
This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

m-JGRIM: A Novel Middleware for Gridifying Java

Applications

Journal: Software: Practice and Experience

Manuscript ID: draft

Wiley - Manuscript type: Research Article

Date Submitted by the
Author:

Complete List of Authors: Mateos Diaz, Cristian; ISISTAN - UNCPBA, Computación y Sistemas
Zunino, Alejandro; ISISTAN - UNCPBA, Computación y Sistemas
Campo, Marcelo; ISISTAN - UNCPBA, Computación y Sistemas

Keywords:
Grid Computing, Gridification, Grid middlewares, JGRIM,
Dependency Injection, Java

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2009;00:1–40 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

m-JGRIM: A Novel Middleware
for Gridifying Java Applications

Cristian Mateos1,2,∗, Alejandro Zunino1,2 and Marcelo Campo1,2

1 ISISTAN Research Institute - UNICEN
2 Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)

SUMMARY

The benefits of Grids for building massively distributed applications have been broadly acknowledged.
However, the high complexity of developing Grid applications compromises the widespread adoption of
the paradigm. In a previous article [1], we described JGRIM,a method for easily “gridifying” component-
oriented Java applications, which is based on non-invasively injecting Grid functionality into ordinary code
through Dependency Injection. In this paper, we briefly revisit JGRIM and present m-JGRIM, a novel
Java middleware that materializes JGRIM concepts. We also provide an evaluation of the performance
of m-JGRIM. Grid practitioners should find this paper useful in having an assessment of the practical
benefits and costs of gridifying applications with the middleware, and a down-to-earth description of
JGRIM, whose advantages for Grid-enabling applications from a software engineering perspective have
been already evaluated.

KEY WORDS: Grid Computing, Gridification, Grid middlewares, JGRIM, Dependency Injection, Java

1. INTRODUCTION

Grid Computing is a paradigm for distributed computing based on virtualizing resources in a network
to execute resource-intensive applications. Such an arrangement is called aGrid [2]. Typically, Grid
applications are intended to solve scientific or engineering problems that require a large number of
computational resources such as CPU cycles, memory, network bandwidth and data. Examples of such
applications include protein folding, financial modeling and climate simulation.

The first attempts to establish Grids focused on supporting CPU-intensive, large-scale applications
by linking supercomputers [2]. By then, Grids were mostly local networks that linked together powerful
and dedicated computers. With the inception of Internet standards, Internet-wide Grids and then
applications such as SETI@home [3] and Evolution@home [4] came into existence. At this stage, there
was not a solid idea of Grid resourcevirtualizationyet and implementing Grid applications required

∗Correspondence to: Cristian Mateos (cmateos2006@gmail.com), ISISTAN Research Institute, UNICEN. Campus
Universitario, Tandil (B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293) 43-9682. Fax.: +54 (2293) 43-9681.

Received
Copyright c© 2009 John Wiley & Sons, Ltd. Revised

Page 1 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

2 C. MATEOS, A. ZUNINO, M. CAMPO

to programmatically access the underlying infrastructure. Few years later, the first Grid middlewares
appeared (e.g. Globus [5], Condor [6] and Legion [7]). The goal of these technologies is twofold: to
virtualize Grid resources by means ofservices(e.g. job scheduling/balancing, resource brokering, data
movement, security, etc.) and to supply developers with rich APIs for using these services.

Recently, besides delivering more Grid services to applications, research in Grid middlewares has
emphasized on bothinteroperabilityandconsumabilityof the services. Efforts in the former category
have yielded as a result Grid standards such as OGSA and WSRF [8]. These standards strongly rely
on Web Service technologies, which provide an adequate solution to the problem of heterogeneous
systems integration across administrative domains [9, 10]. This has motivated the evolution of
Grid middlewares to new versions based on Web Services. Complementary, researchers have been
looking for better development tools to simplify the consumption of Grid services from within user
applications. These tools seek to provide facilities to letdevelopers to benefit from middleware services
with little (ideally zero) code provisioning. These efforts are grouped into programming toolkits and
gridification methods [11]. The former provide high-level APIs that abstract away the details to use
middleware services (e.g. [12, 13, 14]). By using these tools, Grid programming is done at a higher
level of abstraction, thus less code and effort compared to directly using middleware APIs is required.
However, as they are programming facilities, these approaches usually assume that developers are
proficient on the toolkit being used. Alternatively, gridification methods (e.g. [15, 16, 17, 18]) allow
developers to easily incorporate Grid services into existing codes. Thus, these methods are intended to
support users having little and ideally no background on Grid programming.

