
This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2013; 00:1–26
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A tool to improve code-first Web Services discoverability through
text mining techniques

Cristian Mateos∗, Juan Manuel Rodriguez, Alejandro Zunino

ISISTAN Research Institute - UNICEN University
Tandil (B7001BBO), Buenos Aires, Argentina.
Tel./Fax: +54 (249) 443-9682 ext. 35/443-9681

Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

SUMMARY

Service-oriented development is challenging mainly because Web Service developers tend to disregard the
importance of the exposed service APIs, which are specified using WSDL documents. Methodologically,
WSDL documents can either be manually generated, or inferred from service implementations using WSDL
generation tools. The latter option, called code-first, is the most used approach in the industry. However, it
is known that there are some bad practices in service implementations or defects in WSDL generation tools
that may cause WSDL documents to present WSDL anti-patterns, which in turn compromise the chances
of documents of being discovered and understood. In this paper, we present a software tool that assists
developers in obtaining WSDL documents with as few WSDL anti-patterns as possible. The tool combines
text mining and meta-programming techniques to process service implementations, and is developed as
an Eclipse plug-in. An evaluation of the tool by using a data-set of real service implementations in terms of
anti-pattern avoidance accuracy, and discovery performance by using classical Information Retrieval metrics
–Precision-at-n, Recall and Normalized Discounted Cumulative Gain– is also reported. Copyright c⃝ 2013
John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: WEB SERVICES; CODE-FIRST; WSDL ANTI-PATTERNS; AUTOMATIC DETEC-
TION; SERVICE DISCOVERY

1. INTRODUCTION

Web Services is the common technological choice for materializing the Service-Oriented
Computing (SOC) paradigm [1, 2]. Basically, Web Services enable service providers to implement
their services using well-known interoperable Web protocols, such as HTTP or SOAP. In this
context, services are offered using sets of atomic operations that are described using the Web Service
Description Language (WSDL), which is an XML dialect. Hence, service consumers do not need to
know service implementation details because knowing the WSDL document associated to a service
is in principle enough for using this latter. In addition, WSDL documents are useful for indexing
services in registries so that service consumers can look for the services they need.

Unfortunately, it has been shown in practice that publicly available WSDL documents are usually
difficult to understand, and they do not contain useful pieces of information (e.g., ambiguous names)
making Web Service registries ineffective [3]. As a result of this, Web Services in open environments
are not as wide-spread as expected. Firstly, service consumers have the difficult task of finding the
Web Services they need. Secondly, once a service consumer has found a suitable Web Service, they

∗Correspondence to: Cristian Mateos, cmateos@conicet.gov.ar

Copyright c⃝ 2013 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

2 MATEOS ET AL.

have to reason about its functionality in order to use it just by inspecting the associated WSDL
document.

For the process of discovering and understanding Web Services from their WSDL documents
to be effective, service providers must provide meaningful WSDL documents upon developing
services [3]. For the case of contract-first Web Services, in which WSDL documents are manually
developed before service implementation, by considering a catalog of bad WSDL practices
–i.e., WSDL anti-patterns– the discoverability and understandability of WSDL documents is
greatly improved [4]. In short, these anti-patterns represent bad practices when specifying WSDL
documents, and relate to the way port-types, operations and messages are structured and specified.
The eight anti-patterns considered in this paper are classified into three categories of WSDL bad
practices: high-level service interface specification (Enclosed data model, Redundant port-types,
Redundant data models and Low cohesive operations in the same port-type anti-patterns), comments
and identifiers (Inappropriate or lacking comments and Ambiguous names anti-patterns) and service
message exchange (Whatever types and Undercover fault information within standard messages
anti-patterns).

The most popular approach to build Web Services in the industry is code-first. With this approach,
developers first implement a service and then generate the corresponding WSDL by automatically
extracting and deriving the interface from the implemented code. This means that WSDL documents
are not directly created by developers but are instead automatically derived via language-dependent
tools such as Axis’ Java2WSDL†. Precisely, bad coding practices and defects in generation tools
may cause WSDL documents from having WSDL anti-patterns, and hence less discoverable and
understandable WSDL documents are produced. With this in mind, the definition and development
of an approach and tool support for avoiding anti-patterns for the case of code-first Web Services
is the motivation of the present work. Our approach consists on detecting issues or bad coding
practices in the service code and generation defects that might otherwise map to problematic WSDL
documents under existing tools. Due to its high popularity in back-end development, and to limit
the scope of our research, we focus our discussion on Web Services implemented in Java.

In addition to the techniques for detecting the bad coding practices, we also briefly present
an Eclipse plug-in called Anti-pattern Free Java2WSDL (AF-Java2WSDL) that implements the
techniques. As a result, these techniques can be easily and readily integrated into real-life code-first
Web Service development. The plug-in analyses Web Service source code, detects possible issues
and suggests suitable refactorings to remove them. Furthermore, the plug-in uses its own WSDL
generation tool, which avoid anti-patterns –e.g., Redundant port-types– that strictly depend on the
way service implementations are mapped to WSDL documents.

The sets of experiments performed to evaluate our approach were twofold. First, since some
of the studied WSDL anti-patterns are inherently subjective, we evaluated and compared the
accuracy levels achieved by our techniques to automatically spotting bad coding practices in service
implementations –that in turn may cause anti-patterns– with respect to manual WSDL anti-pattern
detection. To this end, a data-set of 60 real service implementations comprising 430 operations was
used. Second, we compared the discoverability of WSDL documents generated via our tool and
Java2WSDL, the most popular WSDL generation tool for Java. In this case, we employed classical
Information Retrieval metrics, particularly Precision-at-n, Recall and Normalized Discounted
Cumulative Gain (NDCG). Our discovery experiments showed that WSDL documents generated
using AF-Java2WSDL outperforms those derived via Java2WSDL, especially in terms of Precision-
at-n and NDCG.

The rest of the paper is organized as follows. Firstly, Section 2 discusses related work for
improving WSDL document understandability and discoverability. Then, Section 3 presents our
approach for improving WSDL documents understandability and discoverability in the context
of code-first Web Services. Section 4 briefly describes the Eclipse plug-in that materializes our
approach. Section 5 presents the experimental evaluation. Finally, Section 6 concludes the paper
and presents prospective future works.

†Java2WSDL, http://ws.apache.org/axis/java/user-guide.html#Java2WSDLBuildingWSDLFromJava

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 3

2. BACKGROUND AND RELATED WORKS

Web Service technology is a rather complex amalgam of well-known Internet technologies,
designed to expose software in order to be consumed by other software. Therefore, developing Web
Services without automatic assistance might be a difficult error-prone task that requires developers
to have a deep knowledge of Web standard protocols and languages. To overtake these issues, there
are tools to assist Web Service development in the most common platforms, such as Java or .Net. For
instance, Axis2‡ is a WSDL generation tool for Java and the Web Services Description Language
Tool (WSDL.exe)§ is the out-of-the-box tool for Web Service development in .Net [5]. This type
of development tools have been described as essential for encouraging developers to adopt new
technologies and methodologies [6].

Despite being useful, these tools do not take into account the whole Web Service development
process. This might result in some issues when mapping a system specification, which are critical for
enterprise system development [7], into Web Services. In [8], the authors propose a methodology
to implement Web Services that might use other Web Services from the intended system Unified
Modeling Language (UML) specification. Basically, the methodology consists in five steps. The first
one is specifying a system using UML. Then, the second step is discovering which Web Services
might replace some of the functionality defined in this first specification. As a result, the developer
would obtain an analogous UML-like specification that considers the discovered Web Services.
The third step consists in mapping this specification into the system implementation, being this
latter automatically obtained from the UML-like specification, and developers must implement the
missing logic. The forth step is to generate the WSDL documents for the new Web Services, i.e., the
services offered by the new system. Finally, the fifth step is to publish the new WSDL documents
in a service registry. It is worth noting that most of the steps, such as discovering Web Services,
mapping UML specifications into the system skeleton and WSDL documents [9], and publishing
the resulting Web Services, can be accomplished by means of automatic or semi-automatic tools.
In [10], the authors propose a similar methodology, but they use the Business Process Execution
Language (BPEL) to describe the service composition scheme, which is a language defined for such
purpose.

To ease the development of successful service-oriented systems, several domain specific tools and
frameworks have been proposed. For instance, there are frameworks for developing Web Service
based systems for digital libraries [11], negotiation process management in business-to-business
contexts [12], biological research [13], and e-Government systems [14], to name a few. In addition
to domain specific problems, all these works address at least one of two problems: Web Service
replaceability (i.e., the step two in [8]) and Web Service discoverability. In [12, 11, 14], these
problems are addressed by means of defining homogeneous interfaces. The problem of this approach
is that all the providers of that kind of systems must agree on using that interface, which in the long-
term might difficult adding new features. However, the authors of [13] have acknowledged that Web
Services are implemented by different providers that have no agreement on how the Web Service
interface should be defined. As a result, the authors have pointed out that Web Services in the
biological domain are difficult to discover and use mainly due to their sheer number, the fact that
they are distributed, and the low quality of their documentation. Therefore, they propose a catalog
for assisting the use of Web Services in this particular domain.

