follows: The motivation of the work is given in the next

section. Section 3 presents the proposal of the new suite of complexity metrics. The

metrics are demonstrated with an OO example in Section 4. Finally, a conclusion is

given in Section 5.

2 Motivation

After the CK metric suite, no further attempts have been made seriously in this

direction to develop a more effective suite of metrics for OO languages [2]. All the

metrics in CK metric suite are straight forward and simple to compute. On the other

hand, these metrics do not cover the following issues:

1. The overall complexity of a class due to all possible factors

2. The internal architecture of the class

3. The impact of the relationship due to inheritance in the class hierarchy

4. The number of messages between classes and their complexities (CK metrics

suite counts only the methods coupled with other classes)

5. Cognitive complexity, which is a measure of understandability and therefore

has a great impact on maintainability of the system

The lack of the above features in CK metric suite motivated us to produce a new

suite of metrics, which can be a complimentary set of the CK metric suite. In fact, our

proposed metrics suggest examining the OO properties in more detail. For example,

CBO (one of metrics in CK metric suite) is a measure to show interactions between

objects by counting the number of other classes to which the class is coupled. In our

proposal, coupling is computed by considering the message calls to other classes and

the weight of the called methods. One class may have “1” for CBO showing that it

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

interacts with only one class, but may include many messages to that class which

causes a more complex code (which is considered in our metric). Therefore, we

believe that our metric gives more accurate information about coupling of a class.

3 Proposed Suite of Metrics for Object-Oriented Programming

An object is a class instance and an object-oriented system consists of objects which

collaborate through message exchanges. An object-oriented code includes one or

more classes which may be related to each other by composition or inheritance and

contains related attributes and operations (methods) in the classes. The complexity

metrics developed for object-oriented languages are mainly based on the complexity

of individual classes like number of methods, number of messages etc. However, not

only the numbers of different components are important, but also the internal

complexities of these components are equally important. Furthermore, for calculating

the complexity of the entire system, we have to consider the special features of OO

programs and type of the relations between classes. Accordingly, we propose the

following suite of metrics:

Method Complexity(MC): Method complexity is calculated by considering

corresponding cognitive weights of structures in a method of a class. Cognitive

weights are used to measure the complexity of the logical structures of the software in

terms of Basic Control Structures (BCSs). These logical structures reside in the

method (code) and are classified as sequence, branch, iteration and call with the

corresponding weights of one, two, three and two, respectively. Actually, these

weights are assigned on the classification of cognitive phenomenon as discussed by

Wang [20]. We calculate method complexity in a class by associating a number

(weight) with each member function (method), and then simply add the weights of all

the methods. More formally, the method complexity (MC) is calculated as;

   
  












q

j

m

k

n

i

c
ikjWMC

1 1 1

),,(, (1)

where, Wc is the cognitive weight of the concerned Basic Control Structure (BCS).

The method complexity of a software component is defined as the sum of cognitive

weights of its q linear blocks composed of individual BCSs, since each block may

consist of m layers of nested BCSs, and each layer with n linear BCSs. Equation 1

gives the complexity of a single method.

Message complexity (Coupling Weight for a Class (CWC)): Two classes are coupled

when there is a message call in one class for the other class. In our proposal, if there

are message calls for other classes, we not only count the total number of such

messages, but also we add the weight of the called methods. Accordingly,

complexities due to message calls are the sum of weights of call and the weight of

called methods. i.e.

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

 




n

i

i
MCCWC

1

)2(, (2)

where, 2 is the weight of the message to an external method and Wi is the weight of

the called method. If there are n numbers of external calls, then the CWC is calculated

as the sum of weights of all message calls.

Attribute Complexity(AC): It reflects the complexity due to data members

(attributes). We simply assign the total number of attributes associated with class as

the complexity due to data members. The attributes are not local to one procedure but

local to objects and can be accessed by several procedures. Accordingly, the attribute

complexity of a class (AC) is given by:

 




n

i

AC

1

1 , (3)

where n is the total number of attributes.