In [1], we described JGRIM, a gridification method that targets component-based Java applications.
Conceptually, JGRIM works by non-invasively injecting Grid services into ordinary codes. With
JGRIM, developers can focus on the development and testing of application logic without worrying
about common Grid concerns such as resource discovery and execution management. At the
middleware level, these concerns are materialized bymetaservices, which represent existing Grid
services. Metaservices are then “injected” by a JGRIM-compliant middleware that provides a runtime
environment for gridified applications. This paper describes a proof-of-concept materialization of
JGRIM named m-JGRIM, focusing on explaining its metaservice injection capabilities. We evaluated
m-JGRIM at the macro level by comparing it with Ibis [15] and ProActive [16], two well-established
Java-based Grid libraries. The experiments were carried out by measuring code quality, execution time
and network usage of two Grid applications on a WAN. We also evaluated the cost of performing
injection of various m-JGRIM metaservices to get an insighton the penalty of gridifying applications
with m-JGRIM at the micro level. For injecting metaservices, m-JGRIM extensively modifies the
anatomy of ordinary applications by intercepting interactions between their components and altering
their bytecode, which may impact on the performance of transformed applications. This assessment
quantifies this impact and provides guidelines for developing Grid applications with m-JGRIM.

The motivation for writing this paper stems from the fact that, in spite of the engineering advantages
of JGRIM as a gridification method [1], materializing its concepts raises a number of difficult issues
from a technological standpoint. Two of the most challenging aspects in this regard are how to support
metaservice injection without code modification, which mayinvolve the combined use of complex
techniques such as bytecode instrumentation and aspect-oriented programming, and how to exploit
existing Grid services at the middleware level and still achieve good performance. Therefore, besides
offering a by-example explanation of the features of m-JGRIM for gridifying applications, this paper
details how the middleware materializes such aspects.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 2 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 3

The rest of the paper is organized as follows. The next section discusses related works and explains
how m-JGRIM improves over them. Section 3 overviews JGRIM. Section 4 describes m-JGRIM.
Section 5 reports the evaluation of m-JGRIM. Section 6 concludes the paper.

2. RELATED WORK

Research in Grid middlewares has experienced a substantialgrowth in the last years. A noticeable fact
is the way Java has influenced this growth due to its “write once, run anywhere” philosophy, which
promotes platform independence. Besides offering APIs forprogramming Grid applications, many of
these middlewares actually materialize methods for gridification of Java software.

ProActive [16] is a Grid middleware that providestechnical services, which allows users to address
non-functional concerns (mostly load balancing and fault tolerance) by plugging some configuration to
applications at deployment time. Applications are built bycomposing mobile entities whose creation,
migration and lookup must be performed programmatically. Likewise, JCGrid [19] supports distributed
job scheduling for CPU-intensive tasks. In both cases, after gridifying an application, the application
logic results mixed up with Grid-related code, rendering gridification and software maintenance
thereafter difficult. Ibis [15] offers a Grid messaging library on top of which a variety of popular
programming models are implemented (e.g. Satin [20] for parallelizing divide and conquer applications
on WANs). Like ProActive and JCGrid, Ibis offers limited support for interoperable Grid protocols such
as WSDL and UDDI. Similarly, GridGain [21] uses annotationsto easily exploit distributed CPUs, but
it does not target interoperability or pluggability of existing Grid services.

GMarte [22] is a high-level, object-oriented API on top of Globus services. With GMarte, users can
compose and coordinate the execution of existing binary codes by means of a (usually small) new
Java application. GMarte also features metascheduling andfault-tolerance via application-dependent
checkpointing. However, as GMarte treats these codes as black boxes, their structure cannot be altered
to better exploit Grids, this is, parallelize or distributesome portions of gridified codes. Similarly,
XCAT-Java [23] supports execution of component-based applications as OGSA services on top of
existing Grid middlewares (preferably Globus). Application components can also represent legacy
binary programs. XCAT-Java provides an API for building complex applications by assembling
service and legacy components. Though this task requires little coding effort, developers still have
to programmatically manage component creation and linking. Besides, similar to GMarte, XCAT does
not provide support for fine tuning components at the application level.