The difficulty of discovering and replacing Web Services is not inherent to a particular domain,
but to the Web Services themselves. Previous to Baghat et al. [13], different authors [15, 16, 17, 18,
19] have detected this issue in Web Services. To solve this issue, different researchers [15, 16, 19,
20, 21, 22, 23] have proposed Web Service registries. Basically, this kind of tools can be divided
into two types [22]: registries for regular Web Services and registries for Semantic Web Services.
The latter are Web Services that have been annotated with semantic information from an ontology.
Although this kind of semantic Web Services can be easily discovered, they are rather uncommon

‡Axis2: http://axis.apache.org/axis2/java/core/
§Web Services Description Language Tool: http://msdn.microsoft.com/en-us/library/7h3ystb6(v=vs.80).aspx

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

4 MATEOS ET AL.

in real life applications because they are difficult to specify. One the other hand, regular (a.k.a.
syntactic) Web Services are easier to specify, but as stated at the beginning of this paper they suffer
when bad WSDL specification practices are followed, making it difficult to discover and consume
these kind of Web Services [17, 13, 3, 4].

Table I. Catalog of Web Service discoverability anti-patterns

Anti-pattern Symptoms Manifestation

Enclosed data
model

Occurs when the type definitions are placed
in WSDL documents rather than in separate

XSD ones.
Evident

Redundant
port-types

Occurs when several port-types offer the
same set of operations. Evident

Redundant data
models

Occurs when many types for representing
the same objects of the problem domain

coexist in a WSDL document.
Evident

Whatever types Occurs when a type represents any object of
the domain. Evident

Inappropriate or
lacking comments

Occurs when (1) a WSDL document has no
comments, or (2) comments are

inappropriate and not explanatory.

(1) Evident, or
(2) Not

immediately
apparent

Low cohesive
operations in the
same port-type

Occurs when port-types have weak semantic
cohesion.

Not immediately
apparent

Ambiguous names
Occurs when ambiguous or meaningless

names are used for denoting the main
elements of a WSDL document.

Not immediately
apparent

Undercover fault
information within
standard messages

Occurs when output messages are used to
notify service errors. Sometimes (1)

whatever types are returned and operation
comments suggest anti-pattern occurrence.

Otherwise (2) it is necessary to analyze
service implementation.

(1) Not
immediately
apparent, or

(2) Present in
service

implementation

Moreover, these bad practices or issues in regular Web Service discoverability mainly stem
from the quality of the provided WSDL documents [18, 3]. In a broad sense, evaluating code
quality has been always a major concern for software developers [24]. To evaluate Web Service
discoverability, which is a quality factor, [4] presents a catalog of WSDL anti-patterns. These anti-
patterns subsume previously identified Web Service issues, such as name issues [18] and data-
type definition issues [25, 26], as well as define new ones. Web Services with anti-patterns usually
have less relevant terms making a Web Service registry index ineffective. In addition, using Web
Services affected by anti-patterns is difficult because they might have unclear documentation and
unrepresentative names. This catalog describes eight common anti-patterns, which are summarized
in Table I, and affect Web Service discoverability. Furthermore, [27] shows the importance of taking
into account these anti-patterns during real-life SOC development for a large enterprise.

Taking into account these anti-patterns, the authors have proposed several methodologies for
developing Web Services. Firstly, the authors propose several algorithms and heuristics for
automatically detecting some of the anti-patterns presented in [4]. These algorithms and heuristics,
from now on called “anti-pattern detectors”, are designed for analyzing WSDL documents. In [28],

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 5

these algorithms were extended to support all the anti-patterns and to improve the performance
of the previously defined heuristics. This work is suitable for assisting contract-first Web Service
development, which requires writing the WSDL document first and then implementing the Web
Service logic. Despite the benefits of these heuristics for developing Web Services, code-first Web
Service development is the usual way of implementing Web Services in the industry, which means
that developers do not manually write the WSDL documents. Yet, these detectors might be useful to
assess automatically generated WSDL documents from the point of view of the heuristics they rely
on.

The mentioned heuristics were integrated into an Eclipse plug-in to assist developers in following
different guidelines for developing, publishing, discovering and consuming Web Services [29]. The
main advantage of this tool over the other previously mentioned is that it was designed to assist
traditional developers to consume and provide Web Services without the need to specify the system
using any extra modeling language. In addition to assisting Web Service development by means
of the heuristics, this tool assists developers that need to use Web Services for implementing their
systems. To do this, the tool is integrated with the Web Service Query By Example (WSQBE)
service registry [19]. When using WSQBE, developers do not explicitly write a query to discover
services, but instead they define an expected service interface using Java interfaces. Then, the
registry generates a query automatically and returns a list of candidate Web Services. The other
major feature of this tool is a component that semi-automatically creates the glue code between the
selected Web Service and the expected interface. The main advantage of using this glue code is that
the system is independent of the used Web Service, and if in the future the developer decides to
replace the Web Service to consume, he/she only needs to regenerate the glue code. According to
the authors, the generated glue code only adds a small performance overhead when calling services.

Regarding code-first Web Service development, a recent study [30] has pointed out that there
are statistical correlations between some classical OO source code quality metrics –mainly those
from the Chidamber and Kemerer’s catalog such as Abstract Type Count and Coupling Between
Objects– and the presence of anti-patterns in generated WSDL documents. Therefore, applying
refactorings to improve these metrics might result in better quality WSDL documents. However,
this might not be always the case because some of the relevant correlations (p− value < 0.05)
are as low as 0.6. Therefore, this indirect approach to anti-pattern removal does not cover all anti-
patterns effectively. Another limitation of the approach is that these refactorings focus on modifying
structural aspects of service codes only, such as changing POJOs by primitive data-types and
viceversa, splitting a service into several smaller services, adding/removing parameters, and so on.
However, these refactorings do not cover certain service coding bad practices that lead to textual
(but not necessarily structural) discoverability and understandability problems in generated WSDL
documents. Examples are absence or inappropriate documentation and meaningless/ambiguous
parameter and method names.

Finally, [31] proposes a tool for assisting the migration of COBOL legacy systems to Web Service
technologies minimizing the impact of the WSDL anti-patterns in the resulting Web Services. In this
context, this tool might be considered as a code-first tool because it takes as input the implementation
and helps the developer to migrate it to SOA. However, the goal of this tool is to assist developers to
modify the glue code that exposes a COBOL program as a Web Service rather than generating that
glue code as Web Services. To perform this task, the tool relies on standard tools, such as Axis2 or
WDSL.exe.

This paper analyses the possibility of adapting some of the techniques initially presented in [32],
as well as presenting new ones, for detecting possible issues in the Web Service source code that
could be mapped into anti-patterns in the generated WSDL document. In addition, we present an
anti-pattern aware technique for mapping the resulting service logic code into the WSDL document
that describes the implemented service. Compared to [30], our approach attempts to cover more
WSDL anti-patterns, whereas as opposed to [29], we target code-first (and not contract-first) Web
Services.

The novelty of this work is that, unlike [32, 29, 28], this approach is designed for code-first
Web Service development, and specifically addresses anti-pattern root causes, which is not the case

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

6 MATEOS ET AL.

in previous work [30]. In this context, it is worth noticing that [32, 29, 28] detect anti-patterns
by inspecting WSDL documents only, while the proposed approach detects coding practices in
Java that could be mapped into WSDL discovery anti-patterns when Java code is mapped into
WSDL documents by means of WSDL generation tools. This practice is precisely promoted by
code-first. Although thoughtfully designed contract-first WSDL documents have been proven to be
affected by less anti-patterns than code-first WSDL documents, even when using anti-pattern aware
tools [31], code-first Web Service development is widely used because is cheaper and provide faster
time to market [27]. In addition, developing contract-first Web Services requires experts to write
WSDL documents, instead of generating them automatically. Therefore, our approach does not
aim at generating anti-pattern free WSDL documents, but at achieving a balance between WSDL
document quality and the benefits of code-first Web Service development in terms of faster service
construction times.

3. THE ANTI-PATTERN FREE JAVA2WSDL (AF-JAVA2WSDL) TOOL

Basically, code-first Web Service development consists in writing the logic of a Web Service in a
programming language and then using tools for generating the WSDL documents, which expose this
logic as Web Services. A previous work [30] suggests that code-first Web Service implementations
affect the quality of the resulting Web Services in terms of WSDL anti-pattern occurrences.
Moreover, in code-first Web Services, the anti-patterns might stem from two non mutually exclusive
sources: the service implementation or the WSDL document generation tool. For instance, if there
are no comments in a service implementation, the WSDL generation tool has no comments to place
in the generated WSDL document (i.e., implementation flaws). In contrast, defining a port-type
more than once is a result of how the WSDL document is generated (i.e., WSDL generation tool
defects). Therefore, our approach consists in assisting code-first Web Service developers to write
good quality service code and then to correctly map this latter into WSDL documents to prevent the
introduction of as many anti-patterns as possible.

Basically, the first part of our approach focuses on removing the anti-patterns that arise from
bad service implementation practices. These anti-patterns are Inappropriate or lacking comments,
Ambiguous names, Low cohesive operations in the same port-type, Whatever types and Undercover
fault information within standard messages. Essentially, our approach consists in analyzing the
classes that will be exposed as services looking for possible issues that could translate into WSDL
anti-patterns. In order to perform the analysis, detection heuristics, or detectors for short, have been
designed for each one of these anti-pattern. These detectors are explained in detail in Section 3.1.

