
This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Enhancing the BYG gridification tool with state-of-the-art Grid
scheduling mechanisms and explicit tuning support

Cristian Mateos∗,a, Alejandro Zuninoa, Matías Hirsch, Mariano Fernández

aISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil (B7001BBO), Buenos Aires,
Argentina. Tel.: +54 (2293) 439682 ext. 35. Fax.: +54 (2293) 439681

Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract

Grid Computing allows scientists and engineers to run compute intensive experiments that were
unfeasible not so long ago. On the downside, for users not proficient in distributed technologies,
programming for Grids is difficult, tedious, time-consuming and error-prone. Then, disciplinary
users typically waste precious time that could be instead invested into analyzing results. In a
previous paper, we introduced BYG [28], a Java-based software that automatically parallelizes
sequential applications by directly modifying their compiled codes. In addition, BYG is designed
to harness Grid resources by reusing existing Grid platforms and schedulers. In its current shape,
however, BYG lacks support for some state-of-the-art Grid schedulers and mechanisms for in-
troducing application-dependent optimizations to parallelized codes. In this paper, we present
several extensions to BYG aimed at overcoming these problems and thus improving its appli-
cability and delivered efficiency. We also report experiments by using traditional computational
kernels and real-life applications to show the positive practical implications of the proposed ex-
tensions.

Key words: Grid Computing, gridification, Java, BYG, policies, Satin, GridGain.

1. Introduction

Grid Computing [9] is a well-established distributed computing paradigm that allow scien-
tists and engineers to build applications that demand by nature a huge amount of computational
resources (e.g. CPU cycles, memory, disk). To this end, Grid Computing platforms provide the
illusion of the existence of a large virtual supercomputer, which in turn virtualizes and com-
bines the hardware capabilities of a number of much less powerful, geographically-dispersed
machines. Common uses of Grid Computing environments include aerodynamic design, weather
prediction, catastrophe simulation, financial modeling, and so on.

The inherent distributed and parallel nature of Grid applications, however, places a huge
burden on regular users willing to exploit the hardware capabilities of such supercomputers,

∗Corresponding author.
Email address: cmateos@conicet.gov.ar (Cristian Mateos)

Preprint submitted to Advances in Engineering Software May 7, 2013

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

since a significant development effort and knowledge on distributed and parallel programming
are required to put a Grid application to work [26]. Particularly, when deploying an algorithm to
a Grid for execution, a user must take into account what his application does from a functional
perspective as well as how to parallelize it according to the characteristics of the underlying
Grid execution infrastructure. The second aspect is absent when developing traditional, single-
machine applications, and is rather difficult to undertake by users with limited knowledge on
Grid programming concepts.

The traditional approach to address the problem of simplifying Grid programming is based
on supplying users with simple and designed-from-scratch programming APIs. In this arena,
MPI [34] and PVM [34] appear as the most popular API-based programming tools among sci-
entists and practitioners. Specifically, both tools offer intuitive (and standardized) library calls
through which users can parallelize an application and execute parts of it in a distributed environ-
ment. However, even though MPI and PVM greatly mitigate the complexity inherent to writing
Grid applications, their APIs still require users to have a solid knowledge in parallel and dis-
tributed programming [41]. Another problem of these tools is that they are essentially intrusive,
i.e. parallelizing a sequential algorithm means “polluting” its code with a lot of parallel direc-
tives in the form of annotations and function calls. Then, there is not a clear separation between
algorithmic code and parallel one. Consequently, introducing purely algorithmic optimizations
remain error prone and require a considerable amount of testing [26], which demands time and
effort.

The recent notion of “gridification” [26] has introduced a radical twist in the way Grid appli-
cations are built. Tools materializing this notion operate by automatically building a Grid-aware
code from its sequential version. Amongst the advantages of this new approach compared to
the traditional way of constructing Grid applications mentioned above are precisely supporting
non-expert developers, avoiding the inclusion of API-specific parallel instructions within the
source code of sequential applications, and in general simplifying and accelerating Grid applica-
tion bootstrapping and execution. However, materializing the concept is challenging from both
a conceptual and a technological standpoint [28]. Besides, much research is still being con-
ducted to determine whether the performance achieved by automatically-gridified applications is
competitive with that of hand-coded Grid-aware codes.

In a previous paper, we proposed BYG (BYtecode Gridifier) [28], a gridification tool that ac-
cepts as input the compiled code of a sequential application developed in Java and automatically
outputs its parallelized counterpart. This process roughly comprises two broad tasks, namely
heuristically detecting prospective portions within the input application for inserting parallelism,
and including proper bytecode for actually executing the Grid-enabled binary code on a specific
Grid platform. BYG targets Java applications developed under the divide and conquer model
(D&C), a versatile technique for algorithm design by which an individual problem is solved by
dividing it into several subproblems until trivial1 subproblems are obtained. Upon executing a
sequential D&C application, BYG modifies its bytecode so that subproblems are executed in
parallel on a Grid via an existing task scheduler. Preliminary experiments have confirmed the

1Whether a problem is trivial or not depends on the nature of the application at hand.

2

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

feasibility of the approach.
Despite the encouraging results obtained so far, we believe that, in its current shape, the

broad applicability of BYG is still somehow compromised. On one hand, to execute parallelized
applications, BYG does not reinvent the wheel by providing yet another distributed task sched-
uler. Instead, a key design driver of its runtime was to exploit existing Grid platforms. However,
at present, BYG is integrated with only one Grid platform. On the other hand, BYG is based
exclusively on an implicit form of gridification by which parallelism is introduced transparently
in an application, i.e. by requiring almost no user intervention. Clearly, this implicit form of
parallelism allows users to gridify applications without thinking about parallelism. With the
explicit approach to parallelism followed by tools such as MPI and PVM, or newer Grid plat-
forms like Satin [40] and GridGain [13], the burden of managing parallelism falls on developers.
However, explicit parallelism supplies APIs so that developers have more control over parallel
programming, and thus potentially more efficient applications can be built [10].

Consequently, we have been working on addressing these issues, which resulted in a number
of extensions to the software tool presented in [28]. In this sense, in this paper we introduce the
following relevant contributions:

• The integration of BYG with more Grid middlewares, an hence the inception of newer
bytecode rewriting mechanisms. This feature indirectly offers users a broader range of
Grid schedulers to execute their gridified applications. The extended version of BYG offers
binding to Satin [40]2, a well-established and healthy academic project, and GridGain [13]3,
a relentlessly growing commercial platform for Grid Computing.

• A simple programming model based on policies, or rules that allows users to “throttle” the
amount of parallelism and control task location in their applications according to both the
nature of their codes and the characteristics of the Grid environment where they run. Rules
can be specified in Java, Python and Groovy. This extension essentially aims at providing
a balance to the simplicity versus performance tradeoff inherent to implicit and explicit
parallel programming.

To evaluate the extended tool, we conducted two set of experiments. First, we executed sev-
eral microbenchmarks to quantify the performance penalty of supporting Java-based and script-
based policies. Second, we assessed the effectiveness of our extensions in terms of execution
performance by using some explicit parallel models, BYG and policies to gridify two resource--
intensive applications, namely the ray tracing 3D scene rendering technique and an algorithm for
pairwise gene sequence alignment, on an emulated Grid. Basically, we compared hand-coded
applications using contemporary Grid programming libraries against codes also exploiting these
libraries but automatically obtained by using BYG plus policies. We believe that the compet-
itive performance levels achieved by BYG across the various experimental scenarios and the
improved flexibility and applicability of the extended gridification mechanisms, make BYG a

2The full version is available at http://users.exa.unicen.edu.ar/~cmateos/files/BYG-1.0.zip
3A preliminary out-of-the-box version is available at http://code.google.com/p/easyfjp-imp

3

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

valuable alternative for rapidly executing both engineering and scientific applications while effi-
ciently exploiting Grid resources.

The rest of the paper is structured as follows. Section 2 overviews BYG by taking a user-
centric approach to describe its capabilities in terms of application programming and integration
with external Grid platforms. After that, Section 3 explains the extensions for tuning BYG ap-
plications and provides several source code examples. Section 4 reports a detailed experimental
evaluation of BYG. Later, Section 5 discusses relevant related efforts. Finally, Section 6 con-
cludes the paper.

2. The BYG (BYtecode Gridifier)

BYG is a gridification tool that allows developers to non-invasively gridifying their applica-
tions, or in other words, without tying their sequential codes to specific parallel and distributed
libraries. Central to the gridification model promoted by BYG is the concept of Fork-Join Paral-
lelism (FJP), a simple but effective technique that expresses parallelism via two primitives: fork,
which starts the execution of a method in parallel, and join, which blocks a caller until the exe-
cution of methods finishes. FJP represents an alternative to thread-based parallel programming
models, which have been criticized due to their inherent complexity [23], and the bureaucratic
approach to parallelism of parallel libraries such as MPI [34] or PVM [34]. In fact, the Java lan-
guage, which has offered threads as first-class citizens for years, includes now an FJP package
for multicore CPUs (http://openjdk.java.net/projects/jdk7/features).

Certainly, FJP is not circumscribed to multicore programming, but is also applicable in exe-
cution environments where the notions of “task” and “processor” exist. Interestingly, multicore
CPUs, clusters and Grids alike can execute FJP tasks, as they conceptually comprise processing
nodes (cores or individual machines) interconnected through communication “links” (a system
bus, a high-speed LAN or a WAN). This uniformity arguably allows the same FJP application
to be run in either environments, provided there is a platform aware of the underlying execution
support. Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applications, an
algorithmic abstraction useful to solve many problems. This is because D&C applications are
mostly developed in a recursive way, thus recursive calls can be mapped to independent parallel
tasks. By basing upon these premises, BYG essentially contributes with bytecode analysis and
generation techniques that automatically introduce FJP-based parallelism into sequential D&C
applications. Broadly speaking, while most of the existing work on automatic parallelization of
sequential codes focuses on loops [17], supporting D&C applications is interesting since there
is an important class of algorithms that cannot be straightforwardly and efficiently expressed as
loops because recursion is needed [1].

Another distinctive aspect of BYG is that, instead of providing its own task scheduler, our tool
is designed to take advantage of the scheduling services of existing Grid platforms for executing
parallelized applications. Architectonically, this is done through the use of connectors, which
implement the necessary plumbing operations to access the execution services of specific Grid
platforms. Apart from the code for supporting method-level parallelism itself, connectors are
also non-invasively injected into the input sequential bytecode to delegate the execution of certain
application methods to a Grid platform.

