
This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

A software tool for semi-automatic gridification of
resource-intensive Java bytecodes and its application to ray tracing

and sequence alignment

Cristian Mateos∗,a, Alejandro Zuninoa, Matías Hirsch, Mariano Fernández, Marcelo Campoa

aISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil (B7001BBO), Buenos Aires,
Argentina. Tel.:+54 (2293) 439682 ext. 35. Fax.:+54 (2293) 439681

Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract

Computational Grids deliver the necessary computational infrastructure to perform resource-
intensive computations such as the ones that solve the problems scientists are facing today. Ex-
ploiting Computational Grids comes at the expense of explicitly adapting the ordinary software
implementing scientific problems to take advantage of Grid resources, which unavoidably re-
quires knowledge on Grid programming. The recent notion of "gridifying" ordinary applica-
tions, which is based on semi-automatically deriving a Grid-aware version from the compiled
code of a sequential application, promises users to be relieved from the requirement of manual
usage of Grid APIs within their source codes. In this paper, we describe a novel gridification tool
that allows users to easily parallelize Java applications on Grids. Extensive experiments with two
real-world applications –ray tracing and sequence alignment– suggest that our approach provides
a convenient balance between ease of gridification and Grid resource exploitation compared to
manually using Grid APIs for gridifying ordinary applications.

Key words: Computational Grids, gridification, resource-intensive applications, Java bytecode.

1. Introduction

Computational Grids are distributed heterogeneous clusters that allow scientists to build ap-
plications that demand by nature a huge amount of computational resources such as CPU cycles
and memory [14]. Examples of such applications include aerodynamic design, weather predic-
tion, catastrophe simulation, financial modeling, drug discovery, amongst others. The sad part of
the story is that taking advantage of such computational infrastructures requires significant de-
velopment effort and knowledge on distributed as well as parallel programming. In other words,
there is a very high coupling between the tasks of writing thesequential implementation of the al-
gorithm that represent a simulation and obtaining its Grid-enabled version. As a consequence, at
development time, a user must take into account the functional aspects of his application (what

∗Corresponding author.
Email address:
mateos2006�gmail.
om (Cristian Mateos)

Preprint submitted to Advances in Engineering Software May 6, 2010

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

the application does) as well as many details of the underlying Grid execution infrastructure
(how the application executes). Clearly, the second requirement cannot be easily accomplished
by scientists and practitioners not proficient in Grid programming.

The traditional approach to cope with the problem of easily exploiting Grids is based on sup-
plying users with programming APIs such as MPI [42] and PVM [42], which provide standard
and simple interfaces to Grids through the provision of primitives to execute parts of an appli-
cation in a distributed and coordinated way. To this end, a user must in principle indicate which
parts of its application can benefit from being parallelizedby inserting in the sequential code that
implements his application appropriate calls to such primitives. Interestingly, APIs like MPI and
PVM mitigate the complexity inherent to writing Grid applications as they encapsulate common
distributed and parallel patterns behind an intuitive API.However, such APIs still require users to
have a solid knowledge in parallel and distributed programming, which prevents inexperienced
users (e.g. scientists or engineers) from effectively taking advantage of Grid technologies [52].

More recently, the notion of “gridifying” sequential applications [35] has appeared as a fresh
approach for rapidly developing and seamlessly running applications on Computational Grids.
Basically, gridification tools seek to avoid the manual usage of APIs for distributed and paral-
lel programming within the source code of user applicationsand otherwise automatically derive
the Grid counterparts from the (sequential) compiled code of these applications. However, ma-
terializing the concept is indeed challenging, as it is intuitively very difficult to automatically
transform a sequential application to run on a Grid and stilldeeply exploit parallelism in the
application to boost its performance.

In this paper, we describe a novel Java-based gridification tool called BYG (BYtecode Grid-
ifier), which operates by using some novel techniques for modifying and parallelizing bytecodes
–i.e. the binary code flavor generated by the compiler of the Java language– to produce efficient
Grid applications. Basically, the idea is to support users who would like to quickly parallelize
and run their sequential codes on a Grid without dealing withtypically complex Grid program-
ming and infrastructure details. Furthermore, the currentmaterialization of BYG targets Java
applications developed under the divide and conquer model,a well-known technique for algo-
rithm design by which a problem is solved by systematically dividing it into several subproblems
until trivial subproblems are obtained, which are solved directly. Basically, upon executing an
ordinary application, its bytecode is modified so that it is able to execute such subproblems in
parallel using the nodes of a Grid.

Preliminary experiments with our tool in a small LAN and resource-intensive benchmark
applications showed the feasibility of the approach [37]. Here, we evaluate BYG by gridifying
and running two resource-intensive and real-world applications, namely ray tracing and sequence
alignment, on a wide-area Computational Grid. The former application is a popular rendering
technique that outputs a picture using an abstract description of a 3D scene, while the latter is an
algorithm for comparing gene sequences, a well-known problem in bioinformatics. Furthermore,
we derived variants of these applications by manually parallelizing them via the GridGain [21]
and Satin [53] Grid libraries, which are designed for parallelizing and efficiently executing ap-
plications on both clusters and Grids. The comparisons suggest that BYG offers a convenient
alternative to the problem of easy gridification of sequential applications, while delivers accept-
able performance and fair resource usage compared to manualparallelism. On the other hand,

2

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

given the ever increasing popularity of the Java language for distributed programming, which
is mostly explained by its platform-neutral bytecode and its very good performance in large--
scale distributed environments compared to traditional languages [45], and the simplicity and
versatility of the divide and conquer model, we believe thatBYG is an attractive alternative for
painlessly gridifying a broad range of resource-intensiveapplications.

The rest of the paper is organized as follows. The next section discusses the most relevant re-
lated works. Section 3 overviews BYG and explains how our approach improves over them. For
the most part, the Section describes the use of BYG in the context of a specific Grid scheduler
library, for which the current version of BYG provides integration. Section 4 reports the above-
mentioned experimental evaluation. Section 5 concludes the paper and discusses prospective
future works.

2. Related work

The two common approaches that researchers have been followed to address the problem
of simplifying the development of high-performance scientific applications are based on either
providing domain-specific solutions or general-purpose tools. The first approach aims at provid-
ing APIs and runtime supports for taking advantage of widely-employed scientific libraries from
within applications. Alternatively, the second approach allows users to implement applications
while not necessarily relying on specific scientific libraries. Both approaches have their pros and
cons, as detailed below.

Among the efforts that follow the first approach is the work by Baitsch and his colleagues [6],
which propose a Java toolkit for writing numerical intensive applications. The toolkit builds on
the efficiency of numerical Fortran libraries such as BLAS, LAPACK and NAG by providing
Java wrappers that directly access the corresponding native libraries via the Java-to-C interface.
In addition, the toolkit provides a Java-based library thatcomprise classes for common vector,
matrix and linear algebra operations. Similarly, f2j [43] is a Fortran-to-Java translator specially
designed to obtain the Java counterpart of the Fortran code of the BLAS and LAPACK libraries
(this latter is codenamed JLAPACK [11]). Moreover, the jLabenvironment [41] offers a script-
ing language similar to Matlab and Scilab for programming applications that are executed by an
interpreter implemented in Java. This environment supports the basic programming constructs of
Matlab (e.g. operators for manipulating matrixes) and is embedded in a graphical development
environment. Furthermore, the work by Eyheramendy [13] proposes a Java-based library for
building Computational Fluid Dynamics applications. In its current shape, the framework sup-
ports different finite elements formulations for basics mechanical problems, and some of them
can be parallelized by using multithreaded programming.

Indeed, the idea of providing domain-specific tools is not only circumscribed to Java, as
evidenced by similar supports for other programming languages. An example is PyScaLA-
PACK [12], a Python interface to ScaLAPACK [39]. ScaLAPACK is a subset of the LAPACK
linear algebra routines but adapted for cluster computing by using the MPI [42] or the PVM [42]
parallel libraries. Moreover, the work by Mackie [32] proposes a finite element distributed solver
written in the .NET platform. However, the two negative characteristics of the efforts following
the approach discussed so far is that they restrict the kind of applications that can be written

3

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

and, except for few cases, they are not capable of exploitingclusters and Grid infrastructures.
Among the tools that do exploit distributed environments, some works that deserve mention are
the Alya system [7], which provides several kernels for programming and executing various types
of Computational Mechanics applications in parallel on large-scale clusters, and GMarte [2], a
middleware for programmatically building and running task-based applications on Computa-
tional Grids, which has been recently applied to 3D analysisof large dimension buildings [3].

Precisely, MPI and PVM are the oldest standards for buildinggeneral-purpose parallel ap-
plications. When using these libraries, applications are parallelized by decomposing them into a
number of distributed components that communicate via message exchange. Several Java bind-
ings for MPI (e.g. mpiJava [25], MPJ Express [44]), PVM (e.g.jPVM [50]) or both (JClus-
ter [54]) exists. However, MPI and PVM have also received much criticism [31] since they are
basically low-level parallelization tools that require solid knowledge on both parallel program-
ming and distributed deployment from users. In response, there are some Java tools that attempt
to address these problems by raising the level of abstraction of the API exposed to users and
relieving them as much as possible from performing parallelization and deployment tasks.

