This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

A software tool for semi-automatic gridification of
resource-intensive Java bytecodes and its applicaticayttracing
and sequence alignment

Cristian Mateo?, Alejandro Zunin8, Matias Hirsch, Mariano Fernandez, Marcelo Catpo

3ISISTAN Research Institute. UNICEN University. Campuseéhsitario, Tandil (B7001BBO), Buenos Aires,
Argentina. Tel.:+54 (2293) 439682 ext. 35. Fax-54 (2293) 439681
Also Consejo Nacional de Investigaciones Cientificas yi€asi{fCONICET)

Abstract

Computational Grids deliver the necessary computatiamfahstructure to perform resource-
intensive computations such as the ones that solve thegmstdcientists are facing today. Ex-
ploiting Computational Grids comes at the expense of eilyliadapting the ordinary software
implementing scientific problems to take advantage of Gegburces, which unavoidably re-
quires knowledge on Grid programming. The recent notiongoidifying” ordinary applica-
tions, which is based on semi-automatically deriving a @mare version from the compiled
code of a sequential application, promises users to beveglifom the requirement of manual
usage of Grid APIs within their source codes. In this papergescribe a novel gridification tool
that allows users to easily parallelize Java applicationSds. Extensive experiments with two
real-world applications —ray tracing and sequence aligriimsuggest that our approach provides
a convenient balance between ease of gridification and @sdurce exploitation compared to
manually using Grid APIs for gridifying ordinary applicatis.

Key words: Computational Grids, gridification, resource-intensipplecations, Java bytecode.

1. Introduction

Computational Grids are distributed heterogeneous chiitat allow scientists to build ap-
plications that demand by nature a huge amount of computdtiesources such as CPU cycles
and memory [14]. Examples of such applications includedegramic design, weather predic-
tion, catastrophe simulation, financial modeling, drugoi®ry, amongst others. The sad part of
the story is that taking advantage of such computationsstfuctures requires significant de-
velopment &ort and knowledge on distributed as well as parallel prognamg. In other words,
there is a very high coupling between the tasks of writingsgguential implementation of the al-
gorithm that represent a simulation and obtaining its @ndbled version. As a consequence, at
development time, a user must take into account the furaltiaspects of his application (what

*Corresponding author.
Email addresscmateos2006@gmail . com (Cristian Mateos)

Preprint submitted to Advances in Engineering Software May 6, 2010

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

the application does) as well as many details of the undeglyrid execution infrastructure
(how the application executes). Clearly, the second requent cannot be easily accomplished
by scientists and practitioners not proficient in Grid pesgming.

The traditional approach to cope with the problem of easipl@ting Grids is based on sup-
plying users with programming APIs such as MPI [42] and PVM][4vhich provide standard
and simple interfaces to Grids through the provision of giriues to execute parts of an appli-
cation in a distributed and coordinated way. To this end,ex oaist in principle indicate which
parts of its application can benefit from being parallelibgdnserting in the sequential code that
implements his application appropriate calls to such pgives. Interestingly, APIs like MPI and
PVM mitigate the complexity inherent to writing Grid apm@itons as they encapsulate common
distributed and parallel patterns behind an intuitive ARiwever, such APIs still require users to
have a solid knowledge in parallel and distributed programgmwhich prevents inexperienced
users (e.g. scientists or engineers) frafieeively taking advantage of Grid technologies [52].

More recently, the notion of “gridifying” sequential apgditions [35] has appeared as a fresh
approach for rapidly developing and seamlessly runnindiegmns on Computational Grids.
Basically, gridification tools seek to avoid the manual wsafAPIs for distributed and paral-
lel programming within the source code of user applicatemd otherwise automatically derive
the Grid counterparts from the (sequential) compiled cddbese applications. However, ma-
terializing the concept is indeed challenging, as it isitively very difficult to automatically
transform a sequential application to run on a Grid and d&lply exploit parallelism in the
application to boost its performance.

In this paper, we describe a novel Java-based gridificatioihcalled BYG (BYtecode Grid-
ifier), which operates by using some novel techniques forifyiod) and parallelizing bytecodes
—i.e. the binary code flavor generated by the compiler of #va language— to producéieient
Grid applications. Basically, the idea is to support usene would like to quickly parallelize
and run their sequential codes on a Grid without dealing tyjically complex Grid program-
ming and infrastructure details. Furthermore, the curmeaterialization of BYG targets Java
applications developed under the divide and conquer madekll-known technique for algo-
rithm design by which a problem is solved by systematicaihdihg it into several subproblems
until trivial subproblems are obtained, which are solveéctly. Basically, upon executing an
ordinary application, its bytecode is modified so that ithdéeao execute such subproblems in
parallel using the nodes of a Grid.

Preliminary experiments with our tool in a small LAN and resme-intensive benchmark
applications showed the feasibility of the approach [37érd] we evaluate BYG by gridifying
and running two resource-intensive and real-world appboa, namely ray tracing and sequence
alignment, on a wide-area Computational Grid. The formelieation is a popular rendering
technique that outputs a picture using an abstract deggript a 3D scene, while the latter is an
algorithm for comparing gene sequences, a well-known prabh bioinformatics. Furthermore,
we derived variants of these applications by manually pairaihg them via the GridGain [21]
and Satin [53] Grid libraries, which are designed for patading and &iciently executing ap-
plications on both clusters and Grids. The comparisonsesigbat BYG dfers a convenient
alternative to the problem of easy gridification of sequarapplications, while delivers accept-
able performance and fair resource usage compared to mparalelism. On the other hand,

2

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

given the ever increasing popularity of the Java languageli&iributed programming, which
is mostly explained by its platform-neutral bytecode arsdviery good performance in large--
scale distributed environments compared to traditionadlages [45], and the simplicity and
versatility of the divide and conquer model, we believe B¥G is an attractive alternative for
painlessly gridifying a broad range of resource-intenapplications.

The rest of the paper is organized as follows. The next sedigrusses the most relevant re-
lated works. Section 3 overviews BYG and explains how our@ggh improves over them. For
the most part, the Section describes the use of BYG in theegbof a specific Grid scheduler
library, for which the current version of BYG provides intagjon. Section 4 reports the above-
mentioned experimental evaluation. Section 5 concludeg#per and discusses prospective
future works.

2. Related work

The two common approaches that researchers have beenddlimraddress the problem
of simplifying the development of high-performance scdi@ntpplications are based on either
providing domain-specific solutions or general-purposéstor he first approach aims at provid-
ing APIs and runtime supports for taking advantage of wigatyployed scientific libraries from
within applications. Alternatively, the second approatibves users to implement applications
while not necessarily relying on specific scientific libeari Both approaches have their pros and
cons, as detailed below.

Among the &orts that follow the first approach is the work by Baitsch aistcblleagues [6],
which propose a Java toolkit for writing numerical intergsapplications. The toolkit builds on
the dficiency of numerical Fortran libraries such as BLAS, LAPACKdaNAG by providing
Java wrappers that directly access the correspondingendinaries via the Java-to-C interface.
In addition, the toolkit provides a Java-based library t@nprise classes for common vector,
matrix and linear algebra operations. Similarly, f2j [48]a Fortran-to-Java translator specially
designed to obtain the Java counterpart of the Fortran cbidte 8LAS and LAPACK libraries
(this latter is codenamed JLAPACK [11]). Moreover, the jlatvironment [41] ffers a script-
ing language similar to Matlab and Scilab for programmingl@ations that are executed by an
interpreter implemented in Java. This environment suggbg basic programming constructs of
Matlab (e.g. operators for manipulating matrixes) and ibedded in a graphical development
environment. Furthermore, the work by Eyheramendy [13ppses a Java-based library for
building Computational Fluid Dynamics applications. Is @urrent shape, the framework sup-
ports diferent finite elements formulations for basics mechanicablems, and some of them
can be parallelized by using multithreaded programming.

Indeed, the idea of providing domain-specific tools is ndiy anrcumscribed to Java, as
evidenced by similar supports for other programming laggsa An example is PyScal A-
PACK [12], a Python interface to ScaLAPACK [39]. ScaLAPACKa subset of the LAPACK
linear algebra routines but adapted for cluster computyngding the MPI [42] or the PVM [42]
parallel libraries. Moreover, the work by Mackie [32] pr@as a finite element distributed solver
written in the .NET platform. However, the two negative aweristics of the féorts following
the approach discussed so far is that they restrict the Kirapplications that can be written

3

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

and, except for few cases, they are not capable of explodungters and Grid infrastructures.
Among the tools that do exploit distributed environmentsne works that deserve mention are
the Alya system [7], which provides several kernels for pangming and executing various types
of Computational Mechanics applications in parallel ogéascale clusters, and GMarte [2], a
middleware for programmatically building and running tdssed applications on Computa-
tional Grids, which has been recently applied to 3D analgkiarge dimension buildings [3].

Precisely, MPI and PVM are the oldest standards for buildjegeral-purpose parallel ap-
plications. When using these libraries, applications amltelized by decomposing them into a
number of distributed components that communicate via aggsexchange. Several Java bind-
ings for MPI (e.g. mpiJava [25], MPJ Express [44]), PVM (ejgVM [50]) or both (JClus-
ter [54]) exists. However, MPIl and PVM have also received Imerdticism [31] since they are
basically low-level parallelization tools that requirdiddnowledge on both parallel program-
ming and distributed deployment from users. In responseetare some Java tools that attempt
to address these problems by raising the level of abstracfiche APl exposed to users and
relieving them as much as possible from performing paiad&bn and deployment tasks.