4

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Java application
(bytecode)

+

User-supplied
configuration (Grid
middlewares to be

used)
<configuration>
 <classes>
 <class name="A">
 <methods>
 <method id="A1"
 name="methodA1"/>
 </methods>
 </classes>
 <connector methodId="A1"
 provider="GridGainConnector"/>
 ...
</configuration>

Infrastructure layer

(Virtualized hardware)

Condor-GGridGain Satin . . .
Platform layer

(Grid schedulers)

Application layer

(Gridified applications)

BYG
runtime

Injected
connector

Grid-enabled
class A

Unmodified
class C

Java Virtual
Machine (JVM)Unmodified

class C

Unmodified
class B

<<class>>
B

methodB1();
...

<<class>>
C

methodC1();
...

<<class>>
A

methodA1();
...

Figure 1: An overview of BYG. Both the static (left) and runtime views (right) of a BYG appli-
cation are illustrated.

Figure 1 depicts an overview of BYG. Our approach conceptually takes as input the exe-
cutable code –i.e. the bytecode– of a sequential Java application, and dynamically transforms
their classes to run on a Grid middleware the specific methods of the user’s choice. The devel-
oper must indicate through a configuration file which Java methods should be run on a Grid and
which Grid middlewares should be used. Then, BYG processes the configuration, intercepts all
invocations to such methods (in the example, methodA1), and delegates their execution to the
target middleware (in the example, GridGain) by means of an appropriate connector. From an
architectural perspective, BYG provides a software tier that mediates between an ordinary Java
application, or the client side, and Grid middlewares, or the server side. Gridified classes are run
at the server side by means of connectors, whereas non-gridified classes remain running unmod-
ified at the client side. BYG-enabling an application only requires the user to specify an XML
file listing which methods of an application are to be gridified and what Grid platform must be
employed to execute them. It is also possible to delegate different methods of classes belonging
to the same application to various Grid middlewares.

From a runtime perspective, preparing or modifying an individual method for Grid execution
involves two tasks. First, its body is rewritten to transparently delegate its execution to the
connector associated to the method. In our case, a GridGain parallel job is created from the
binary code of the target method, which is submitted to a Grid running GridGain. In this way,
every time this method is invoked from the application, the method is not executed locally but
an adapted version of it is handled by GridGain. The second task is precisely responsible for
performing this adaptation, which is done by modifying the original bytecode of the method
in order to exploit the parallel API library functions of the target platform. Depending on the
middleware to be used for method execution, additional modifications at the class level may
be necessary, as some platforms require jobs for example to extend from certain API classes.
Figure 2 overviews the mechanism described above, which dynamically obtains the gridified
counterpart of a sequential class. Middleware-dependent transformations are the ones performed
at step 2.

At present, BYG provides a connector for accessing the services of Satin [40], a Java-based
platform for parallelizing and running applications on clusters and wide-area Grids. Also, we

5

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

public class A {
 public Object methodA1(
 param1, param2, ..., paramN){
 // Body
 }
}

public class A' {
 public Object new_methodA1(
 param1,
 param2,
 ...
 paramN){
 // Body (untouched)
 }
 public Object methodA1(
 param1, param2, ..., paramN){
 Object[] args = new Object[]{
 this, "new_methodA1",
 param1, param2, ..., paramN};
 return GridGainConnector.submit(args);
 }
}

Sequential bytecode
GridGain-
enabled
bytecode

BYG bytecode preprocessor

Step 1: Connector injection

public class A'' {
 public Object new_methodA1(
 param1,
 param2, ...,
 paramN){
 // Inline insertion of adapted Body
 GridGainConnector.adapt(Body);
 }
 public void methodA1(
 param1, param2, ..., paramN){
 Object[] args = new Object[]{
 this, "new_methodA1",
 param1, param2, ..., paramN};
 return GridGainConnector.submit(args);
 }
}

Step 2: Bytecode adaptation

Figure 2: Adapting sequential bytecodes to run on a Grid platform.

have developed a connector for the GridGain middleware [13]. Efforts towards providing a
connector for the popular Condor-G platform [37] are also underway, whose implementation
relies on a Java interface to this platform [30]. However, in the following subsections we will
concentrate on Satin and GridGain as they are the most stable versions of our BYG connectors.
Moreover, more details on the configuration needed to Grid-enable conventional applications and
the core mechanics of the BYG runtime support can be found in [28]. In the following section we
will focus on illustrating the mechanisms used by BYG to Grid-enable sequential applications
from a user’s perspective.

2.1. BYG: Programming model
The divide and conquer (D&C) model is an algorithm construction technique that allows

users to solve a problem by breaking it down into several subproblems of the same type until
trivial problems are obtained. The solutions to the different subproblems are then combined to
build the solution to the whole problem. Most of the time, D&C algorithms are implemented
recursively, i.e. by issuing several recursive calls to the same code (method or function) imple-
menting the problem. Moreover, trivial problems are processed directly, in the sense that they
are not further subdivided but instead computed by a portion of non-recursive code.

Let us take for example the code shown below, which includes a recursive integrate method
that computes the integral of a fixed function within a given interval (a,b). The integral value is
approximated by systematically dividing the input interval into two subintervals as long as the
difference between the area of the trapezoid and the sum of the areas of the trapezoids associated
to the subintervals is not smaller than some threshold epsilon:
1 p u b l i c c l a s s A d a p t i v e I n t e g r a t i o n {
2 p u b l i c double f u n c t i o n (double v a l u e) { . . . }
3 p u b l i c double i n t e g r a t e (double a , double b , double e p s i l o n) {
4 double d e l t a = (b−a) / 2 ;
5 double t o t a l = d e l t a * (f u n c t i o n (a) + f u n c t i o n (b)) ;
6 double d e l t a H a l f = d e l t a / 2 ;
7 double l e f t = d e l t a H a l f * (f u n c t i o n (a) + f u n c t i o n (a+ d e l t a)) ;
8 double r i g h t = d e l t a H a l f * (f u n c t i o n (b) + f u n c t i o n (a+ d e l t a)) ;
9 double d i f f = t o t a l − (l e f t + r i g h t) ;

10 d i f f = (d i f f < 0) ? −d i f f : d i f f ;

6

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

11 i f (d i f f < e p s i l o n)
12 re turn t o t a l ; / / base c ase f o r D&C
13 e l s e {
14 double r e s 1 = i n t e g r a t e (a , a+ d e l t a , e p s i l o n) ; / / subprob lem #1
15 double r e s 2 = i n t e g r a t e (a+ d e l t a , b , e p s i l o n) ; / / subprob lem #2
16 re turn r e s 1 + r e s 2 ;
17 }
18 }
19 }

The recursive calls of lines 14 and 15 are the divide phase of the algorithm, in which the problem
at hand is large enough to be subdivided. Lines 11-12 represent its conquer phase, or the case
when a (sub)problem becomes trivial. As the reader can see, for clarity purposes, the above
code is not completely optimized since we have deliberately repeated some of the intermediate
calculations.

2.2. Using BYG in conjunction with Satin
The Satin Grid platform refines the ordinary semantics of sequential D&C applications such

as AdaptiveIntegration to introduce parallelism in the divide phase. The Satin library cleanly
supports FJP through the spawn and sync primitives. The former allows users to create parallel
subcomputations. Methods considered for parallel execution must be included in a regular Java
interface (marker interface) that extend the satin.Spawnable interface. Moreover, the sync primi-
tive is shipped as a library call and is used to programmatically block the execution of a task until
the execution of its child tasks finish. For example, the Satin version of the AdaptiveIntegration
class is:
1 p u b l i c i n t e r f a c e A d a p t i v e I n t e g r a t i o n M a r k e r ex tends s a t i n . Spawnable {
2 p u b l i c double i n t e g r a t e (double a , double b , double e p s i l o n) ;
3 }
4 p u b l i c c l a s s A d a p t i v e I n t e g r a t i o n ex tends s a t i n . S a t i n O b j e c t
5 implements A d a p t i v e I n t e g r a t i o n M a r k e r {
6 . . .
7 p u b l i c double i n t e g r a t e (double a , double b , double e p s i l o n) {
8 . . .
9 e l s e {

10 double r e s 1 = i n t e g r a t e (a , a+ d e l t a , e p s i l o n) ;
11 double r e s 2 = i n t e g r a t e (a+ d e l t a , b , e p s i l o n) ;
12 super . sync () ;
13 re turn r e s 1 + r e s 2 ;
14 }
15 }
16 }

Basically, AdaptiveIntegrationMarker indicates Satin which methods of the application under
analysis must be executed in parallel and as such trigger independent parallel subtasks at run-
time. Methods not included in the marker interface are executed in a sequential way. Also, users
have to explicitly indicate in the application code the points in which it is necessary to wait for
child computations to complete, or in other words providing a join point to cause subtasks not
to proceed and to wait for divide parts of the problem. To this end, the call to sync at line 12

7

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

ensures that the subresults computed by the subtasks spawned at lines 10 and 11 are instantiated
to build a larger result at line 13. This simple synchronization mechanism is at the same time the
main source of programming errors when employing Satin. A rule of thumb for correctly using
the sync primitive and therefore avoid attempting to access not yet computed subresults involves
checking that at least one call to the primitive is performed between the statements including
recursive calls and those that access their results. For more complex algorithms, however, this
analysis is rather tedious, time-consuming and, even more important, error-prone.

Once the application has been (re)written to exploit the Satin API, it is necessary to pass
the compiled counterpart of the parallel source code to a special postprocessor. Conceptually,
this support transparently further modifies the application in such a way that, at runtime, an
independent or forked task is created for every invoked recursive call. Tasks are in turn managed
by a Satin scheduler capable of sending/retrieving tasks to/from remote hosts to take advantage
of distributed computing resources.

Our Satin connector automates the previous manual tasks from a compiled D&C application
not explicitly coded to use the Satin API. To this end, the Satin connector generates the marker
interface based on the configuration of the application (i.e. the one depicted in Figure 1, left),
and rewrites the bytecode of the class being gridified (i.e. the class A in Figure 1) to extend/-
implement the necessary classes and interfaces so that the sequential class follows the parallel
application structure prescribed by Satin. The connector also inserts calls to sync by deriving a
high-level representation from the bytecode and analyzing the points where joins are needed.