JavaSymphony [24] provides an execution model that semi-automatically deals with migration,
parallelism and load balancing. These features can be also explicitly controlled through API primitives
in the application code. Similarly, VCluster [25] supportsefficient execution of parallel applications on
SMP clusters, while Babylon [26] offers weak mobility, messaging and parallelism in an uniform API.
Since these three middlewares are API-oriented Grid development tools, they require users to learn
their API and perform extensive modifications on their non-gridified codes to use these APIs.

Our research started by conducting an exhaustive survey on approaches to easily “plug” applications
to Grids [11]. One important finding from this recent study isthat existing methods for gridifying
software fall into two major categories: those that aim at separating application logic from Grid code
(two-step gridifiers), and those that do not (one-step gridifiers). Particularly, two-step gridifiers are
some way off from being effective tools for gridifying applications. Tools relying on an API-inspired

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 3 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

4 C. MATEOS, A. ZUNINO, M. CAMPO

Resource layer

Globus Condor Ibis. . .

CPU cycles, memory,
storage, networks, etc.

Resource
discovery

Parallelism/
distribution

Job scheduling/
load balancing

Data transfer/replication

Service layer
Specialized
services virtualizing
the underlying
Grid resources

Metaservice layer
Platform− independent
metaservices representing
concrete Grid services

Gridified application
Application layer
Gridified applications
that implicitly access Grid
services through metaservices

Gridification

Ordinary component−
based application

Service
discovery

Service
invocation

Application tuning
& reconfiguration

Monitoring

JGRIM container (e.g. m−JGRIM)

Metaservice
injection

Figure 1: An overview of JGRIM

approach to gridification unavoidably require modifications to the code of the original applications,
which in turn requires developers to learn Grid APIs and to put more effort into maintaining the
gridified applications. Nevertheless, developers have more control of the internals of their applications.
Moreover, tools based on gridifying by wrapping or composing existing applications (e.g. GMarte,
XCAT-Java) simplify gridification, but prevent the usage oftuning mechanisms such as parallelism,
mobility and distribution of individual application components. This represents a tradeoff between ease
of gridification versus true flexibility to configure the runtime aspects of gridified applications [11].

m-JGRIM targets this tradeoff by avoiding excessive sourcemodification when gridifying applica-
tions, yet offering means to effectively tune Grid applications. m-JGRIM preserves the integrity of the
application logic by letting developers to concentrate on coding the functionality of applications, and
then seamlessly adding Grid concerns to them. Unlike many ofthe above tools, its core API only have
to be explicitly used when performing application tuning and, in such a case, the application logic is not
affected. Because of the component based roots of its underlying gridification method (i.e. JGRIM),
using m-JGRIM is similar to developing with popular Java models such as JavaBeans or EJB.

3. JGRIM

JGRIM is a method for easily porting applications to a Grid. JGRIM simplifies the development of
Grid applications by separating the functional code from the code for accessing Grid services, which
is non-intrusively and implicitly injected instead. Central to JGRIM is its semi-automaticgridification
processthat developers have to follow to gridify their applications. JGRIM accepts as input ordinary
component-basedapplications, and transforms them to applications furnished withmetaservices, which
allow developers to access Grid services while minimizing the code modifications to interact with them.
We refer to such transformed applications asgridified or Grid-enabledapplications.

JGRIM (see Figure 1) adds a Metaservice layer that enables gridified applications to seamlessly use
existing Grid middleware services, thus their execution issubject to a stack comprising four layers:

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 4 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 5

• Resource, which represents the physical infrastructure of a Grid.
• Service, which provides, by means of existing Grid middlewares, a catalog of services including

resource brokering, job scheduling, parallelism, data management, etc. These services offer
sophisticated Grid functionalities accessible to applications through specific APIs.

• Metaservice, which comprises metaservices that glue gridified applications and Grid services,
isolating Grid-enabled applications from technology-related details for accessing the lower layer.
A metaservice represents a set of Grid services offering similar functionality, namely:

– Service discovery: The Service Discovery metaservice may talk, for example, to a UDDI
registry [27] or the MDS-2 [28] to find a list of required Grid services, and to present the
results to the upper layer in a uniform format. This metaservice hides all concrete Grid
lookup services behind a technology-neutrallookup(serviceInterface) primitive.