Particularly, ProActive [5] is a Java platform for paraltgtributed computing that provides
technical servicesa flexible support to address non-functional Grid concéerg load balanc-
ing and fault tolerance) by plugging configuration extetiwaapplications at deployment time.
Moreover, ProActive features integration with a wide virief Grid schedulers, and supports
execution of Scilab scripts on dedicated clusters. Java8gmy [27] is a performance-oriented
platform featuring a semi-automatic execution model thabmatically deals with parallelism
and load balancing of Grid applications, and at the sameaifoes programmers to control such
features via API calls. Unfortunately, using these APpinsd parallelization tools unavoidably
requires to learn and manually use their associated APemiihe source code of the (sequen
tial) user application, which compromises usability sitloese tasks are fiicult to achieve for
an average programmer.

In consequence, some tools aimed at further simplifyingtmeplexity of the exposed paral-
lel library API and thus improving usability have been preed, such as VCluster [55] and DG-
ADAJ [30]. VCluster supports execution of thread-baseadpplications on multicore clusters
by relying on a thread migration technique that achiev@éisient dynamic load balancing of
threads across the nodes of a cluster. Similarly, DG-ADAYiples a mechanism for transpar-
ent execution of multithreaded Java applications on desR© Grids. DG-ADAJ automatically
derives graphs from the bytecode of a Java application mgusipresentative sets of input data.
The graphs account for data and control dependencies whtliapplication. Then, a scheduling
heuristic is applied to place mutually exclusive execupaths extracted from the graphs among
the nodes of a cluster. The weak point of VCluster and DG-ARAhat they promote threads
as the base parallel programming model, which makes pragmagj testing and debugging of
applications rather éicult due to the non-deterministic nature of thread exeaJ84].

In this sense, the Satin framework [53] avoids the explisage of threads while achieves
semi-automatic parallelization and distribution of sulpaitations by targeting recursive (divide
and conquer) applications and modifying the compiled cddmapplication to handle the exe-
cution of parallel tasks on a Grid. The user is responsikiénidicating in the application code
the points in which a fork (i.e. calls to recursive methodsagoin (i.e. to wait for child com-

4

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

putations) should take place. A similar framework for .NEppkcations is Volta [34], which re-
compiles executables on the basis of declarative devetopetations in order to insert remoting
and synchronization primitives to transform applications their distributed form. Still, tools
like Satin and Volta require some modifications to the sooomke of a user application to insert
parallel-specific API code prior to actually Grid-enablihgir compiled counterpart. The same
problem is also exhibited by some parallelization toolsJava (e.g. PAL [10], GridGain [9])
that use annotations in the source code of sequential apphs. Annotated codes are then
preprocessed to generate Grid-enabled valid Java code.

Finally, another line of approaches to gridification th&eetively minimize any form of
code modification in the input sequential application aosépromoting separation of concerns
between the functional aspects of the application (i.eput® behavior) and the Grid-specific
behavior [23, 33, 19]. This is commonly achieved via aspe@nted programming (AOP) [28]
techniques, whereby a sequential code is attached one @ ‘i@gpects” that encapsulate how
the diferent portions of this code are executed in parallel with@ria. The weak point of these
approaches is that they unnecessarily impose a specifitopevent paradigm (i.e. AOP) which
most developers from the scientific community are not famivith.

Our tool difers from the abovementioned works in several respectsthyFiBYG is not
targeted at a specific application domain, but can be usearédi@lize codes coming from many
scientific areas. Secondly, BYG is based on the pervasiveeigsvintuitive divide and conquer
programming model, an algorithmic abstraction that is gmésn many real-world problems.
Thirdly, BYG allows novice users to semi-automaticallyrottuce parallelism into the compiled
version of applications, which avoids the requirement aféng parallel programming APIs
and altering their codes. In summary, the contribution hbe@BYG is a software tool to easily
and non-intrusively parallelize a wide range of resourdesisive scientific codes so as to take
advantage of Computational Grids.

3. The BYG (BYtecode Gridifier) approach

BYG (BYtecode Gridifier) is a new general-purpose gridificatool that allows developers
gridifying their applications with minimalféort. To this end, BYG removes the need to explicitly
alter sequential application codes, and avoids imposingpbex parallel programming models
not suitable for users with limited knowledge on Grid pragmaing. In addition, BYG does not
seek to provide yet another runtime system for supportisgiduted and parallel application
execution, but aims at leveraging the schedulers of eggind platforms through the use of
connectorsA connector implements the bridge to access the execuiwrices of a specific Grid
platform. Connectors are non-invasively injected intoitipait sequential application to delegate
the execution of certain parts of the application to a Gratfpfm. The mapping of which parts
of the application are Grid-enabled is specified by meansei-supplied configuration external
to the sequential code being gridified.

Figure 1 depicts an overview of BYG. Conceptually, our applotakes as input the bytecode
or executable code of an ordinary Java application, andrdigaly transforms their classes to
run some methods onfierent Grid middlewares. The developer must indicate thiaugon-
figuration file which Java methods should be run on a Grid andw®@&rid middlewares should

5

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

sog "+ Java application Unmodified Java Virtual
methodB1() <<clgss>> (bytecode) _ class B Machine (JVM)
SRS hethodci(); + Gridification
methodA1(); . . . id— BYG
Configuration (Grid G”é’|a§'s‘a£'ed runtime
middlewares to be
<confiaurations used) Injected Application layer
<c|?s'§35>' . : connector (Gridified applications)
<cbssmame="A"> T | T
<z1etr;gd(sj>‘d oA ' - s EXecution layer
m 1a= — - . .
/ ﬁtﬁ"(‘;e:"meth"d A1/ Condor-G Satin GridGain (Gid middlewares)
IMEINOAS> |l
</classes>
<connector methodld="A1" — —d —d —d Infrastructurg layer
provider="CondorGConnector/> _| ‘_ ‘— _l (the Computational
Grid itself
</configuration> rid itself)

Figure 1. An overview of BYG

be used. Then, BYG processes the configuration, intercéptsv@cations to such methods (in
the examplemethod1l), and delegates their execution to the target middlewarthé example,
Condor-G [48]) by means of an appropriate connector. Fromreitectural perspective, BYG
provides a software tier that mediates between an ordirewg dpplication, or the client side,
and Grid middlewares, or the server side. Gridified clasee=sun at the server side by means of
connectors, whereas non-gridified classes remain at gn@ lide. In principle, BYG can exploit
any Grid middleware exposing a remote job submission iaterfor executing Java code.

When configuring connectors, employing or not a specific @xecution service such as
Condor-G or Satin is mostly subject to availability factore. whether an execution service
running on the target Grid- is up and waiting for jobs. Funthere, the choice of gridifying an
individual operation depends on whether the operationitalsie for execution on a Grid. The
potential performance gains in gridifying an applicatioa aubject to two user design factors,
namely the amount of data (i.e. parameter values) to be gpass® the gridified operations, and
the computational requirements of such operations. Insémse, BYG alleviates the burden of
adapting and submitting an ordinary application for execubn a Grid, while both factors (i.e.
amount of data and computational requirements) must baaistd early by the user. Basically,
this is similar to the analysis that must be carried out ptiomtroduce parallelism into any
sequential code with technologies such as MPI or PVM in otdeietermine whether the code
may actually benefit from being parallelized or not.

The implementation of BYG works by modifying bytecodes atthme to delegate and sub-
mit the execution of certain application methods to exte@wd execution services. BYG--
enabling an application only requires the user to specifiXlslih file listing which methods are
to be gridified and what Grid services (or platforms) are teigloyed, and to add an argument
to the Java Virtual Machine (JVM) program in the command thaiates the execution of the
user application. BYG provides a connector for accessiagénvices of Satin [53], a Java-based
framework for parallelizing applications on LANs and WANsowever, we are developing con-
nectors for other Grid middlewares as well. This will alloseus to take advantage of features

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Job executor " e
<<class>> (Manager) i %
B { -
methodB1();| <<a%>>
<<class>> hethodC1(); g{igificatt_ion
MEthOdAT(), weferrrrreeeeeereesefs" (runtime) COI‘IdOI"G
Method enabled Grid
iAvocation !
<configuration> - - - A
<classes> Job executor i, ¢ i
<class name="A"> (GRAM service) y ~t T

<methods>
<method id="A1"
name="methodA1"/>

B

=

_/methods> II Globus-enabled
<connector methodId="A1" Grid

provider="CondorGConnector/>

<7Eonfiguration>

Client-side | Server-side

Figure 2: Submitting ordinary Java methods as Grid jobs

not present in Satin such as graphical monitoring of runsomgputations.