In summary, the connector carries out three main tasks. First, as explained, Satin requires
applications to include a marker interface, which lists the methods considered for parallel ex-
ecution. The connector builds this interface from the methods listed in the <classes> section
of the user-supplied configuration. Second, Satin codes must implement a marker interface and
to extend from SatinObject. Then, a clone (or in BYG terminology a peer) of the sequential
class under consideration is created by the Satin connector and modified to fulfill these require-
ments. Lastly, the connector inserts calls to the Satin sync primitive at appropriate places of the
spawnable methods of the peer based on an heuristic algorithm. The algorithm preserves the
operational semantics of the (sequential) original algorithm while minimizing the calls to the
primitive.

The algorithm for inserting barriers works by iterating the instructions of a method and de-
tecting the points in which a local variable is either defined or used by a statement. A variable
is defined when the result of a recursive call is assigned to it, whereas it is used when its value
is read. To work properly Satin requires that statements can read such variables provided a sync
has been previously issued. Then, our algorithm operates by modifying the bytecode to ensure
a call to sync is done between the definition and use of a local variable, for any execution path
between these two points. Moreover, as sync suspends the execution of the method until all sub-
computations associated to defined variables finish, our algorithm uses an heuristic to keep the
correctness of the program while minimizing the inserted calls to sync for the sake of efficiency.
For simplicity, we have left the discussion of the internals of this heuristic algorithm out of the
paper.

8

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

2.3. Using BYG in conjunction with GridGain
GridGain is a very stable open source Grid platform that has became popular for developing

distributed applications. The tool supports several programming models for developing parallel
applications. Particularly, GridGain natively supports the classical master-worker paradigm by
means of an extension to the standard Java futures package. In a broad sense, a future is an
abstraction that allows users to represent and manipulate an individual asynchronous computa-
tions. The package offers an API that exposes objects and methods to parallelize applications on
multicore machines and hides programmers from many low-level details related to parallelism
such as thread creation and coordination. Basically, GridGain extends the package by allowing
such threads (or tasks) to cooperatively execute not only on multiple cores but also across many
machines.

The weak point of manually using GridGain, however, is the bureaucratic nature of its master-
worker API, which even though it uses nice parallel abstractions based on conventional Java
futures still demands parallel and distributed programming concepts from developers. Again,
this is a threat to adoption when it comes to engineers and scientists. GridGain also provides
alternative parallel development models apart from master-worker that have simpler APIs, but
which also require expertise.

In this sense, we have designed an algorithm for both inserting barriers and generating par-
allel applications that exploits the master-worker API for D&C applications. Regarding barrier
insertion, the algorithm is materialized as an adaptation to that of associated to Satin, and as such
looks for definitions and uses of parallel variables for incorporating parallelism. With respect
to code generation, a challenging issue concerns parallel programming model adaptation. Sup-
porting libraries in BYG already based on D&C such as Satin mostly requires source-to-source
translation, i.e. recursive methods in the input application are forked in the output application
via proper calls to the target library API. But, libraries relying on conventional execution models
–e.g. master-worker or bag-of-tasks– in which there are not hierarchical relationships between
parallel tasks, is not straightforward as BYG must somehow adapt the task structure of the input
D&C application. Precisely, an example of such a library is GridGain.

Let us illustrate the code obtained when generating parallel applications based on the GridGain
library (version 2.1.04). To this end, we will use as input the D&C code given by the sequential
version of the AdaptiveIntegration class presented at the beginning of Section 2.1:
1 import org . g r i d g a i n . g r i d . Gr id ;
2 import org . g r i d g a i n . g r i d . G r i d F a c t o r y ;
3 import org . g r i d g a i n . g r i d . k e r n a l . e x e c u t o r . G r i d E x e c u t o r C a l l a b l e T a s k ;
4 import org . g r i d g a i n . g r i d . G r i d T a s k F u t u r e ;
5
6 import j a v a . u t i l . c o n c u r r e n t . C a l l a b l e ;
7 import j a v a . i o . S e r i a l i z a b l e ;
8
9 p u b l i c c l a s s A d a p t i v e I n t e g r a t i o n implements S e r i a l i z a b l e {

10 p u b l i c double f u n c t i o n (double v a l u e) { . . . }
11 p u b l i c double i n t e g r a t e (double a , double b , double e p s i l o n) {

4http://www.gridgain.com/javadoc

9

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

12 re turn n e w _ i n t e g r a t e (a , b , e p s i l o n) ;
13 }
14 / / The GridGain−e n a b l e d method
15 p r o t e c t e d double n e w _ i n t e g r a t e (double a , double b , double e p s i l o n) {
16 Gr id g r i d = G r i d F a c t o r y . g e t G r i d () ;
17 G r i d E x e c u t o r C a l l a b l e T a s k exec = new G r i d E x e c u t o r C a l l a b l e T a s k () ;
18 . . .
19 e l s e {
20 / / subprob lem #1
21 Gr i d Ta s k Fu t u r e <double > r e s 1 f u t u r e = g r i d . e x e c u t e (
22 exec , new A d a p t i v e I n t e g r a t i o n T a s k (t h i s , a , a+ d e l t a , e p s i l o n) ;
23 / / subprob lem #2
24 Gr i d Ta s k Fu t u r e <double > r e s 2 f u t u r e = g r i d . e x e c u t e (
25 exec , new A d a p t i v e I n t e g r a t i o n T a s k (t h i s , a+ d e l t a , b , e p s i l o n) ;
26 re turn r e s 1 f u t u r e . g e t () + r e s 2 f u t u r e . g e t () ;
27 }
28 }
29 }
30 / / S u b c o m p u t a t i o n
31 p u b l i c c l a s s A d a p t i v e I n t e g r a t i o n T a s k implements C a l l a b l e {
32 / / I n s t a n c e v a r i a b l e d e c l a r a t i o n
33 p u b l i c A d a p t i v e I n t e g r a t i o n T a s k (A d a p t i v e I n t e g r a t i o n a p p l i c a t i o n ,
34 double a , double b , double e p s i l o n) {
35 / / Copy arguments i n t o i n s t a n c e v a r i a b l e s
36 }
37 p u b l i c S e r i a l i z a b l e c a l l () {
38 re turn t h i s . a p p l i c a t i o n . i n t e g r a t e (a , b , e p s i l o n) ;
39 }
40 }

As shown in the example, the generated class contains a wrapper method (lines 11-13) that
invokes the actual automatically parallelized method (lines 15-28), whose code has been derived
from the original integrate method but modified to include GridGain forks and joins (lines 20-25
and 26, respectively).

Moreover, instances of AdaptiveIntegrationTask carry out the subcomputations by calling Adap-
tiveIntegration.integrate(double, double, double) on individual branches of the whole execution
tree. Although not shown in the source code snippet, there are other modifications that are intro-
duced into the generated code in order to keep track of important runtime information such as the
depth of the execution tree. The additional modifications are essentially glue code for invoking
policies by passing along context information. The next section discusses the policy subsystem
of BYG.

3. Optimizing BYG applications: A policy-based programming model

In a broad sense, a policy is a mechanism that allows developers to express, separately from
the application logic, customized strategies to achieve better performance [25]. In practice, a
policy is materialized via a user-specified rule that governs the parallel behavior of an applica-
tion. As mentioned earlier, BYG was extended with a policy-inspired tuning support that let
developers to introduce common optimization heuristics without altering their applications.

10

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Policies considered by BYG are application-specific or environment-specific. The former
group represents tuning decisions that depend on the algorithmic nature of the applications being
parallelized. On one hand, application-specific policies model the notions of threshold (see Sec-
tion 3.1), memoization (see Section 3.2) and task placement (see Section 3.3). A threshold policy
establishes a defined limit to the number of parallel tasks spawned at runtime for an application.
Memoization policies, complementary, allow users to reuse task results in those cases in which
subcomputations overlap. Lastly, task mapping policies represent a mechanism to customize the
physical location of spawned tasks.

On the other hand, environment-specific policies are optimization rules that regulate the
amount of parallelism according to the computing capabilities and to some extent the topol-
ogy of the underlying environment. To make decisions, these policies use dynamic information
provided by the BYG runtime environment (CPU and memory availability, network conditions,
and so forth). For coding environment-specific policies, BYG exposes a well-defined interface
to system metrics. To this end, a profiling module is provided, through which users are able
to query for example for the overall CPU load or the amount of parallel runtime tasks under
execution within a cluster. Then, a user may code for instance a policy to relate the amount of
parallelism of an application as an inverse function of the average CPU availability. Users can
nevertheless develop policies combining application-specific optimizations with environmental
conditions. For example, the amount of memoized results for a memory-intensive application
may be controlled by also taking into account the available memory in the executing cluster.
The following subsections focus on explaining application-specific policies, which are the most
intuitive and useful for non-experienced developers. For more details on environment-specific
policies, please refer to [27].

We have also developed a support for application-specific policies implemented in scripting
languages. Currently, we support Python and Groovy. Firstly, Python is a very popular inter-
preted language among scientists [31, 33]. Secondly, the Groovy language has recently proved to
be a cost-effective and feasible alternative for coding engineering applications [32]. Section 3.4
explains this support.

3.1. Threshold-based policies
Threshold policies are useful for avoiding parallelizing a (sub)computation more than needed

and otherwise run it sequentially. For example, in the AdaptiveApplication class, we may want to
limit the number of generated parallel tasks that are injected into the runtime system depending
on the depth of the execution tree of the method at runtime. This decision is indicated to BYG
by associating the following policy to the integrate method:
import byg . p o l i c y . P o l i c y ;
import byg . p o l i c y . E x e c u t i o n C o n t e x t ;

p u b l i c c l a s s MyThresho ldPo l i cy implements P o l i c y {
s t a t i c f i n a l i n t THRESHOLD = 10 0 ;
p u b l i c boolean s h o u l d F o r k (E x e c u t i o n C o n t e x t c t x) {

/ / i n t e g r a t e (a , b , e p s i l o n)
double a = (double) c t x . ge tArgument (0) ;
double b = (double) c t x . ge tArgument (1) ;

11

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

re turn ((b − a) > THRESHOLD) ;
}

}

The code implements the Policy interface from the BYG policy API and allows each execution
of integrate to be forked provided the difference between the two x-axis coordinates (i.e. a and b)
is above THRESHOLD. In this way, less parallel tasks are injected into the Grid, thus avoiding
unnecessary scheduling overheads. ExecutionContext provides operations to further introspect
the execution of the application, in this case obtaining the values of method parameters. The
policy uses ExecutionContext to access the value of the first and second arguments of each call
to integrate via the getArgument API method. To attach any policy to an application, such as
the above threshold policy to the AdaptiveIntegration class, users must supply the corresponding
declaration in the configuration of the application.