– Service invocation: Once an instance of a required Grid service is discovered, interaction
with it comes next. This may involve to employ specific binding protocols and data
type formats. Typically, these elements are specified in a WSDL descriptor [27], which
represents the contact information of an individual Grid service. The goal of this
metaservice is to provide a genericcall(serviceDescriptor) primitive.

– Application tuning: This metaservice is associated to certain application components to
gain efficiency and robustness by leveraging existing Grid services for parallelism, load
balancing and distribution. For example, all invocations on an embarrassingly parallel
operation may be executed concurrently to improve performance and scalability. Similarly,
a mission critical computation may be submitted to Globus, thus increasing fault tolerance.
The metaservice also materializespolicies [1, 29], this is, non-intrusive mechanisms by
which developers can customize the way an application behaves within a Grid.

• Application, which contains Grid-enabled applications. During gridification, JGRIM enhances
some of the original application components and their interactions via metaservices, so that at
runtime some internal operation requests originated by components at this layer are handled by
metaservices. Furthermore, m-JGRIM is the software artifact that provides an implementation
for these metaservices.

JGRIM assumes that input applications are properly componentized, which is a common practice in
Java development as evidenced by the popularity of component models such as JavaBeans or EJB [1].
This allows JGRIM to treat every application as a collectionof interacting components, and enhancing
some of these interactions with metaservices by using Dependency Injection (DI) [30].

3.1. Injecting metaservices into ordinary applications

DI achieves higher decoupling in component-based applications by enforcing components to be
described through public interfaces, and reducing couplings by delegating the responsibility for
component binding to a DIcontainer[30]. With DI, components only know each other’s interfaces, and
it is up to the DI container to create and set (orinject) into a (client) component an instance of another
(provider) component implementing a required interface. These relationships are shown in Figure 2
(center). A DI container is a runtime entity that links client components to provider components.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 5 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

6 C. MATEOS, A. ZUNINO, M. CAMPO

<<interface>>

BookService
Client

JGRIMContainer
(e.g. m-JGRIM)Metaservice

< < i m p l e m e n t s > >

< < u s e s > >

< < f i n d s > >

< < c r e a t e s > >

< < i n j e c t s > >

<<interface>>

BookService

BookDB

Client

<<interface>>

BookService

BookDB

Client

DIContainer

User-provided Middleware Third-party

Amazon

< < i m p l e m e n t s > > < < i m p l e m e n t s > >

< < u s e s > >
< < u s e s > >

< < c r e a t e s > >
< < c r e a t e s > >

< < i n j e c t s > >

Before DI After DI After gridif ication

BookDB
Amazon

class Client {
 ...
 BookService bs =
 new BookDB(...);
 bs.find(...);
 ...
}

class Client {
 BookService bs;
 setBS(BookService bs){this.bs=bs;}
 getBS(){return this.bs;}
 ...
 getBS().find(...);
 ...
}

<comp id="c l ien t " imp l="C l ien t ">
 <re f name="bs" id="bDB"/> or
 . . . id="bAZ"/>
< / c o m p >
<comp id="bDB" imp l="BookDB" />
<comp id="bAZ" imp l="Amazon" />

class Client {
 BookService bs;
 setBS(BookService bs){this.bs=bs;}
 getBS(){return this.bs;}
 ...
 getBS().find(...);
}

<comp id="c l ien t " imp l="C l ien t ">
 < re f name="bs" id="bs" />
< / c o m p >
<comp id="bs" impl="Metaserv ice" />

Figure 2: DI and metaservice injection

Consider an application that implements a book catalogue(BookService) and aClient component
using it. The former is implemented via a relational database (BookDB). Figure 2 (left) depicts the
relationships between these components. Roughly,Client setups an instance ofBookBD by providing it
with initialization parameters (database location, drivers, username/password). ThoughClient is only
interested in browsing books (the operations ofBookService), it has to know implementation details of
BookDB, thus it is coupled both to the catalogue interface and its implementation.