An initial stable release of BYG has been developed, whigipetts the functionality de-
scribed in the rest of the paper on top of Satin version 2.&.tdbl is open source and is available
fordownload ahttp://www.exa.unicen.edu.ar/ cmateos/projects.html. The nextsub-
section focuses on providing a by-example explanationetie of this tool. Please refer to [37]
for a comprehensive discussion on the implementation of BYG

3.1. Gridifying applications with the BYtecode Gridifier

To gridify a conventional application with BYG, it is necesg to supply a configuration
file (XML format), which lists both the application classes to be @ndbled and the Grid
middlewares or execution services selected for execuRarticularly, users specify within this
file the signature of the methods from these classes thabdre processed with BYG, and the
binding information that depends on the node that playsdtesaf job executor of each service or
middleware. A job executor is a frontend middleware-lewwehponent that resides on a specific
Grid node, accepts jobs for execution and can be contactadibyg various protocols. Examples
of Grid job executors include the Manager component and tRAI& service of the Condor-
G [48] and Globus [15] Grid platforms, respectively. Figuiltastrates the notions exposed
so far. As depicted, to gridify an application with BYG, theen must provide the following
information:

1. The list of Java methods (owner class and signature) taitddgied. This information is
enclosed within &classes> element.

2. For each one of the above methods, the Grid executioncgeavid consequently the con-
nector to be used. This information is specified withiga@nnectors> element. Con-

LA brief tutorial on XML can be found aittp: //www.w3schools . com/xml

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

nectors are implemented througtifdrent classes that are shipped together with the BYG
runtime.

3. For each one of the connectors, the IP address and thefpbet Grid node that hosts the
target job executor, and the desired job submission profomm the set of the protocols
supported by the job executor. For instance, the Manageponent of Condor-G provides
a socket-based job submission mechanism but also a submisgerface based on Web
Services [51]. The IP address, port and protocol bindingrmhtion is placed within a
<bindings> element.

For example, the following XML code gridifies tli@uble integrate(double a, double b, double
epsilon) method from theexample.Adaptivelntegration class by means of the job executor of
the Condor-G middleware:

<configuration xsi:noNamespaceSchemalocatbbyg.xsd"
xmins:xsE"http://ww.w3.0rg/2001/XMLSchemainstance %
<!—— Methods to gridify ——>
<classes
<class name"example . Adaptivelntegration”
<methods
<method id="mymethod" name"integrate'>
<parameter name'a" type="double"/>
<parameter name'b" type="double"/>
<parameter name' epsilon" type="double"/>
</ method-
</ methods
</class>
</classes
<!-— Connectors to use-—>
<connectors
<connector methodld"mymethod" bindinglé&"mybinding"
provider="org.isistan .byg.connectors.CondorGConnectos"
</connectors
<!—— Middleware-specific bindings—--—>
<bindings>
<binding id="mybinding" name"condor">
<property name"protocol">sockets</property>
<property name"address®condor_manager_ip_addressproperty>
<property name"port">condor_manager_potf property>
</ middleware
</binding>
</bindings>
</configuration>
Basically, BYG supports 1:N relationships between classebs methods (one or more meth-
ods of the same class can be gridified), N:1 relationshipsd®t methods and connectors (the
same connector can be used for submittirf§edent methods), and finally 1:1 relationships be-
tween connectors and bindings. In the above example, wedefuged one connector respon-
sible for submitting each invocation to tirgegrate method to the Condor-G Manager listening
at [condor_manager_ip:condor_manager_port] by using socket-based communication. This
bridging is performed by th€ondorGConnector class from the BYG library, and the BYG

8

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Java Virtual Machine (JVM) Java Virtual Machine (JVM)
. User Java runtime
User Java runtime class files class files

class files class files |
(e.g. Adaptivelnte— (String.class,

gration.class) Integer.class, etc.)

| : Class Loader

Bytecodes
Class Loader (from disk)
Bytecodes Modified Java Agent
(from disk) bytecodes — [
v (Adativelnte- i
gration’.class) \ 4

Execution Engine

Execution Engine

Host Operating System Host Operating System

Figure 3: Modifying user classes on the fly: Java agents

core runtime, which injects this class into the compiledecofithe Adaptivelntegration appli-
cation class so that, when executing the whole applicatiach call tantegrate is submitted to
Condor-G instead of executed locally.

To inject connector classes into ordinary ones, BYG relrethe support for agents provided
by Java. A Java agentis a pluggable user-provided Javaylitirat customizes the class loading
process by performing bytecode transformations. Thispsnuoading any application class,
the JVM contacts (if defined) the corresponding Java agehlcaus the bytecode resulted from
passing the class through the agent. Figure 3 showsfiieeatices between running a Java appli-
cation in the usual way, i.e. without Java agents (left)susrexecuting it by taking advantage of
a Java agent (right). In the former case, both the user angatfgeruntime class files are loaded
and executed as is, whereas in the latter case a Java ageoépis the class loading process and
optionally modify user classes prior to execution.

Roughly, the BYG runtime is implemented as a Java agent.igelgcthe BYG agent dy-
namically modifies application classes to “talk” to the cgafed connectors to run the gridified
methods of the application. Particularly, to BY G-enable example application (i.e. to activate
the BYG agent), the startup command that launches the upécagon must look like:
java —javaagent:byg.jax<config-file >

example . Adaptivelntegration [application, parameters]
The-javaagent switch instructs the JVM to use the Java agentimplementéladiyg.jar library.
The characters enclosed within the’“and “>” are the options for initializing the agent. Then,
when the application starts, the BYG agent extracts ftonfig-file the list of methods to gridify
and their associated connectors, and then transforms teedules of the methods as their owner
classes are loaded by the JVM. To this end, BYG employs ASK) fi®mall and fast Java-based
bytecode manipulation framework.

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Ordinary bytecode BYG agent
class Adaptivelntegration { imiacti i:gjj i i):?:?]
double inte ratbel(Stub injection Bytecode adaptation
oub'e a, class Adaptivelntegration’ class Adaptivelntegration”
double b, double new mteggrate({ double new mteggrate(¢
double epsilon){ double a, double a,
/I Body doubleb, e 8 = double b, Condor-G-
1 double epsilon){ double epsHon){ »| enabled
} // Body (untouched) Il Body & dapted) bytecode
Condor Connector.adapt(
double integrate(Body);
User configuration 3°u ble a, }
(config—file) double b, double integrate(
double epsﬂon){ double a,
return double b,
CondorGConnector.submits double epsnon){
"new_integrate", a, b, epsilon); return)
} CondorGConnector.submit(

"new_integrate", a, b, epsilon);

Figure 4: Overview of the BYG agent

Madifying anindividual method involves two filerent tasks. First, its body is rewritten to
include the instructions (or “stub”) for delegating its exéon to the connector class associated
to the method CondorGConnector in our case). The stub uses the corresponding binding in-
formation to submit the adapted version of the bytecode@htlethod for execution to the Grid
every time this method is called by the application. Prégiskis adaptation represents the sec-
ond task, given by the modification of the original bytecodi&ath the method and its owner
class in order to be compliant to the bytecode anatomy pbestby the target Grid middleware.
Some platforms require applications to extend or to implaspecific API classes, use certain
API calls to carry out distribution and parallelism, and so Bigure 4 depicts an overview of the
mechanism implemented by the BYG agent to dynamically alitee Grid-enabled counterpart
of an ordinary class such @slaptivelntegration.

The transformations performed at the second step (labeldgiFigure as “Bytecode adap-
tation”) strongly depends on the Grid middleware selectedcbnnecting the input bytecode
to a Grid [37]. For example, middlewares such as Condor-Gg¢twhkely on coarse-grained
execution models that do not support parallelism within éhoe, do not require much transfor-
mations. Moreover, middlewares relying on a finer executimuel and providing parallelism
at the method level such as Satin makes the modification gsao@re challenging. The next
subsection focuses on explaining these notions in the xbatehe Satin platform, for which
BYG provides a connector.

3.2. The Satin connector

Satin [53] is a framework for programming parallel dividedactonquer Java applications
on local-area and wide-area clusters. Satin provides anogratic mechanisms for indicating
which methods of a sequential application are parallela®dl synchronizing subcomputations.
We have built a connector for this framework, which reliedeselopers from the burden of
manually using the Satin API for parallelizing their applions by semi-automatically deriving
a Satin-aware application from a sequential divide and gendava application. The next sub-
section explains the parallel programming model propoge8diin. Subsection 3.2.2 presents
an overview of our Satin connector.

10

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

3.2.1. Satin: Programming model

The divide and conquer model is an algorithm design teclaifat is based on implement-
ing a problem by breaking them down into several subproblefiie same type, until trivial
subproblems are obtained, which are in turn solved diredthe solutions to the éerent sub-
problems are then combined to build the solution to the whadelem. Most divide and conquer
algorithms are then naturally implemented recursivedy, by issuing several recursive calls to
the method implementing the problem. On the other handltsssirecursive calls are combined
to give a solution to a larger problem.

Let us come back to the exampldaptivelntegration class introduced so far. Now, let us sup-
pose we provide a divide and conquer implementation foirttegrate method, which computes
the integral of a fixed function within a given interval,). The integral value can be approx-
imated by recursively dividing the input interval into twolsntervals as long as theftérence
between the area of the trapezoid and the sum of the areas wafiezoids of the subintervals is
not smaller than some threshagsilon, as follows:

1 class Adaptivelntegration{

2 double function(double value){...}

3 double integrate double a, double b, double epsilon){

4 double delta = ((b-a)/2);

5 double total = delta = (function(a) + function(b));

6 double left = (delta/2) = (function(a) + function((b-a)/2+a));
7 double right = (delta/2) = (function(b) + function((b-a)/2+a));
8 double diff = total = (left + right);

9 if (diff < 0)

10 diff = —diff;

11 if (diff < epsilon)

12 return total;

13 double resl = integrate ((ba)/2+a, b, epsilon);

14 double res2 = integrate (a, (ba)/2+a, epsilon);

15 return resl + res2;

16 }

17 }

Basically, the recursive calls totegrate of lines 13 and 14 are théivide phase of the algorithm,
while lines 11-12 represent itonquerphase, i.e. the case when the problem at hand becomes
small enough to be solved directly without further subdiwigit.