3.2. Memoization policies
Memoization is a common optimization technique that is useful to gain efficiency by avoiding

forking a subcomputation when the same or similar results have been already computed by an-
other subcomputation. From a programmer’s perspective, coding a memoization policy requires
deciding whether to fork or not, and in the latter case to identify the particular result that should
be reused. For instance, let us suppose we have a D&C code for computing the Nth Fibonacci
number:
p u b l i c c l a s s F i b o n a c c i {

p u b l i c long f i b o n a c c i (i n t n) {
i f (n == 0)

re turn 1 ;
long f1 = f i b o n a c c i (n−1);
long f2 = f i b o n a c c i (n−2);
re turn f1 + f2 ;

}
}

Then, parallelizing this code with BYG allows the two recursive calls to execute in parallel.
Naturally, the same applies to the two subproblems generated from either calls, and so forth.
However, the overlapping nature of the subcomputations –i.e. the same code is run against the
same set of inputs many times– makes an opportunity for an optimization based on memoization
policies. In this sense, we could for example provide the following policy:
import byg . p o l i c y . M e m o i z a t i o n P o l i c y ;
import byg . p o l i c y . E x e c u t i o n C o n t e x t ;

p u b l i c c l a s s MyMemoizat ionPol icy implements M e m o i z a t i o n P o l i c y {
p u b l i c boolean s h o u l d F o r k (E x e c u t i o n C o n t e x t c t x) {

long n = (Long) c t x . ge tArgument (0) ; / / f i b o n a c c i (n)
re turn (n % 2 == 0) ;

}
p u b l i c S t r i n g b u i l d R e s u l t K e y (E x e c u t i o n C o n t e x t c t x) {

re turn S t r i n g . va lueOf (c t x . ge tArgument (0)) ;
}

}

12

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

The policy indicates BYG to fork and hence to ignore previously computed results if the ar-
gument of a call to fibonacci is even. Moreover, whenever shouldFork evaluates to false, BYG
attempts to reuse the value from a result cache with the key as indicated by buildResultKey.
However, if shouldFork evaluates to false but the key is invalid and leads to a cache miss, the
sequential execution of fibonacci takes place. For storing results, BYG is based at present on a
distributed caching support built around the memcache library [27].

Although illustrative in our example, memoization strategies like the one implemented by
MyMemoizationPolicy, in which only a subset of previously calculated results are reused, are
useful to minimize the negative effects of querying the cache. This is since depending on the
number of independent executing tasks, and the number of configured replicas storing cache
entries, there may be far more queries than cache servers able to solve the queries, thus affecting
performance. Furthermore, another use of such strategy is in parallel optimization problems
where actually forking a subproblem may yield a better solution than reusing a similar computed
suboptimal result [2]. All in all, memoization policies are useful for cache-friendly applications.

3.3. Task placement policies
Task placement refers to the problem of assigning unfinished tasks to available executing

nodes. Broadly, tasks are mapped to computing nodes on an off-line (i.e. statically) and a run-
time (i.e. dynamically) fashion, respectively [21]. Precisely, tasks resulted from executing D&C
applications belong to the second category, because the execution of an individual task may trig-
ger the execution of N more. In BYG, the node in charge of executing a task is not determined
by the user application but the underlying Grid scheduler selected upon configuring connectors.
However, the hierarchical task structure of BYG applications indirectly determines task depen-
dencies that, unless considered by the scheduler, may cause the resulting performance to be
suboptimal. Therefore, the goal of these policies is to allow the user to control the placement of
forked tasks by selectively ignoring some of the decisions taken by the underlying task scheduler.

Consider, for instance, an application that performs some recursive computation on a quadtree
data structure, such as an algorithm for localized image processing. Every parallel task creates
four more tasks, each in charge of processing a particular region of the data (see Figure 3). If
we execute this application on a Grid comprising clusters connected through wide-area links,
Figure 4 (left) depicts one possible task mapping, assuming that we launch the execution of our
application at cluster C1. Alternatively, Figure 4 (right) depicts another task mapping, by which
taskd+11 and taskd+12 have been explicitly forced to be located at cluster C1 and the placement
of the rest of the siblings tasks of taskd1 has been delegated to the scheduler. Depending on the
amount of data interchanged between taskd1 and taskd+11 /taskd+12 , the semi-automatic mapping
may greatly justify the loss of processing power available at cluster C4.

Roughly, this decision can be specified through a task placement policy, which decides, based
on an API object representing a task identifier, where to submit parallel tasks for execution:
import byg . p o l i c y . T a s k P l a c e m e n t P o l i c y ;
import byg . p o l i c y . E x e c u t i o n C o n t e x t ;
import byg . p o l i c y . TaskId ;

p u b l i c c l a s s MyTaskPlacementPo l icy implements T a s k P l a c e m e n t P o l i c y {

13

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

task

depth = (d-1)
. . .

. . .
d1 depth = (d)

taskd+11
taskd+14

taskd+12
taskd+13

depth = (d+1)

Quadtree
data portion

Figure 3: Task placement example: An application processing a quadtree data structure.

Cluster C1
Cluster C2

Cluster C4
Cluster C3

task d
1

task d+14

task d+13

task d+12

task d+11

. . .

. . .

. . .

. . .

Wide-area

network

Wide-area

network

Cluster C1
Cluster C2

Cluster C4
Cluster C3

task d1 task d+13

task d+14

task d+11

task d+12

. . .
. . .

.

Figure 4: Task placement example: Scheduler-based (left) and semi-automatic (right) task map-
ping.

p u b l i c boolean shouldMap (E x e c u t i o n C o n t e x t c t x) {
/ / Avoid o v e r l o a d i n g t h e l o c a l node by c h e c k i n g whe ther
/ / t h e c u r r e n t e x e c u t i n g t a s k ’ s d e p t h i s odd or even
i f (c t x . g e t C u r r e n t D e p t h () % 2 != 0)

re turn f a l s e ;
TaskId i d = c t x . g e t C u r r e n t T a s k I d () ;
/ / Only t h e f i r s t two q u a d r a n t s (1 and 2) are e x p l i c i t l y mapped
/ / Quadrants 3 and 4 are n o t a f f e c t e d by t h e p o l i c y
re turn (i d . ge tSubtaskNumber () < 3) ;

}
p u b l i c S t r i n g mapTo (E x e c u t i o n C o n t e x t c t x) {

re turn " 1 2 7 . 0 . 0 . 1 " ; / / Loca l IP a d d r e s s or hos tname
}

}

Basically, the shouldMap method tells BYG whether to activate explicit task mapping or not for a
given subcomputation, whereas mapTo instructs the underlying platform to which node the task
should be submitted. Each forked task is assigned an unique identifier that comprises its own
identifier and a subtask identifier. In other words, if a given task whose identifier is I spawns N
more tasks, spawned subcomputations are identified as I + “.” + 1, I + “.” + 2, ..., I + “.“ + N. For
efficiency, identifiers are encoded as alphanumeric strings. In the example, we have forced the
subtasks to be placed in the same physical node as the parent tasks originating them. However,
other complex actions could had been taken, such as mapping tasks to any node of a given cluster,

14

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

or even a cluster where a certain task is executing. Finally, task placement policies assume that
the underlying Grid platform API has support for explicit task mapping, a feature that is not
present in all Java-based parallel tools. However, many modern platforms such as GridGain [13]
and ProActive [3] support this feature. Particularly, as BYG provides a connector for GridGain,
users are allowed to employ task-mapping policies for their applications when using BYG in
conjunction with this platform.

3.4. Script-based policies
Scripting languages enable rapid and easy development of applications and have become

popular in scientific and engineering environments. One of the most attractive features of these
languages is faster application writing. In addition, most scripting languages are interpreted
and as such can be exploited without the tedious code-compile-execute sequence. Furthermore,
many scripting engines, nevertheless, allow scripts to be compiled to an intermediate represen-
tation that can be then executed. As a consequence, BYG offers support for executing threshold,
memoization and task placement policies written in Python and Groovy. Basically, to use this
support, users must provide an individual script file with .py or .groovy extension where the
specific optimization to be used for an individual gridified method is declared. For efficiency
reasons, policy scripts are compiled on background upon executing applications.

Irrespective of the scripting language employed, in order to introspect application execution
and specify policy decisions, developers must manipulate some standard input and output objects
defined by the BYG runtime. These objects are populated into the associated scripting engine
upon evaluating a script. Input objects are read-only, whereas the value of output objects can be
both read and modified. Table 1 lists the aforementioned objects. All objects have an untyped
value field that actually contains the data associated to the object. Besides providing uniformity
and thus simplifying object manipulation at the source code level, this allows BYG to abstract
away data-types differences across scripting languages. For example, boolean variables in some
flavors of Python and Groovy are internally represented as numbers (0 is false) and booleans
(true and false), respectively.

The following code shows an example policy that is basically the Python counterpart of the
memoization policy discussed in Section 3.2:

def s h o u l d F o r k () :
f o r k . v a l u e = eq (c t x . v a l u e . ge tArgument (0) % 2 , 0)

def b u i l d R e s u l t K e y () :
r e s u l t K e y . v a l u e = c t x . v a l u e . ge tArgument (0)

E n t r y p o i n t o f t h e s c r i p t
i f opcode . v a l u e == " s h o u l d F o r k " :

s h o u l d F o r k ()
e l i f opcode . v a l u e == " b u i l d R e s u l t K e y " :

b u i l d R e s u l t K e y ()

whereas the Groovy version of the task placement policy described in Section 3.3 is:

d e f shouldMap () {
i f (c t x . v a l u e . g e t C u r r e n t D e p t h () % 2 == 0){

15

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Object type Object Default value Description

Input
opCode N/A. Its value can be one of

“shouldFork”,
“buildResultKey”,

“shouldMap” or “mapTo”.

Selector indicating the optimization
function being executed.

ctx N/A Same as ExecutionContext for Java-based
policies.

Output

fork true Indicates whether to further split the
current computation into subtasks or not.

map false Indicates whether explicit task mapping
must be used or not.

resultKey null Holds the identifier associated to the task
result to be reused.

destination null Holds the destination node to which the
current computation must be placed.