Particularly, ProActive [5] is a Java platform for paralleldistributed computing that provides
technical services, a flexible support to address non-functional Grid concerns(e.g. load balanc-
ing and fault tolerance) by plugging configuration externalto applications at deployment time.
Moreover, ProActive features integration with a wide variety of Grid schedulers, and supports
execution of Scilab scripts on dedicated clusters. JavaSymphony [27] is a performance-oriented
platform featuring a semi-automatic execution model that automatically deals with parallelism
and load balancing of Grid applications, and at the same timeallows programmers to control such
features via API calls. Unfortunately, using these API-inspired parallelization tools unavoidably
requires to learn and manually use their associated APIs within the source code of the (sequen-
tial) user application, which compromises usability sincethese tasks are difficult to achieve for
an average programmer.

In consequence, some tools aimed at further simplifying thecomplexity of the exposed paral-
lel library API and thus improving usability have been proposed, such as VCluster [55] and DG-
ADAJ [30]. VCluster supports execution of thread-based Java applications on multicore clusters
by relying on a thread migration technique that achieves efficient dynamic load balancing of
threads across the nodes of a cluster. Similarly, DG-ADAJ provides a mechanism for transpar-
ent execution of multithreaded Java applications on desktop PC Grids. DG-ADAJ automatically
derives graphs from the bytecode of a Java application by using representative sets of input data.
The graphs account for data and control dependencies withinthe application. Then, a scheduling
heuristic is applied to place mutually exclusive executionpaths extracted from the graphs among
the nodes of a cluster. The weak point of VCluster and DG-ADAJis that they promote threads
as the base parallel programming model, which makes programming, testing and debugging of
applications rather difficult due to the non-deterministic nature of thread execution [31].

In this sense, the Satin framework [53] avoids the explicit usage of threads while achieves
semi-automatic parallelization and distribution of subcomputations by targeting recursive (divide
and conquer) applications and modifying the compiled code of an application to handle the exe-
cution of parallel tasks on a Grid. The user is responsible for indicating in the application code
the points in which a fork (i.e. calls to recursive methods) or a join (i.e. to wait for child com-

4

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

putations) should take place. A similar framework for .NET applications is Volta [34], which re-
compiles executables on the basis of declarative developerannotations in order to insert remoting
and synchronization primitives to transform applicationsinto their distributed form. Still, tools
like Satin and Volta require some modifications to the sourcecode of a user application to insert
parallel-specific API code prior to actually Grid-enablingtheir compiled counterpart. The same
problem is also exhibited by some parallelization tools forJava (e.g. PAL [10], GridGain [9])
that use annotations in the source code of sequential applications. Annotated codes are then
preprocessed to generate Grid-enabled valid Java code.

Finally, another line of approaches to gridification that effectively minimize any form of
code modification in the input sequential application are those promoting separation of concerns
between the functional aspects of the application (i.e. itspure behavior) and the Grid-specific
behavior [23, 33, 19]. This is commonly achieved via aspect-oriented programming (AOP) [28]
techniques, whereby a sequential code is attached one or more “aspects” that encapsulate how
the different portions of this code are executed in parallel within aGrid. The weak point of these
approaches is that they unnecessarily impose a specific development paradigm (i.e. AOP) which
most developers from the scientific community are not familiar with.

Our tool differs from the abovementioned works in several respects. Firstly, BYG is not
targeted at a specific application domain, but can be used to parallelize codes coming from many
scientific areas. Secondly, BYG is based on the pervasive as well as intuitive divide and conquer
programming model, an algorithmic abstraction that is present in many real-world problems.
Thirdly, BYG allows novice users to semi-automatically introduce parallelism into the compiled
version of applications, which avoids the requirement of learning parallel programming APIs
and altering their codes. In summary, the contribution behind BYG is a software tool to easily
and non-intrusively parallelize a wide range of resource-intensive scientific codes so as to take
advantage of Computational Grids.

3. The BYG (BYtecode Gridifier) approach

BYG (BYtecode Gridifier) is a new general-purpose gridification tool that allows developers
gridifying their applications with minimal effort. To this end, BYG removes the need to explicitly
alter sequential application codes, and avoids imposing complex parallel programming models
not suitable for users with limited knowledge on Grid programming. In addition, BYG does not
seek to provide yet another runtime system for supporting distributed and parallel application
execution, but aims at leveraging the schedulers of existing Grid platforms through the use of
connectors. A connector implements the bridge to access the execution services of a specific Grid
platform. Connectors are non-invasively injected into theinput sequential application to delegate
the execution of certain parts of the application to a Grid platform. The mapping of which parts
of the application are Grid-enabled is specified by means of user-supplied configuration external
to the sequential code being gridified.

Figure 1 depicts an overview of BYG. Conceptually, our approach takes as input the bytecode
or executable code of an ordinary Java application, and dynamically transforms their classes to
run some methods on different Grid middlewares. The developer must indicate through a con-
figuration file which Java methods should be run on a Grid and which Grid middlewares should

5

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Java application
(bytecode)

+

Configuration (Grid
middlewares to be

used)
<configuration>
 <classes>
 <class name="A">
 <methods>
 <method id="A1"
 name="methodA1"/>
 </methods>
 </classes>
 <connector methodId="A1"
 provider="CondorGConnector/>
 ...
</configuration>

Infrastructure layer

(the Computational

Grid itself)

Condor−G GridGainSatin . . .
Execution layer

(Grid middlewares)

Application layer

(Gridified applications)

BYG
runtime

Injected
connector

Grid−enabled
class A

Unmodified
class C

Java Virtual
Machine (JVM)Unmodified

class C

Unmodified
class B

<<class>>
B

methodB1();
...

<<class>>
C

methodC1();
...

<<class>>
A

methodA1();
...

Gridification

Figure 1: An overview of BYG

be used. Then, BYG processes the configuration, intercepts all invocations to such methods (in
the example,method1), and delegates their execution to the target middleware (in the example,
Condor-G [48]) by means of an appropriate connector. From anarchitectural perspective, BYG
provides a software tier that mediates between an ordinary Java application, or the client side,
and Grid middlewares, or the server side. Gridified classes are run at the server side by means of
connectors, whereas non-gridified classes remain at the client side. In principle, BYG can exploit
any Grid middleware exposing a remote job submission interface for executing Java code.

When configuring connectors, employing or not a specific Gridexecution service such as
Condor-G or Satin is mostly subject to availability factors, i.e. whether an execution service
running on the target Grid is up and waiting for jobs. Furthermore, the choice of gridifying an
individual operation depends on whether the operation is suitable for execution on a Grid. The
potential performance gains in gridifying an application are subject to two user design factors,
namely the amount of data (i.e. parameter values) to be passed on to the gridified operations, and
the computational requirements of such operations. In thissense, BYG alleviates the burden of
adapting and submitting an ordinary application for execution on a Grid, while both factors (i.e.
amount of data and computational requirements) must be estimated early by the user. Basically,
this is similar to the analysis that must be carried out priorto introduce parallelism into any
sequential code with technologies such as MPI or PVM in orderto determine whether the code
may actually benefit from being parallelized or not.

The implementation of BYG works by modifying bytecodes at runtime to delegate and sub-
mit the execution of certain application methods to external Grid execution services. BYG--
enabling an application only requires the user to specify anXML file listing which methods are
to be gridified and what Grid services (or platforms) are to beemployed, and to add an argument
to the Java Virtual Machine (JVM) program in the command thatinitiates the execution of the
user application. BYG provides a connector for accessing the services of Satin [53], a Java-based
framework for parallelizing applications on LANs and WANs.However, we are developing con-
nectors for other Grid middlewares as well. This will allow users to take advantage of features

6

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

<configuration>
 <classes>
 <class name="A">
 <methods>
 <method id="A1"
 name="methodA1"/>
 </methods>
 </classes>
 <connector methodId="A1"
 provider="CondorGConnector/>
 ...
</configuration>

<<class>>
B

methodB1();
...

<<class>>
C

methodC1();
...

<<class>>
A

methodA1();
...

Gridification
(BYG runtime) Condor−G

enabled Grid

Globus−enabled
Grid

Server−sideClient−side

Job executor
(Manager)

Job executor
(GRAM service)

Method
invocation

Grid
job(s)

Figure 2: Submitting ordinary Java methods as Grid jobs

not present in Satin such as graphical monitoring of runningcomputations.
An initial stable release of BYG has been developed, which supports the functionality de-

scribed in the rest of the paper on top of Satin version 2.1. The tool is open source and is available
for download athttp://www.exa.uni
en.edu.ar/~
mateos/proje
ts.html. The next sub-
section focuses on providing a by-example explanation of the use of this tool. Please refer to [37]
for a comprehensive discussion on the implementation of BYG.

3.1. Gridifying applications with the BYtecode Gridifier

To gridify a conventional application with BYG, it is necessary to supply a configuration
file (XML 1 format), which lists both the application classes to be Grid-enabled and the Grid
middlewares or execution services selected for execution.Particularly, users specify within this
file the signature of the methods from these classes that are to be processed with BYG, and the
binding information that depends on the node that plays the role of job executor of each service or
middleware. A job executor is a frontend middleware-level component that resides on a specific
Grid node, accepts jobs for execution and can be contacted byusing various protocols. Examples
of Grid job executors include the Manager component and the GRAM service of the Condor-
G [48] and Globus [15] Grid platforms, respectively. Figureillustrates the notions exposed
so far. As depicted, to gridify an application with BYG, the user must provide the following
information:

1. The list of Java methods (owner class and signature) to be gridified. This information is
enclosed within a<classes> element.

2. For each one of the above methods, the Grid execution service and consequently the con-
nector to be used. This information is specified within a<connectors> element. Con-

1A brief tutorial on XML can be found athttp://www.w3s
hools.
om/xml
7

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

nectors are implemented through different classes that are shipped together with the BYG
runtime.