The Satin programming model refines the sequential sensaotidivide and conquer ap-
plications such as the one implemented by the above codepfmduparallelism in the divide
phase. Specifically, Satin allows recursive calls to beesbin parallel to increase the perfor-
mance of the algorithm by providing two primitives: an ingilione (spawn) to create parallel
subcomputations, and an explicit one (sync), to progranaalft block execution until sub-
computations are finished. Methods considered for pareXdetution must be included in the
so-calledmarker interfaceswhich are regular Java interfaces.

Let us parallelize our example application with Satin. Tis #nd, we have to specify the
method that is subject to parallel execution in a markeriate, which in turn must extend the
satin.Spawnable interface from the Satin API:

interface AdaptivelntegrationMarkerextends satin.Spawnable{

11

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

double integrate double a, double b, double epsilon);

}

and then modify our application to implement the newly gatest marker interface and to extend
thesatin.SatinObject API class:

class Adaptivelntegration extends satin. SatinObject
implements AdaptivelntegrationMarker{

}

Up to now, we have indicated Satin which methods of our appbo must be executed in parallel
or, in other words, trigger independent parallel subtasksvever, we have to explicitly indicate
in the application code the points in which it is necessaryéit for child computations to
complete. This is like providing a join point or barrier tleuses any task not to proceed and
to wait for divide parts of the problem, whereupon the assged subresults are available and
can be usedto build a larger result. Returning to the exantipéesynchronized version of the
integrate method is:

1 double integrate double a, double b, double epsilon){

2

3 double resl = integrate ((b-a)/2+a, b, epsilon);
4 double res2 = integrate(a, (ba)/2+a, epsilon);
5 super.sync ();

6 return resl + res2;

7}

As shown in the above code, at line 5, we have introduced aaalync, which is the Satin
synchronization primitive inherited fromsatin.SatinObject. This call prevents the application
from combining subresults represented by yet-not-asdigagables. A practical rule for cor-
rectly usingsync is to check that a call to this primitive is issued betweerstr@ences including
recursive calls (i.e. lines 3 and 4) and those that access#seilts (i.e. line 6). It is worth not-
ing that this analysis is trivial for the case of our exampiat, for applications involving more
sentences and more complex control structures, it is tediad significantly more error-prone.

In summary, after specifying the marker interface for theli@ation, modifying the structure
of the corresponding class and inserting appropriate sgnctation calls into the application
code, the developer must feed a special postprocessoidpbby Satin with a compiled ver-
sion of the application. This postprocessor translatesmr@rations to the divide and conquer
method(s) listed in the marker interface (in our cagegrate) into a Satin runtime task. In
this way, at runtime, any call to this method will activateithassociated task, whose execution
is performed in parallel. Conceptually, this mechanisminsilar to creating an independent
thread for executing such recursive calls. Moreover, apais can configure Satin to exploit
local and distributed clusters to execute such tasks oeétls”, thus potentially improving the
performance of the application.

3.2.2. Taking Satin a step further
Our Satin connector semi-automatically reproduces theique “satinification” tasks from
a compiled, ordinary divide and conquer application thatrat been explicitly coded to exploit

12

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

the Satin API. Basically, the connector generates the marterface based on the configuration
of the application, and rewrites the bytecode of the comrdmg class to exterichplement the
necessary classes and interfaces and thus make it contpliduat Satin application structure. In
addition, and more important, the connector inserts progks tosync by deriving a high-level
representation from the bytecode and analyzing the poingsewarriers are needed. To execute
the Satin-enabled version of applications, BYG relies oofanare layer that wraps the Satin
runtime. For more details on this extended Satin runtime[3¢].

Besides injecting instructions to execute ordinary mestmdSatin (the “Stub injection” task
in Figure 4), the Satin connector dynamically adapts thedndes of both these methods and
their owner classes to be compliant with the application@ng prescribed by Satin. Basically,
the connector carries out three main tasks:

e Marker interface generation: As explained, Satin requapgdications to include a marker
interface, which lists the methods considered for paraikecution. The Satin connec-
tor builds this interface from the methods listed in the XManéiguration for the class
being “satinified”. The reader should recall that this imf@tion is included within the
<classes> section of the configuration.

e Peer generation: Additionally, Satin applications mugplement a marker interface and
to extend fromSatinObject. - A clone (from now onpeen of the sequential class under
consideration is created by the Satin connector and moddiadfill these requirements.

e Barrier insertion: Based on an heuristic algorithm, thenamtor inserts calls to the Satin
sync primitive at appropriate places of the spawnable methodsepeer. The heuristic
aims at preserving the operational semantics of the (séi@l)eoriginal algorithm while
minimizing the calls to the primitive.

Figure 5 depicts the steps performed by the connector td It Satin-enabled version of an
ordinary class. The connector builds the correspondingenanterface and a Satin peer from
the class being processed. In a subsequent step, the Satkector inserts Satin synchronization
into the peer by using the heuristic algorithm. Afterwattig, peer is instrumented with the tools
of the Satin platform. At runtime, the peer is instantiated aubmitted for execution to the
abovementioned extended Satin runtime by the ordinaryicgijan through the injected stub.
To activate this behavior, the configuration file of the ingpplication must be:
<configuration xsi:noNamespaceSchemalocatbbyg.xsd"

xmins:xsE"http: //ww.w3.0rg/2001/XMLSchema-instance *
<!—— Methods to gridify (same as before}—>

<!— Connectors to use-—>
<connectors
<connector methodld"mymethod" bindinglé&"mybinding"
provider="org.isistan.byg.connectors.SatinConnectgs"
</connectors
<!—— Middleware-specific bindings——>
<bindings>
<binding id="mybinding" name"satin">

13

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Ordinary bytecode BYG agent
class Adaptivelntegration imiaati @
double inte rattﬁ(g { Stub injection
oupie a, class Adaptivelntegration’ {
double b, f
double epsilon){ \ double "evﬁa'ﬂé?gﬁt%uue b,
/I Body double epsilon){
}} /I Body (untouched)
double inte ratéel(5 o ad L?:OL::; Sagfl—d
.] ouble a, tecode adaptation —y| gnable
User configuration doubleb, ... > y P bytecode
(config—file) return double epsilon){
% SatinConnector.sube>>
new_i
..
Barrier insertion {jj
o) o
- J:)j class Adaptivelntegration
Peer generation extends g?ti& gat%:no?l'?d fonMarkor
class Adaptivelntegration” implements Adaptveintegrationiviarker
@4.5 9xtendspsatin.8a%ir_10bject . double nevgallr}{)?graate(
Marker interface generation % e e ecIntegrationMarker { double b,
) . . do b|g double epsilon){
interface AdaptivelntegrationMarker : ouble a, Il Body (adapted)
iénplbelments s_a%in.Saa\(Nnable { ggﬂglg gbsilon){
ouble new_lintegrate R PP double res1 = integrate(...);
g—gﬂglg g, > Body (untouched) »> double res2 = integrate?..;;
- : super.sync();
) double epsilon); double inte: orﬂtbel(e a retum rest +(-)re32;
; ggﬂgig 2bsi|on){ double integrate(
SatnConnector.submit(double b
atinConnector.submi L
"new_integrate", a, b, epsilon); return double epsilon}
} } SatinConnector.submit(
) "new_integrate", a, b, epsilon);
}
Figure 5: Satin-enabling ordinary bytecode: the Satin ector
<property name"protocol">socketsc/property>
<property name"address%satin_server_ip_addresgproperty-
<property name"port">satin_server_port/property>
</binding>
</bindings>

</configuration>

The algorithm for inserting barriers works by iterating thstructions of a method and detecting
the points in which a local variable is eitheéefinedor usedby a sentence. A variable is defined
when the result of a recursive call is assigned to it, wheirte@sused when its value is read.
To work properly Satin requires that sentences can read waigbles provided aync has
been previously issued. Then, our algorithm operates byifgiod the bytecode to ensure a
call to sync is done between the definition and use of a local variableafgrexecution path
between these two points. Moreover, sc suspends the execution of the method uaiiil
subcomputations associated to defined variables havedthislur algorithm uses an heuristic to
keep the correctness of the program while minimizing theritesl calls tasync for the sake of
efficiency. It is out of the scope of this paper to discuss themails of this heuristic algorithm.
For details on this algorithm, please refer to [37].