Weighted Class Complexity(WCC): OO software development is based on classes

and subclasses whose elements are attributes and methods (including messages).

These elements are identified in class declarations and are responsible for the

complexity of a class. Therefore, the complexity of a class is a function of the

methods and the data attributes. More formally, we suggest the following formula to

calculate the Weighted Class Complexity (WCC):

p

n

p

MCACWCC 




1

 (4)

WCC is the sum of the attribute complexity and the sum of all the method

complexities of a class.

Code Complexity (Inheritance): For calculating the complexity of the entire system,

we have to consider not only the complexity of all the classes, but also the relations

among them. That is, we are giving emphasis on the inheritance property because

classes may be either parent or children classes of others. In the case of a child class,

it inherits the features from the parent class. By keeping this property of OO

paradigm, we propose to calculate the code complexity of an entire system as follows:

 If the classes are of the same level then their weights are added.

 If they are subclasses or children of their parent then their weights are

multiplied.

If there are m levels of depth in the object-oriented code and level j has n classes

then the Code Complexity (CC) of the system is given by,

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

  
 












m

j

n

k

jk
WCCCC

1 1

 (5)

The unit of CC is defined as the cognitive weight of the simplest software

component (having a single class which includes single method having only a

sequential structure). This corresponds to sequential structure in BCS and hence its

unit is taken as 1 Code Complexity Unit (CCU).

In addition to these metrics, we are also proposing the associated metrics which are

extracted from the above metrics. These metrics may be useful indications for general

information regarding the projects.

Average Method Complexity(AMC): It gives an average method complexity for a

class and is calculated by dividing the sum of complexities of all the methods of a

class to the total number of methods in that class.

 nMCAMC

n

p

p /

1




 , (6)

where MC is the complexity of a particular method, n is total number of methods in a

class.

Average Method Complexity per Class(AMCC): It is defined as the average method

complexity for the entire system.

 




m

p

mAMCAMCC

1

/ , (7)

where m is total number of classes in a project.

Average Class Complexity(ACC): It is the average complexity of classes in a project

and it is calculated by dividing the sum of the complexity of the classes to the total

number of classes.

 mWCCACC

m

p

/

1




 , (8)

where WCC is the complexity a class and m is total number of classes.

Average Coupling Factor(ACF): It is defined as the complexity of all the external

method calls (i.e. coupling weights) to the total number of messages.

 kCWCACF

k

i

/

1




 (9)

where k is number of messages to other classes.

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

Average Attributes per Class(AAC): It shows the average number of attributes per

class in a project and it is calculated by dividing the sum of attribute complexity of all

classes to the total number of classes.

 




m

i

mACAAC

1

/ , (10)

where, m is the total number of classes.

4 Demonstration of the Metrics

The proposed complexity metrics given in Section 3 is demonstrated with a

programming example in this section. The class hierarchy of the example program is

illustrated in Fig.1 and the complete C++ code for the example is given in Appendix.

Fig. 1. An Example Class Hierarchy

The given example processes a personnel database hierarchy. It has one main class

Person and two subclasses, Employee and Student. The class Employee has again

three subclasses, Staff, Faculty, and Assistant. The student class has two subclasses,

Graduate and Undergraduate. This section demonstrates how we calculate the

complexities according to the metrics given in section 3 for an object-oriented

program.

Method Complexity (MC): Method complexity of each method is calculated using

Formula 1. For example, the class Person has two methods named as getName() and

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

getBirthDate(). Each of these methods has simple structure, called as sequence basic

control structure (BCS), therefore their weights are assigned as 1.

 MCgetName=MCgetBirthDate=  
  










q

j

m

k

n

i

c
ikjW

1 1 1

),,(= 1

So, the method complexity for the class person:

 MCPERSON= MCgetName + MCgetBirthDate =1+1=2 CCU

For another example, consider isStudent() method of the Staff class. The method

includes an IF structure (branch). The method complexity is calculated as:

 MCisStudent= 1+2 = 3, where 1 is for sequence and 2 is for branch (IF)

structure.