3. For each one of the connectors, the IP address and the port of the Grid node that hosts the
target job executor, and the desired job submission protocol from the set of the protocols
supported by the job executor. For instance, the Manager component of Condor-G provides
a socket-based job submission mechanism but also a submission interface based on Web
Services [51]. The IP address, port and protocol binding information is placed within a
<bindings> element.

For example, the following XML code gridifies thedouble integrate(double a, double b, double
epsilon) method from theexample.AdaptiveIntegration class by means of the job executor of
the Condor-G middleware:
< c o n f i g u r a t i o n xs i :noNamespaceSchemaLocat ion=" byg . xsd "

x m l n s : x s i=" h t t p : / /www. w3 . o rg/2 0 0 1/XMLSchema− i n s t a n c e ">
< !−− Methods t o g r i d i f y −−>
< c l a s s e s>
< c l a s s name=" example . A d a p t i v e I n t e g r a t i o n ">
<methods>
<method i d=" mymethod" name=" i n t e g r a t e ">
<p a r a m e t e r name=" a " t ype=" doub le " / >
<p a r a m e t e r name=" b " t ype=" doub le " / >
<p a r a m e t e r name=" e p s i l o n " t ype=" doub le "/ >

< /method>
< / methods>

< / c l a s s>
< / c l a s s e s>
< !−− Connec to rs t o use−−>
<c o n n e c t o r s>
<c o n n e c t o r methodId=" mymethod" b i n d i n g I d=" mybind ing "

p r o v i d e r=" o rg . i s i s t a n . byg . c o n n e c t o r s . CondorGConnector "/ >
< / c o n n e c t o r s>
< !−− Middleware− s p e c i f i c b i n d i n g s−−>
<b i n d i n g s>
<b i n d i n g i d=" mybind ing " name=" condor ">
<p r o p e r t y name=" p r o t o c o l ">s o c k e t s< / p r o p e r t y>
<p r o p e r t y name=" a d d r e s s ">condo r_manage r_ ip_add ress< / p r o p e r t y>
<p r o p e r t y name=" p o r t ">condo r_manager_por t< / p r o p e r t y>

< / midd leware>
< / b i n d i n g>
< / b i n d i n g s>

< / c o n f i g u r a t i o n>

Basically, BYG supports 1:N relationships between classesand methods (one or more meth-
ods of the same class can be gridified), N:1 relationships between methods and connectors (the
same connector can be used for submitting different methods), and finally 1:1 relationships be-
tween connectors and bindings. In the above example, we havedefined one connector respon-
sible for submitting each invocation to theintegrate method to the Condor-G Manager listening
at [condor_manager_ip:condor_manager_port] by using socket-based communication. This
bridging is performed by theCondorGConnector class from the BYG library, and the BYG

8

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Host Operating System

User
class files

(e.g. AdaptiveInte−
gration.class)

Java Virtual Machine (JVM)

Bytecodes

(from disk)

Execution Engine

Class Loader

Java runtime
class files

(String.class,
Integer.class, etc.)

Java Virtual Machine (JVM)

Bytecodes

(from disk)

Execution Engine

Class Loader

Java Agent
Modified

bytecodes

(AdativeInte−

gration’.class)

Host Operating System

User
class files

Java runtime
class files

Figure 3: Modifying user classes on the fly: Java agents

core runtime, which injects this class into the compiled code of theAdaptiveIntegration appli-
cation class so that, when executing the whole application,each call tointegrate is submitted to
Condor-G instead of executed locally.

To inject connector classes into ordinary ones, BYG relies on the support for agents provided
by Java. A Java agent is a pluggable user-provided Java library that customizes the class loading
process by performing bytecode transformations. This is, upon loading any application class,
the JVM contacts (if defined) the corresponding Java agent and loads the bytecode resulted from
passing the class through the agent. Figure 3 shows the differences between running a Java appli-
cation in the usual way, i.e. without Java agents (left), versus executing it by taking advantage of
a Java agent (right). In the former case, both the user and theJava runtime class files are loaded
and executed as is, whereas in the latter case a Java agent intercepts the class loading process and
optionally modify user classes prior to execution.

Roughly, the BYG runtime is implemented as a Java agent. Precisely, the BYG agent dy-
namically modifies application classes to “talk” to the configured connectors to run the gridified
methods of the application. Particularly, to BYG-enable our example application (i.e. to activate
the BYG agent), the startup command that launches the user application must look like:

j a v a − j a v a a g e n t : byg . j a r=<con f i g− f i l e >
example . A d a p t i v e I n t e g r a t i o n [a p p l i c a t i o n p a r a m e t e r s]

The-javaagent switch instructs the JVM to use the Java agent implemented bythebyg.jar library.
The characters enclosed within the “<” and “>” are the options for initializing the agent. Then,
when the application starts, the BYG agent extracts fromconfig-file the list of methods to gridify
and their associated connectors, and then transforms the bytecodes of the methods as their owner
classes are loaded by the JVM. To this end, BYG employs ASM [40], a small and fast Java-based
bytecode manipulation framework.

9

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

class AdaptiveIntegration {
 double integrate(
 double a,
 double b,
 double epsilon){
 // Body
 }
}

class AdaptiveIntegration’ {
 double new_integrate(
 double a,
 double b,
 double epsilon){
 // Body (untouched)
}

Ordinary bytecode

Condor−G−
enabled
bytecode

User configuration
(config−file)

BYG agent

Stub injection

double integrate(
 double a,
 double b,
 double epsilon){
 return
 CondorGConnector.submit(
 "new_integrate", a, b, epsilon);
}

class AdaptiveIntegration’’ {
 double new_integrate(
 double a,
 double b,
 double epsilon){
 // Body (adapted)
 CondorGConnector.adapt(
 Body);
}

Bytecode adaptation

double integrate(
 double a,
 double b,
 double epsilon){
 return
 CondorGConnector.submit(
 "new_integrate", a, b, epsilon);
}

Figure 4: Overview of the BYG agent

Modifying an individual method involves two different tasks. First, its body is rewritten to
include the instructions (or “stub”) for delegating its execution to the connector class associated
to the method (CondorGConnector in our case). The stub uses the corresponding binding in-
formation to submit the adapted version of the bytecode of the method for execution to the Grid
every time this method is called by the application. Precisely, this adaptation represents the sec-
ond task, given by the modification of the original bytecode of both the method and its owner
class in order to be compliant to the bytecode anatomy prescribed by the target Grid middleware.
Some platforms require applications to extend or to implement specific API classes, use certain
API calls to carry out distribution and parallelism, and so on. Figure 4 depicts an overview of the
mechanism implemented by the BYG agent to dynamically obtain the Grid-enabled counterpart
of an ordinary class such asAdaptiveIntegration.

The transformations performed at the second step (labeled in the Figure as “Bytecode adap-
tation”) strongly depends on the Grid middleware selected for connecting the input bytecode
to a Grid [37]. For example, middlewares such as Condor-G, which rely on coarse-grained
execution models that do not support parallelism within a method, do not require much transfor-
mations. Moreover, middlewares relying on a finer executionmodel and providing parallelism
at the method level such as Satin makes the modification process more challenging. The next
subsection focuses on explaining these notions in the context of the Satin platform, for which
BYG provides a connector.

3.2. The Satin connector

Satin [53] is a framework for programming parallel divide and conquer Java applications
on local-area and wide-area clusters. Satin provides programmatic mechanisms for indicating
which methods of a sequential application are parallelizedand synchronizing subcomputations.
We have built a connector for this framework, which relievesdevelopers from the burden of
manually using the Satin API for parallelizing their applications by semi-automatically deriving
a Satin-aware application from a sequential divide and conquer Java application. The next sub-
section explains the parallel programming model proposed by Satin. Subsection 3.2.2 presents
an overview of our Satin connector.

10

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

3.2.1. Satin: Programming model
The divide and conquer model is an algorithm design technique that is based on implement-

ing a problem by breaking them down into several subproblemsof the same type, until trivial
subproblems are obtained, which are in turn solved directly. The solutions to the different sub-
problems are then combined to build the solution to the wholeproblem. Most divide and conquer
algorithms are then naturally implemented recursively, i.e. by issuing several recursive calls to
the method implementing the problem. On the other hand, results of recursive calls are combined
to give a solution to a larger problem.

Let us come back to the exampleAdaptiveIntegration class introduced so far. Now, let us sup-
pose we provide a divide and conquer implementation for theintegrate method, which computes
the integral of a fixed function within a given interval (a, b). The integral value can be approx-
imated by recursively dividing the input interval into two subintervals as long as the difference
between the area of the trapezoid and the sum of the areas of the trapezoids of the subintervals is
not smaller than some thresholdepsilon, as follows:

1 c l a s s A d a p t i v e I n t e g r a t i o n {
2 double f u n c t i o n (double v a l u e) { . . . }
3 double i n t e g r a t e (double a , double b , double e p s i l o n) {
4 double d e l t a = ((b−a) / 2) ;
5 double t o t a l = d e l t a ∗ (f u n c t i o n (a) + f u n c t i o n (b)) ;
6 double l e f t = (d e l t a / 2) ∗ (f u n c t i o n (a) + f u n c t i o n ((b−a)/2+ a)) ;
7 double r i g h t = (d e l t a / 2) ∗ (f u n c t i o n (b) + f u n c t i o n ((b−a)/2+ a)) ;
8 double d i f f = t o t a l − (l e f t + r i g h t) ;
9 i f (d i f f < 0)
10 d i f f = − d i f f ;
11 i f (d i f f < e p s i l o n)
12 re turn t o t a l ;
13 double r e s 1 = i n t e g r a t e ((b−a)/2+ a , b , e p s i l o n) ;
14 double r e s 2 = i n t e g r a t e (a , (b−a)/2+a , e p s i l o n) ;
15 re turn r e s 1 + r e s 2 ;
16 }
17 }

Basically, the recursive calls tointegrate of lines 13 and 14 are thedividephase of the algorithm,
while lines 11-12 represent itsconquerphase, i.e. the case when the problem at hand becomes
small enough to be solved directly without further subdividing it.