The second part consists in correctly mapping the classes that are to be exposed as Web Services
into good WSDL documents. This is done through a mapper component that takes into account all
the names and comments that the developer places in the source code of the service implementation.
In addition, the mapper was designed to avoid WSDL generation related anti-patterns, such as the
Enclosed data model anti-pattern or the Redundant port-types anti-pattern. Lastly, the mapper also
minimizes the number of repeated types (i.e., the Redundant data models anti-pattern) and correctly
using the WSDL fault mechanism. All in all, the mapper deals with potential anti-patterns that are
not caused by bad service coding practices, but defects in current WSDL generation tools. This
mapper is explained in Section 3.2.

3.1. Anti-pattern detection heuristics (detectors)

As suggested earlier, the detectors represent a set of heuristics that analyzes source code to spot
potential WSDL anti-patterns causes. The following paragraphs explain the mechanics associated
to the detectors of each anti-pattern.

To avoid the Inappropriate or lacking comments anti-pattern, the detector firstly verifies that all
methods in the exposing class have comments, and when some method lacks comments a problem
is informed to the developer. Then, the detector analyses the existing comments and compares them
with the method name and method parameter names. To do this, our detector firstly creates a phrase

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 7

joining the method name with the parameter names, which are separated by commas, using the
“with” word. To obtain individual words, a simple word splitting technique is used, which assumes
camel casing as the input format. For instance, for the method setStockValue that receives stockName
and newValue as parameters the resulting phrase is “set stock value with stock name, new value”.
Then, this sentence is compared with the first sentence of the comments. Notice that camel casing
is the de facto coding standard in Java, and thus this assumption is valid.

To compare two phrases, the detector generates two trees that represent each phrase semantics.
The first step determines whether each word in the phrase is a verb or a noun, which is done using
a probabilistic context free grammar (PCFG) parser [33]. Then, hypernyms for each word in its
noun/verb role are extracted from WordNet [34]. This is done to prone cases in which a word might
be a verb or a noun, e.g., “fax” or “mail”. As a result, each word has one or several hypernyms which
indicates what they are in a taxonomy. For instance, “mail” as verb might have several meanings,
one of them is that mail is a conveyance, transport which is a instrumentality, instrumentation
and so on to finally be an entity. The detector uses these hypermyns to create the tree that represents
the phrase. Firstly, it creates a tree with an artificial root and iteratively adds the hypermyns to that
tree. Algorithm 1 shows the detailed steps for adding hypernyms. Then, the similitude between two

Algorithm 1 Hypernym addition to a tree.
1: procedure ADDHYPERNYMS(tree,hypernymList)
2: if ISEMPTY(hypernymList) then
3: RETURN()
4: end if
5: child← hypernymList. f irst
6: if ISNOTCHILDOF(child, tree) then
7: newChild← CREATENODE(child)
8: ADDNEWNODE(tree,newChild)
9: end if

10: nextTree← GETEQUALNODE(tree,child)
11: COMBINETREE(nextTree,hypernymList.rest)
12: end procedure

trees is calculated as follows:
sim(tree1, tree2) =

depth(deepestShareSubTree(tree1,tree2)
max(depth(tree1,tree2))

According to our preliminary analysis, a similitude higher than 10% is enough to assure that the
comments and its operations are related [28].

For detecting Ambiguous names anti-pattern causes, the detector follows a three-step heuristic.
Firstly, it verifies whether the names of classes, attributes and method arguments have an appropriate
length, which should fall between 3 and 30 characters [4]. Then, it verifies that the names do not
use unrepresentative names, namely param, arg, var, obj, object, foo, input, output, in#, out# and
str#, where # might be replaced by a number or nothing. Then, the third step varies for methods
and parameters names. For methods names, the heuristic add at the beginning of it the string “it
must” and then it applies the PCFG parser to determine whether the resulting string has a verb
and a non-pronoun noun. This is because a method name should have the form “verb+noun”. The
detector analyses this sentence word by word and not the whole sentence because the parser tends
to misclassify nouns for verbs when the sentence is malformed. Finally, if the name under analysis
belongs to a method, it applies the PCFG parser to the whole name to check whether it is a noun or
a phrase.

The detectors for the causes of both Inappropriate or lacking comments anti-pattern and
Ambiguous names anti-pattern are fairly similar to the heuristic proposed for detecting these anti-
patterns in WSDL documents in [28]. This is because the problem is very similar and only adaptation
from WSDL to Java language were required to implement them.

To detect the Low cohesive operations in the same port-type anti-pattern causes, the detector
creates an undirected graph that represents the relations of a service methods [35]. Unlike the two

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

8 MATEOS ET AL.

public class Parking{

 public void parkCar(Car c, Location l){…}

 public Location locateCar(String license){…}

 public long elapsedHours(Date a, Date b){…}

}

public class Car{

 String owner;

 String license;

 …

}

public class Location{

 int floor;

 int place;

 …

}

parkCar locateCar elapsedHours

Car Location
String:license

String:owner

Date:a

Date:b

"Car" "Hours"

SERVICE IMPLEMENTATION

Figure 1. Methods relationship graph

previous detectors, this is completely different from the one described in [28] because preexistent
literature suggests that graph based methods are fairly good to measure cohesion in source code
compared to text-only methods [35]. The graph has three kinds of edges:

• Methods: this kind of edges represents the methods of the class to be analyzed.
• Types: these edges are the types used by the methods and all referenced types. However,

primitive types and types too generic, such as java.lang.Object or java.lang.String in Java, are
complemented with the variable name because they are common to many languages. In the
case of Java, types are considered as too generic if they belong to the packages java.lang.* or
java.utils.*.
• The singular nouns in the methods name: these edges are the singular form of the nouns,

which are detected using the PCFG parser, in the methods names.

On the other hand, the arcs on the graph represent one or more of the following relationships:

• has an attribute of the type: this is a relationship between two types. It represents a type having
an attribute of another type. This arises as a consequence of XSD reuse constructs.
• receives as parameter: this relationship represents a method that receives as input a particular

type.
• returns: this relationship represents a method that returns a particular type.
• parametrized with: this relationship exists when a type is parametrized with another type. It

also represents relationships through ignored types, such as arrays or maps.
• has the noun: this relationship exists between a method and all the nouns in its name.

Once the graph including the methods of a port-type has been generated, the detector determined
whether the graph is connected or not. Otherwise, the detector selects the largest connected subgraph
and reports the methods that have no edges in that subgraph as uncohesive. For instance, Figure 1
depicts a class implementation with three methods: two for parking lot management and one for

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 9

determining the difference between two dates, namely elapsedHours. In this example, the latter
method is detected as unrelated to the service that the Parking class implements because it is not
connected to the largest subgraph.

To detect possible Whatever types anti-pattern causes, the detector uses a list of classes that
are known to be too generic [36]. When a method uses one of these classes, the detector
informs that there is an issue. The classes considered too generic are Object, Vector, List, Map,
Collection, Enumeration, Vector<Object>, List<Object>, Map<Object, Object>, Collection<Object>
and Enumeration<Object>. All these classes belong to java.lang.* or java.utils.*.

Finally, detecting the Undercover fault information within standard messages anti-pattern causes
involves analyzing the structure of a method output. Firstly, the detector verifies whether a method
has exceptions defined. If this is not the case, the detector analyses the output class field names
looking for the following keywords: “ping”, “error”, “errors”, “fault”, “faults”, “fail”, “fails”,
“exception”, “exceptions”, “overflow”, “mistake”, “misplay”. These names often indicate that the
output conveys error information that should be returned using an exception instead of placing the
information in the return value [4].

This two last anti-pattern cause detectors are similar to the ones presented in [28] since both
use syntactic analysis to detect potential issues. However, the structures that they compare are very
different because manifestation of these issues in Java is very different from their manifestation
in WSDL. For instance, the tag <any> is the manifestation of the Whatever-types anti-patterns in
WSDL documents, but in Java, the cause of this anti-pattern can be the use of the class Object
or not using generics when available, e.g., using List instead of List<Clazz> [36]. Something
similar happens with the Undercover fault information within standard messages anti-pattern. This
is because when detecting the anti-pattern in WSDL documents, the detector uses the presence of
fault messages in an operation to rule out the anti-pattern. Alternatively, when analyzing the anti-
pattern cause in Java, the detector rules this out by checking whether a method declares that it might
throw an Exception.

Notice that this part of the approach cannot tackle all the existing anti-patterns. For example, if the
WSDL document generation tool disregards the comments in the source code, the generated WSDL
documents would be affected by the Inappropriate or lacking of comments anti-pattern regardless
the class was commented or not. Then, it is necessary to use a tool that follows WSDL documents
good practices, such as the one described in the following section, to complement the detectors.

3.2. The Java to WSDL custom mapper

We have developed a Java to WSDL mapper that receives as input a Web Service implementation
and returns the WSDL document that describes it and an XSD file which defines the required types.
Basically, the Web Service implementation can be a Java interface with one or more realizing
classes, or a Java class that defines both the interface and the behavior. Currently, our generation
tool only maps the abstract part of the WSDL document (i.e., it ignores the binding and service
tags), but it can be easily extended to generate WSDL documents ready to be deployed.