The method isStaff() of the class Graduate shows a more detailed example:

 MCisStaff= 1+2((2+3)+2) = 15, where 1 is for sequence and 2 is for branch

(IF) structure. The branch structure has a external method call and a nested branch

inside. (2+3) is for the message sent to another class (i.e.,Staff), 2 is the weight of the

message and 3 is the weight of the called method (i.e. isStudent()). The last 2 in the

calculation is for the nested IF structure. Notice that if there is nested structure, we

multiply the weights instead of summing them up.

The method complexity for the classes given in Fig.1 is calculated as follows:

MCPERSON= MCgetName + MCgetBirthDate =1+1=2 CCU

MCEMPLOYEE= MCgetSalary + MCgetSSN =1+1=2 CCU

MCSTUDENT= MCgetMajorDept =1 CCU

MCSTAFF= MCstaff + MCgetPosition + MCisStaff =1+1+3=5 CCU

MCFACULTY= MCfaculty + MCgetRank =1+1=2 CCU

MCASSISTANT= MCassistant + MCgetType =1+3=4 CCU

MCGRADUATE= MCgraduate + MCgetDegreeProgram + MCisStaff =1+1+15=17 CCU

MCUNDERGRADUATE= MCundergraduate+MCisTakenCourse+MCgetClass =4+7+1=12 CCU

All the method complexities can be seen in Appendix along with the code of each

method.

Message complexity (Coupling Weight for a Class (CWC)): In the given example,

there is only one class (Graduate) which includes one external message call to the

Staff class. We can calculate the coupling weight of the class Gradute as the weight of

the called methods. For this example, there is only one external method called from

the Graduate class(isStaff()).

 




n

i

i
MCCWC

1

)2(= 2 + 3= 5 CCU

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

Attribute Complexity (AC): Attribute complexity of a class can be calculated by

counting the total number of attributes in that class. Accordingly, AC values for

classes Person, Employee, Student, Faculty, Staff, Assistant, Graduate and

Undergraduate are 2, 2, 1, 2, 1, 1, 1 and 2, respectively.

Weighted Class Complexity (WCC): WCC for each class can be calculated by

Equation 4, i.e the sum of attribute complexity, method complexity and message

complexity. It is worth mention that while calculating the WCC, we don‟t need to

include the message complexity of classes, because, a message is a part of a method

and already calculated in the method complexity. For the given example, WCCs are

calculated as follows:

 WCCPERSON= 2+2= 4 CCU

 WCCEMPLOYEE= 2+2= 4 CCU

 WCCSTUDENT= 1+1= 2 CCU

 WCCSTAFF= 2+5= 7 CCU

 WCCFACULTY= 1+2= 3 CCU

 WCCASSISTANT= 1+4= 5 CCU

 WCCGRADUATE= 1+17= 18 CCU

 WCCUNDERGRADUATE= 2+12= 14 CCU

Code Complexity(CC): The code complexity of the object-oriented code is calculated

by using Equation 5 as given below:

CC = WCCPERSON *(WCCEMPLOYEE *(WCCSTAFF +

 WCCFACULTY + WCCASSISTANT)+ WCCSTUDENT *

 (WCCGRADUATE + WCCUNDERGRADUATE))

 = 4*(4*(7+3+5) + 2*(18+14))

 = 496 CCU

Average Method Complexity(AMC):

 nMCAMC

n

p

p
/

1




 ,where W is the weight of a particular method, n is

total number of method in a class.

 AMCPERSON= 2/2= 1 CCU

 AMCEMPLOYEE= 2/2= 1 CCU

 AMCSTUDENT= 1/1= 1 CCU

 AMCSTAFF= 5/3= 1.66 CCU

 AMCFACULTY= 2/2= 1 CCU

 AMCASSISTANT= 4/2= 2 CCU

 AMCGRADUATE= 17/3= 5.66 CCU

 AMCUNDERGRADUATE= 12/3= 4 CCU

Average Method Complexity per Class(AMCC):

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

 




m

p

mAMCAMCC

1

/ , where m is total number of classes in a project

 AMCC= (1 + 1+ 1+ 1.66 + 1+ 2+ 5.66 + 4)/8 = 2.165 CCU

The average method complexity of a class is 2.165. It is worth mentioning that this

number is not the average number of methods per class but it represents the average

complexity/weight of method per class

Average Class Complexity(ACC):

 mWCCACC

m

p

/

1




 , where WCC is the complexity a class and m is

total number of classes.