14

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

4. Case studies

This section describes the experiments that were perfotmetnpirically evaluate BYG.
The contents of the section are a much more rigorous verdioand a complement to, the
experiments reported in [37], in which we used classic CRigrisive benchmark applications to
compare BYG against Satin on a small LAN. To provide stroray@tence on the applicability
of BYG, we measured the performance as well as resource tisapesulted from employing
GridGain, Satin and BYG for parallelizing two real-world@igations, specifically ray tracing
(Subsection 4.1) and sequence alignment (Subsectionoh 2)wide-area Grid. The goal of the
evaluation was to determine whether the automatic apprtmaghdification followed by BYG
is competitive compared to manual gridification when usimglGain or Satin with regard to the
abovementioned aspects with realistic applications onié $&tting. On one hand, we used the
Satin platform so as to assess thatences between manually-generated Satin codes and Satin-
enabled codes obtained by using BYG. On the other hand, waedBadGain since it is a stable
and healthy open source Grid platform that has recentlyrbeczery popular for developing
distributed applications.

First, we set up a LAN comprising 15 nodes running Mandrivauixi 2009.0, Java 5 and
Satin 2.1 connected through a 100 Mbps network. We used 8sioge nodes with 2.80 MHz
CPUs and 1.25 GB of RAM, and 7 single core nodes with 3 MHz CRtds1a5 GB of RAM.
Then, we established a wide-area Grid on top of this LAN by legipg WANem version
2.0 [47], a software for emulating WAN conditions over a loaeea network. We emulated
3 remote cluster€,, C, andCz by using 4, 5 and 6 of the nodes of the LAN, respectively, which
were connected together by using virtual Internet linke @Sgure 6). Each WAN link was a T1
connection (i.e. a bandwidth of 1,544 Mbps) with a roung-tatency of 160 ms and a jitter of
10 ms, therefore inter-cluster latencies were in the rarid®0-170 ms. Particularly, these are
network conditions commonly found in Internet-wide Grids.

For the sake of fairness, all tools were configured to usedhd balancing algorithm that
best fitted the experimental setting. On-one hand, for thd@ain applications we employed
its Round Robin load balancing with the default configumatihich according to the authors
provides a fair distribution of tasks among the nodes of @ @nid therefore works well in most
case$. Basically, upon executing an application, the algoritrandomly picks a Grid node
and then dynamically and sequentially assigns tasks farutia in a round-robin fashion. On
the other hand, both the Satin and the BYG implementatiorteefay tracing and sequence
alignment applications were configured to take advantagfeeoCluster-aware Random Stealing
(CRS) [53] task scheduling algorithm provided by Satin.WMGRS, when a Grid node becomes
idle, it attempts to steal an unfinished task both from nodsriging to the same local cluster
or external nodes, however intra-cluster steals have aegreaority than inter-cluster ones,
minimizing expensive WAN communication.

*http://www.gridgainsystems.com/wiki/display/GG15UG/GridRoundRobinLoadBalancingSpi

15

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

100 Mbps
LAN

proxy (1,544
Mbps WAN)

Figure 6; Setting used in the experiments

4.1. Ray tracing

Ray tracing is a widely-known rendering technique that gates a digital picture from an
abstract description of a 3D scene [24]. Basically, we base@xperiments on a parallel divide
and conquer ray tracing algorithm from the Satin prdjeehich operates by deriving an initial
image from the input scene, dividing this image to recutgigpply the algorithm, and then join-
ing the results to build the final picture. The BYG implemeiota was obtained by removing
from the original Satin code any sentence related to péisatieandor tuning application exe-
cution to derive the sequential divide and conquer countésmf the application. On the other
hand, the GridGain implementation was obtained by altetfiggoriginal Satin code to exploit
the Google’s map reduce parallel programming model [29]¢ckvis similar to the master-worker
model and is supported by GridGain. We considered two veriaiithe application by altering
the granularity of the runtime tasks, i.e. by splitting thege into 8x8 and 1x1 squares. In both
cases, the algorithm first computes the correct color of sabimage and then reassembles the
whole image. The second variant operates up to the pixel, leNech allows the algorithm to
output pictures with better quality but generates a largenlmer of tasks to execute at runtime.

To execute the three implementations of the first variantusesl two input scenes Scene 1
and Scene 2 (in NFF format [22]) with thredfgérent resolutions each (512x512, 1024x1024 and
2048x2048). Figure 8 shows the resulting pictures for thgelst resolution. On the other hand,
Figure 7 illustrates the average execution time of thisardrfor 60 runs. In all cases, standard
deviations were in the range of 5-12%. Note that this peegenis somewhat high, however it is
mainly explained by a) the fact that GridGain used a randamdaobin load balancing support,

Shttp://www.cs.vu.nl/ibis/satin.html

16

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

b) the fact that Satin and BYG relied on CRS for task schedulivhich implements a cluster-
awarerandomtask stealing algorithm, and c) the variability inherenW¥aN links in terms of
bandwidth and latency. All in all, compared to Satin, BYGfpened very well, considering
that our goal is not to outperform existing Grid libraries lawtomating as much as possible
their usage while achieving competitive performance. Fragure 7 (a) it can be seen that BYG
performed similarly to Satin for the 1024x1024 image whileurred in an acceptable overhead
of just few seconds for the other two. Figure 7 (b) shows thatgerformances for the more
complex scene (Scene 2) were similar for the three resaolsiti®©n the other hand, GridGain
performed much better than Satin and BYG alike, which is @xgld by the less bureaucratic
nature of its task distribution scheme. Unlike Satin anddfoge BYG, in which each Grid node
actively participates in the creation and assignment oélfrtasks, GridGain uses a master
node that is in charge of distributing the tasks to the reghefnodes. Then, the GridGain
version of the ray tracing application performed betterdsitve explain next, it experienced an
unfair assignment of parallel tasks to Grid nodes.

We measured the resource usage among the nodes of our idh@lad by using the load av-
erage system metric of the Linux kernel, which is computedubh an exponentially weighted
moving average and is periodically stored in thigrégloadavg” file. Roughly, this metric al-
lowed us to obtain the trendin CPU load at every single nodmuiofGrid, so as to compute the
standard deviation of these values to determine whetheda was more loaded than the others
during the runs. In this sense, a small deviation is highlsirdéle, because it means that all
nodes are evenly used, i.e. there are no nodes undgouseased. It is worth noting that CPU
load is diferent from CPU utilization. Within a single node, this latteetric provides trend
information of CPU usage but ignores the length of the queamtaining the tasks waiting for
taking possession of the CPU. For applications like rayriggavhich make extensive use of Grid
resources, CPU utilization is always close to 100%. Hertds,metric is unable to accurately
measure the load level of a node, which is in turn better refteby the CPU load metric.

Table 1 shows the resulting fluctuation in CPU load, which s@®puted as the standard
deviation of the load averages across nodes taken both atiatie and a 15-minute window
at the end of each test round. To obtain representative sjalue introduced appropriate de-
lays between each test battery in order to ensure that CRUalc@ss nodes dropped down to
zero. As the reader can see, the table shows that both SdtiB¥aB achieved similar and very
uniform levels of CPU load among the Grid nodes. ConversatidGain experienced a rather
uneven exploitation of the available resources. In sumpadtgast for this application and task
granularity, GridGain achieved the best speedups but atdsieof performing a less fair usage
of computational resources.

Figures 9 (a) and 9 (b) show the performance of the secondntasi the application, i.e.
the one using the smallest task granularity (subimages bpixels). Note that the Figure does
not show the GridGain implementation, which proved to beitfficient for this task granu-
larity, registering overheads above 300% with respectstoaimpetitors. Basically, using small
granularities results in more runtime tasks to executeclwhiakes task scheduling more chal-
lenging to Grid middlewares. Although it cannot be geneglj this result in conjunction with
the experiments illustrated in Figure 7 may suggest thad@ain is better suited for applica-
tions with not-so-small task granularities. In contrasttiSand BYG are designed to support

17

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Scene 1 Scene 2
(5-minute) 512x512 1024x1024 2048x2048 512x512 1024x1028448x2048
GridGain 52 49 46 28 19 22
Satin 3 10 3 4 2 3
BYG 4 3 2 6 4 3
Scene 1 Scene 2
(15-minute) 512x512 1024x1024 2048x2048 512x512 10244102048x2048
GridGain 26 31 39 28 18 16
Satin 2 2 2 2 6 1
BYG 3 1 1 4 3 2

Table 1: Ray tracing: Fluctuation in CPU load (in percentag regard to the average load
across all nodes)

efficient scheduling of parallel tasks irrespective of theargrarity. Furthermore, in the present
experiment BYG performed close to Satin, which is consisteth the results of Figure 7. Both
implementations achieved average load fluctuations inghge of 1-4% and 1-3% for the time
windows of 5 and 10 minutes, respectively.

As a complement, Figure 10 shows the speedup factor achigviad diferent implementa-
tions for the two task granularities. This factor was conepUaST sey/ Tgria, WhereTseqandTyrig
are the times required to execute the sequential and gddiéesions of these applications, re-
spectively. To computd e, the sequential ray tracing application was run on a nodéef t
experimental setting with the best hardware capabiliigsims of CPU and memory.

4.2. Sequence Alignment

The second test application was local pairwise sequengenaént, a well-known problem
in bioinformatics. The problem involves representing aldgecal entity such as a gene in a
computer-understandable way (usually strings of charsicéad manipulating the resulting rep-
resentation by using sequence alignment algorithms. €igarshows, for instance, a sample
protein sequence of the Influenza A HIN1 virus.