The Satin programming model refines the sequential semantics of divide and conquer ap-
plications such as the one implemented by the above code to support parallelism in the divide
phase. Specifically, Satin allows recursive calls to be solved in parallel to increase the perfor-
mance of the algorithm by providing two primitives: an implicit one (spawn) to create parallel
subcomputations, and an explicit one (sync), to programmatically block execution until sub-
computations are finished. Methods considered for parallelexecution must be included in the
so-calledmarker interfaces, which are regular Java interfaces.

Let us parallelize our example application with Satin. To this end, we have to specify the
method that is subject to parallel execution in a marker interface, which in turn must extend the
satin.Spawnable interface from the Satin API:

i n t e r f a c e A d a p t i v e I n t e g r a t i o n M a r k e rex tends s a t i n . Spawnable {

11

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

double i n t e g r a t e (double a , double b , double e p s i l o n) ;
}

and then modify our application to implement the newly generated marker interface and to extend
thesatin.SatinObject API class:

c l a s s A d a p t i v e I n t e g r a t i o n ex tends s a t i n . S a t i n O b j e c t
implements A d a p t i v e I n t e g r a t i o n M a r k e r {

. . .
}

Up to now, we have indicated Satin which methods of our application must be executed in parallel
or, in other words, trigger independent parallel subtasks.However, we have to explicitly indicate
in the application code the points in which it is necessary towait for child computations to
complete. This is like providing a join point or barrier thatcauses any task not to proceed and
to wait for divide parts of the problem, whereupon the associated subresults are available and
can be used to build a larger result. Returning to the example, the synchronized version of the
integrate method is:

1 double i n t e g r a t e (double a , double b , double e p s i l o n) {
2 . . .
3 double r e s 1 = i n t e g r a t e ((b−a)/2+ a , b , e p s i l o n) ;
4 double r e s 2 = i n t e g r a t e (a , (b−a)/2+ a , e p s i l o n) ;
5 super . sync () ;
6 re turn r e s 1 + r e s 2 ;
7 }

As shown in the above code, at line 5, we have introduced a callto sync, which is the Satin
synchronization primitive inherited fromsatin.SatinObject. This call prevents the application
from combining subresults represented by yet-not-assigned variables. A practical rule for cor-
rectly usingsync is to check that a call to this primitive is issued between thesentences including
recursive calls (i.e. lines 3 and 4) and those that access their results (i.e. line 6). It is worth not-
ing that this analysis is trivial for the case of our example,but for applications involving more
sentences and more complex control structures, it is tedious and significantly more error-prone.

In summary, after specifying the marker interface for the application, modifying the structure
of the corresponding class and inserting appropriate synchronization calls into the application
code, the developer must feed a special postprocessor provided by Satin with a compiled ver-
sion of the application. This postprocessor translates theinvocations to the divide and conquer
method(s) listed in the marker interface (in our caseintegrate) into a Satin runtime task. In
this way, at runtime, any call to this method will activate their associated task, whose execution
is performed in parallel. Conceptually, this mechanism is similar to creating an independent
thread for executing such recursive calls. Moreover, developers can configure Satin to exploit
local and distributed clusters to execute such tasks or “threads”, thus potentially improving the
performance of the application.

3.2.2. Taking Satin a step further
Our Satin connector semi-automatically reproduces the previous “satinification” tasks from

a compiled, ordinary divide and conquer application that has not been explicitly coded to exploit

12

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

the Satin API. Basically, the connector generates the marker interface based on the configuration
of the application, and rewrites the bytecode of the corresponding class to extend/implement the
necessary classes and interfaces and thus make it compliantto the Satin application structure. In
addition, and more important, the connector inserts propercalls tosync by deriving a high-level
representation from the bytecode and analyzing the points where barriers are needed. To execute
the Satin-enabled version of applications, BYG relies on a software layer that wraps the Satin
runtime. For more details on this extended Satin runtime, see [37].

Besides injecting instructions to execute ordinary methods on Satin (the “Stub injection” task
in Figure 4), the Satin connector dynamically adapts the bytecodes of both these methods and
their owner classes to be compliant with the application anatomy prescribed by Satin. Basically,
the connector carries out three main tasks:

• Marker interface generation: As explained, Satin requiresapplications to include a marker
interface, which lists the methods considered for parallelexecution. The Satin connec-
tor builds this interface from the methods listed in the XML configuration for the class
being “satinified”. The reader should recall that this information is included within the
<classes> section of the configuration.

• Peer generation: Additionally, Satin applications must implement a marker interface and
to extend fromSatinObject. A clone (from now onpeer) of the sequential class under
consideration is created by the Satin connector and modifiedto fulfill these requirements.

• Barrier insertion: Based on an heuristic algorithm, the connector inserts calls to the Satin
sync primitive at appropriate places of the spawnable methods ofthe peer. The heuristic
aims at preserving the operational semantics of the (sequential) original algorithm while
minimizing the calls to the primitive.

Figure 5 depicts the steps performed by the connector to build the Satin-enabled version of an
ordinary class. The connector builds the corresponding marker interface and a Satin peer from
the class being processed. In a subsequent step, the Satin connector inserts Satin synchronization
into the peer by using the heuristic algorithm. Afterwards,the peer is instrumented with the tools
of the Satin platform. At runtime, the peer is instantiated and submitted for execution to the
abovementioned extended Satin runtime by the ordinary application through the injected stub.
To activate this behavior, the configuration file of the inputapplication must be:

< c o n f i g u r a t i o n xs i :noNamespaceSchemaLocat ion=" byg . xsd "
x m l n s : x s i=" h t t p : / /www. w3 . o rg/2 0 0 1/XMLSchema− i n s t a n c e ">

< !−− Methods t o g r i d i f y (same as b e f o r e)−−>
. . .
< !−− Connec to rs t o use−−>
<c o n n e c t o r s>
<c o n n e c t o r methodId=" mymethod" b i n d i n g I d=" mybind ing "

p r o v i d e r=" o rg . i s i s t a n . byg . c o n n e c t o r s . S a t i n C o n n e c t o r "/ >
< / c o n n e c t o r s>
< !−− Middleware− s p e c i f i c b i n d i n g s−−>
<b i n d i n g s>
<b i n d i n g i d=" mybind ing " name=" s a t i n ">

13

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

interface AdaptiveIntegrationMarker
 implements satin.Spawnable {
 double new_integrate(
 double a,
 double b,
 double epsilon);
}

class AdaptiveIntegration’’
 extends satin.SatinObject
 implements AdaptiveIntegrationMarker {
 double new_integrate(
 double a,
 double b,
 double epsilon){
 // Body (untouched)
 }
 double integrate(
 double a,
 double b,
 double epsilon){
 return
 SatinConnector.submit(
 "new_integrate", a, b, epsilon);
 }
}

class AdaptiveIntegration {
 double integrate(
 double a,
 double b,
 double epsilon){
 // Body
 }
}

class AdaptiveIntegration’ {
 double new_integrate(
 double a, double b,
 double epsilon){
 // Body (untouched)
 }
 double integrate(
 double a,
 double b,
 double epsilon){
 return
 SatinConnector.submit(
 "new_integrate", a, b, epsilon);
}

Ordinary bytecode

Satin−
enabled
bytecodeUser configuration

(config−file)

BYG agent

Stub injection

Bytecode adaptation

Marker interface generation

Peer generation class AdaptiveIntegration’’’
 extends satin.SatinObject
 implements AdaptiveIntegrationMarker {
 double new_integrate(
 double a,
 double b,
 double epsilon){
 // Body (adapted)
 ...
 double res1 = integrate(...);
 double res2 = integrate(...);
 super.sync();
 return res1 + res2;
 }
 double integrate(
 double a,
 double b,
 double epsilon){
 return
 SatinConnector.submit(
 "new_integrate", a, b, epsilon);
 }
}

Barrier insertion

Figure 5: Satin-enabling ordinary bytecode: the Satin connector

<p r o p e r t y name=" p r o t o c o l ">s o c k e t s< / p r o p e r t y>
<p r o p e r t y name=" a d d r e s s "> s a t i n _ s e r v e r _ i p _ a d d r e s s< / p r o p e r t y>
<p r o p e r t y name=" p o r t "> s a t i n _ s e r v e r _ p o r t< / p r o p e r t y>

< / b i n d i n g>
< / b i n d i n g s>

< / c o n f i g u r a t i o n>

The algorithm for inserting barriers works by iterating theinstructions of a method and detecting
the points in which a local variable is eitherdefinedor usedby a sentence. A variable is defined
when the result of a recursive call is assigned to it, whereasit is used when its value is read.
To work properly Satin requires that sentences can read suchvariables provided async has
been previously issued. Then, our algorithm operates by modifying the bytecode to ensure a
call to sync is done between the definition and use of a local variable, forany execution path
between these two points. Moreover, assync suspends the execution of the method untilall
subcomputations associated to defined variables have finished, our algorithm uses an heuristic to
keep the correctness of the program while minimizing the inserted calls tosync for the sake of
efficiency. It is out of the scope of this paper to discuss the internals of this heuristic algorithm.
For details on this algorithm, please refer to [37].