The mapper creates a WSDL document that exposes the Java Interface/Class, or for brevity sake,
class from now on. Firstly, the mapping defines a port-type for the class that would be exposed as a
Web Service. Since only one port-type is defined per class, there is no possibility that the mapping
process generates a WSDL document affected by the Redundant port-types anti-pattern. Then, the
mapper creates an operation for each public method of the input class. The mapper comments
and names each operation with the comments and the name associated to the mapped method.
When several methods share the same name, the tool renames the operation with the method name
concatenated to a number since WSDL does not support method overloading.

For each mapped method, the mapper defines an input and an output message. In addition, the
mapper generates as many fault messages as exceptions that might be thrown by the method. The
mapper assumes that the class methods’ inputs and outputs are Plain Old Java Objects (POJOs) that
only have properties accessible through getters/setters. This is because operation inputs and outputs
are expected to convey data, but not behavior. In contrast, method faults are expected to extend from
java.lang.Exception, which is the mechanism provided by Java to raise a fault. In both cases, the

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

10 MATEOS ET AL.

generation tool creates the XSD file by generating XSD complex types to represent the classes, and
adding recursively the required types to express all the necessary classes. The recursion ends when
the generation tool finds a primitive type, such as int, double or float, or a class which maps to an
XSD built-in type, such as java.lang.String, java.util.List or java.util.Map. Notice that complex types
are named after the class they represent and each of its properties are named after the attribute or
field they map to.

Inputs and outputs classes are mapped into XSD types to prevent the generation of redundant
data-types, i.e., the Redundant data models anti-pattern. This is because it is assumed that the input
and output of each operations are represented by POJOs, and in a good object-oriented design there
should not be two POJO classes with the same information. However, if the input/output classes are
not POJOs, there might be redundant data-types. For instance, when a class inherits from another
class, it might not add new attributes to the class, but behavior. Since operations in Web Services
only receive and return data as input/output, the two classes would be mapped into two XSD types
with the same attributes. However, it is of no use using inheritance to add or modify in classes that
are intended as input/output in Web Services’ operations.

To illustrate the WSDL document generation process, let us consider the construction of a service
that returns the forecast for a city in a particular country. Firstly, the developer should implement
the service (we are ignoring here the step that checks the source code for implementation flaws).
The following codes are fragments of the service implementation:

/ / I n p u t C l a s s
p u b l i c c l a s s C i t y I n f o {

p r i v a t e S t r i n g ci tyName ;
p r i v a t e S t r i n g p r o v i n c e ;
/ / G e t t e r s and S e t t e r s
. . . .

}
/ / Ou tpu t C l a s s
p u b l i c c l a s s F o r e c a s t I n f o {

p r i v a t e double t e m p e r a t u r e ;
p r i v a t e double r e l a t i v e H u m i d i t y ;
/ / more da ta
. . . .
/ / G e t t e r s and S e t t e r s
. . . .

}
/ / S e r v i c e I m p l e m e n t a t i o n
p u b l i c c l a s s F o r e c a s t {

/∗ ∗
∗ R e t u r n s t h e f o r e c a s t i n f o r m a t i o n f o r t h e day i n a c i t y .
∗ /

p u b l i c F o r e c a s t I n f o g e t W e a t h e r F o r e c a s t (C i t y I n f o p l a c e) {
/ / S e r v i c e l o g i c

}
}

For this code, the generation tool creates the following WSDL document, which has been
simplified for the sake of exemplification. Since the Enclosed data model anti-pattern impact
depends on whether the type will be reused or not, we decided to enclose them in this example.
However, the tool offers the user the possibility of generating them into a separated XSD file.

< d e f i n i t i o n s . . . >
< t y p e s >

< xsd : schema . . . >
< x s d : e l e m e n t name=" g e t W e a t h e r F o r e c a s t R e q u e s t ">

< xsd :complexType >

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 11

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" p l a c e " . . . t y p e =" C i t y I n f o " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
. . .
< xsd :complexType name=" C i t y I n f o ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" ci tyName " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r o v i n c e " t y p e =" x s d : s t r i n g " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

. . .
< / xsd : schema >

< / t y p e s >
<message name=" g e t W e a t h e r F o r e c a s t R e q u e s t ">

< p a r t name=" p a r a m e t e r s " e l e m e n t =" x s d 1 : g e t W e a t h e r F o r e c a s t R e q u e s t " / >
< / message>
. . .
< p o r t T y p e name=" F o r e c a s t ">

< o p e r a t i o n name=" g e t W e a t h e r F o r e c a s t ">
< d o c u m e n t a t i o n > R e t u r n s t h e f o r e c a s t i n f o r m a t i o n f o r t h e day i n a

p a r t i c u l a r c i t y . < / d o c u m e n t a t i o n >
< i n p u t message=" t n s : g e t W e a t h e r F o r e c a s t R e q u e s t " / >
< o u t p u t message=" t n s : g e t W e a t h e r F o r e c a s t R e s p o n s e " / >

< / o p e r a t i o n >
< / p o r t T y p e >

< / d e f i n i t i o n s >

Notice that all the names in the class as well as the comments have been preserved. However,
since the WSDL file defines elements that cannot be directly matched to Java elements, such as
“message”, some unrepresentative names were added. This is the main drawback of our Java to
WSDL mapper. Yet, our mapper as well as several other similar tools, such as Axis Java2WSDL,
try to preserve as much semantic information as possible, which is good for service discovery [4].

4. THE ECLIPSE PLUG-IN

Our detectors and our Java to WSDL mapper have been implemented in the form of a plug-in for
Eclipse, which can be downloaded from the EasySOC project homepage¶. Basically, the plug-in has
two main features: detecting potential issues in the Java code of a Web service and mapping that
code into WSDL documents. Service developers can use both features in two ways: through the
main toolbar or through pop-up menus. To analyze the class currently being edited, developers can
use the button in the toolbar. However, if developers want to analyze more than one class at once,
they should select the classes in the Eclipse Package Explorer, which by default is placed in the left
part of the screen, and click on “Analyze API design” in the pop-up menu. In contrast, the button in
the toolbar as well as the item in the pop-up menu named “Generate WSDL document” only take
into account the Java class that is currently being edited.

The Java code analyzer uses the Abstract Syntactic Tree (AST) API, which is a model of a Java
program in the form of Java classes provided by Eclipse. By working with the AST instead of the
source code, we ensure that the plug-in is compatible with code from different Java versions, e.g,
Java 1.4, Java 5 and Java 6. To facilitate adding new heuristics or modifying the existing ones, we
have defined an interface that receives a Java AST and returns a list of potential discoverability
issues. Then, each heuristic is implemented by extending that interface. Therefore, the rest of the
plug-in code is independent of which heuristics are used and how they are implemented. Figure 2

¶EasySOC: https://sites.google.com/site/easysoc/

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

12 MATEOS ET AL.

Detect issues and generate WSDL document buttons

Service Interface Java Source Code

Detected potential issues

Figure 2. Eclipse plug-in

illustrates how developers can access both features of the plug-in using the toolbar buttons. In
addition, this figure also shows how the plug-in reports possible issues in a class.

Regarding mapping classes to WSDL documents, the plug-in offers three options: Axis2
Java2WSDL, EasyWSDL∥ and naturally our generator (see Section 3.2). If the developer chooses
to use the standard tools, i.e., Axis2 Java2WSDL or EasyWSDL, the plug-in WSDL document
generation wizard collects some parameters used by the tools and then delegates the generation task
to them. Otherwise, the plug-in uses our mapping methodology. The mapping functionality is also
implemented using Eclipse AST. The implementation consists in adding the classes as port-types,
and their methods as operations taking into account their names, comments and input/output/fault
classes. Finally, the classes used as input/output/fault are mapped into XSD types. The developer
can choose whether the XSD types are exported into a different file or embedded in the generated
WSDL document.

Figure 3 depicts the two screens of the WSDL generation wizard. In the first screen, the developer
selects which class to expose as a Web Service and, therefore, that should be mapped to a WSDL
document. In addition, the developer can select which WSDL document generation tool they want
to use and where the file will be generated. This screen also gives the developer the option of
generating the WSDL document or going to the second screen to configure the XSD file generation

∥EasyWSDL: http://easywsdl.ow2.org/

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 13

Figure 3. WSDL document generation wizard
Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

14 MATEOS ET AL.

Detector Analyzed parts Number of parts
Inappropriate or lacking comments All public methods 568
Ambiguous names (method names) English named public

methods
556

Ambiguous names (parameters names) English named parameters of
public methods

986

Low cohesive operations in the same
port-type

All public methods
parameters and return values

508

Whatever types All public methods of
classes/interfaces with more

than one method

1,563

Undercover fault information within
standard messages

All public methods 568

Table II. Detectors: Analyzed parts per service class

parameter. The second screen allows the user to select the namespace of the XSD file, and when
targeting our tool, it allows the developer to select whether to generate the XSD type definitions
within the WSDL document or into a separated file for reusing them.

5. EVALUATION

To evaluate AF-Java2WSDL, we used a Java project data-set that comprises 60 services. This data-
set is a subset of the data-set presented in [30], i.e., the ones that could be fully compiled and
built. An important feature of this data-set is that the services came from real-life projects that
actually implement Web Services or EJBs (Enterprise Java Bean) that were servified. These projects
were gathered from different sources, particularly Google Code, Exemplar [37] and Merobase
(http://merobase.com). Notice that unlike the data-sets used for evaluating our previous anti-
pattern remotion tools [32, 29, 28], the data-sets in this paper do not consist of WSDL documents
only. This is because the former approaches were designed for directly working with the WSDL
documents as contract-first suggests. In contrast, the tool in this work operates at the service
implementation level, which implies that the WSDL documents are not handled directly but
indirectly through modifying source code, as code-first suggests. Finally, the Java project data-set
built was complemented with two WSDL data-sets from the literature [38, 39] to increase the size
of the experiment in terms of the amount of WSDL documents used in the evaluation regarding
discoverability (see Section 5.2).