 ACC = (4 + 4 + 2 + 7 + 3 + 5 + 18 + 14) / 8 = 7.125 CCU

i.e. the average class complexity of this project is 7.125 CCU.

Average Coupling Factor(ACF):

 kCWCACF

k

i

/

1




 , where CWC is the Coupling Weight for a Class

and k is number of messages to other classes.

 ACFGRADUATE = 5/1 = 5

The average coupling factor for class Graduate is 3. There is only one method call

to the outside in that class.

Average Attributes per Class(AAC):

 




m

i

mACAAC

1

/ , where AC is the attribute complexity and m in the

total number of classes.

 AAC = (2 + 2 + 1 + 2 + 1 + 1 + 1 + 2)/8 = 1.5

i.e. the average number of attributes per class is 1.5.

5. Conclusions

A suite of object-oriented metrics are proposed in this study. The application of

metric suite is shown on an example object-oriented code. These metrics are capable

to capture most of the features existing in object-oriented codes such as method,

attribute, class, inheritance and coupling. Further, the objective to produce such a

metric suite is to combine most of the feature responsible for complexity. These

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

metrics calculate the complexity at each level of the code and the code complexity

represents the structural and cognitive complexity of an OO system.

References

1. IEEE Standard 1061-1992: Standard for a Software Quality Metrics Methodology. New

York: Institute of Electrical and Electronics Engineers (1992)

2. Chidamber S.R., and Kermerer, C. F.: A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 6, 476-493 (1994)

3. Harrison, R., Counsell, S.J., and Nithi, R.V.: An Evaluation of the MOOD Set of Object

Oriented Software Metrics. IEEE Transactions on Software Engineering, 24(6), 491-496

(1998)

4. Binder, R.V.: Object-Oriented Software Testing. Communications of the ACM, 37(9), 28-

29 (1994)

5. Vaishnavi, V. K., Purao,S., and Liegle J.: Object-Oriented Product Metrics: A Generic

Framework. Information Science, 177, 587-606 (2007)

6. Purao S., and Vaishnavi, V.K.: Product Metrics for Object Oriented Systems. ACM

Computing Surveys, 35(2), 191-221 (2003)

7. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice Hall, Englewood Cliffs,

New Jersey (1994).

8. Henderson-Selles, B.: Object-Oriented Metrics, Measure of Complexity. Prentice-Hall

Englewood Cliffs, New Jersey (1996)

9. Basily, V.R., Briand, L.C., and Melo, W.L. : A Validation of Object Oriented Design

Metrics as Quality Indicators. IEEE Transactions on Software Engineering, 22(1), 751-761

(1996)

10. Costagliola, G., Ferrucci, F., Tortora, G., Vitiello G.: Class Points: An Approach for the

Size Estimation of Object-Oriented Systems. IEEE Transactions on Software Engineering,

31(1), 52-74 (2005)

11. Misra, S. and Akman, I.: Weighted Class Complexity: A Measure of Complexity for

Object-Oriented System. Jour. of Information Science and Engineering, 24, 1689-1708

(2008)

12. Stephen H. Kan: Metrics and Lessons Learned for OO Projects, Chapter 12: Metrics and

Models in Software Quality Engineering. Addison-Wesley (2003)

13. Babsiya, J. and Davis, C.G.: A Hierarchical Model for Object Oriented Design Quality

Assessment, IEEE Transactions on Software Engineering, 28(1), 4-17 (2002)

14. Briand L., Wust, J.: Modeling Development Effort in Object Oriented System Using

Design Properties. IEEE Transactions on Software Engineering, 27(11), 963-986 (2001)

15. Kim,K., Shin,Y., and Wu,C. : Complexity Measures for Object-Oriented Program Based

on the Entropy. In: Proc. Asia Pacific Software Engineering , pp. 127–136 (1995)

16. Kim, J., and Lerch, J.F.: Cognitive Processes in Logical Design: Comparing Object-

Oriented and Traditional Functional Decomposition Software Methodologies. Carnegie

Mellon University, Graduate School of Industrial Administration, Working Paper (1991).