Table 1: Input and output objects available for coding policies.

d e f i d = c t x . v a l u e . g e t C u r r e n t T a s k I d () ;
i f (i d . ge tSubtaskNumber () < 3)
map . v a l u e = t rue ;

}
}
d e f mapTo () {

d e s t i n a t i o n . v a l u e = " 1 2 7 . 0 . 0 . 1 " ;
}
E n t r y p o i n t o f t h e s c r i p t
i f (opcode . v a l u e == " shouldMap ") {
shouldMap () ;

}
e l s e
i f (opcode . v a l u e == "mapTo") {
mapTo () ;

}

Of course, more complex policies than the ones exemplified above can be implemented. Further-
more, for developing this support, we followed a similar approach to the JLab [32] numerical
computational environment, since we used the Java Scripting API5 for managing the binding

5http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting

16

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

between Java and scripts. This API is shipped as a package bundled into the JVM since version 6
and offers a generic engine for executing scripts implemented in a variety of scripting languages
(Python, Groovy, JavaScript, Rhino, Ruby, and many more).

4. Evaluation

This section describes the experiments that were performed to empirically evaluate the ex-
tensions to BYG described so far. We performed two type of experiments. On one hand, we
executed several performance benchmarks to quantify the costs introduced by the extra source
code for supporting Java-based policies inserted by BYG upon parallelizing user applications.
This is reported in Section 4.1. Then, we evaluated the performance overheads of script-based
policies. Roughly, the purpose of these experiments was to evaluate the effect of policies in par-
allelized applications without considering middleware-specific instructions. On the other hand,
we assessed the effectiveness of BYG and policies to parallelize two real-life applications. These
results are reported in Section 4.2. Comparisons were performed by using manually-generated
parallel versions of their codes by using the GridGain parallel library, plus variants built by using
the automatic parallelization support of BYG and policies.

4.1. Microbenchmarks
In order to quantify the execution overheads associated to BYG policies, we executed various

benchmarks with our policy-based bindings to Java, Python and Groovy. Particularly, we used
the following benchmark applications:

• Ad (adaptive numerical integration): Approximates a function f (x) within a given interval
(a,b) by replacing its curve by a straight line from (a, f (a)) to (b, f (b)). The application
receives as parameters f (x), a, b, and an epsilon that controls the mechanics of the algo-
rithm. We used f (x) = 0.1 ∗ x ∗ sin(x), a = 0, b = 250000. On the other hand, we used
epsilon = [0.001,0.0001,0.00001].

• PF (prime factorization): Splits an integer I into its prime factors such that their multipli-
cation is equal to I. For the tests, we used I = [155768907,1557689076,15576890767].

• FFT (Fast Fourier transform): Approximates a continuous function by a sum of sinusoids.
The function is in turn approximated by a finite number of points P sampled over a regular
interval. In the experiments, we used P = [2097152,4194304,8388608].

As suggested, for epsilon, I and P we employed three different values, which in turn determined
three input sizes –small, medium and large– for each application that increased the computational
costs. Table 2 shows the number of recursive calls necessary to process the different inputs by
the D&C sequential versions of the applications. On the other hand, the overheads introduced by
the policy support in terms of extra Java objects allocated in RAM were left out of the analysis
as they proved to be negligible.

To set the basis for comparison, for each application and input size, we executed four variants:

17

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Application/Size Small Medium Large

Ad 51,799,943 159,945,610 384,298,033

PF 32,767 557,054 4,751,357

FFT 4,194,303 12,582,910 29,360,125

Table 2: Recursive calls performed in the different runs.

1. A variant not relying on policies given by the original sequential D&C codes without BYG
preprocessing.

2. A variant using a threshold policy that simply decides to fork upon every single call to
shouldFork.

3. A variant using a memoization policy that forked execution provided the current depth
is below a 75% of the final depth of the entire execution tree. The target depth in each
case was determined beforehand and used to initialize the policy. For example, for the
Ad application and input size small, this value was approximated by the formula ⌉(0.75∗
log251,799,943). As a consequence, fewer forks compared to 2) were issued but cache
usage was involved.
Moreover, the buildResultKey method of the policy just returned a default value, therefore
during execution spurious objects were put into the local result cache, which were retrieved
but not reused.

Put simply, 2) was designed to stress out our basic policy runtime framework, while 3) repre-
sented a potentially common scenario of threshold-memoization combinations in order to pro-
vide an evaluation as realistic as possible. Lastly, for the sake of accuracy, we disabled the code
insertions necessary to support task launching and synchronization, thus only the policy-related
code from the BYG runtime was executed.

Table 3 shows the average execution time of the variants listed above for all input sizes. Ex-
periments were executed on a Intel® Core i3 M380 CPU running at 2.53 GHz (only one core was
used). It can be seen from the Table that the variants using policies incurred in some overheads,
but in all cases they were below 4 seconds. On the other hand, in general, the overheads tended
to decrease as the size of the experiments increased. For example, for small input sizes, policies
added an execution overhead of up to 10%, whereas for large input sizes, the overhead was in the
range of 1-5%. We could reasonably extrapolate these results to argue that, for very large input
sizes and thus execution times in the order of hours, overheads would be negligible.

In a second round of tests, we run some experiments to evaluate the performance of script-
based policies. Broadly speaking, interpreted languages are more expensive than compiled lan-
guages. Therefore, we decided to provide script-enabled versions of the benchmarks policies de-
scribed before. We derived two policies, one based on Python and another one coded in Groovy
(see Figure 5). After that, we separately evaluated these policies up to 1,000,000 times by se-
quentially calling their shouldFork and buildResultKey methods. This allowed us to quantify
the main cost component of supporting script-based policies since most of the associated per-

18

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Small input Average runtime (seconds) Overhead (seconds)

No
policies

Threshold Memoization Threshold Memoization

Ad 14.569 14.673 16.169 0.104 1.600

PF 1.836 2.021 1.962 0.185 0.126

FFT 3.829 3.993 4.074 0.164 0.245

Medium input Average runtime (seconds) Overhead (seconds)

No
policies

Threshold Memoization Threshold Memoization

Ad 28.469 28.87 28.987 0.401 0.518

PF 18.322 18.682 19.068 0.360 0.746

FFT 7.23 7.638 7.367 0.408 0.137

Large input Average runtime (seconds) Overhead (seconds)

No
policies

Threshold Memoization Threshold Memoization

Ad 66.769 67.005 67.646 0.236 0.877

PF 183.386 186.461 187.302 3.075 3.916

FFT 15.432 16.308 15.552 0.876 0.120

Table 3: Java policies: Overhead.

19

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

def s h o u l d F o r k () :
f o r k . v a l u e = 1

def b u i l d R e s u l t K e y () :
r e s u l t K e y . v a l u e = " foo "

E n t r y p o i n t o f t h e s c r i p t
i f opCode . v a l u e == " s h o u l d F o r k " :

s h o u l d F o r k ()
e l i f opCode . v a l u e == " b u i l d R e s u l t K e y " :

b u i l d R e s u l t K e y ()

d e f s h o u l d F o r k () {
f o r k . v a l u e = t rue ;

}
d e f b u i l d R e s u l t K e y () {

r e s u l t K e y . v a l u e = " foo " ;
}
E n t r y p o i n t o f t h e s c r i p t
i f (opCode . v a l u e == " s h o u l d F o r k ") {

s h o u l d F o r k () ;
}
e l s e
i f (opCode . v a l u e == " b u i l d R e s u l t K e y ") {

b u i l d R e s u l t K e y () ;
}

Figure 5: Python policy (left) and Groovy policy (right) used during the experiments.

formance penalty resides in the library classes of the JVM that are used to bind the Java code
implementing these methods and their associated scripting codes. Results are shown in Figure 6
by depicting the total elapsed time within accumulative windows of 1,000 runs. We also run
the same experiment with the Java versions of the policy, however their associated elapsed times
were not included in the graphic as they were very small.

As expected, evaluating script-based policies has associated an inherent cost that is explained
by the interpreted nature of scripting languages. This does not mean that script-based policies
are not viable, but rather they should be used sparingly by controlling the granularity of the
computations. By granularity we refer to the number of parallel tasks in which a single unit of
computation is split. In this way, the more the number of effective forks, the finer the granularity
of the whole application (many tasks with small computational requirements). However, the
cost of evaluating policies increases. Likewise, the less the number of forks, the coarser the
granularity (few tasks with high computational requirements). Here, the negative incidence of
policies in the execution time decreases. This clear trade-off can be formally expressed by the
following formula:

Overhead =
(2(N−1)−1)∗costpolicy

(2(N−1)−1)∗costpolicy+(2N−1)∗costtask

where:

• Overhead is the percentage of the total execution time an application spends evaluating
policies.

• N is the number of nodes in the execution tree associated to the application.

• costpolicy is the average cost (in time units) of evaluating a policy.

• costtask is the average cost (in time units) of executing a parallel task but without consider-
ing the cost of executing its (recursive) subtasks.

For simplicity, this overhead model makes some assumptions that may not hold in practice, i.e.
the formula assumes that the cost of executing task code does not depend on task depth, and all

20

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

 0

 5

 10

 15

 20

 25

 30

 35

 0 200000 400000 600000 800000 1e+06

A
c
c
u

m
u
la

te
d
 e

la
p

s
e
d
 t

im
e
 (

s
e

c
o
n

d
s
)

Number of invocations

Python
Groovy

Figure 6: Accumulated total elapsed time when executing the script-based policies.

tasks further divide their computation into two subtasks. All in all, as suggested, when using
script-based policies the granularity should be controlled. This essentially means keeping N
below a reasonable limit.

On the other hand, the average overhead of evaluating the Groovy policy with respect to its
Python counterpart was 73%, with a standard deviation of 2%. In addition, its curve was steeper.
Indeed, Groovy is an agile dynamic language that combines the convenience of scripting with
the functionality provided by the Java language itself. Groovy has many of the features of other
scripting languages such as Python and Ruby, which are made accessible by relying on a Java-like
syntax. However, users should take into account the trade-off between the flexibility offered by
Groovy versus its computational requirements. One approach to reduce this overhead would be
relying on a lighter version of Groovy so that script parsing and interpretation is less expensive.
In principle, this can be solved by incorporating a new scripting engine into the JVM and adding
the necessary support to our policy API.