Basically, we took an existing parallel master-worker iempéentation of the application for
aligning protein sequences. The source code of the appiicatas obtained from the JPPF
project[26]. Firstly, we derived the sequential versiothid application and then we parallelized
it back with GridGain, Satin and BYG. Furthermore, the argisource code used JAligner [38],
an open source library that implements an improved verditredcsmith-Waterman algorithm [20].
Given any pair of sequences, the algorithm outputs #&ictent that represents the level of simi-

“http://en.wikipedia.org/wiki/Sequence_alignment

18

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

180 350
GridGain —— GridGain —

Satin = Satin =
160 - BYG 4 BYG mmmm
300

140
250 -
120

100 | 200 -

(less is better)

80 [150 F

(less is better)

60 [
100

40 1
50
20 q
. m | . m |
512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048

(a) Scene'1 (b) Scene 2

Average execution time (seconds)
Average execution time (seconds)

Figure 7: Performance of the ray tracing application (taskglarity=8x8 squares)

larity between these two by using a scoring matrix from a §ptedefined matrixes. To execute
the experiments, we used the PAM120 matrix, which works wely in most cases.

The application aligned an unknown input sequence agamsinéire sequence database,
which was replicated across the nodes of the experimentditGallow parallel tasks to locally
access sequence data. The application operated by divigengortions of the data to com-
pare against into two fferent subproblems until a certain threshold on the data eashed.
We used the same threshold values for GridGain, Satin and.BXfeover, we compared five
different sequences against real-world protein sequenceasatlextracted from the National
Center for Biotechnology Information (NCBI) Web sitéThe NCBI is an organization devoted
to computational biology that among other things maintguislic genomes databases, dissem-
inates biomedical information and develops bioinformsasoftware. Concretely, we employed
the sequence databases shown in Table 2. The last colume d@&bie indicates the number
of generated parallel tasks as a consequence of udifegetdit thresholds. Basically, the larger
the database, the finer the task granularity that was usadhwehables for better parallelism.
It is worth mentioning that the tests conceived the BYG impdatation of the application as a
mean to provide more evidence about the performance androesosage of BYG compared to
GridGain and Satin by using a realistic application. In sesse, the goal of these experiments
it is not to come out with a better implementation of sequesd@mment in Grid settings, for
which specialized frameworks such as mpiBLAST [4] and G-EIA[1] already exist.

Figure 12 shows the average execution time for 60 runs of itfiereint versions of the ap-
plication, while Figure 13 depicts the speedup factor. Asapplication is CPU-intensive but at
the same time makes extensive use of sequence data, we didmete a high CPU utilization
when aligning just one instance per run. In consequence geieled to process two input target
sequences simultaneously per execution. This resultedPl @ilization close to 100% in the

Shttp://www.ncbi.nlm.nih.gov

19

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

=

(a) Scene 1 (b) Scene 2

Figure 8: Pictures resulted from executing the ray tracipglieation (resolutioa2048x2048
pixels)

nodes of the experimental Grid, which in turn allowed us t@suge resource usage through the
CPU load metric in a representative manner. As illustratettié figure, and similar to the case
of the ray tracing application, BYG behaved close to Satmmafbdatabases. On the other hand,
standard deviations were in the range of 3-5% and 4-8% foc#se of Satin and GridGain,
respectively, and below 3% for the case of BYG. This fact maygest that the execution time
of the BYG variant was lessfi@cted by the data-intensive nature of the application, kewe
this should be further corroborated. Finally, Table 3 shtvesfluctuation in average CPU load
during the executions, which shows that BYG made a fair uséd@eid resources. Furthermore,
the GridGain implementation steadily performed bettenthath Satin and BYG for the case
of DB1, DB2 and DB3. On the other hand, the tests involving enamtime tasks resulted in
execution overheads for the case of DB4 (see the dip in tr® bad marginal gains for DB5.
Similarly to the ray tracing algorithm, GridGain had troelh dealing with larger amounts of
runtime tasks, while it slightly outperformed Satin and BW&h smaller ones.

4.3. Discussion

The experimental results reported in the previous sulisetan be summarized according
to several common dimensions of the problem of gridifyinglegations in the context of the
studied platforms, namely task granularity support, éekd performance, resource usage and
programmability [35]. The next paragraphs give some irtsigin these aspects in order to pro-
vide guidelines as to when to use each platform and when abte® qualitatively summarizes
the obtained results in relation to these dimensions.

As mentioned, many Grid platforms work better when par#digks created as a consequence
of parallelizing a sequential application have a coarsewgeaity. Under this scheme, the original
problem is split into a small to medium number of tasks. Oncietrary, other Grid platforms

20

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Database Size (# of Size Disease Date # of gener-
sequences) (MB) ated tasks

DB 1 4289 1.7 Escherichia-coli Unspecified 20

DB 2 4777 2.4 Influenza A 2009 outbreak 20
(Human) (01/02/2009-

31/06/2009)

DB 3 7672 3.5 Influenza B All registered 40
(Human) cases up to now

DB 4 9620 4.8 Influenza A 01/01/2007- 80
(Human) 12/31/2008

DB 5 12325 6.2 Influenza A 01/01/2006- 80
(Human) 12/31/2008

Table 2: Protein sequence databases used in the experiments

(5-minute) DB 1 DB 2 DB 3 DB 4 DB 5
GridGain 44 34 25 27 28
Satin 3 3 3 3 3
BYG 3 3 4 4 3
(15-minute) DB 1 DB 2 DB 3 DB 4 DB 5
GridGain 31 29 20 25 25
Satin 3 3 3 3 4
BYG 4 2 2 3 3

Table 3: Sequence alignment: Fluctuation in CPU load (icgage with regard to the average
load across all nodes)

21

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

180 350
Satin m— Satin m—
BYG mmmm BYG m—m

160
300 -

140
250 -
120

200 -

o
15}

©
S

150

(less is better)
(less is better)

60 [

Average execution time (seconds)

100

40 + i
50 -
20 B
0 Al 0 .

512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048

Average execution time (seconds)

(a) Scene'1 (b) Scene 2

Figure 9: Performance of the ray tracing application (taskglarity=1x1 squares)

GridGain —— BYG Satin Em— Theoretical maximum
6 Satin m—— Theoretical maximum 7 r BYG

Speedup factor
Speedup factor

Scene1 Scenel1 Scenel1 Scene2 Scene2 Scene?2 Scene1 Scenei1 Scenel1 Scene2 Scene2 Scene 2

512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048
3D Scene 3D Scene
(a) Task granularity8x8 squares (b) Task granularity1x1 squares

Figure 10: Ray tracing: speedup factor

are oriented towards supporting finer tasks granularifiasrefore, their schedulers are designed
to manage much larger number of tasks at runtime. In our @rpets, the tests involving the
usage of GridGain and fine granularities caused excessedeads for the variant of the ray
tracing application using 1x1 image squares, and resuttggeiformance losses for DB4 and
DB5 in the sequence alignment application with respecteaeist of the databases. On the other
hand, Satin and BYG proved to be more versatile with respetetsk granularity.

Moreover, for larger task granularities, GridGain outperied its competitors, however it
clearly made a less fair use of Grid resources. In additionnfore intensive experiments, the
average fluctuation in resource usage tended towards srbaliestill rather high values. For
instance, the GridGain version of the ray tracing applaagxperienced a fluctuation of 46%
and 22% for Scene 1 and Scene 2, respectively. Likewise eiipgence alignment code had a
fluctuation of 44% and 28% for DB1 and DB5, respectively. Om d¢ther hand, the fluctuation

22

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

MASQGTKRSYEQMETDGERQNATEIRASVGRMIGGIGRFYIQMCTELKLNDYEGRLIQNSLTIERMVLSA
FDERRNKYLEEHPSAGKDPKKTGGP IYKRVDGKWVRELVLYDKEEIRRIWRQANNGDDATAGLTHIMIWH
SNLNDTTYQRTRALVRTGMDPRMCSLMQGSTLPRRSGAAGAAVKGVGTMVLELIRMIKRGINDRNFWRGE
NGRKTRIAYERMCNILKGKFQTAAQKAMMDQVRESRNPGNAEIEDLTFLARSALILRGSVAHKSCLPACV
YGPAVASGYDFEKEGYSLVGVDPFKLLOTSQVYSLIRPNENPAHKSQLVWMACNSAAFEDLRVSSFIRGT
RVLPRGKLSTRGVQIASNENMDAIVSSTLELRSRYWAIRTRSGGNTNQQRASAGQISTQPTFSVQRNLPFE
DKATIMAAFSGNTEGRTSDMRAEIIKMMESARPEEVSFQGRGVFELSDERATNPIVPSFDMSNEGSYFFEFG
DNAEEYDN

Figure 11: Sample protein sequence of the Influenza A H1Nlsvobtained in England on
December 31, 2007)

GridGain —
Satin —
100 BYG

80 -

60 [

(less is better)

40 |

Average execution time (seconds)

20 [

0 | ||
DB 1 DB 2 DB 3 DB 4 DB5

Figure 12: Performance of the sequence alignment apicati

in resource usage for both test applications was in the rang4% for the case of Satin,
which delivered less performance but resulted in much beg¢source usage. All in all, the
choice of whether to prioritize application performanceio@rid resource usage in principle
depends on the Grid setting being used. Specifically, bamlires usage may not be acceptable
in Desktop Grid environments [8], which-aim at arranging &mking advantage of idle CPU
cycles of regular desktop PCs in use by individuals. Howewvea dedicated Grid setting, a
performance-oriented middleware like GridGain wouléise.