Figure 2 (center) shows the DI version of the application. The DI container now injects a concrete
implementation ofBookService, such as aBookDB or a Web Service interface to Amazon Books.
Consequently, DI removes the dependency between the clientand the service implementation, since
Client no longer instantiatesBookDB. Besides, any implementation ofBookService can be used without
modifying Client. JGRIM takes DI a step further by introducing an indirectionbetween components
to inject Grid metaservices (right of Figure 2). After gridification the container no longer injects a
service implementation into the client, but a metaservice,which is for example able to dynamically
discover an implementation residing in a Grid. The client interacts with the metaservice, which in
turn interacts with an instance of the required service. This indirection is transparent to the client,
this is, there is no need to change its code, since both the service implementation and the metaservice
realizeBookService. Besides discovery and invocation, metaservices also represent tuning services.
For example, the above metaservice could choose the fastestavailable book service instance.

Upon gridification, the developer must select which component dependencies should be enhanced
with Grid capabilities. This involves to prepare his application so that a JGRIM container can then
inject metaservices. To this end, JGRIM prescribes agridification process(Figure 3) of four steps:

1. Hot-spot identification: A developer identifies the dependencies (hot-spots) into which meta-
services are injected. In the figure, hot-spots have been sketched with dashed lines. For example,
the implementation ofC may be outsourced to a third-party service. Then, the dependency
from B to C may be equipped with runtime service discovery. By drawing aparallel with

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 6 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 7

class B {

}

class B {

}

Mobile Grid
service (MGS)

class A {
 B = new B();
 B.someOp();
 . . .
 D.extOp();
}

Input application
(component−based)

B_Intf {
 someOp();
}

(2)

(3)

D_Intf {
 extOp();
}

class A {
 getB().someOp();
 . . .
 getD().extOp();
}

(4)

Output
application

− (1), (2) and (3) performed
 by developers
− (4) performed by JGRIM

(1)

A
B

D

E

F
G

C

A
B

D

E

F
G

C

Figure 3: JGRIM: Gridification process

the above example,B andC would be theClient andBookDB components, respectively. The
dependencyA-D may be enhanced, for instance, with fault tolerance.
Components likeC, for which the application does not provide an implementation, are called
external. Conversely, components likeA, B andD are calledinternal. A dependency involving
two internal components is an internal dependency. An external dependency (e.g.B-C) originates
when an internal component accesses an external one. JGRIM also defines aself dependency,
which is the case when the two components of the dependency are the same. The next section
will exemplify these types of dependencies and the metaservices that can be injected into them.

2. Component interface definition: Here, the developer specifies the interfaces of the internal and
external application components so as to separate what a component does from how it does it. For
the internal interfaces, this is a common practice in Java, thus the task is seldom necessary [1].
For the external ones, it involves specifying the method signatures of the outsourced services.

3. Coding conventions: Involves modifying the application to ensure that its components follow
the JavaBeans specification [31]. Any reference to a component Comp within the code must be
done by calling a fictitiousgetComp(), instead of accessing it directly asComp.operation(). For
example, reading data from afile component should be done by invokinggetFile().read() instead
of file().read(). These conventions must be followed for both internal and external dependencies.
As this coding style is commonplace in Java, this step often requires little effort [1].

4. Assembly and deployment: JGRIM combines the outputs of (2) and (3) and deploys the gridified
application on a Grid. Under the current materialization ofJGRIM, m-JGRIM, this application
is a Mobile Grid service (MGS) capable of migrating based on environmental conditions such as
CPU availability, network latency and bandwidth, etc. MGSsare described in Section 4.

JGRIM is a technology-agnostic gridification method, in thesense that the above process does not
prescribe specific technologies either for implementing metaservices or associating them to component
dependencies. This is precisely the role of m-JGRIM. The next subsection illustrates JGRIM concepts
through the gridification of an application in the context ofm-JGRIM.

3.2. An example: Image restoration

This section describes the gridification of an application for image restoration. Anatomically, the
application follows the master-worker pattern. Target images are located at a remote repository (e.g.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 7 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

8 C. MATEOS, A. ZUNINO, M. CAMPO

Internal components

hot−spot 2
(self de−

pendency)

External components

ImageRestorerFTPClient

hot−spot 3
(internal dependency)

Encoder

hot−spot 1 (external dependency)

Figure 4: Components of the image restoration application

FTP). The master operates by downloading and splitting an image into two halves, which enables
the application to exploit dual core CPUs. Then, the master assigns each subimage to a worker for
restoration, joins the results, and encodes the joined image into a bitmap format.