4.2. Real-life applications
To empirically evaluate the applicability of the extensions to BYG described up to now,

we conducted several experiments in order to measure the performance that resulted from em-
ploying GridGain and BYG for parallelizing two real-world applications, namely ray tracing and
sequence alignment. The goal of the experiments was twofold. On one hand, we wanted to deter-
mine whether the automatic approach to gridification of BYG via its GridGain connector delivers
competitive performance compared to parallelizing applications by hand with GridGain. On the
other hand, another goal was to assess the effectiveness of policies for optimizing automatically-

21

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

gridified applications. Moreover, for an evaluation of the Satin connector, see [28].
Similarly to the experiments described in [28], we used an emulated Grid setting compris-

ing 15 machines running Mandriva Linux 2010, Java 5 and GridGain 2.1.0 connected through a
100 Mbps network. We used 8 single core nodes with 2.80 MHz CPUs and 1.25 GB of RAM, and
7 single core nodes with 3 MHz CPUs and 1.5 GB of RAM. A wide-area Grid on top of this LAN
was established by using the WANem version 2.2 [36] WAN emulation software. The resulting
Grid was then composed of 3 clusters C1, C2 and C3 by using 4, 5 and 6 of the nodes of the LAN,
respectively. Each emulated WAN link had a bandwidth of 1,544 Mbps (i.e. T1 connection) with
a round-trip latency of 160 ms and a jitter of 10 ms, therefore inter-cluster latencies were in the
range of 150-170 ms. Note that these are network conditions commonly found in Internet-wide
Grids. For the sake of fairness, GridGain –and hence BYG– were configured to use the load
balancing scheme that best fitted the established Grid, in this case the Round Robin scheduler
with the default configuration. All in all, apart from the challenging nature of the execution en-
vironment, the test applications had a high cyclomatic complexity, thus they were representative
to stress our code analysis mechanisms.

4.2.1. Ray tracing
Ray tracing is a widely-known rendering technique that generates a digital picture from an

abstract description of a 3D scene [15]. We based our experiments on an existing D&C parallel
ray tracing algorithm from the Satin project, which works by deriving an initial image from the
input scene, dividing this image in four portions to recursively apply the algorithm, and then
joining the results to build the final picture. From this code, several variants for comparison
purposes were coded:

• A variant exploiting the parallel annotations provided by the GridGain platform. With
this support, developers annotate their sequential codes for parallelism, and execution of
parallelized codes are handled by using a middleware-level mechanism that extends con-
ventional Java futures for distribution.

• A GridGain implementation by altering the original Satin code to exploit the Google’s
MapReduce parallel programming model [8], which is similar to the master-worker model
and is cleanly supported by GridGain. The MapReduce model roughly provides abstrac-
tions to generate independent tasks from input data (the map phase) and combines subre-
sults into a larger subresult or result (the reduce phase).

• A BYG variant using a threshold policy to control task granularity. The policy allows the
code to spawn tasks provided the size (i.e. width * height) of the subimage being processed
is above some given value.

• A BYG variant using a task mapping policy that extends the previous policy with a simple
task allocation scheme that places some quadrants belonging to the same subimage in the
same cluster. The rationale behind this scheme is to minimize inter-cluster data transfer
upon joining subresults.

22

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

To sum up, we used two hand-coded variants and two automatically-parallelized versions of the
application. The GridGain and BYG implementations were obtained by removing from the base
Satin code any statement related to parallelism and tuning application execution to derive the
sequential D&C counterparts of the application first, and manually or automatically parallelize
them later according to the target application structure. As suggested earlier, both BYG variants
ended up generating GridGain source code. As the nature of the ray tracing application does not
provide an opportunity for using memoization policies, we did not coded the associated variant.
Experiments with real benchmark parallel applications that do benefit from memoization policies
can be found in [27].

For executing the applications, we used three task granularities: fine, medium and coarse, i.e.
about 17, 4 and 1 parallel tasks per Grid node, respectively. As input, we employed two scenes
with two different resolutions (1024x1024 and 2048x2048). Unlike the experiments reported
in [28], we decided not to process scenes with lower resolutions or spawn more tasks per node
as GridGain has proved not to work very well when handling very fine-grained parallelism.

Figure 8 illustrates the average running time of the applications for 40 executions. The stan-
dard deviation was below 11%, which is acceptable considering the random factors that charac-
terize the underlying scheduler and the variability inherent to WAN links in terms of bandwidth
and latency. As a complement, Figure 7 shows the speedup achieved by the different implementa-
tions for the various configurations. Speedup was computed by the formula Tseq/Tpar, being Tseq
and Tpar the times required to execute the sequential6 and parallel versions of the ray tracing
application, respectively. On the other hand, the theoretical maximum was established not at the
number of cluster machines (i.e. 15) but at a value of 18, because the processors of the different
machines supported hyper-threading, a hardware technology that emulates two processors within
the same physical CPU. Then, task schedulers that exploit this feature (typically via threads) such
as the one provided by GridGain usually increase CPU performance by 22% at the average. In
this sense, the theoretical maximum was approximated as ⌋(#machines+#machines∗0.22).

All in all, compared to GridGain, BYG performed rather well, considering that its design goal
is not to outperform existing parallel Grid libraries but automating as much as possible parallel
programming and therefore the usage of such libraries while achieving competitive performance.
Note that the execution times uniformly increased as granularity became coarser for all tests,
which shows a good overall correlation of the different variants. This makes sense because
coarser task granularity means that fewer parallel tasks are generated and thus the chance of
nodes of being idle or underused during a computation increases.

As depicted in Figure 8, results show that for the case of fine granularity BYG was able to
outperform their two competitors since through its parallelization heuristics in conjunction with
either policies BYG achieved performance gains of up to 29% (Scene 1, 1024x1024). For the
rest of the inputs, BYG and policies performed very close to the GridGain variants. On the other
hand, for medium granularity, the plain threshold policy proved to be insufficient for this test
application. However, this did not translate into an irremediable problem, since the task place-
ment policy introduced significant performance improvements. As explained in earlier Sections,

6The sequential variant of the application was run on the Grid node featuring the best processing capabilities.

23

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Figure 7: Ray tracing: Speedup.

switching between policies does not lead to modification of the target parallel application. In this
sense, when a specific policy does not deliver the expected results, users can easily supply the
same parallel application code with another tuning rule.

Finally, for the coarse granularity, for some scenes the best BYG variants introduced over-
heads of 1-9% with respect to the most efficient GridGain implementations. As expected, task
placement and therefore data locality turned out counterproductive, because the performance
benefits of placing a set of related tasks (in this case those that process near regions of the input
scene) in the same physical cluster scene became negligible for this experiment because worse
load balancing is obtained. Again, the most efficient granularities were fine and medium in the
sense they delivered the best data communication over processor usage ratio. This suggests,
in principle, that the GridGain connector of BYG is more efficient when coarse task granular-
ities are not used, which in turn means that users should reflect this fact in their policies when
adjusting granularity.

24

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Figure 8: Ray tracing: Average execution time.

4.2.2. Pairwise sequence alignment
Local pairwise sequence alignment is a well-known problem in bioinformatics that involves

representing a biological entity (e.g. a gene) in a computer-understandable way –usually strings
of characters– and manipulating the resulting representation by using sequence alignment algo-
rithms. These algorithms allow scientists to determine for example whether a newly obtained
sample protein sequence represents a virus or not.

As the second real-life test application we then used an existing parallel code from the JPPF
project7, consisting of a master-worker implementation of an application for aligning protein
sequences based upon the Smith-Waterman alignment algorithm [12]. The algorithm roughly
outputs a coefficient that represents the level of similarity between two given input sequences by
employing a scoring matrix from a set of predefined matrixes. As the original JPPF source code
was already parallelized, we first removed the library-dependent parallel code before obtaining
its sequential version. Based on this latter, we derived four parallel variants:

7http://www.jppf.org

25

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

• A variant using the parallel annotations provided by GridGain.

• A GridGain implementation based on the Google’s MapReduce parallel programming
model [8].

• A D&C sequential version, after which we obtained a BYG variant using a threshold pol-
icy. Algorithmically, the derived D&C code operated by comparing an input sequence
against an entire sequence database by dividing the portions of the data to compare against
into two different subproblems until a certain threshold T on the data was reached, which
was enforced by the policy.

• Same as before but employing a task placement policy extending the previous policy with
an explicit task placement scheme to place computations associated to contiguous data
portions of the input database in the same cluster.

Furthermore, we compared five different random sequences against real-world protein sequence
databases extracted from the National Center for Biotechnology Information (NCBI) Web site8.
Upon running the experiments, data was replicated across the nodes of the established Grid.
Lastly, sequences in the different databases did not follow any special order and therefore none
of the implementations were favored over the others in this respect.

Figure 10 shows the average running time of the applications for 40 executions. The stan-
dard deviation was similar to the case of the experiments presented in the previous subsection.
Furthermore, Figure 9 illustrates the achieved speedups. Unlike ray tracing, in which for each
granularity an experiment-wide, or variant-independent number of tasks was employed, for each
parallel variant of the sequence alignment application we used a number of subcomputations
that depended on input sizes. This avoided to spawn many ultra fine-grained parallel tasks when
processing small databases, which would had been unfair to GridGain.

As shown in both Figures, and in opposition to ray tracing, the running times were smaller as
the granularity increased. This is interesting as confirms that the algorithmic nature of our second
application is quite different compared to the first one, thus ensuring the significance of our
experiments. Furthermore, like for the ray tracing application, BYG obtained better performance
for the fine granularity, and performed very competitively for the medium granularity. However,
again, the GridGain variants were slightly more efficient when using coarse-grained tasks. In
general, task placement did not help too much in reducing execution time because, unlike ray
tracing, parallel tasks had intuitively a higher degree of independence in terms of processed data.
One important lesson learned from this fact concerns the applicability of our tuning support.
This is, the results do not imply that task placement policies are not effective but their usage
should be decided depending on the nature of parallelized applications, which enforces similar
previous findings [27]. In other words, this problem is not exclusive to BYG but also affects
in general any explicit parallel programming framework. The policy support discussed so far
is not designed to automate application tuning, but to provide a customizable framework that
captures common optimization patterns in FJP applications. Then, whether these patterns benefit

8http://www.ncbi.nlm.nih.gov

26

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Figure 9: Pairwise sequence alignment: Speedup.

a particular parallelized application or not depends on its nature. In fact, only a subset of FJP
applications are able to effectively take advantage of memoization. The same applies to the rest
of the policies.