We performed two separated experiments. The first one was designed to measure the effectiveness
of our detectors for automatically spotting potential discoverability issue causes. This was done
by employing classical confusion matrices. Second, we performed an experiment to assess the
discoverability of the documents generated with AF-Java2WSDL when compared to a well-known
code-first Web Service development tool, namely Java2WSDL, which is part of Apache Axis2
(http://axis.apache.org/axis2/java/core/).

5.1. Anti-pattern detectors accuracy

We have manually analyzed each class that is mapped to a Web Service looking for anti-pattern
causes. To avoid possible biases, the manual analysis was carried out by one final-year System
Engineering student, who had taken the “Service-Oriented Computing” course∗∗ of the Systems
Engineering BSc. program at the UNICEN during 2012. As such, the student had knowledge

∗∗SOC Course UNICEN: http://www.exa.unicen.edu.ar/~cmateos/cos

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 15

Detector Automatic Manual Total
Overall
Accuracy

False
Negative

False
Positive

Negative Positive
Inappropriate or
lacking
comments

Negative 175 0 175 97.53% 0% 3.56%

Positive 14 379 393

Ambiguous
names

Negative 1,456 8 1,464 98.83% 0.55% 12.82%

Positive 10 68 78

Low cohesive
operations in the
same port-type

Negative 430 4 434 96.45% 0.92% 18.91%

Positive 14 60 74

Whatever types Negative 1,499 0 1,499 100% 0% 0%
Positive 0 64 64

Undercover fault
information
within standard
messages

Negative 567 0 567 100% 0% 0%

Positive 0 1 1
Table III. Detectors: confusion matrices

on Service Oriented Computing concepts, code-first Web Service development and WSDL anti-
patterns. It is worth noting that the student did not have knowledge on the internals of our plug-in
nor its detection heuristics, i.e., he/she played the role of a regular (but not expert) plug-in user.

Since different anti-patterns affect different parts in the Java classes, the number of analyzed parts
for each anti-pattern varies. For example, to assess the Inappropriate or lacking comments anti-
pattern causes detector effectiveness, from the data-set, 568 parts were analyzed, but 1,563 parts
were analyzed for detecting the Whatever types anti-pattern causes. Table II shows which parts are
analyzed by each detector and the quantity of them in the employed data-set.

The results from the manual analysis were compared with the results of executing the detection
heuristics in the projects. Using this information, we constructed a confusion matrix for each
detector (two for Inappropriate or lacking comments and Ambiguous names). Table III presents
the different confusion matrices as well as the detection heuristics accuracies, false positive, and
false negative rates. This matrix was filled using the analysis performed by a third party developer
to avoid biases. It is worth noting that the evaluation of the Inappropriate or lacking comments
detector has been divided into two experiments: lacking comments detection and inappropriate
comments detection. Also, the Ambiguous names detector experiment has been divided into two
parts. This is because the heuristics for analyzing method names and parameter names are slightly
different. Therefore, the accuracy of each part of these heuristic might be different from each other.
In consequence, we present an analysis for each of these detectors’ parts in Table IV.

On average, considering only the experiments for the main five detectors (i.e., those from
Table III), the detectors have an accuracy of 98.56% being the worst accuracy 96.45%. In addition,
the average false negative and false positive rates among all gray rows were 0.29% and 8.83%,
respectively. In all the cases, the accuracy was never lower than 96%. Moreover, the false positives
rates were high in some cases, which might mean that the heuristics are too sensitive to some
problems inherent to real-life source code.

Firstly, the detector of Inappropriate or lacking comments presented a 97.53% accuracy with a
low false positive rate. In a further analysis, it can be seen that the accuracy and low false positive
rates are due to the Lacking comments detection heuristic, which worked flawless in the experiment.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

16 MATEOS ET AL.

Detector Automatic Manual Total
Overall
Accuracy

False
Negative

False
Positive

Negative Positive
Lacking
comments

Negative 233 0 233 100% 0% 0%

Positive 0 335 335
Inappropriate
comments

Negative 175 0 175 93.99% 0% 24.13%

Positive 14 44 58

Ambiguous
names (method
names)

Negative 504 4 508 97.66% 0.79% 18.75%

Positive 9 39 48
Ambiguous
names
(parameters
names)

Negative 952 4 956 99.49% 0.42% 3.33%

Positive 1 29 30
Table IV. Detectors’ parts: confusion matrices

Yet, the Inappropriate comments detection heuristic performed somewhat worse (see Table IV).
It had an accuracy of 93.99% and a high rate of false positives. However, a main issue is that
developers tend to not comment classes and interfaces that are intended to be exposed as APIs [40].

In the case of the detector for Ambiguous names, the analysis shows that the effectiveness of this
heuristic is heavily impacted by the performance of the ambiguous method name heuristic. Yet, this
heuristic worked fairly well both for method and argument names (see Table IV). In addition, the
heuristic for analyzing whether a parameter name is ambiguous worked almost flawlessly.

The detector for Low cohesive operations in the same port-type anti-pattern causes consists on
determining if all the methods of a class or interface are related from a functional perspective. The
accuracy of this detector was higher than 96%. However, the false positives are as high as 24.13%,
which means that the developer should decide whether the anti-pattern is actually affecting the
class. On the other hand, the highest false negatives rate is 0.92%, suggesting that the detectors
rarely missed an anti-pattern.

The results for the detector of Whatever types anti-pattern causes were flawless, which stem from
the fact that there are only a few practices for using too generic types/classes. Finally, there were
no cases of the possible root causes of the Undercover fault information within standard messages
anti-pattern. As a result, the evaluation of the detector is not complete because we only can say
that it did not produced false positive results. Yet, the fact that there were no cases means that
the developers, at least in the analyzed data-set, tended to use correctly the Java error handling
mechanism. Therefore, if the WSDL documents generated from this data-set were affected by the
Undercover fault information within standard messages anti-pattern, it the problem would be caused
by the generation tools and not by the developers.

5.2. WSDL discovery performance

We conducted experiments to measure the implications on discovery of early removing anti-patterns
in service implementations and using our mapper to generate WSDL documents. This was done by
performing some refactorings to consider the detections made by AF-Java2WSDL to avoid anti-
patterns, generating associated WSDL documents, and then discovering these documents. The goal
is to analyze whether placing effort on refactoring service implementations, as suggested by AF-
Java2WSDL, could increase the chance of an improved service of being discovered or not.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 17

To do this, we executed the automatic detection heuristics using as input the main service classes
from the above data-set. Then, a developer not having knowledge on the internals of our heuristics
refactored these classes with the help of our plug-in to remove the reported issues. Table V describes
the specific refactoring actions used for each detected issue. Notice that ideally the plug-in should
not detect any issue in the refactored classes. However, in a 4.44% of the cases, the plug-in still
reported Inappropriate or lacking comments due to the detector false positives. In addition, there
were two classes in which their source code was so complex and cryptic that the developer was
unable to completely refactor these service implementations.

Detector Refactoring
Lacking comments Add comments to the method.

Inappropriate Comments Rewrite the comments to make them more descriptive.
Ambiguous Names Replace ambiguous names with non-ambiguous ones.

Low cohesive operations in
the same port-type

Remove uncohesive operations from the class.

Whatever types Replace type java.lang.Object for more specific ones.
Undercover fault information

within standard messages
Modify the return class so as to not conveying error

information and define an exception that might by be
thrown by the method.

Table V. Applied refactorings

Methodologically, the evaluation consisted of three steps. In a first step, a corpus of code-
first WSDL documents were grouped into two groups. One group called “AF-Java2WSDL”
contained those WSDL documents generated after using AF-Java2WSDL to refactor the 60 service
implementations of our data-set and generate their WSDLs with our mapper. Another group had
the original service implementations [30], whose WSDL documents were built by using Axis
Java2WSDL. Second, we supplied a service registry with both groups of WSDL documents.
In addition to these two groups of WSDL documents, four scenarios were derived, each one
additionally populating an extra WSDL data-set into the registry:

• Scenario 1: 393 extra publicly available WSDL documents extracted from the data-set
described in [38], which is well-known in the area,
• Scenario 2: 1,000 extra random WSDL documents extracted from the data-set described

in [39], which comprises 1,664 publicly available WSDL documents in total,
• Scenario 3: 1,664 extra WSDL documents, i.e., the entire data-set described in [39], and
• Scenario 3: 2,057 extra WSDL documents from joining the data-sets in [38] and [39].

Clearly, the purpose of considering these scenarios was to assess discovery performance as the size
of the registry grows.

As a third step, under each scenario, we queried the employed registry using one query per
available service operation in the services of the data-set (i.e., 430 queries). For each query we
analyzed in which position were retrieved either the original or the refactored WSDL documents,
which is formally known as Precision-at-n. Precision-at-n computes precision at different cut-off
points. For example, if the top 5 documents are all relevant to a query and the next 5 are all non-
relevant, we have a precision of 100% at a cut-off of 5 documents but a precision of 50% at a cut-off
of 10 documents. Finally, we averaged the results over the total number of queries.