14

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

4. Case studies

This section describes the experiments that were performedto empirically evaluate BYG.
The contents of the section are a much more rigorous version of, and a complement to, the
experiments reported in [37], in which we used classic CPU-intensive benchmark applications to
compare BYG against Satin on a small LAN. To provide strongerevidence on the applicability
of BYG, we measured the performance as well as resource usagethat resulted from employing
GridGain, Satin and BYG for parallelizing two real-world applications, specifically ray tracing
(Subsection 4.1) and sequence alignment (Subsection 4.2),on a wide-area Grid. The goal of the
evaluation was to determine whether the automatic approachto gridification followed by BYG
is competitive compared to manual gridification when using GridGain or Satin with regard to the
abovementioned aspects with realistic applications on a Grid setting. On one hand, we used the
Satin platform so as to assess the differences between manually-generated Satin codes and Satin-
enabled codes obtained by using BYG. On the other hand, we chose GridGain since it is a stable
and healthy open source Grid platform that has recently became very popular for developing
distributed applications.

First, we set up a LAN comprising 15 nodes running Mandriva Linux 2009.0, Java 5 and
Satin 2.1 connected through a 100 Mbps network. We used 8 single core nodes with 2.80 MHz
CPUs and 1.25 GB of RAM, and 7 single core nodes with 3 MHz CPUs and 1.5 GB of RAM.
Then, we established a wide-area Grid on top of this LAN by employing WANem version
2.0 [47], a software for emulating WAN conditions over a local area network. We emulated
3 remote clustersC1, C2 andC3 by using 4, 5 and 6 of the nodes of the LAN, respectively, which
were connected together by using virtual Internet links (see Figure 6). Each WAN link was a T1
connection (i.e. a bandwidth of 1,544 Mbps) with a round-trip latency of 160 ms and a jitter of
10 ms, therefore inter-cluster latencies were in the range of 150-170 ms. Particularly, these are
network conditions commonly found in Internet-wide Grids.

For the sake of fairness, all tools were configured to use the load balancing algorithm that
best fitted the experimental setting. On one hand, for the GridGain applications we employed
its Round Robin load balancing with the default configuration, which according to the authors
provides a fair distribution of tasks among the nodes of a Grid and therefore works well in most
cases2. Basically, upon executing an application, the algorithm randomly picks a Grid node
and then dynamically and sequentially assigns tasks for execution in a round-robin fashion. On
the other hand, both the Satin and the BYG implementations ofthe ray tracing and sequence
alignment applications were configured to take advantage ofthe Cluster-aware Random Stealing
(CRS) [53] task scheduling algorithm provided by Satin. With CRS, when a Grid node becomes
idle, it attempts to steal an unfinished task both from nodes belonging to the same local cluster
or external nodes, however intra-cluster steals have a greater priority than inter-cluster ones,
minimizing expensive WAN communication.

2http://www.gridgainsystems.
om/wiki/display/GG15UG/GridRoundRobinLoadBalan
ingSpi
15

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Virtual cluster C

100 Mbps

LAN

WANem

proxy (1,544

Mbps WAN)

1

Virtual cluster C2 Virtual cluster C3

Figure 6: Setting used in the experiments

4.1. Ray tracing

Ray tracing is a widely-known rendering technique that generates a digital picture from an
abstract description of a 3D scene [24]. Basically, we basedour experiments on a parallel divide
and conquer ray tracing algorithm from the Satin project3, which operates by deriving an initial
image from the input scene, dividing this image to recursively apply the algorithm, and then join-
ing the results to build the final picture. The BYG implementation was obtained by removing
from the original Satin code any sentence related to parallelism and/or tuning application exe-
cution to derive the sequential divide and conquer counterparts of the application. On the other
hand, the GridGain implementation was obtained by alteringthe original Satin code to exploit
the Google’s map reduce parallel programming model [29], which is similar to the master-worker
model and is supported by GridGain. We considered two variants of the application by altering
the granularity of the runtime tasks, i.e. by splitting the image into 8x8 and 1x1 squares. In both
cases, the algorithm first computes the correct color of eachsubimage and then reassembles the
whole image. The second variant operates up to the pixel level, which allows the algorithm to
output pictures with better quality but generates a larger number of tasks to execute at runtime.

To execute the three implementations of the first variant, weused two input scenes Scene 1
and Scene 2 (in NFF format [22]) with three different resolutions each (512x512, 1024x1024 and
2048x2048). Figure 8 shows the resulting pictures for the largest resolution. On the other hand,
Figure 7 illustrates the average execution time of this variant for 60 runs. In all cases, standard
deviations were in the range of 5-12%. Note that this percentage is somewhat high, however it is
mainly explained by a) the fact that GridGain used a random round robin load balancing support,

3http://www.
s.vu.nl/ibis/satin.html
16

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

b) the fact that Satin and BYG relied on CRS for task scheduling, which implements a cluster-
awarerandomtask stealing algorithm, and c) the variability inherent toWAN links in terms of
bandwidth and latency. All in all, compared to Satin, BYG performed very well, considering
that our goal is not to outperform existing Grid libraries but automating as much as possible
their usage while achieving competitive performance. FromFigure 7 (a) it can be seen that BYG
performed similarly to Satin for the 1024x1024 image while incurred in an acceptable overhead
of just few seconds for the other two. Figure 7 (b) shows that the performances for the more
complex scene (Scene 2) were similar for the three resolutions. On the other hand, GridGain
performed much better than Satin and BYG alike, which is explained by the less bureaucratic
nature of its task distribution scheme. Unlike Satin and therefore BYG, in which each Grid node
actively participates in the creation and assignment of parallel tasks, GridGain uses a master
node that is in charge of distributing the tasks to the rest ofthe nodes. Then, the GridGain
version of the ray tracing application performed better butas we explain next, it experienced an
unfair assignment of parallel tasks to Grid nodes.

We measured the resource usage among the nodes of our simulated Grid by using the load av-
erage system metric of the Linux kernel, which is computed through an exponentially weighted
moving average and is periodically stored in the “/proc/loadavg” file. Roughly, this metric al-
lowed us to obtain the trend in CPU load at every single node ofour Grid, so as to compute the
standard deviation of these values to determine whether a node was more loaded than the others
during the runs. In this sense, a small deviation is highly desirable, because it means that all
nodes are evenly used, i.e. there are no nodes underused/overused. It is worth noting that CPU
load is different from CPU utilization. Within a single node, this latter metric provides trend
information of CPU usage but ignores the length of the queue maintaining the tasks waiting for
taking possession of the CPU. For applications like ray tracing, which make extensive use of Grid
resources, CPU utilization is always close to 100%. Hence, this metric is unable to accurately
measure the load level of a node, which is in turn better reflected by the CPU load metric.

Table 1 shows the resulting fluctuation in CPU load, which wascomputed as the standard
deviation of the load averages across nodes taken both at a 5-minute and a 15-minute window
at the end of each test round. To obtain representative values, we introduced appropriate de-
lays between each test battery in order to ensure that CPU load across nodes dropped down to
zero. As the reader can see, the table shows that both Satin and BYG achieved similar and very
uniform levels of CPU load among the Grid nodes. Conversely,GridGain experienced a rather
uneven exploitation of the available resources. In summary, at least for this application and task
granularity, GridGain achieved the best speedups but at thecost of performing a less fair usage
of computational resources.

Figures 9 (a) and 9 (b) show the performance of the second variant of the application, i.e.
the one using the smallest task granularity (subimages of 1x1 pixels). Note that the Figure does
not show the GridGain implementation, which proved to be tooinefficient for this task granu-
larity, registering overheads above 300% with respect to its competitors. Basically, using small
granularities results in more runtime tasks to execute, which makes task scheduling more chal-
lenging to Grid middlewares. Although it cannot be generalized, this result in conjunction with
the experiments illustrated in Figure 7 may suggest that GridGain is better suited for applica-
tions with not-so-small task granularities. In contrast, Satin and BYG are designed to support

17

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Scene 1 Scene 2

(5-minute) 512x512 1024x1024 2048x2048 512x512 1024x10242048x2048

GridGain 52 49 46 28 19 22

Satin 3 10 3 4 2 3

BYG 4 3 2 6 4 3

Scene 1 Scene 2

(15-minute) 512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048

GridGain 26 31 39 28 18 16

Satin 2 2 2 2 6 1

BYG 3 1 1 4 3 2

Table 1: Ray tracing: Fluctuation in CPU load (in percentagewith regard to the average load
across all nodes)

efficient scheduling of parallel tasks irrespective of their granularity. Furthermore, in the present
experiment BYG performed close to Satin, which is consistent with the results of Figure 7. Both
implementations achieved average load fluctuations in the range of 1-4% and 1-3% for the time
windows of 5 and 10 minutes, respectively.

As a complement, Figure 10 shows the speedup factor achievedby the different implementa-
tions for the two task granularities. This factor was computed asTseq/Tgrid, whereTseq andTgrid

are the times required to execute the sequential and gridified versions of these applications, re-
spectively. To computeTseq, the sequential ray tracing application was run on a node of the
experimental setting with the best hardware capabilities in terms of CPU and memory.