5. Related work

Undoubtedly, MPI and PVM appear themselves as the oldest standards for building engi-
neering and scientific general-purpose parallel applications. When relying on the parallel ab-
stractions proposed by these standards, user applications are parallelized by decomposing them
into a number of independent distributed components that communicate between each other via
message exchange. As MPI and PVM are standard specifications, several implementations for
a variety of languages have arisen. In the Java world, MPI is more popular than PVM and
is supported by quite a few libraries, being mpiJava [16] and MPJ Express [35] the most re-
cent proposals. Nonetheless, PVM has been also successfully implemented by libraries such
as jPVM [39]. Moreover, the JCluster [42] parallel platform, besides providing a distributed
programming model based on regular Java threads, provides bindings to both MPI and PVM.

27

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

 0

 50

 100

 150

 200

 250

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 20

 40

 60

 80

 100

 120

 140

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 20

 40

 60

 80

 100

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Figure 10: Pairwise sequence alignment: Average execution time.

MPI and PVM have on the other hand received much criticism [23] since they are basically
low-level parallelization tools that require solid knowledge on both parallel and distributed pro-
gramming from users. In response, there are Java tools that attempt to address this problem by
raising the level of abstraction of the API exposed to users and relieving them as much as possible
from performing parallel task creation and coordination. In some cases, these tools also advocate
to some forms of semi-automatic parallelism of sequential codes, therefore gradually moving to
a new wave of gridification tools that ideally let users to exploit Grids without any programming
effort. This is achieved precisely by automating task creation or coordination. Furthermore, other
Java-based tools get rid of APIs almost completely and at the same time provide mechanisms that
automate some of these aspects, being in this way even closer to this ideal state. Hence, exist-
ing tools can be categorized in principle according to two important orthogonal dimensions: the
size/complexity of their API, which may be zero (no API is exposed), low, medium and high, and
the offered level of automatism for managing parallelism, which may be manual, semi-automatic
and (almost) fully-automatic [26]. By manual and semi-automatic we mean that all the effort to
turn a sequential application into a Grid-aware source code, without considering configuration
and deployment activities, is entirely or partially performed by the user.

28

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

ProActive [3] is a rich Java platform for parallel distributed computing that provides active
objects, or regular Java objects that can migrate between nodes and access computing resources
locally. Computations performed by these active objects can be split into several (smaller) sub-
computations, which are solved by other active objects. However, managing parallelism still
requires manually using its extensive API. Moreover, JavaSymphony [19] is a performance--
oriented platform that provides sophisticated middleware-level services for dealing with paral-
lelism and load balancing of Grid applications, and at the same time allows programmers to
control such features via API calls placed directly in the application code. Unfortunately, us-
ing JavaSymphony, which is an API-inspired parallelization tool, unavoidably requires to learn
and manually use their associated APIs within the code of sequential user application to create
and synchronize tasks. Similarly, JCluster [42], besides providing Java modules compliant to
MPI and PVM, offers an API for parallelizing applications. All in all, the three tools are based
on manual parallelism. Besides, both JavaSymphony and JCluster promote threads as the base
parallel programming model, which makes application programming, testing and debugging dif-
ficult due to the non-deterministic nature of thread execution [23].

Furthermore, VCluster [43] supports execution of thread-based applications on multicore
clusters by relying on a thread migration technique that achieves efficient dynamic load bal-
ancing of threads across the nodes of a cluster. Although based on manual parallelism and a
programming model based on threads, the VCluster API is somewhat simpler compared to the
tools listed above. Similarly, DG-ADAJ [22] provides a mechanism for transparent execution of
multithreaded applications on desktop PC Grids. Interestingly, DG-ADAJ automatically derives
graphs from the bytecode of a Java application by using representative sets of input data. The
graphs account for data and control dependencies within the sequential code. Then, a scheduling
heuristic is applied to place mutually exclusive execution paths extracted from the graphs among
the nodes of a cluster, thus automatically further exploiting the implicit parallelism of the ap-
plication. As a consequence of relying on regular threads but automating some aspects of their
parallel execution, DG-ADAJ is then based on semi-automatic parallelism.

The two Grid platforms to which BYG provides integration discussed throughout this paper
can be also considered as related efforts. The Satin framework [40] avoids the explicit usage
of threads while allows parallelizing sequential D&C applications. The user is responsible for
implicitly indicating in the application code the points in which forks (i.e. calls to recursive
methods) should take place, and explicitly stating joins (i.e. barriers to wait for child computa-
tions). Once coded and compiled, Satin further modifies the bytecode of applications to handle
the execution of parallel tasks on a Grid. As such, Satin requires partial user intervention in
the process of inserting parallel-specific API code prior to fully Grid-enabling their compiled
counterpart, which is done by a built-in postprocessor that parallelizes the application bytecode
based on specified fork and join points. On the other hand, as discussed earlier, GridGain [13]
is a Grid platform providing three parallel development models, i.e. one based on Java futures
(shown in Section 2.3), a second using regular Java annotations and a third based on MapReduce
(mentioned in Section 4.2). GridGain is aimed among other things at delivering APIs that are
easy to learn and use, but these models are based on manual parallelism.

Finally, another line of approaches to gridification aimed at minimizing code modification in
the input sequential application and do not rely on parallel API provisioning are those promoting

29

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

separation of concerns between the functional aspects of the application (pure behavior) and the
Grid-specific behavior [14, 24]. This is commonly achieved via aspect-oriented programming
(AOP) [29] techniques, whereby a sequential code is attached one or more “aspects” that encap-
sulate how the different portions of this code are executed in parallel within a Grid. The weak
point of these approaches is that they unnecessarily impose a specific development paradigm (i.e.
AOP) which most developers from the scientific community are not familiar with. This problem
is minimized by several tools such as PAL [7] or the approach described in [11] that are are to
a great extent inspired by the parallel programming mechanism promoted by OpenMP [6]. In
this sense, these two approaches use Java annotations in the source code of sequential applica-
tions, thus they provide a more comfortable programming abstraction compared to AOP-based
programming tools. Similar to OpenMP and SMP machines, annotated codes are then prepro-
cessed to generate Grid-enabled valid Java code. From a semantic standpoint, these annotations
operate just like an API but are far more minimalistic. A key difference of those approaches
and OpenMP is, however, that the latter is a standard, cross-language set of directives for shared
memory parallel programming, whereas the former offer non-standard parallel annotations aimed
at parallelism in Java only.

Table 4 summarizes the tools discussed so far. As depicted, BYG differs from the abovemen-
tioned efforts since it allows novice developers to automatically introduce parallelism into the
compiled version of applications, which avoids the requirement of thinking about how to exploit
parallelism in their algorithms, and learning and using parallel programming APIs for managing
task synchronization and coordination itself. Parallelism is performed automatically based on
heuristics that work by analyzing the input sequential code and generating Grid-aware codes that
are in turn prepared to exploit existing Grid APIs. Even when an API is provided by our tool, it
is very intuitive and serves as a mean of optionally tuning already parallelized applications. Not
surprisingly, it can be seen from the Table the extent to which conventional language constructs
of Java (i.e. threads and annotations) have influenced the development of parallel Java-based
platforms. Alternatively, BYG does not explicitly prescribe a specific base parallel facility, and
is based on the pervasive and intuitive divide and conquer programming model, an algorithmic
abstraction that is present in many real-world problems. Indeed, except for the case of Satin,
existing tools are based on parallel programming abstractions that are difficult to manipulate by
disciplinary users.

6. Conclusions

In this paper we have described BYG (BYtecode Gridifier), a tool to automatically prepare
sequential Java bytecodes to exploit Computational Grids. Particularly, we have focused on
describing from a user’s standpoint two important extensions of BYG, namely the integration
with state-of-the-art Grid schedulers and the incorporation of a policy-based explicit application
tuning support. Basically, this support relies on a very simple API that allows users to spec-
ify common optimizations for applications without actually modifying their logic. Moreover,
optimizations can be coded in Java, Python and Groovy.

BYG offers an alternative balance to the dimensions of applicability, code intrusiveness and
expertise that concern parallel programming tools. Good applicability is achieved by targeting

30

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Tool API complexity Approach to
parallelism

Base parallel
facility

ProActive high manual active object

JavaSymphony high manual thread

JCluster high manual thread

VCluster medium manual thread

DG-ADAJ zero semi-automatic thread

Satin low semi-automatic N/A

GridGain medium manual future, annotation,
MapReduce task

Harbulot and Gurd zero manual aspect

Maia et al. zero manual aspect

PAL low manual annotation

Gonçalves and
Ferreira Sobral

low manual annotation

BYG low fully-automatic N/A

Table 4: Analyzed tools: Summary.

31

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Java, FJP and D&C, and leveraging primitives of existing parallel libraries. Low code intrusive-
ness is ensured by using mechanisms to translate from sequential to parallel code while keeping
tuning logic –i.e. statements for optimizing applications– away from this latter. Overall, users
such as scientists and engineers can code their algorithms without thinking about parallelism,
and then use our tool to Grid-enable their codes and optionally optimize them whenever neces-
sary. Our experimental results confirm that both the heuristics for automatic parallelism and the
policy-oriented explicit tuning of BYG are in tandem a viable approach to gridification from a
practical perspective.

At present, we are working on tools to make BYG easier to adopt and use. We are devel-
oping a prototype implementation of a GUI that lets developers to gridify their applications by
graphically selecting target methods and middlewares, and configuring policies. Eventually, this
plug-in could also offer proper support for deploying and monitoring the execution of applica-
tions by exploiting the analogous services of the selected Grid platform. It is expected that the
GUI will also let developers to inspect the execution state of parallelized applications for debug-
ging purposes. In summary, our goal is to supply users with a full-fledged frontend for gridifying
D&C applications.

Another line of research involves materializing BYG concepts directly into scripting lan-
guages that are commonplace in the scientific and engineering community. The idea is to inves-
tigate how to port and exploit the parallelization heuristics of BYG and its associated concepts for
such languages beyond script-based policies. As a starting point, we are rethinking our heuristics
in the context of the Jython library [20], a Java-based implementation of the Python programming
language that includes a module to compile Python source code into Java bytecodes. Interest-
ingly, Jython is compliant to Python 2.5, and supports nearly all of its core standard modules. At
present, we are developing a prototype to parallelize applications on multicore servers. Never-
theless, Jython provides extra support that makes it easy to use regular Java classes from within
Python scripts. This will be useful to take advantage of the already implemented bindings to
existing Grid schedulers shipped with BYG. This work in not being done in isolation but we are
also reusing previous advances in the topic reported in the literature [18].