As the reader could observe, the WSDL documents generated via AF-Java2WSDL were basically
WSDLs whose associated service implementations were first modified to take into account not
some, but all the refactorings suggested by AF-Java2WSDL. The reason behind this decision was
that, even when some anti-patterns affect service discovery more than others, they all impact on
the discoverability of WSDL documents [4]. Besides, in practice, modifying implementations by
considering all the suggestions is not expensive since all of them can be easily performed directly
from the Eclipse IDE.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

18 MATEOS ET AL.

For the experimentation, a publicly available registry implementation of the approach to
service discovery presented in [19] was employed. The registry can be downloaded from
http://sites.google.com/site/easysoc/home/service-registry . This registry exploits
relevant information contained in WSDL documents and, optionally, UDDI entries associated with
a service. Such information is preprocessed using a combination of text mining and machine
learning techniques to remove redundant plus non-relevant data and build a vectorial representation
of each service, respectively. This representation, called Vector Space Model [41], is borrowed
from the Information Retrieval area. With this model, documents are seen as collection of terms,
whereas each dimension of the space corresponds to a separate term (single words). Documents
having similar contents are represented as vectors located near in the space, thus searching related
documents translates into searching nearest neighbors in the space. Discoverers can use any form of
textual based queries, ranging from single keywords to textual descriptions of their needs, to query
the registry. During the discovery process, the registry maps a query onto a vector in the Vector
Space Model, then it returns to the discoverer those services whose vectors are near to the query
vector [19]. This registry returns an ordered list of candidate WSDL documents, sorted according
to how similar to the query the associated services are.

Indeed, there are many discovery registries exploiting the Vector Space Model [22], e.g. (see [15]
for a pioneer work in this line). However, one of the main differences between the registry used in
the experiments and similar alternatives is that the former uses a two-step matching process that
greatly reduces discovery time and it is suitable for distributed environments such as WANs or the
Internet, where the number of services is large. In this way, our aim was to chose a registry offering
a realistic discovery scenario. As an aside, the original anti-pattern paper [4] evaluated the WSDL
anti-patterns impact using different textual Web Services registries, and concluded that the impact of
the anti-patterns is not registry specific. In other words, anti-patterns negatively affect IR registries
alike.

For the sake of fairness we built the queries from the source code of original service
implementations. This assumption is analogous to the Query-By-Example concept presented in [19],
which means that most of the time users looking for a particular Web Service operation do not
use keywords other than the ones that potentially appear in the operation name (i.e., they tend to
disregard argument names and documentation). For example, the query for looking for operations
functionally equivalent to an operation whose signature is: “getActiveWorkflows(userID:string)”
may be “get active workflows”. In fact, the employed registry splits combined words within queries.
Following this assumption, 430 queries were built, one per offered operation. Finally, we associated
two WSDL documents with each query, one document belonging to the Axis Java2WSDL group,
while another from the AF-Java2WSDL one. For the association we arbitrarily selected the WSDL
documents containing the operation needed.

The Precision-at-n results have been calculated for each query with n in [1,10]. We have chosen
this window size because we want a good balance between the number of candidates and the number
of relevant candidates retrieved. Moreover, we believe that a developer can easily examine 10 Web
Service descriptions. Therefore, by setting n = 10, we refer to the actual number of relevant services
up to only 10 candidates in the result list. Besides calculating Precision-at-n, Recall and Discounted
Cumulative Gain (DCG) measures have been calculated. Formally, Recall is defined as:

Recall =
Relevant
Retrieved

In particular, in our experiments the numerator (Relevant) of the Recall formula could be 0 or 1,
i.e., when the target WSDL document is included within the results, and the denominator (Retrieved)
is always 10.

The DCG is a measure for ranking quality and measures the usefulness (gain) of an item based
on its relevance and position in the provided list. The higher the DCG is, the better the ranked list
is. Formally, DCG is defined as:

DCG = rel1 +
p

∑
i=2

reli
log2i

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 19

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL WSDL documents
Java2WSDL WSDL documents(a) Scenario 1 (393 extra WSDLs) 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL WSDL documents
Java2WSDL WSDL documents(b) Scenario 2 (1,000 extra WSDLs)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL WSDL documents
Java2WSDL WSDL documents(c) Scenario 3 (1,664 extra WSDLs) 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL WSDL documents
Java2WSDL WSDL documents(d) Scenario 4 (2,057 extra WSDLs)

Figure 4. Averaged Precision-at-n results.

where p is the size of the candidate list, which for these experiments is 10, and reli indicates if the
candidate retrieved in the ith position of the list was relevant. The DCG values for all queries can be
averaged to obtain a measure of the average performance of a ranking algorithm, named Normalized
DCG (nDCG).

Figure 4 depicts the averaged Precision-at-n results for the 430 queries by smoothing these results
using Bézier curves. Results show that, in general, AF-Java2WSDL WSDL documents were ranked
before their Axis Java2WSDL counterparts. Particularly, having a higher Precision-at-1 means that
a relevant service was retrieved at the top of the result list. Furthermore, for each scenario, Precision-
at-1 for AF-Java2WSDL and Axis Java2WSDL WSDL documents was:

• Scenario 1: 37.4% and 27.2%, respectively.
• Scenario 2: 40.7% and 17.7%, respectively.
• Scenario 3: 40.2% and 18.8%, respectively.
• Scenario 4: 40.0% and 16.0 %, respectively.

In other words, irrespective of the scenario, the WSDL documents of services whose
implementations had been refactored and generated by our tool, were ranked in the first position in
the 37.4%-40.0% of the cases. On the other hand, Precision-at-1 for Axis Java2WSDL documents
was in the range of 16.0%-27.2%. Accordingly, discoverers would have to analyze fewer candidates
until finding a relevant service when employing AF-Java2WSDL WSDL documents. These results
have a great impact on discoverability because users tend to select higher ranked search results [42].
For instance, the probability that a user accesses the first ranked result is 90%, whereas the
probability for accessing the next one is, at most, 60% [42].

Moreover, Table VI summarizes the obtained results with respect to Recall and NDCG. On one
hand, there were not significant differences as recall was very similar. Likewise, we calculated the

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

20 MATEOS ET AL.

Noise data-set # of
WSDLs

Recall NDCG

Axis
Java2WSDL

AF-
Java2WSDL

Axis
Java2WSDL

AF-
Java2WSDL

Heß et al. 393 0.9116 0.9116 0.7761 0.7862
Al-Masri & Mahmoud

(partial)
1,000 0.8790 0.8813 0.7267 0.7519

Al-Masri & Mahmoud
(complete)

1,664 0.8860 0.8813 0.7330 0.7522

Heß et al. + Al-Masri &
Mahmoud

2,057 0.8697 0.8767 0.7051 0.7493

Table VI. Performed experiments: Recall and NDCG (with documentation)

DCG for each query and then we averaged the values for the 463 queries. Accordingly, the NDCG
was in the range of 70.5%-77.6% and 74.9%-78.6% for the Axis Java2WSDL and AF-Java2WSDL
WSDL documents, respectively. Note that these NDCG values provide a global perspective of the
performance obtained, which confirms that the refactored WSDL documents surpassed the Axis
Java2WSDL ones, obtaining gains of up to 6%.

As shown in Figure 4, Precision-at-n was always higher in favor of AF-Java2WSDL (or at
least equal) for Scenarios 2, 3 and 4, where larger data-sets of extra WSDL documents where
used. However, despite having better precision up to n = 3, Precision-at-i for AF-Java2WSDL
documents with i = 4,5,6,7,8,9 incurred in an overhead of 1-2% compared to that of Axis
Java2WSDL documents. In looking for an explanation to this anomaly, we set forth the hypothesis
that following all the suggestions made by our tool when generating WSDL documents adds
substantial differences to the way documents are indexed in the registry. Particularly, refactoring
to avoid the Innapropriate or lacking comments anti-pattern results in AF-Java2WSDL WSDL
documents having much more terms (because of the added <documentation> tags) that are not present
in Axis Java2WSDL documents. This latter fact is since Axis Java2WSDL does not preserve source
code comments upon generating WSDL documents. Therefore, when jointly populated in the same
syntactic registry, small queries such as the ones used to query the registry may yield very different
results.

In this line, we decided to perform a second experiment by reproducing the same steps described
up to now but by considering AF-Java2WSDL WSDL documents having the Innapropriate or
lacking comments anti-pattern. Figure 5 depicts the Precision-at-n results for this experiment. Again,
the 463 Precision-at-n results have been averaged and smoothed using Bézier curves. The tendency
of firstly ranking AF-Java2WSDL WSDL documents maintained and was even stronger compared
to the previous experiment. Moreover, for each scenario, Precision-at-1 for AF-Java2WSDL and
Axis Java2WSDL WSDL documents was:

• Scenario 1: 59.3% and 6.0%, respectively.
• Scenario 2: 57.0% and 3.7%, respectively.
• Scenario 3: 55.8% and 5.1%, respectively.
• Scenario 4: 55.6% and 3.3%, respectively.

Table VII summarizes the results of Recall and NDCG. On one hand, there were some slight
differences w.r.t recall in favor of AF-Java2WSDL documents, with gains in the range of [0.5-
2.0]%. Furthermore, AF-Java2WSDL documents were better in terms of NDCG, achieving gains of
[5.6-14.3]%.