17. Olague, H.M., Etzkorn, L.H., Gholston, S. and Quattlebaum, S.: Empirical Validation of

Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes

Developed Using Highly Iterative or Agile Software Development Processes. IEEE

Transactions on Software Engineering, 33(6), 402-419 (2007)

18. Pfleeger, S.L., Atlee, J.M.: Software Engineering – Theory and Practice. Prentice Hall

(2006)

19. Sommerville, I.: Software Engineering, Addison Wesley (2004)

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(olague%20%20h.%20m.%3cIN%3eau)&valnm=Olague%2C+H.M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20etzkorn%20%20l.%20h.%3cIN%3eau)&valnm=+Etzkorn%2C+L.H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20gholston%20%20s.%3cIN%3eau)&valnm=+Gholston%2C+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20quattlebaum%20%20s.%3cIN%3eau)&valnm=+Quattlebaum%2C+S.&reqloc%20=others&history=yes

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

20. Wang Y., Shao, J.: A New Measure of Software Complexity Based On Cognitive Weights.

Canadian Journal of Electrical and Computer Engineering, 28, 69-74 (2003)

Appendix: Classes for the Case Study

#include <iostream.h>

/*****************CLASS PERSON*******************/

class person {

public:

 char * getName(){return name;}; //WgetName=1

 char * getBirthDate() {return birthDate;}; //WgetBirthDate=1

protected:

 char * name;

 char * birthDate;};

/*****************CLASS EMPLOYEE*******************/

class employee : public person

{

public:

 int getSalary(){return salary;}; //WgetSalary=1

 char * getSSN(){return SSN;}; //WgetSSN=1

protected:

 int salary;

 char * SSN;};

/*****************CLASS STUDENT*******************/

class student : public person

{

public:

 char * getMajorDept(){return majorDept;}; //WgetMajorDept=1

protected:

 char * majorDept;};

/*****************CLASS STAFF*******************/

class staff: public employee

{

public:

 staff(char * tname, char * tSSN, char * tbirthDate,

 int tsalary, char * tposition, bool tstudent);

 char * getPosition(){return position;}; //WgetPosition=1

 bool isStudent();

protected:

 char * position;

 bool student;};

staff::staff(char * tname, char * tSSN, char * tbirthDate,

 int tsalary, char * tposition, bool tstudent){

 name= tname; //Wstaff=1

 SSN=tSSN;

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

 birthDate=tbirthDate;

 salary=tsalary;

 position=tposition;

 student=tstudent;};

bool staff::isStudent(){ //WisStudent=1+2=3

 if (student==0)

 return false;

 else

 return true;};

/*****************CLASS FACULTY *******************/

class faculty: public employee

{

public:

 faculty(char * tname, char * tSSN, char * tbirthDate,

 int tsalary, char * trank);

 char * getRank(){return rank;}; //WgetRank=1

protected:

 char * rank;};

faculty::faculty(char * tname, char * tSSN, char * tbirthDate,

 int tsalary, char * trank){ //Wfaculty=1

 name= tname;

 SSN=tSSN;

 birthDate=tbirthDate;

 salary=tsalary;

 rank=trank; };

/*****************CLASS ASSISTANT *******************/

class assistant: public employee

{

public:

 assistant(char * tname, char * tSSN, char * tbirthDate,

 int tsalary, short type);

 char * getType();

protected:

 short type;};

assistant::assistant(char * tname, char * tSSN,

 char * tbirthDate, int tsalary, short ttype){

 name= tname; //Wassistant=1

 SSN=tSSN;

 birthDate=tbirthDate;

 salary=tsalary;

 type=ttype; };

char * assistant::getType(){ //WgetType=1+2=3

 if (type==1)

 return("Research assistant");

 else

 return("Teaching assistant");