4.2. Sequence Alignment

The second test application was local pairwise sequence alignment4, a well-known problem
in bioinformatics. The problem involves representing a biological entity such as a gene in a
computer-understandable way (usually strings of characters) and manipulating the resulting rep-
resentation by using sequence alignment algorithms. Figure 11 shows, for instance, a sample
protein sequence of the Influenza A H1N1 virus.

Basically, we took an existing parallel master-worker implementation of the application for
aligning protein sequences. The source code of the application was obtained from the JPPF
project[26]. Firstly, we derived the sequential version ofthis application and then we parallelized
it back with GridGain, Satin and BYG. Furthermore, the original source code used JAligner [38],
an open source library that implements an improved version of the Smith-Waterman algorithm [20].
Given any pair of sequences, the algorithm outputs a coefficient that represents the level of simi-

4http://en.wikipedia.org/wiki/Sequen
e_alignment
18

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512x512 1024x1024 2048x2048

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

GridGain
Satin
BYG

(a) Scene 1

 0

 50

 100

 150

 200

 250

 300

 350

512x512 1024x1024 2048x2048

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

GridGain
Satin
BYG

(b) Scene 2

Figure 7: Performance of the ray tracing application (task granularity=8x8 squares)

larity between these two by using a scoring matrix from a set of predefined matrixes. To execute
the experiments, we used the PAM120 matrix, which works verywell in most cases.

The application aligned an unknown input sequence against an entire sequence database,
which was replicated across the nodes of the experimental Grid to allow parallel tasks to locally
access sequence data. The application operated by dividingthe portions of the data to com-
pare against into two different subproblems until a certain threshold on the data was reached.
We used the same threshold values for GridGain, Satin and BYG. Moreover, we compared five
different sequences against real-world protein sequence databases extracted from the National
Center for Biotechnology Information (NCBI) Web site5. The NCBI is an organization devoted
to computational biology that among other things maintainspublic genomes databases, dissem-
inates biomedical information and develops bioinformatics software. Concretely, we employed
the sequence databases shown in Table 2. The last column of the Table indicates the number
of generated parallel tasks as a consequence of using different thresholds. Basically, the larger
the database, the finer the task granularity that was used, which enables for better parallelism.
It is worth mentioning that the tests conceived the BYG implementation of the application as a
mean to provide more evidence about the performance and resource usage of BYG compared to
GridGain and Satin by using a realistic application. In thissense, the goal of these experiments
it is not to come out with a better implementation of sequencealignment in Grid settings, for
which specialized frameworks such as mpiBLAST [4] and G-BLAST [1] already exist.

Figure 12 shows the average execution time for 60 runs of the different versions of the ap-
plication, while Figure 13 depicts the speedup factor. As the application is CPU-intensive but at
the same time makes extensive use of sequence data, we did notachieve a high CPU utilization
when aligning just one instance per run. In consequence, we decided to process two input target
sequences simultaneously per execution. This resulted in CPU utilization close to 100% in the

5http://www.n
bi.nlm.nih.gov
19

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

(a) Scene 1 (b) Scene 2

Figure 8: Pictures resulted from executing the ray tracing application (resolution=2048x2048
pixels)

nodes of the experimental Grid, which in turn allowed us to measure resource usage through the
CPU load metric in a representative manner. As illustrated in the figure, and similar to the case
of the ray tracing application, BYG behaved close to Satin for all databases. On the other hand,
standard deviations were in the range of 3-5% and 4-8% for thecase of Satin and GridGain,
respectively, and below 3% for the case of BYG. This fact may suggest that the execution time
of the BYG variant was less affected by the data-intensive nature of the application, however
this should be further corroborated. Finally, Table 3 showsthe fluctuation in average CPU load
during the executions, which shows that BYG made a fair usageof Grid resources. Furthermore,
the GridGain implementation steadily performed better than both Satin and BYG for the case
of DB1, DB2 and DB3. On the other hand, the tests involving more runtime tasks resulted in
execution overheads for the case of DB4 (see the dip in the bars) and marginal gains for DB5.
Similarly to the ray tracing algorithm, GridGain had trouble in dealing with larger amounts of
runtime tasks, while it slightly outperformed Satin and BYGwith smaller ones.

4.3. Discussion

The experimental results reported in the previous subsections can be summarized according
to several common dimensions of the problem of gridifying applications in the context of the
studied platforms, namely task granularity support, delivered performance, resource usage and
programmability [35]. The next paragraphs give some insights on these aspects in order to pro-
vide guidelines as to when to use each platform and when not. Table 4 qualitatively summarizes
the obtained results in relation to these dimensions.

As mentioned, many Grid platforms work better when paralleltasks created as a consequence
of parallelizing a sequential application have a coarse granularity. Under this scheme, the original
problem is split into a small to medium number of tasks. On thecontrary, other Grid platforms

20

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Database Size (# of
sequences)

Size
(MB)

Disease Date # of gener-
ated tasks

DB 1 4289 1.7 Escherichia-coli Unspecified 20

DB 2 4777 2.4 Influenza A
(Human)

2009 outbreak
(01/01/2009-
31/06/2009)

20

DB 3 7672 3.5 Influenza B
(Human)

All registered
cases up to now

40

DB 4 9620 4.8 Influenza A
(Human)

01/01/2007-
12/31/2008

80

DB 5 12325 6.2 Influenza A
(Human)

01/01/2006-
12/31/2008

80

Table 2: Protein sequence databases used in the experiments

(5-minute) DB 1 DB 2 DB 3 DB 4 DB 5

GridGain 44 34 25 27 28

Satin 3 3 3 3 3

BYG 3 3 4 4 3

(15-minute) DB 1 DB 2 DB 3 DB 4 DB 5

GridGain 31 29 20 25 25

Satin 3 3 3 3 4

BYG 4 2 2 3 3

Table 3: Sequence alignment: Fluctuation in CPU load (in percentage with regard to the average
load across all nodes)

21

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512x512 1024x1024 2048x2048

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Satin
BYG

(a) Scene 1

 0

 50

 100

 150

 200

 250

 300

 350

512x512 1024x1024 2048x2048

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Satin
BYG

(b) Scene 2

Figure 9: Performance of the ray tracing application (task granularity=1x1 squares)

 0

 2

 4

 6

 8

 10

 12

 14

 16

Scene 1
512x512

Scene 1
1024x1024

Scene 1
2048x2048

Scene 2
512x512

Scene 2
1024x1024

Scene 2
2048x2048

S
p
e
e
d
u
p
 f
a
c
to

r

3D Scene

GridGain
Satin

BYG
Theoretical maximum

(a) Task granularity=8x8 squares

 0

 2

 4

 6

 8

 10

 12

 14

 16

Scene 1
512x512

Scene 1
1024x1024

Scene 1
2048x2048

Scene 2
512x512

Scene 2
1024x1024

Scene 2
2048x2048

S
p
e
e
d
u
p
 f
a
c
to

r

3D Scene

Satin
BYG

Theoretical maximum

(b) Task granularity=1x1 squares

Figure 10: Ray tracing: speedup factor

are oriented towards supporting finer tasks granularities.Therefore, their schedulers are designed
to manage much larger number of tasks at runtime. In our experiments, the tests involving the
usage of GridGain and fine granularities caused excessive overheads for the variant of the ray
tracing application using 1x1 image squares, and resulted in performance losses for DB4 and
DB5 in the sequence alignment application with respect to the rest of the databases. On the other
hand, Satin and BYG proved to be more versatile with respect to task granularity.

Moreover, for larger task granularities, GridGain outperformed its competitors, however it
clearly made a less fair use of Grid resources. In addition, for more intensive experiments, the
average fluctuation in resource usage tended towards smaller but still rather high values. For
instance, the GridGain version of the ray tracing application experienced a fluctuation of 46%
and 22% for Scene 1 and Scene 2, respectively. Likewise, the sequence alignment code had a
fluctuation of 44% and 28% for DB1 and DB5, respectively. On the other hand, the fluctuation

22

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

MASQGTKRSYEQMETDGERQNATEIRASVGRMIGGIGRFYIQMCTELKLNDYEGRLIQNSLTIERMVLSA

FDERRNKYLEEHPSAGKDPKKTGGPIYKRVDGKWVRELVLYDKEEIRRIWRQANNGDDATAGLTHIMIWH

SNLNDTTYQRTRALVRTGMDPRMCSLMQGSTLPRRSGAAGAAVKGVGTMVLELIRMIKRGINDRNFWRGE

NGRKTRIAYERMCNILKGKFQTAAQKAMMDQVRESRNPGNAEIEDLTFLARSALILRGSVAHKSCLPACV

YGPAVASGYDFEKEGYSLVGVDPFKLLQTSQVYSLIRPNENPAHKSQLVWMACNSAAFEDLRVSSFIRGT

RVLPRGKLSTRGVQIASNENMDAIVSSTLELRSRYWAIRTRSGGNTNQQRASAGQISTQPTFSVQRNLPF

DKATIMAAFSGNTEGRTSDMRAEIIKMMESARPEEVSFQGRGVFELSDERATNPIVPSFDMSNEGSYFFG

DNAEEYDN

Figure 11: Sample protein sequence of the Influenza A H1N1 virus (obtained in England on
December 31, 2007)

 0

 20

 40

 60

 80

 100

DB 1 DB 2 DB 3 DB 4 DB 5

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

GridGain
Satin
BYG

Figure 12: Performance of the sequence alignment application

in resource usage for both test applications was in the rangeof 2-4% for the case of Satin,
which delivered less performance but resulted in much better resource usage. All in all, the
choice of whether to prioritize application performance over Grid resource usage in principle
depends on the Grid setting being used. Specifically, bad resource usage may not be acceptable
in Desktop Grid environments [8], which aim at arranging andtaking advantage of idle CPU
cycles of regular desktop PCs in use by individuals. However, in a dedicated Grid setting, a
performance-oriented middleware like GridGain would suffice.