One possible misinterpretation of these results is that it is always convenient to ignore
the Innapropriate or lacking comments anti-pattern when using AF-Java2WSDL, since less
programming effort is needed and better Precision-at-n, Recall and NDCG is obtained. It is worth
noting that, from a user’s perspective, finding a needed Web Service in a registry involves two steps,
namely ranking WSDL documents according to the user’s query (automatic) and inspecting the

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL (no doc.) WSDL documents
Java2WSDL WSDL documents(a) Scenario 1 (393 extra WSDLs) 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL (no doc.) WSDL documents
Java2WSDL WSDL documents(b) Scenario 2 (1,000 extra WSDLs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL (no doc.) WSDL documents
Java2WSDL WSDL documents(c) Scenario 3 (1,664 extra WSDLs) 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
re

ci
si

on
−

at
−

X
 [%

]
(m

or
e

is
 b

et
te

r)

Position in the candidate list

AF−Java2WSDL (no doc.) WSDL documents
Java2WSDL WSDL documents(d) Scenario 4 (2,057 extra WSDLs)

Figure 5. Averaged Precision-at-n results.

Noise data-set # of
WSDLs

Recall NDCG

Axis
Java2WSDL

AF-
Java2WSDL

Axis
Java2WSDL

AF-
Java2WSDL

Heß et al. 393 0.9209 0.9255 0.7654 0.8086
Al-Masri & Mahmoud

(partial)
1,000 0.8720 0.8906 0.6982 0.7855

Al-Masri & Mahmoud
(complete)

1,664 0.8883 0.8906 0.7141 0.7763

Heß et al. + Al-Masri &
Mahmoud

2,057 0.8674 0.8860 0.6835 0.7817

Table VII. Performed experiments: Recall and NDCG (without documentation)

top n results (manual). When relevant documents are not retrieved at the topmost positions, good
documentation helps in quickly discarding services until reaching a relevant one. Thus, even when
not providing any documentation may benefit the ranking step, this trade-off the effort users have
to put into the inspection step. Exploring the amount of intra-WSDL documentation that should
be provided so as to optimally balance this trade-off is an open problem, and is subject of further
research.

To sum up, both experiments evidence that employing the refactorings supported by our tool on
service implementations improves the discoverability of WSDL documents. Note that, however,
results can be data-set and query-set specific, and hence they cannot be generalized to other
experimental conditions. Considering these refactorings aim at reducing WSDL anti-patterns in

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

22 MATEOS ET AL.

documents, it is reasonable to expect at least a small retrieval advantage when applying the
refactorings, versus not applying them. This is because the performance of many approaches to
service discovery depend on the descriptiveness of WSDL documents. Then, WSDL documents
with representative and non-ambiguous names, comments and data-types, contribute to improve
retrieval effectiveness [4].

6. CONCLUSIONS AND FUTURE WORK

This work proposed a tool that assists code-first Web Service developers to improve the
understandability and discoverability of their code-first Web Services. Basically, the tool is intended
to detect problems in Web Services implementation code that might map to WSDL anti-patterns in
the generated WSDL documents. In addition, the tool includes a custom Java to WSDL mapper that
also overcomes some WSDL generation defects present in similar existing mappers. Knowing the
potential issues, developers can assess WSDL documents quality and apply suitable refactorings as
needed, and thus generating better quality WSDL documents for his/her code-first Web Services.

AF-Java2WSDL enforces practices that have been proved to be necessary for service-oriented
systems success [4]. It is already known that when these practices are not followed during the first
stages of Web Service development, reingeneering a system afterwards might be costly [27]. Since
it seems that SOC developers often disregard these practices [4, 30, 27], a tool for assisting them is
necessary for improving a SOC system chance of success.

Unlike the case of the contract-first plug-in previously proposed [32, 29, 28], correcting possible
WSDL anti-pattern causes in the Web Service source code does not guarantee that the generated
WSDL document will be free of anti-patterns, but it causes the generated WSDL documents to
be less affected by anti-patterns, minimizing their negative impact. For instance, if the WSDL
generation tools disregard the comments in the source code, the generated WSDL documents will
suffer from the Inappropriate or lacking comment anti-pattern. Another example is the Ambiguous
names anti-pattern: since in Java method returns do not have a name, WSDL generation tools tend
to name return messages with generic names. Therefore, automatically generated WSDL documents
usually have ambiguous named messages. However, if the method signatures do not have ambiguous
names, the quantity of ambiguous names in the generated WSDL documents decreases. All in
all, this approach does not aim at obtaining optimal WSDL documents in terms of anti-pattern
occurrences, but at generating good quality WSDL documents, while preserving the advantages of
the code-first methodology, namely low development cost and fast time-to-market [31, 27].

Regarding future work, we are studying how to improve the accuracy of the different anti-pattern
cause detectors, such as lowering the false positive rate of the Inappropriate comments detector. For
example, we are planning to enhance it using concept disambiguation. To do this, we are considering
tools such as WikipediaMiner††, to assess how terms and concepts are connected to each other based
on content published in Wikipedia [43]. We are also extending the detectors for supporting other
languages, such as Spanish or Portuguese. We will also extend our WSDL document generation
tool to support other programming languages, such as C#. Finally, we will explore heuristics for
semi-automatically refactoring Web Services source code. For instance, if a parameter name is
ambiguous, our idea is to analyze the class of the parameter looking for potential alternative names.
In addition, if the service implementation uses that parameter as a parameter to call another method,
the name positionally associated in the latter method to that parameter might provide hints about
more suitable names for the ambiguous parameter. We will also explore whether linguistic corpuses,
such as WordNet [34] or Wikipedia [43], can be used to narrow down the potential names by means
reducing set of words into a synonym or a hypernym. Indeed, this is an interesting but difficult
problem that is worth to explore.

Another research opportunity involves analyzing how discoverable the WSDL documents
generated with AF-Java2WSDL are compared to other approaches to anti-pattern avoidance [30].

††http://wikipedia-miner.cms.waikato.ac.nz/

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 23

The goal of this comparison is to assess which is the benefit of attacking the various anti-pattern
causes directly (as our tools does) versus the indirect approach to anti-pattern removal followed
by [30].

Web Service discovery is also important in the context of Web Service mash-up [44, 45, 46],
which means to combine different Web Services to obtain a larger, aggregate functionality. Different
works have pointed out that discovering Web Services is essential not only to select the Web
Services to be combined but also to maintain high-quality interfaces in the mash-up [44, 45]. In [46],
the authors present an approach for Web Service mash-up that partially relies on Web Service
discovery. Furthermore, the authors state that some operation/method naming practices, which they
call naming tendencies [18], have to be considered when mashing-up Web Services to produce
understandable mash-ups. In addition, their approach disregards some unrepresentative names, such
as “result” or “return”, because they cannot be used to describe a Web Service functionality. As
discussed in Section 2, our anti-pattern definitions include naming tendencies as well as other
practices that hinder Web Service discovery. Basically, the anti-patterns negatively impact on Web
Services registries because they negatively affect text-based analysis of WSDL documents, such
as classification and clustering. Since the approach proposed in [46] heavily relies on this kind of
analysis, a future work will be to assess the impact of our work when producing Web Services that
are likely to be mashed-up into larger services.

Finally, we are planning to evaluate the benefits of the practices that our tool enforces in other
aspects of Web Services, such as usability or replaceability. This is important because Web Services
are being used in new contexts in which discoverability is not understood as finding a Web
Service, but finding who provides a particular Web Service. One example of this context are Home
Services [47], where service providers are connected to a home network and service consumers
should search for who provides a particular service using protocols such as WS-discovery‡‡.

ABOUT THE AUTHORS

Cristian Mateos (http://www.exa.unicen.edu.ar/~cmateos) received a Ph.D. degree in
Computer Science from the UNICEN, in 2008, and his M.Sc. in Systems Engineering in
2005. He is a full time Teacher Assistant at the UNICEN and member of the ISISTAN and
the CONICET. He is interested in parallel/distributed programming, Grid middlewares and
Service-oriented Computing.

Juan Manuel Rodriguez (http://www.exa.unicen.edu.ar/~jmrodri) obtained a Ph.D. de-
gree in Computer Science from the UNICEN, in 2012. His thesis was about quality of
Web Services APIs. He was founded by the Argentinian National Council for Scientific and
Technical Research (CONICET) and worked under the supervision of Alejandro Zunino. He
holds a Systems Engineer degree from the UNICEN. He is a member of ISISTAN Research
Institute.

Alejandro Zunino (http://www.exa.unicen.edu.ar/~azunino) received a Ph.D. degree in
Computer Science from the UNICEN, in 2003, and his M.Sc. in Systems Engineering in 2000.
He is a full Adjunct Professor at UNICEN and member of the ISISTAN and the CONICET.
His research areas are Grid computing, Service-oriented computing, Semantic Web Services
and mobile agents.

ACKNOWLEDGMENTS

We acknowledge the financial support provided by ANPCyT through grant PICT-2012-0045.

‡‡WS-discovery: http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

24 MATEOS ET AL.

REFERENCES

[1] Papazoglou M, Traverso P, Dustdar S, Leymann F. Service-oriented computing: A research
roadmap. International Journal of Cooperative Information Systems 2008; 17(2):223–255.