Suppose we have already implemented some of the components of the application, including an
ImageRestorer (for restoring images and subimages) and anFTPClient (for transferring files and
obtaining file metadata). As we are not providing a componentfor image encoding, we will outsource
an implementation from the Grid.ImageRestorer is the master that coordinates the whole restoration
process. Enhancement of individual halves of an input imageis handled by two concurrent workers
(threads). After processing subimages, anencoder component is used to generate the final image:

public class ImageRestorer {
public byte [] restoreImage (S t r i ng imageURI , S t r i ng format) {

byte [] [] halves = s p l i t ((new FTPClient ()) . g e t F i l e (imageURI)) ;
WorkerThread worker0 = new WorkerThread (this , halves [0]) ;
WorkerThread worker1 = new WorkerThread (this , halves [1]) ;
worker0 . s t a r t () ; worker1 . s t a r t () ;
worker0 . j o i n () ; worker1 . j o i n () ; / / Wait u n t i l c h i l d threads are f i n i s h e d
byte [] r e s u l t = combine (worker0 . getResul t () , worker1 . getResul t ()) ;
return encoder . encode (r e s u l t , format) ; / / Access to a missing component

}
public byte [] restoreSubimage (byte [] imgData) { . . . }

}
public class FTPClient {

public F i leMetadata getMetadata (S t r i ng f i l e U R I) { . . . }
public byte [] g e t F i l e (S t r i ng f i l e U R I) { . . . }

}
public class WorkerThread extends Thread {

private ImageRestorer r e s t o r e r = nul l ;
private byte [] myHalf = null , r e s u l t = nul l ;
public WorkerThread (ImageRestorer res t o re r , byte [] myHalf) {

th is . r e s t o r e r = r e s t o r e r ; th is . myHalf = myHalf ;
}
public void run () { r e s u l t = r e s t o r e r . restoreSubimage (myHalf) ; }
public byte [] getResul t () { return r e s u l t ; }

}

Figure 4 depicts the component diagram of the application. We will take this code and generate its
gridified counterpart. For clarity reasons, we will not follow the process as presented in Section 3.1, but
take one hot-spot at a time and incrementally carry out the subsequent steps (2) and (3) of the process.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 8 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 9

3.2.1. Hot-spot 1: TheImageRestorer-encoder dependency

The first hot-spot is theImageRestorer-encoder dependency. We have provided the expected interface
at the client-side for the encoding service (ImageEncoderIF) and altered the code ofImageRestorer so
that all accesses toencoder are performed through agetEncoder() method. Conceptually, JGRIM takes
advantage of this code structure to inject a metaservice that dynamically finds a service adhering to
that interface. Then, processing this information with m-JGRIM results in:

1 public class ImageRestorer extends core .MGS {
2 ImageEncoderIF encoder = nul l ;
3 public ImageEncoderIF getEncoder () { return encoder ; }
4 public void setEncoder (ImageEncoderIF encoder) { th is . encoder = encoder ; }
5 public byte [] restoreImage (S t r i ng imageURI , S t r i ng format) {
6 . . .
7 return getEncoder () . encode (r e s u l t , format) ; / / I n t e r a c t i o n wi th an ex t e rna l component
8 }
9 }
10 public in terface ImageEncoderIF {
11 public byte [] encode (byte [] imgData , S t r i ng format) ;
12 }

m-JGRIM applications automatically inherit from theMGS class, which provides mobility primitives.
Note that m-JGRIM added an instance variable (encoder) and getter/setters for accessing it (lines 2-4).
These instructions enable m-JGRIM to non-invasively set service discovery and invocation capabilities
to ImageRestorer through DI. Currently, these metaservices are implementedby m-JGRIM through
runtime inspection of UDDI registries and invocation of WSDL-interfaced services (see Section 4.1).
Moreover, metaservices are associated to the application through an automatically generated file:

<?xml version=" 1.0 " encoding="UTF−8" ?>
< !DOCTYPE beans PUBLIC " − / /SPRING / / DTD BEAN / / EN"

" h t t p : / /www. spr ingframework . org / dtd / spr ing−beans . dtd ">
<beans>

<bean id = " mainComponent " c lass= " ImageRestorer ">
<proper t y name=" encoder ">< r e f bean=" encoderService " / >< / p roper t y>

< / bean>
<bean id = " encoderService " c lass= " WSDLMatcherPortProxyFactoryBean">

<proper t y name=" p roxy I n t e r f aces ">ImageEncoderIF< / p roper t y> . . .
< / bean>

< / beans>

The file links application components and metaservices together forming a fully operative application.
Here,ImageRestorer is made dependent –via theencoder property– of anencoderService metaservice
whose interface isImageEncoderIF. The two benefits of this approach are that components are
decoupled, since binding to external Grid services is performed at runtime, andencoderMetaService
can be easily mocked for testing purposes. For performing DI, m-JGRIM is based on Spring [30], a DI
library that also features support for Web Services and aspect-oriented constructs.