Likewise, we are investigating how to adapt our ideas not only to interpreted languages but
also to compiled languages that are heavily employed within the scientific and the engineering
communities, such as C and C++. Although the algorithms for introducing parallelism and per-
formance tuning are mostly language-independent, their implementation unavoidably requires a
language-dependent mechanism for dynamically rewriting compiled sequential codes. In this
sense, a technological alternative for implementing this mechanism in C and C++ is to use
Dyninst [38], an API that allows on-the-fly modification of native binary codes. Dyninst is a
very healthy library (version 7.0 was released on March, 2011), works with a variety of operat-
ing systems, and has been already used in similar developments, notably the MATE (Monitoring,
Analysis and Tuning Environment) for parallel applications [5].

Finally, a relatively recent distributed and parallel computing paradigm that is rapidly gain-
ing momentum is Cloud Computing [9, 4], which bases on the idea of providing an on-demand
computing infrastructure to end users. Typically, users exploit Clouds by requesting from them
one or more machine images, which are virtual machines running a desired operating system on
top of several physical machines (e.g. a datacenter). Interaction with a Cloud is performed via

32

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

Cloud services, which define the functional capabilities of a Cloud, i.e. machine image manage-
ment, access to software/data, security, and so forth. Among the benefits of Cloud Computing is
precisely a simplified configuration and deployment model compared to clusters and Grids [9],
which is extremely desirable for disciplinary users. In addition, Cloud infrastructures intuitively
have the capabilities to deliver good performance. Consequently, we will investigate how to
adapt BYG to exploit such infrastructures.

Acknowledgments

We thank the anonymous referees for their comments to improve the paper. We thank Cristian
Clasadonte for his help managing the computing infrastructure required for the experiments with
real-life applications described in this paper. We also acknowledge the financial support provided
by ANPCyT through grant PAE-PICT 2007-02311.

References

References

[1] H. Abelson, G. Sussman, Structure and Interpretation of Computer Programs, 2nd ed., MIT
Press, Cambridge, MA, USA, 1996.

[2] E. Alba, C. Blum, P. Asasi, C. Leon, J. A. Gomez, Optimization Techniques for Solving
Complex Problems, Parallel and Distributed Computing, Wiley Publishing, 2009.

[3] B. Amedro, F. Baude, F. Huet, E. Mathias, Combining Grid and Cloud resources by use of
middleware for SPMD applications, in: 2nd IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), Indianapolis, USA, IEEE Computer Society,
Los Alamitos, CA, USA, 2010, pp. 177–184.

[4] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future
Generation Computer Systems 25 (6) (2009) 599–616.

[5] P. Caymes-Scutari, A. Morajko, T. Margalef, E. Luque, Scalable dynamic Monitoring,
Analysis and Tuning Environment for parallel applications, Journal of Parallel and Dis-
tributed Computing 70 (4) (2010) 330–337.

[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel Program-
ming in OpenMP, Morgan-Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[7] M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi, D. Laforenza, L. Presti, PAL: Exploiting
Java annotations for parallelism, in: Achievements in European Research on Grid Systems,
Springer, United States, 2008, pp. 83–96.

[8] J. Dean, S. Ghemawat, MapReduce: A flexible data processing tool, Communications of
the ACM 53 (2010) 72–77.

33

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

[9] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid Computing 360-degree
compared, in: Grid Computing Environments Workshop (GCE ’08), Austin, Texas ,USA,
IEEE Computer Society, 2008, pp. 1–10.

[10] V. Freeh, A comparison of implicit and explicit parallel programming, Journal of Parallel
and Distribed Computing 34 (1) (1996) 50–65.

[11] R. Gonçalves, J. Ferreira Sobral, Pluggable parallelisation, in: 18th ACM International
Symposium on High Performance Distributed Computing (HPDC ’09), Garching, Ger-
many, ACM Press, New York, NY, USA, 2009, pp. 11–20.

[12] O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular
Biology 162 (3) (1982) 705–708.

[13] GridGain Systems, GridGain = High Performance Cloud Computing, http://www.
gridgain.com (last accessed August 2011) (2011).

[14] B. Harbulot, J. R. Gurd, Using AspectJ to separate concerns in parallel scientific Java code,
in: 3rd International Conference on Aspect-Oriented Software Development (AOSD ’04),
Lancaster, UK, ACM Press, New York, NY, USA, 2004, pp. 122–131.

[15] P. Heckbert, E. Haines, A ray tracing bibliography, in: A. Glassner (ed.), Introduction to
Ray Tracing, Academic Press, Inc., 1989, pp. 295–303.

[16] E. Hernández, Y. Cardinale, W. Pereira, Extended mpiJava for distributed checkpointing
and recovery, in: Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, vol. 4192 of Lecture Notes in Computer Science, Springer, Berlin / Heidelberg, 2006,
pp. 158–165.

[17] C. Herzeel, P. Costanza, Dynamic parallelization of recursive code: Part 1: Managing con-
trol flow interactions with the continuator, SIGPLAN Notices 45 (2010) 377–396.

[18] K. Hinsen, Parallel scripting with Python, Computing in Science and Engineering 9 (2007)
82–89.

[19] A. Jugravu, T. Fahringer, JavaSymphony, a programming model for the Grid, Future Gen-
eration Computer Systems 21 (1) (2005) 239–246.

[20] J. Juneau, J. Baker, F. Wierzbicki, L. Soto, V. Ng, The Definitive Guide to Jython: Python
for the Java Platform, 1st ed., Apress, Berkely, CA, USA, 2010.

[21] J.-K. Kim, S. Shivle, H. Siegel, A. Maciejewski, T. Braun, M. Schneider, S. Tideman,
R. Chitta, R. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Vangari, S. Yellam-
palli, Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous
environment, Journal of Parallel and Distributed Computing 67 (2) (2007) 154–169.

34

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

[22] E. Laskowski, M. Tudruja, R. Olejnik, B. Toursel, Byte-code scheduling of Java programs
with branches for Desktop Grid, Future Generation Computer Systems 23 (8) (2007) 977–
982.

[23] E. Lee, The problem with threads, Computer 39 (5) (2006) 33–42.

[24] P. Maia, N. Mendonca, V. Furtado, W. Cirne, K. Saikoski, A process for separation of
crosscutting Grid concerns, in: ACM Symposium on Applied Computing (SAC ’06), Dijon,
France, ACM Press, New York, NY, USA, 2006, pp. 1569–1574.

[25] C. Mateos, A. Zunino, M. Campo, JGRIM: An approach for easy gridification of applica-
tions, Future Generation Computer Systems 24 (2) (2008) 99–118.

[26] C. Mateos, A. Zunino, M. Campo, A survey on approaches to gridification, Software: Prac-
tice and Experience 38 (5) (2008) 523–556.

[27] C. Mateos, A. Zunino, M. Campo, An approach for non-intrusively adding malleable
fork/join parallelism into ordinary JavaBean compliant applications, Computer Languages,
Systems & Structures 36 (3) (2010) 288–315.

[28] C. Mateos, A. Zunino, M. Hirsch, M. Fernández, M. Campo, A software tool for semi-
automatic gridification of resource-intensive Java bytecodes and its application to ray trac-
ing and sequence alignment, Advances in Engineering Software 42 (4) (2011) 172–186.

[29] G. Murphy, C. Schwanninger, Guest editors’ introduction: Aspect-Oriented Programming,
IEEE Software 23 (2006) 20–23.

[30] H. Nakada, Condor-G Java API, http://staff.aist.go.jp/hide-nakada/condor\
_java_api/index.html (last accessed May 2011) (2008).

[31] T. Oliphant, Python for scientific computing, Computing in Science and Engineering 9 (3)
(2007) 10–20.

[32] S. Papadimitriou, K. Terzidis, S. Mavroudi, S. Likothanassis, Scientific scripting for the
Java platform with jLab, Computing in Science and Engineering 11 (2009) 50–60.

[33] F. Pérez, B. Granger, J. Hunter, Python: An ecosystem for scientific computing, Computing
in Science and Engineering 13 (2) (2011) 13–21.

[34] M. Ropo, J. Westerholm, J. Dongarra, Recent advances in Parallel Virtual Machine and
Message Passing Interface - Proceedings of the 16th European PVM/MPI Users’ Group
Meeting, Espoo, Finland, September 7-10, 2009, Lecture Notes in Computer Science,
Springer-Verlag, Berlin / Heidelberg, 2009.

[35] A. Shafi, B. Carpenter, M. Baker, Nested parallelism for multi-core HPC systems using
Java, Journal of Parallel and Distribed Computing 69 (6) (2009) 532–545.

35

This is a preprint of the article: "Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support (C.
Mateos, A. Zunino, M. Hirsch, M. Fernandez). Advances in Engineering Software. Elsevier Science. ISSN: 0965-9978. 43(1):27-43. 2012. "

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.08.006

[36] TATA Consultancy Services, WANem, http://wanem.sourceforge.net (last accessed
April 2011) (2009).

[37] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: The Condor expe-
rience, Concurrency and Computation: Practice and Experience 17 (2-4) (2005) 323–356.

[38] University of Maryland, Dyninst api, http://www.dyninst.org (last accessed August
2011) (2011).

[39] University of Virginia, jPVM, http://www.cs.virginia.edu/~ajf2j/jpvm.html (last
accessed May 2011) (1999).

[40] R. Van Nieuwpoort, G. Wrzesińska, C. Jacobs, H. Bal, Satin: A high-level and efficient
Grid programming model, ACM Transactions on Programming Languages and Systems
32 (3) (2010) 9:1–9:39.

[41] L. Wang, W. Jie, Towards supporting multiple virtual private computing environments on
computational Grids, Advances in Engineering Software 40 (4) (2009) 239–245.

[42] B.-Y. Zhang, G.-W. Yang, W.-M. Zheng, JCluster: An efficient Java parallel environment
on a large-scale heterogeneous cluster, Concurrency and Computation: Practice Experience
18 (12) (2006) 1541–1557.

[43] H. Zhang, J. Lee, R. Guha, VCluster: A thread-based Java middleware for SMP and hetero-
geneous clusters with thread migration support, Software: Practice and Experience 38 (10)
(2008) 1049–1071.

36