Furthermore, BYG behaved very competitively compared tonSaith respect to perfor-
mance and resource usage, in spite of the fact that BYG adds sechnological noise, i.e.
our extended Satin runtime that handles the execution n$fitamed codes in parallel, and the
heuristic for automating the process of inserting paraleland synchronization into sequential
applications. Intuitively, this should translate intohat diferent execution times. However, the
experiments show that in some cases BYG certainly adds arpghce overhead with respect
to Satin, which we believe it is acceptable given the benefigsutomatic parallelism in Grid
environments to support scientists not proficient in distied programming. In fact, the BYG
versions of the two test applications did not require to makaicit usage of API-specific code,
which in turn positively impacted on the size of the implerta¢ion code of the parallel applica-
tions. In this sense, Table 5 shows the TLOC values for thagdications, i.e. the total lines of
code without considering neither blank nor comment lindse Table also shows the GLOC met-
ric [36], which counts developer-supplied lines explicitivoking Grid API primitives within the

23

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

GridGain —— BYG
16 [Satin E— Theoretical maximum E==z3

Speedup factor

DB2 DB 3 DB 4 DB 5
Database

Figure 13: Sequence alignment: speedup factor

Middleware Task granu- Delivered Resource Programmability

larity support perfor- usage
mance
GridGain Regular Very good Regular Good
Satin Very good Good Very Good
good
BYG Very good Good Very Very good
good

Table 4: Experimental results: qualitative analysis

application code. As illustrated, BYG is based on an autanagproach to parallelism and thus
isolates users from API-related details. In contrast, me@mose, APIl-oriented gridification
platforms such as GridGain require users to know detailssqirogramming library.

The ditferences obtained Mgy for BYG and Satin are mostly explained by the places of
the application code in which the calls $gnc are located. Naturally, thesefidirences stem
from the fact that the Satin versions of the applicationsawmrallelized and provided with syn-
chronization by hand, while the BYG counterparts were paliaéd by applying our heuristic
on the sequential codes, which precisely attempt to repethe parallelization and synchro-
nization tasks a human programmer would manually perforieseg results show that BYG
certainly simplifies the usage of parallel libraries liketi®avithout incurring in an excessive
performance penalty and thus achieving competitive sgeeda other words, BYG stays com-
petitive compared to directly using Satin, which is exptairby the &ectiveness of our generic
synchronization heuristic. This claim is not done in isioiaj but elaborated on the grounds of
the experiments reported in this paper as well as similaftseachieved with BYG in a cluster
environment [37].

24

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Application Middleware TLOC GLOC
GridGain 1,176 33
Ray tracing Satin 1,065 4
BYG 1,057 0
GridGain 581 44
Sequence alignment Satin 503 5
BYG 493 0

Table 5: Test applications: code metrics

5. Conclusions and future work

This paper described BYG (BYtecode Gridifier), a new sofentaol to easily port ordinary
compiled Java applications to Computational Grids. BYG leters to Grid-enable existing Java
applications by indicating which parts of their bytecodewdd run on a Grid without requiring
programming &ort and otherwise using configuration external to the appba. To this end,
BYG is based on novel bytecode rewriting techniques throwgith ordinary bytecodes are
semi-automatically furnished with parallelism to explGitids. BYG targets Java applications
implemented under the popular and versatile divide and wengrogramming model. We can
thus reasonably expect the tool will benefit a large numbévady’s applications.

At present, BYG is implemented on top of Satin, a framewowrkt supports execution of
applications on LANs and WANs. We evaluated BYG by gridifyitwo popular real-world
resource-intensive applications, namely ray tracing &adience alignment, by using both Satin
and BYG on a wide-area Grid. Results show that most of the B¥@Gigns performed very
similarly to their Satin counterparts, and thus achievey eempetitive speedups and resource
usage. We believe this is an interesting result consideéhagBYG automates the use of Satin
without incurring in performance overheads or unfair usafg@rid nodes to gridify applications.
In addition, we also compared GridGain and BYG, in order tuvjate a wider spectrum of Java-
based gridification tools and particularly to discuss thgliaptions and Grid settings for which
our tool is beneficial. In this sense, we concluded Sectioy grbviding practical guidelines
regarding when to use each tool and when not.

It is worth emphasizing that our approach does not aim atoémd explicit distributed and
parallel programming models, such as the ones promotedid@in and Satin. Its utmost goal
is to target users who would need to rapidly turn their setjaleapplications into parallel ones
while dealing with as little parallel exploitation probleras possible. Basically, BYG addresses
this requirement by advocating an automatic approach to@tithe process of obtaining a Grid-
aware application. However, it is a well-known fact in pagbrogramming that such an implicit
approach to parallelism may, in general, produce parafiplieations whose performance is
below the levels reached by using explicit parallelism [lijwhich the developer has more
control over the parallel behavior of their applicationstie context of our work, this means that

25

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

using BYG may not necessarily lead to exploiting paralielis an optimal way. As shown, BYG
effectively inserts parallelism into sequential codes in d-bffert and heuristic way, leading to
competitive speedups for fine-grained applications wiilerong adequate support for users with
limited knowledge on parallel and Grid concepts.

At present, we are extending BYG into several directiongti®darly, we are refining its
bytecode rewriting techniques to recognize some otherleigdl Java sentences (e.g./tgtch
and switclicase) and to optimize the insertion of Satin barriers. Itastiwvnoting that this is not a
limitation of our parallelization and synchronization atghm but of its current implementation.
We are also investigating how to generalize and support ddifigation approach for other
target Grid middlewares apart from Satin, and even otheguages for scientific computing.
On one hand, a prototype implementation of BYG on top of thadoo-G [48] middleware is
underway. On the other hand, for gridifying binary codesoi®d througltompiledanguages, a
technological alternative is to employ Dyninst [49], an Alrdt allows on-the-fly modification of
native binary codes. This will allow us to adapt the ideasrmtthe BYG agent for introducing
parallelism into the binary code produced by widely-adddeguages such as C andg-€
Also, and similarly to the work by Papadimitriou and Terzifd#1], we are investigating how
to integrate BYG with the Java scripting API [46], which all® developers to execute scripts
implemented in variousterpretedlanguages (e.g. Python, Ruby, BeanShell, etc.) within the
Java runtime. Interestingly, this would greatly simplihetadoption of BYG as most of these
interpreted languages are commonplace in scientific pnogriag.

Finally, we will conduct experiments with BYG in larger Gregttings. We are working on
the gridification of the ray tracing and the sequence aligritra@plication on a real (i.e. not
emulated) high-speed wide-area Grid. The infrastructigenesult of a country-wide Grid ini-
tiative of the Argentinian government that will connecteml academic clusters acrosfeient
provinces of Argentina, which was launched recéntly addition, we will study the applica-
bility of BYG to other domains, particularly finite elementalysis. As a starting point, we will
gridify the SOGDE 2D and 3D solver [17], which has been usediimulating tension tests in
metals [18].

Acknowledgments

We thank Cristian Clasadonte for his good predispositiash \aaiuable help managing the
computing infrastructure required for conducting the expents described in this paper. We
also acknowledge the financial support provided by ANPCy®ugh grants PAE-PICT 2007-
02311 and PAE-PICT 2007-02312.

References

[1] E. Afgan, P. Bangalore, Dynamic BLAST - a Grid enabled BX'A International Journal
of Computer Science and Network Security 9 (4) (2009) 149-15

Shttp: //indico. cern. ch/ conferenceProgram. py? confId= 66398

26

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[2] J. M. Alonso, V. Hernandez, G. Moltd, GMarte: Grid middiagre to abstract remote task
execution, Concurrency and Computation: Practice Expeeid 8 (15) (2006) 2021-2036.

[3] J. M. Alonso, V. Hernandez, G. Moltd, A high-throughpyipdication for the dynamic
analysis of structures on a grid environment, Advances igirttgering Software 39 (10)
(2008) 839-848.

[4] J. Archuleta, W.-C. Feng, E. Tilevich, A pluggable franmek for parallel pairwise se-
quence search, in: 29th Annual International Conferencth@flEEE - Engineering in
Medicine and Biology Society (EMBS '07), 2007, pp. 127-130.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. MpR. Quilici, Grid Comput-
ing: Software Environments and Tools, chap. Programmign@bsing, Deploying on the
Grid, Springer, Berlin, Heidelberg, and New York, 2006, pp5—-229.

[6] M. Baitsch, N. Li, D. Hartmann, A toolkit for #icient numerical applications in Java,
Advances in Engineering Software 41 (1) (2010) 75-83.

[7] B. S. Center, Alya system - large scale computationallraacs,http://www.bsc.es/
plantillaA.php?cat_id=552 (last accessed November 2009) (2009).

[8] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, C. Hwangharacterizing and clas-
sifying Desktop Grid, in: 7th IEEE International Symposiam Cluster Computing and
the Grid (CCGRID ’'07), Rio-de Janeiro, Brazil, IEEE Compuserciety, Washington, DC,
USA, 2007, pp. 743-748.