[2] Erl T. SOA Principles of Service Design. Prentice Hall, 2007.

[3] Crasso M, Rodriguez JM, Zunino A, Campo M. Revising wsdl documents: Why and how.
IEEE Internet Computing 2010; 14:48–56.

[4] Rodriguez JM, Crasso M, Zunino A, Campo M. Improving web service descriptions for
effective service discovery. Science of Computer Programming 2010; 75(11):1001 – 1021.

[5] Gurugé A. 3 - microsoft’s web services. Web Services. Digital Press: Burlington, 2004; 95 –
143.

[6] Kastner C, Thum T, Saake G, Feigenspan J, Leich T, Wielgorz F, Apel S. Featureide: A
tool framework for feature-oriented software development. Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on, 2009; 611 –614.

[7] Benatallah B, Casati F, Toumani F. Web service conversation modeling: a cornerstone for e-
business automation. Internet Computing, IEEE 2004; 8(1):46 – 54.

[8] Gronmo R, Skogan D, Solheim I, Oldevik J. Model-driven Web Services development. e-
Technology, e-Commerce and e-Service, 2004. EEE ’04. 2004 IEEE International Conference
on, 2004; 42 – 45.

[9] Vara JM, de Castro V, Marcos E. WSDL automatic generation from UML models in a
MDA framework. Next Generation Web Services Practices, 2005. NWeSP 2005. International
Conference on, 2005; 6.

[10] Baïna K, Benatallah B, Casati F, Toumani F. Model-driven Web Service development.
Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 3084,
Persson A, Stirna J (eds.). Springer Berlin Heidelberg, 2004; 290–306.

[11] Santos RL, Roberto PA, Gonçalves MA, Laender AH. A web services-based framework for
building componentized digital libraries. Journal of Systems and Software 2008; 81(5):809 –
822.

[12] Kim JB, Segev A. A web services-enabled marketplace architecture for negotiation process
management. Decision Support Systems 2005; 40(1):71 – 87.

[13] Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K, Aleksejevs
S, Stevens R, Pettifer S, et al.. Biocatalogue: a universal catalogue of web services for the life
sciences. Nucleic Acids Research 2010; 38(suppl 2):W689–W694.

[14] Zhu D, Li Y, Shi J, Xu Y, Shen W. A service-oriented city portal framework and collaborative
development platform. Information Sciences 2009; 179(15):2606 – 2617.

[15] Dong X, Halevy A, Madhavan J, Nemes E, Zhang J. Similarity search for web
services. Proceedings of the Thirtieth international conference on Very large
data bases - Volume 30, VLDB ’04, VLDB Endowment, 2004; 372–383. URL
http://dl.acm.org/citation.cfm?id=1316689.1316723 .

[16] Stroulia E, Wang Y. Structural and semantic matching for assessing Web Service similarity.
International Journal of Cooperative Information Systems Jun 2005; 14(4):407–438.

[17] Garofalakis J, Panagis Y, Sakkopoulos E, Tsakalidis A. Contemporary Web Service Discovery
Mechanisms. Journal of Web Engineering 2006; 5(3):265–290.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

A TOOL TO IMPROVE CODE-FIRST WEB SERVICES DISCOVERABILITY 25

[18] Blake MB, Nowlan MF. Taming Web Services from the wild. IEEE Internet Computing 2008;
12(5):62–69.

[19] Crasso M, Zunino A, Campo M. Combining query-by-example and query expansion for
simplifying Web Service discovery. Information Systems Frontiers 2011; 13(3):407–428.

[20] Al-Masri E, Mahmoud QH. WSB: a broker-centric framework for quality-driven web service
discovery. Software: Practice and Experience 2010; 40(10):917–941.

[21] Hao Y, Zhang Y, Cao J. Web services discovery and rank: An information retrieval approach.
Future Generation Computer Systems 2010; 26(8):1053 – 1062.

[22] Crasso M, Zunino A, Campo M. A survey of approaches to Web Service discovery in Service-
Oriented Architectures. Journal of Database Management 2011; 22:103–134.

[23] Wu C. Wsdl term tokenization methods for ir-style web services discovery. Science of
Computer Programming 2012; 77(3):355 – 374.

[24] Basili V, Briand L, Melo W. A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering Oct 1996; 22(10):751 –761.

[25] Pasley J. Avoid XML schema wildcards for Web Service interfaces. Internet Computing, IEEE
May-June 2006; 10(3):72–79, doi:10.1109/MIC.2006.45.

[26] Beaton J, Jeong SY, Xie Y, Jack J, Myers BA. Usability challenges for enterprise service-
oriented architecture APIs. IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2008; 193–196, doi:10.1109/VLHCC.2008.4639084.

[27] Rodriguez J, Crasso M, Mateos C, Zunino A, Campo M. Bottom-up and top-down cobol
system migration to web services: An experience report. Internet Computing, IEEE March-
April 2013; 17(2):44–51, doi:10.1109/MIC.2011.162.

[28] Rodriguez JM, Crasso M, Zunino A. An approach for web service discoverability anti-patterns
detection. Journal of Web Engineering 2013; 12(1–2):131–158.

[29] Rodriguez JM, Crasso M, Mateos C, Zunino A. Best practices for describing, consuming, and
discovering web services: A comprehensive toolset. Software: Practice and Experience 2012;
In press.

[30] Mateos C, Crasso M, Zunino A, Coscia JLO. Detecting WSDL bad practices in code-first web
services. International Journal of Web and Grid Services 2011; 7:357–387.

[31] Rodriguez JM, Crasso M, Mateos C, Zunino A, Campo M, Salvatierra G. Migrating
Legacy Applications: Challenges in Service Oriented Architecture and Cloud Computing
Environments, chap. The SOA Frontier: Experiences with Three Migration Approaches. IGI
Global, 2013; 126–152.

[32] Rodriguez J, Crasso M, Zunino A, Campo M. Automatically detecting opportunities for
Web Service Descriptions improvement. Software Services for e-World, IFIP Advances in
Information and Communication Technology, vol. 341, Cellary W, Estevez E (eds.), Springer
Boston, 2010; 139–150.

[33] Dan Klein CDM. Accurate unlexicalized parsing. Proceedings of the 41st Meeting of the
Association for Computational Linguistics, 2003.

[34] R Feldman JS. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured
Data. Cambridge University Press, 2006.

[35] Chae HS, Kwon YR, Bae DH. A cohesion measure for object-oriented classes. Software:
Practice and Experience 2000; 30(12):1405–1431.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

This is the pre-peer reviewed version of the following article: "C. Mateos, J. M. Rodriguez and A. Zunino: ’A Tool to Improve code-first Web Services
Discoverability through Text Mining Techniques’. Software: Practice and Experience. In press. John Wiley & Sons. 2014. ISSN 0038-0644.", which has
been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/spe.2268/abstract

26 MATEOS ET AL.

[36] Allen EE, Cartwright R. Safe instantiation in generic java. Science of Computer Programming
2006; 59(1-2):26 – 37. Special Issue on Principles and Practices of Programming in Java (PPPJ
2004).

[37] Grechanik M, Fu C, Xie Q, McMillan C, Poshyvanyk D, Cumby C. A search engine for
finding highly relevant applications. 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10), Cape Town, South Africa, ACM Press: New York, NY, USA, 2010;
475–484.

[38] Heß A, Johnston E, Kushmerick N. ASSAM: A tool for semi-automatically annotating
semantic Web Services. International Semantic Web Conference, Lecture Notes in Computer
Science (LNCS), vol. 3298, 2004; 320–334.

[39] Al-Masri E, Mahmoud QH. QoS-based discovery and ranking of web services. 16th
International Conference on Computer Communications and Networks (ICCCN 2007), 2007;
529–534.

[40] Henning M. API design matters. Communications of the ACM May 2009; 52(5):46–56.

[41] Salton G, AWong, Yang CS. A vector space model for automatic indexing. Communications
of the ACM 1975; 18(11):613–620.

[42] Agichtein E, Brill E, Dumais S, Ragno R. Learning user interaction models for predicting web
search result preferences. 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’06), Seattle, Washington, USA, ACM Press:
New York, NY, USA, 2006; 3–10.

[43] Milne D, Witten IH. An open-source toolkit for mining Wikipedia. Artificial Intelligence 2013;
194(0):222 – 239.

[44] Zhang MW, Zhang B, Liu Y, Na J, Zhu ZL. Web service composition based on qos
rules. Journal of Computer Science and Technology 2010; 25(6):1143–1156, doi:10.1007/
s11390-010-9395-0. URL http://dx.doi.org/10.1007/s11390-010-9395-0 .

[45] Jiang W, Wu T, Hu SL, Liu ZY. Qos-aware automatic service composition: A graph
view. Journal of Computer Science and Technology 2011; 26(5):837–853, doi:10.1007/
s11390-011-0183-2. URL http://dx.doi.org/10.1007/s11390-011-0183-2 .

[46] Blake M, Nowlan M. Knowledge discovery in services (kds): Aggregating software services to
discover enterprise mashups. Knowledge and Data Engineering, IEEE Transactions on 2011;
23(6):889–901, doi:10.1109/TKDE.2010.168.

[47] Wei M, Xu J, Yun H, Xu L. An open-source toolkit for mining Wikipedia. Computer Science
and Information Systems 2012; 9(2):813 – 838.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
Prepared using speauth.cls DOI: 10.1002/spe