Furthermore, BYG behaved very competitively compared to Satin with respect to perfor-
mance and resource usage, in spite of the fact that BYG adds some technological noise, i.e.
our extended Satin runtime that handles the execution of transformed codes in parallel, and the
heuristic for automating the process of inserting parallelism and synchronization into sequential
applications. Intuitively, this should translate into rather different execution times. However, the
experiments show that in some cases BYG certainly adds a performance overhead with respect
to Satin, which we believe it is acceptable given the benefitsof automatic parallelism in Grid
environments to support scientists not proficient in distributed programming. In fact, the BYG
versions of the two test applications did not require to makeexplicit usage of API-specific code,
which in turn positively impacted on the size of the implementation code of the parallel applica-
tions. In this sense, Table 5 shows the TLOC values for the test applications, i.e. the total lines of
code without considering neither blank nor comment lines. The Table also shows the GLOC met-
ric [36], which counts developer-supplied lines explicitly invoking Grid API primitives within the

23

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

 0

 2

 4

 6

 8

 10

 12

 14

 16

DB 1 DB 2 DB 3 DB 4 DB 5

S
p
e
e
d
u
p
 f
a
c
to

r

Database

GridGain
Satin

BYG
Theoretical maximum

Figure 13: Sequence alignment: speedup factor

Middleware Task granu-
larity support

Delivered
perfor-
mance

Resource
usage

Programmability

GridGain Regular Very good Regular Good

Satin Very good Good Very

good

Good

BYG Very good Good Very

good

Very good

Table 4: Experimental results: qualitative analysis

application code. As illustrated, BYG is based on an automatic approach to parallelism and thus
isolates users from API-related details. In contrast, moreverbose, API-oriented gridification
platforms such as GridGain require users to know details of its programming library.

The differences obtained inTgrid for BYG and Satin are mostly explained by the places of
the application code in which the calls tosync are located. Naturally, these differences stem
from the fact that the Satin versions of the applications were parallelized and provided with syn-
chronization by hand, while the BYG counterparts were parallelized by applying our heuristic
on the sequential codes, which precisely attempt to reproduce the parallelization and synchro-
nization tasks a human programmer would manually perform. These results show that BYG
certainly simplifies the usage of parallel libraries like Satin without incurring in an excessive
performance penalty and thus achieving competitive speedups. In other words, BYG stays com-
petitive compared to directly using Satin, which is explained by the effectiveness of our generic
synchronization heuristic. This claim is not done in isolation, but elaborated on the grounds of
the experiments reported in this paper as well as similar results achieved with BYG in a cluster
environment [37].

24

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

Application Middleware TLOC GLOC

GridGain 1,176 33

Ray tracing Satin 1,065 4

BYG 1,057 0

GridGain 581 44

Sequence alignment Satin 503 5

BYG 493 0

Table 5: Test applications: code metrics

5. Conclusions and future work

This paper described BYG (BYtecode Gridifier), a new software tool to easily port ordinary
compiled Java applications to Computational Grids. BYG lets users to Grid-enable existing Java
applications by indicating which parts of their bytecode should run on a Grid without requiring
programming effort and otherwise using configuration external to the application. To this end,
BYG is based on novel bytecode rewriting techniques throughwhich ordinary bytecodes are
semi-automatically furnished with parallelism to exploitGrids. BYG targets Java applications
implemented under the popular and versatile divide and conquer programming model. We can
thus reasonably expect the tool will benefit a large number oftoday’s applications.

At present, BYG is implemented on top of Satin, a framework that supports execution of
applications on LANs and WANs. We evaluated BYG by gridifying two popular real-world
resource-intensive applications, namely ray tracing and sequence alignment, by using both Satin
and BYG on a wide-area Grid. Results show that most of the BYG versions performed very
similarly to their Satin counterparts, and thus achieved very competitive speedups and resource
usage. We believe this is an interesting result consideringthat BYG automates the use of Satin
without incurring in performance overheads or unfair usageof Grid nodes to gridify applications.
In addition, we also compared GridGain and BYG, in order to provide a wider spectrum of Java-
based gridification tools and particularly to discuss the applications and Grid settings for which
our tool is beneficial. In this sense, we concluded Section 4 by providing practical guidelines
regarding when to use each tool and when not.

It is worth emphasizing that our approach does not aim at replacing explicit distributed and
parallel programming models, such as the ones promoted by GridGain and Satin. Its utmost goal
is to target users who would need to rapidly turn their sequential applications into parallel ones
while dealing with as little parallel exploitation problems as possible. Basically, BYG addresses
this requirement by advocating an automatic approach to support the process of obtaining a Grid-
aware application. However, it is a well-known fact in parallel programming that such an implicit
approach to parallelism may, in general, produce parallel applications whose performance is
below the levels reached by using explicit parallelism [16], in which the developer has more
control over the parallel behavior of their applications. In the context of our work, this means that

25

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

using BYG may not necessarily lead to exploiting parallelism in an optimal way. As shown, BYG
effectively inserts parallelism into sequential codes in a best-effort and heuristic way, leading to
competitive speedups for fine-grained applications while offering adequate support for users with
limited knowledge on parallel and Grid concepts.

At present, we are extending BYG into several directions. Particularly, we are refining its
bytecode rewriting techniques to recognize some other high-level Java sentences (e.g. try/catch
and switch/case) and to optimize the insertion of Satin barriers. It is worth noting that this is not a
limitation of our parallelization and synchronization algorithm but of its current implementation.
We are also investigating how to generalize and support our gridification approach for other
target Grid middlewares apart from Satin, and even other languages for scientific computing.
On one hand, a prototype implementation of BYG on top of the Condor-G [48] middleware is
underway. On the other hand, for gridifying binary codes obtained throughcompiledlanguages, a
technological alternative is to employ Dyninst [49], an APIthat allows on-the-fly modification of
native binary codes. This will allow us to adapt the ideas behind the BYG agent for introducing
parallelism into the binary code produced by widely-adopted languages such as C and C++.
Also, and similarly to the work by Papadimitriou and Terzidis [41], we are investigating how
to integrate BYG with the Java scripting API [46], which allows developers to execute scripts
implemented in variousinterpretedlanguages (e.g. Python, Ruby, BeanShell, etc.) within the
Java runtime. Interestingly, this would greatly simplify the adoption of BYG as most of these
interpreted languages are commonplace in scientific programming.

Finally, we will conduct experiments with BYG in larger Gridsettings. We are working on
the gridification of the ray tracing and the sequence alignment application on a real (i.e. not
emulated) high-speed wide-area Grid. The infrastructure is a result of a country-wide Grid ini-
tiative of the Argentinian government that will connect several academic clusters across different
provinces of Argentina, which was launched recently6. In addition, we will study the applica-
bility of BYG to other domains, particularly finite element analysis. As a starting point, we will
gridify the SOGDE 2D and 3D solver [17], which has been used for simulating tension tests in
metals [18].

Acknowledgments

We thank Cristian Clasadonte for his good predisposition and valuable help managing the
computing infrastructure required for conducting the experiments described in this paper. We
also acknowledge the financial support provided by ANPCyT through grants PAE-PICT 2007-
02311 and PAE-PICT 2007-02312.

References

[1] E. Afgan, P. Bangalore, Dynamic BLAST - a Grid enabled BLAST, International Journal
of Computer Science and Network Security 9 (4) (2009) 149–157.

6http://indi
o.
ern.
h/
onferen
eProgram.py?
onfId=66398
26

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[2] J. M. Alonso, V. Hernández, G. Moltó, GMarte: Grid middleware to abstract remote task
execution, Concurrency and Computation: Practice Experience 18 (15) (2006) 2021–2036.

[3] J. M. Alonso, V. Hernández, G. Moltó, A high-throughput application for the dynamic
analysis of structures on a grid environment, Advances in Engineering Software 39 (10)
(2008) 839–848.

[4] J. Archuleta, W.-C. Feng, E. Tilevich, A pluggable framework for parallel pairwise se-
quence search, in: 29th Annual International Conference ofthe IEEE - Engineering in
Medicine and Biology Society (EMBS ’07), 2007, pp. 127–130.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici, Grid Comput-
ing: Software Environments and Tools, chap. Programming, Composing, Deploying on the
Grid, Springer, Berlin, Heidelberg, and New York, 2006, pp.205–229.

[6] M. Baitsch, N. Li, D. Hartmann, A toolkit for efficient numerical applications in Java,
Advances in Engineering Software 41 (1) (2010) 75–83.

[7] B. S. Center, Alya system - large scale computational mechanics,http://www.bs
.es/plantillaA.php?
at_id=552 (last accessed November 2009) (2009).

[8] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, C. Hwang,Characterizing and clas-
sifying Desktop Grid, in: 7th IEEE International Symposiumon Cluster Computing and
the Grid (CCGRID ’07), Rio de Janeiro, Brazil, IEEE ComputerSociety, Washington, DC,
USA, 2007, pp. 743–748.