[9] C. A. da Silva Cunha, J. L. Ferreira Sobral, An annotati@sed framework for parallel
computing, in: 15th Euromicro Conference on Parallel, iibsted, and Network-Based
Processing (PDP '07), Naples, Italy, IEEE Computer Sociedg Alamitos, CA, USA,
2007, pp. 113-120.

[10] M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi, D. La&foza, L. Presti, PAL: Exploiting
Java annotations for parallelism, in: Achievements in |fasm Research on Grid Systems,
Springer, United States, 2008, pp. 83-96.

[11] D. M. Doolin, J. Dongarra, K. Seymour, JLAPACK - compifj LAPACK Fortran to Java,
Scientific Programming 7 (2) (1999) 111-138.

[12] L. A. Drummond, V. Galiano, V. Migallén, J. Penadés,dritices for parallel numerical
linear algebra libraries in high level languages, Advanndsngineering Software 40 (8)
(2009) 652—658.

[13] D. Eyheramendy, Innovation in Engineering ComputagioTechnology, chap. High ab-
straction level frameworks for the next decade in compotati mechanics, Saxe-Coburg
Publications, 2006, pp. 41-61.

[14] I. Foster, The Grid: Computing without bounds, SciBothmerican 288 (4) (2003) 78-85.

27

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[15] I. Foster, Globus toolkit version 4: Software for seedoriented systems, Journal of Com-
puter Science and Technology 21 (4) (2006) 513-520.

[16] V. W. Freeh, A comparison of implicit and explicit paedlprogramming, Journal of Paral-
lel and Distributed Computing 34 (1) (1996) 50-65.

[17] C. Garcia Garino, Un modelo numérico para el analissdlieos elastoplasticos sometidos
a grandes deformaciones, Ph.D. thesis, E.T.S. Ingenier@achinos, Universidad Politéc-
nica de Catalunya, Barcelona, Spain (1993).

[18] C. Garcia-Garino, F. Gabaldén, J. M. Goicolea, Finlarent simulation of the simple
tension test in metals, Finite Elements in Analysis and @edP (13) (2006) 1187-1197.

[19] R. C. Gongalves, J. L. Ferreira Sobral, Pluggable peisétion, in: 18th ACM Interna-
tional Symposium on High Performance Distributed Commu{iHPDC '09), Garching,
Germany, ACM Press, New York, NY, USA, 2009, pp. 11-20.

[20] O. Gotoh, An improved algorithm for matching biologisaquences, Journal of Molecular
Biology 162 (3) (1982) 705-708.

[21] GridGain Systems, The GridGain Open Cloud Platfatatp: //www.gridgain. com (last
accessed September 2009) (2009).

[22] E. Haines, Neutral File Format (NFF), Available framtp://local.wasp.uwa.edu.
au/~pbourke/dataformats/nff/nff1.html (last accessed September 2009) (1992).

[23] B. Harbulot, J. R. Gurd, Using AspectJ to separate caorscie parallel scientific Java code,
in: 3rd International Conference on Aspect-Oriented SafenDevelopment (AOSD '04),
Lancaster, UK, ACM Press, New York, NY, USA, 2004, pp. 12213

[24] P. Heckbert, E. Haines, A ray tracing bibliography, m: Glassner (ed.), Introduction to
Ray Tracing, Academic Press, Inc., 1989, pp. 295-303.

[25] E. Hernandez, Y. Cardinale, W. Pereira, Extended mvpidar distributed checkpointing
and recovery, in: Recent Advances in Parallel Virtual Maeland Message Passing Inter-
face, vol. 4192 of Lecture Notes in Computer Science, Sprirerlin/ Heidelberg, 2006,
pp. 158-165.

[26] JPPF, JPPF Homettp://www. jppf . org (last accessed November 2009) (2009).

[27] A.Jugravu, T. Fahringer, JavaSymphony, a programmngel for the Grid, Future Gen-
eration Computer Systems 21 (1) (2005) 239-246.

[28] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.&xpl.-M. Loingtier, J. Irwin,
Aspect-oriented programming, in: M. Aksit, S. Matsuokdg@, 11th European Conference
on Object-Oriented Programming (ECOOP '97), vol. 1241 aftuee Notes in Computer
Science, Springer, New York, NY, USA, 1997, pp. 220-242.

28

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[29] R. Lammel, Google’s MapReduce programming model —sigxil, Science of Computer
Programming 68 (3) (2007) 208-237.

[30] E. Laskowski, M. Tudruja, R. Olejnik, B. Toursel, Bytede scheduling of Java programs
with branches for Desktop Grid, Future Generation Compiystems 23 (8) (2007) 977—
982.

[31] E. A. Lee, The problem with threads, Computer 39 (5) @EB—42.

[32] R. I. Mackie, Design and deployment of distributed nuiced applications using .NET
and component oriented programming, Advances in Engingebftware 40 (8) (2009)
665-674.

[33] P. M. Maia, N. C. Mendonca, V. Furtado, W. Cirne, K. Sakp A process for separation
of crosscutting Grid concerns, in: ACM Symposium on Appliédmputing (SAC '06),
Dijon, France, ACM Press, New York, NY, USA, 2006, pp. 15654.

[34] D. Manolescu, B. Beckman, B. Livshits, Volta: Develogidistributed applications by
recompiling, IEEE Software 25 (5) (2008) 53-59.

[35] C. Mateos, A. Zunino, M. Campo, A survey on approachegitdification, Software: Prac-
tice and Experience 38 (5) (2008) 523-556.

[36] C. Mateos, A. Zunino, M. Campo, On the evaluation of gigdtion efort and runtime
aspects of JGRIM applications, Future Generation Com&pstems 26 (6) (2010) 797—
819.

[37] C. Mateos, A. Zunino, M. Campo, R. Trachsel, Parallegpamming, Models and Appli-
cations in Grid and P2P Systems, chap.BYG: An Approach teideiBime Gridification of
Conventional Java Applications, Advances in Parallel Cotimg, IOS Press, Amsterdam,
The Netherlands, 2009, pp. 232-260.

[38] A. Moustafa, JAligner: Open source Java implementatd Smith-Watermanhttp://
jaligner.sourceforge.net (last accessed October 2009) (2008).

[39] National Science Foundation, ScaLAPACHKtp: //www.netlib.org/scalapack (last
accessed August 2009) (2007).

[40] ObjectWeb Consortium, ASMyttp://asm.objectweb.org (last accessed August 2009)
(2009).

[41] S. Papadimitriou, K. Terzidis, jLab: Integrating aipting interpreter with Java technology
for flexible and dicient scientific computation, Computer Languages SysterdsSéruc-
tures 35 (3) (2009) 217-240.

29

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[42] M. Ropo, J. Westerholm, J. Dongarra, Recent advanc&arallel Virtual Machine and
Message Passing Interface - Proceedings of the 16th Eurdpeéll/MPI Users’ Group
Meeting, Espoo, Finland, September 7-10, 2009, LectureeNot Computer Science,
Springer-Verlag, Berliri Heidelberg, 2009.

[43] K. Seymour, J. Dongarra, Automatic translation of Famtto JVM bytecode, Concurrency
and Computation: Practice and Experience 15 (3-5) (2003)222.

[44] A. Shafi, B. Carpenter, M. Baker, Nested parallelism rfaulti-core HPC systems using
Java, Journal of Parallel and Distribed Computing 69 (6D@®32-545.

[45] A. Shafi, B. Carpenter, M. Baker, A. Hussain, A compaeastudy of Java and C perfor-
mance in two large-scale parallel applications, Concayemd Computation: Practice and
Experience 21 (15) (2009) 1882—1906.

[46] Sourceforge.net, Java Scripting ARLtps://scripting.dev.java.net (last accessed
July 2009) (2009).

[47] TATA Consultancy Services, WANemttp://wanem.sourceforge.net (last accessed
August 2009) (2008).

[48] D. Thain, T. Tannenbaum, M. Livny, Condor and the Grid, k. Berman, G. Fox, A. Hey
(eds.), Grid Computing: Making the Global InfrastructurBeality, John Wiley & Sons,
New York, NY, USA, 2003, pp. 299-335.

[49] University of Maryland, Dyninst aphttp://www.dyninst .org (last accessed December
2009) (2009).

[50] University of Virginia, jJPVM,http: //wuw.cs.virginia.edu/~ajf2j/jpvm.html (last
accessed August 2009) (1999).

[51] S. J. Vaughan-Nichols, Web Services: Beyond the hypep@uter 35 (2) (2002) 18-21.

[52] L. Wang, W. Jie, Towards supporting multiple virtualyate computing environments on
computational Grids, Advances in Engineering Software4@Z009) 239-245.

[53] G. Wrzesinska, R. van Nieuwport, J. Maassen, T. Kielm#&h Bal, Fault-tolerant schedul-
ing of fine-grained tasks in Grid environments, Internatiafournal of High Performance
Computing Applications 20 (1) (2006) 103-114.

[54] B.-Y. Zhang, G.-W. Yang, W.-M. Zheng, JCluster: Affieient Java parallel environment
on a large-scale heterogeneous cluster, Concurrency ang@ation: Practice Experience
18 (12) (2006) 1541-1557.

[55] H. Zhang, J. Lee, R. Guha, VCluster: A thread-based dagdleware for SMP and hetero-
geneous clusters with thread migration support, Softwractice and Experience 38 (10)
(2008) 1049-1071.

30