3.2.2. Hot-spot 2: TheImageRestorer-ImageRestorer dependency

As shown,restoreImage in ImageRestorer issues two asynchronous calls torestoreSubimage. These
calls are independent between each other, hence they are executed concurrently by using threads.
However, Grids offers many alternatives to threads to handle the execution of parallel computations

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 9 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

10 C. MATEOS, A. ZUNINO, M. CAMPO

that come as sophisticated services. These services, besides parallelism, may offer scheduling, load
balancing, fault tolerance, etc. JGRIM exploits such execution services through self dependencies.

Self dependencies originate when a component calls its own methods. Applying steps (2) and (3) of
the gridification process to our analyzed hot-spot results in: (a) defining an interface including all those
methods that are subject to concurrent execution, and (b) using getters when invoking such methods.
Let us suppose we name this interfaceSubImageRestorerIF. Then, the gridified code is:

1 public class ImageRestorer extends core .MGS {
2 . . .
3 SubImageRestorerIF s e l f = nul l ;
4 public SubImageRestorerIF ge t Se l f () { return s e l f ; }
5 public void s e t S e l f (SubImageRestorerIF s e l f) { th is . s e l f = s e l f ; }
6 public byte [] restoreImage (S t r i ng imageURI , S t r i ng format) {
7 . . .
8 byte [] r e s u l t 0 = ge t Se l f () . restoreSubimage (halves [0]) ;
9 byte [] r e s u l t 1 = ge t Se l f () . restoreSubimage (halves [1]) ;
10 byte [] r e s u l t = combine (resu l t 0 , r e s u l t 1) ; / / Wait u n t i l computat ions are f i n i s h e d
11 . . .
12 }
13 }
14 public in terface SubImageRestorerIF {
15 public byte [] restoreSubimage (byte [] imgData) ;
16 }

To Grid-enable our self dependency, we must replace the asynchronous calls torestoreSubimage
by sequential calls to the same operation onself (lines 8-9). Then, m-JGRIM appends the code to
support DI for this component (lines 3-5). The only extra programming convention needed for the
mechanism to work is that the results of the parallel computations must be placed on local variables
(lines 8-9). Further references to these variables (e.g. line 10) will transparently block the execution of
restoreImage until they are computed by a special middleware component that intercepts and executes
both calls concurrently. Behind scenes, m-JGRIM further preprocess the code of calling methods (e.g.
restoreImage) to add instructions for synchronization purposes throughthe use of Java futures. To
configure the self dependency, a new metaservice is added to the above XML file:

<beans>
<bean id =" mainComponent " c lass =" ImageRestorer ">

. . . <p roper t y name=" s e l f ">< r e f bean=" execut ionServ ice " / >< / p roper t y>
< / bean>
<bean id =" execut ionServ ice " c lass= " CondorBasedExecutionProxyFactoryBean">

<proper t y name=" p roxy I n t e r f aces ">SubImageRestorerIF<proper t y / > . . .
< / bean>

< / beans>

which adds to the application –via theself property– a concrete implementation of a service for
concurrently executing the operations defined inSubImageRestorerIF.Here, we submit such operations
to Condor. Interestingly, the logic is free from (threading) parallelization code. More important,
execution of spawned methods can be seamlessly handled by means of execution mechanisms suitable
for exploiting Grids. Section 4.3 discusses the support of m-JGRIM to leverage such services.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 10 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 11

3.2.3. Hot-spot 3: TheImageRestorer-FTPClient dependency

The last hot-spot for gridification in our application is theImageRestorer-FTPClient dependency.
Again, we have to isolate the implementation ofFTPClient behind an interface (e.g.FileDownloader).
Note that this practice improves flexibility and extensibility. For instance, it is now easier to use
another component for transferring files (e.g. GridFTP [32]), as long as this component adheres to
FileDownloader. Moreover, direct usage ofFTPClient is disallowed, thus we have to replace any access
to FTPClient within the code by calls to the corresponding getter (e.g.getDownloader()).