[9] C. A. da Silva Cunha, J. L. Ferreira Sobral, An annotation-based framework for parallel
computing, in: 15th Euromicro Conference on Parallel, Distributed, and Network-Based
Processing (PDP ’07), Naples, Italy, IEEE Computer Society, Los Alamitos, CA, USA,
2007, pp. 113–120.

[10] M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi, D. Laforenza, L. Presti, PAL: Exploiting
Java annotations for parallelism, in: Achievements in European Research on Grid Systems,
Springer, United States, 2008, pp. 83–96.

[11] D. M. Doolin, J. Dongarra, K. Seymour, JLAPACK - compiling LAPACK Fortran to Java,
Scientific Programming 7 (2) (1999) 111–138.

[12] L. A. Drummond, V. Galiano, V. Migallón, J. Penadés, Interfaces for parallel numerical
linear algebra libraries in high level languages, Advancesin Engineering Software 40 (8)
(2009) 652–658.

[13] D. Eyheramendy, Innovation in Engineering Computational Technology, chap. High ab-
straction level frameworks for the next decade in computational mechanics, Saxe-Coburg
Publications, 2006, pp. 41–61.

[14] I. Foster, The Grid: Computing without bounds, Scientific American 288 (4) (2003) 78–85.

27

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[15] I. Foster, Globus toolkit version 4: Software for service-oriented systems, Journal of Com-
puter Science and Technology 21 (4) (2006) 513–520.

[16] V. W. Freeh, A comparison of implicit and explicit parallel programming, Journal of Paral-
lel and Distributed Computing 34 (1) (1996) 50–65.

[17] C. García Garino, Un modelo numérico para el análisis desólidos elastoplásticos sometidos
a grandes deformaciones, Ph.D. thesis, E.T.S. Ingenieros de Caminos, Universidad Politéc-
nica de Catalunya, Barcelona, Spain (1993).

[18] C. García-Garino, F. Gabaldón, J. M. Goicolea, Finite element simulation of the simple
tension test in metals, Finite Elements in Analysis and Design 42 (13) (2006) 1187–1197.

[19] R. C. Gonçalves, J. L. Ferreira Sobral, Pluggable parallelisation, in: 18th ACM Interna-
tional Symposium on High Performance Distributed Computing (HPDC ’09), Garching,
Germany, ACM Press, New York, NY, USA, 2009, pp. 11–20.

[20] O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular
Biology 162 (3) (1982) 705–708.

[21] GridGain Systems, The GridGain Open Cloud Platform,http://www.gridgain.
om (last
accessed September 2009) (2009).

[22] E. Haines, Neutral File Format (NFF), Available fromhttp://lo
al.wasp.uwa.edu.au/~pbourke/dataformats/nff/nff1.html (last accessed September 2009) (1992).

[23] B. Harbulot, J. R. Gurd, Using AspectJ to separate concerns in parallel scientific Java code,
in: 3rd International Conference on Aspect-Oriented Software Development (AOSD ’04),
Lancaster, UK, ACM Press, New York, NY, USA, 2004, pp. 122–131.

[24] P. Heckbert, E. Haines, A ray tracing bibliography, in:A. Glassner (ed.), Introduction to
Ray Tracing, Academic Press, Inc., 1989, pp. 295–303.

[25] E. Hernández, Y. Cardinale, W. Pereira, Extended mpiJava for distributed checkpointing
and recovery, in: Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, vol. 4192 of Lecture Notes in Computer Science, Springer, Berlin/ Heidelberg, 2006,
pp. 158–165.

[26] JPPF, JPPF Home,http://www.jppf.org (last accessed November 2009) (2009).

[27] A. Jugravu, T. Fahringer, JavaSymphony, a programmingmodel for the Grid, Future Gen-
eration Computer Systems 21 (1) (2005) 239–246.

[28] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin,
Aspect-oriented programming, in: M. Akşit, S. Matsuoka (eds.), 11th European Conference
on Object-Oriented Programming (ECOOP ’97), vol. 1241 of Lecture Notes in Computer
Science, Springer, New York, NY, USA, 1997, pp. 220–242.

28

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[29] R. Lämmel, Google’s MapReduce programming model — revisited, Science of Computer
Programming 68 (3) (2007) 208–237.

[30] E. Laskowski, M. Tudruja, R. Olejnik, B. Toursel, Byte-code scheduling of Java programs
with branches for Desktop Grid, Future Generation ComputerSystems 23 (8) (2007) 977–
982.

[31] E. A. Lee, The problem with threads, Computer 39 (5) (2006) 33–42.

[32] R. I. Mackie, Design and deployment of distributed numerical applications using .NET
and component oriented programming, Advances in Engineering Software 40 (8) (2009)
665–674.

[33] P. M. Maia, N. C. Mendonca, V. Furtado, W. Cirne, K. Saikoski, A process for separation
of crosscutting Grid concerns, in: ACM Symposium on AppliedComputing (SAC ’06),
Dijon, France, ACM Press, New York, NY, USA, 2006, pp. 1569–1574.

[34] D. Manolescu, B. Beckman, B. Livshits, Volta: Developing distributed applications by
recompiling, IEEE Software 25 (5) (2008) 53–59.

[35] C. Mateos, A. Zunino, M. Campo, A survey on approaches togridification, Software: Prac-
tice and Experience 38 (5) (2008) 523–556.

[36] C. Mateos, A. Zunino, M. Campo, On the evaluation of gridification effort and runtime
aspects of JGRIM applications, Future Generation ComputerSystems 26 (6) (2010) 797–
819.

[37] C. Mateos, A. Zunino, M. Campo, R. Trachsel, Parallel Programming, Models and Appli-
cations in Grid and P2P Systems, chap. BYG: An Approach to Just-in-Time Gridification of
Conventional Java Applications, Advances in Parallel Computing, IOS Press, Amsterdam,
The Netherlands, 2009, pp. 232–260.

[38] A. Moustafa, JAligner: Open source Java implementation of Smith-Waterman,http://jaligner.sour
eforge.net (last accessed October 2009) (2008).

[39] National Science Foundation, ScaLAPACK,http://www.netlib.org/s
alapa
k (last
accessed August 2009) (2007).

[40] ObjectWeb Consortium, ASM,http://asm.obje
tweb.org (last accessed August 2009)
(2009).

[41] S. Papadimitriou, K. Terzidis, jLab: Integrating a scripting interpreter with Java technology
for flexible and efficient scientific computation, Computer Languages Systems and Struc-
tures 35 (3) (2009) 217–240.

29

This is a preprint of the article: "A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing
and sequence alignment (C. Mateos, A. Zunino, M. Hirsch, M. Fernandez, M. Campo). Advances in Engineering Software. Elsevier Science. ISSN:
0965-9978. 42(4):172-186. 2011."

The final publication is available at http://dx.doi.org/10.1016/j.advengsoft.2011.02.003

[42] M. Ropo, J. Westerholm, J. Dongarra, Recent advances inParallel Virtual Machine and
Message Passing Interface - Proceedings of the 16th European PVM/MPI Users’ Group
Meeting, Espoo, Finland, September 7-10, 2009, Lecture Notes in Computer Science,
Springer-Verlag, Berlin/ Heidelberg, 2009.

[43] K. Seymour, J. Dongarra, Automatic translation of Fortran to JVM bytecode, Concurrency
and Computation: Practice and Experience 15 (3-5) (2003) 207–222.

[44] A. Shafi, B. Carpenter, M. Baker, Nested parallelism formulti-core HPC systems using
Java, Journal of Parallel and Distribed Computing 69 (6) (2009) 532–545.

[45] A. Shafi, B. Carpenter, M. Baker, A. Hussain, A comparative study of Java and C perfor-
mance in two large-scale parallel applications, Concurrency and Computation: Practice and
Experience 21 (15) (2009) 1882–1906.

[46] Sourceforge.net, Java Scripting API,https://s
ripting.dev.java.net (last accessed
July 2009) (2009).

[47] TATA Consultancy Services, WANem,http://wanem.sour
eforge.net (last accessed
August 2009) (2008).

[48] D. Thain, T. Tannenbaum, M. Livny, Condor and the Grid, in: F. Berman, G. Fox, A. Hey
(eds.), Grid Computing: Making the Global Infrastructure aReality, John Wiley & Sons,
New York, NY, USA, 2003, pp. 299–335.

[49] University of Maryland, Dyninst api,http://www.dyninst.org (last accessed December
2009) (2009).

[50] University of Virginia, jPVM,http://www.
s.virginia.edu/~ajf2j/jpvm.html (last
accessed August 2009) (1999).

[51] S. J. Vaughan-Nichols, Web Services: Beyond the hype, Computer 35 (2) (2002) 18–21.

[52] L. Wang, W. Jie, Towards supporting multiple virtual private computing environments on
computational Grids, Advances in Engineering Software 40 (4) (2009) 239–245.

[53] G. Wrzesinska, R. van Nieuwport, J. Maassen, T. Kielmann, H. Bal, Fault-tolerant schedul-
ing of fine-grained tasks in Grid environments, International Journal of High Performance
Computing Applications 20 (1) (2006) 103–114.

[54] B.-Y. Zhang, G.-W. Yang, W.-M. Zheng, JCluster: An efficient Java parallel environment
on a large-scale heterogeneous cluster, Concurrency and Computation: Practice Experience
18 (12) (2006) 1541–1557.

[55] H. Zhang, J. Lee, R. Guha, VCluster: A thread-based Javamiddleware for SMP and hetero-
geneous clusters with thread migration support, Software:Practice and Experience 38 (10)
(2008) 1049–1071.

30