 };

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

/*****************CLASS GRADUATE *******************/

class graduate: public student

{

public:

 graduate(char * tname, char * tbirthDate, char * tmajorDept,

 char * tdegreeProgram);

 char * getDegreeProgram(){return degreeProgram;};

 //WdegreeProgram=1

 bool isStaff(staff * s);

protected:

 char * degreeProgram;};

graduate::graduate(char * tname, char * tbirthDate,

 char * tmajorDept, char * tdegreeProgram){ //Wgraduate=1

 name= tname;

 birthDate=tbirthDate;

 majorDept=tmajorDept;

 degreeProgram=tdegreeProgram; };

bool graduate::isStaff(staff * s){ //WisStaff=1+2((2+3)+2)=15

 if (strcmp(name,s->getName())==0){

 bool result=s->isStudent();

 if (result)

 cout<<"This graduate student is an

employee"<<'\n';

 else

 cout<<"This graduate student is not an

employee"<<'\n';

 return(1);}

 else

 return(0);};

/*****************CLASS UNDERGRADUATE *******************/

class undergraduate: public student

{

public:

 undergraduate(char * tname, char * tbirthDate,

 char * tmajorDept, short tclass, char * courses[6]);

 short getClass(){return sclass;}; //WgetClass1=1

 short isTakenCourse(char * course);

protected:

 short sclass;

 char * courses [6];};

undergraduate::undergraduate(char * tname, char * tbirthDate,

 char * tmajorDept, short tclass, char * tcourses[6]){

 name= tname; //Wundergraduate=1+3=4

 birthDate=tbirthDate;

 majorDept=tmajorDept;

 sclass=tclass;

 for (int i=0;i<6;i++)

 courses[i]= tcourses[i];};

This is a preprint of the article: "S. Misra, M. Koyuncu, M. Crasso, C. Mateos and A. Zunino: "A Suite of Cognitive Complexity Metrics". Lecture Notes in
Computer Science (3th International Workshop on Software Quality - ICCSA 2012). Vol. 7336, pp. 234-247. Springer-Verlag. 2012. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-31128-4_17

short undergraduate::isTakenCourse(char * tcourse){

 for (int i=0;i<6;i++){ //WisTakenCourse=1+3*2=7

 if (strcmp(tcourse,courses[i])==0)

 return true;

 }

 return false;};

/* ===================Main Program=================*/

int main ()

{

 char * courses[6];

 courses[0]="Database";

 courses[1]="OS";

 courses[2]="Programming in C";

 courses[3]="Networking";

 courses[4]="Data Structure";

 courses[5]="";

 staff * staff1 = new staff ("Aysegul Ozeke", "123456789",

 "10/05/1964", 1000, "secratery", 1);

 faculty * faculty1 = new faculty("Murat Koyuncu",

 "987654321", "10/04/1964", 4000, "Yardımcı Doçent");

 assistant * assistant1 = new assistant("Seda Camalan",

 "9876789", "10/04/1992", 1500, 2);

 graduate * graduate1 = new graduate("Aysegul Ozeke",

 "10/04/1995", "Computer", "Networking");

 undergraduate * undergraduate1 = new undergraduate("Can

 Kara", "10/04/1994", "Computer", 3, courses);

 cout<<staff1->getName()<<staff1->getSalary()<<'\n';

 cout<<faculty1->getName()<<faculty1->getSalary()<<'\n';

 cout<<assistant1->getName()<<assistant1->getType()<<'\n';

 cout<<graduate1->getName()<<graduate1->

 getDegreeProgram()<<graduate1->isStaff(staff1)<<'\n';

 cout<<undergraduate1->getName()<<undergraduate1->

 getClass()<<'\n';

 cout<<undergraduate1->isTakenCourse("Database")<<'\n';

}