m-JGRIM applications are mobile Grid entities. Indeed, mobility can bring benefits in terms
of decreased latency and bandwidth usage when applicationsare moved to locally interact with
remote data. Particularly, an interesting performance improvement is to move the application to the
repository location when the size of the target image file exceeds some threshold, this is, we could
customize the interaction betweenImageRestorer andFTPClient. In m-JGRIM, this kind of tweaks are
introduced throughpolicies, which are special components that mediate between the two elements of
a dependency. Then, mobility can be added to our hot-spot by attaching a policy to it:

1 public class MovePolicy extends core . p o l i c y . Pol icyAdapter {
2 public void executeBefore () {
3 / / Obtains the f i l e to download from the execut ion contex t o f t r a n s f e r F i l e (imageURI)
4 S t r i ng f i l e U R I = (S t r i ng) getExecContext () . getOperationArgument (0) ;
5 Fi leDownloader downloader = (Fi leDownloader) getExecContext () . getTargetComponent () ;
6 i f (downloader . getMetadata (f i l e U R I) . getSize () > 524288) {
7 MGS app = (MGS) getExecContext () . getSourceComponent () ;
8 app . moveTo(parseServerLocat ion (f i l e U R I)) ;
9 }
10 }
11 }

Upon each interaction betweenImageRestorer andFileDownloader, MovePolicy is evaluated. The code
within executeBefore is executed just before the invocation of an operation defined in FileDownloader
takes place. Analogously, anexecuteAfter method can be specified. The metainformation about the
operation being executed is made accessible to programmersthrough thegetExecContext method from
the policy framework (lines 4, 5, and 7). Concretely, the policy moves the application to the node
hosting the data (line 8) if the size of the image file exceeds 512 KB. In such a case, the “downloading”
process will be started locally at that host. Policies can beconfigured to act upon invocations on specific
operations of the target component. Here, we wantMovePolicy to be activated only whentransferFile is
called. Section 4.4 explains the configuration generated tosupport the injection of policies.

Policies can be also employed to customize external dependencies. For example, let us suppose that
the restoration application is deployed on a Grid where manynodes host an instance of the encoder
service. Additionally, let us assume that bandwidth acrossnodes could drastically vary along time.
Under these conditions, accessing a service replica through a busy network link might compromise
the application response time. We can control which instance is chosen for serving each call to
encode(imageData, format) by attaching a policy to theImageRestorer-encoder dependency:

public class BandwidthPol icy extends core . p o l i c y . Ex t e rna lPo l i c yAdap ter {
public St r ing accessFrom (S t r i ng wsdlURI_1 , S t r i ng wsdlURI_2) {

double bw1 = core . p o l i c y . P r o f i l e r . ins tance () . getBandwidth (" l o c a l h o s t " , wsdlURI_1) ;
double bw2 = core . p o l i c y . P r o f i l e r . ins tance () . getBandwidth (" l o c a l h o s t " , wsdlURI_2) ;
return (bw1 < bw2) ? wsdlURI_1 : wsdlURI_2 ;

}

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 11 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

12 C. MATEOS, A. ZUNINO, M. CAMPO

Application layer

. . .MGS

Core API layer

Service Discovery/
Invocation

(Section 4.1)

Mobility
(Section 4.2)

Policy
(Section 4.4)

Execution
(Section 4.3)

Injection layer
(Spring)

Spring Core

Spring AOP Spring Remoting

MGS MGS

Figure 5: Architecture of m-JGRIM

}

Roughly,accessFrom is a hook by which developers can specify the rules that govern Web Service
selection.BandwidthPolicy tells the application to use the service instance hosted at the Grid node to
which the host where the MGS is executing experience the bestbandwidth.

4. m-JGRIM: A PROOF-OF-CONCEPT MATERIALIZATION OF JGRIM

As explained, JGRIM is essentially based on transparently injecting metaservices, which are entities
provided at the middleware level that provide Grid behaviorto ordinary applications. While this
practice has many advantages from an engineering perspective [1], achieving such a transparency is
indeed a daunting task from a technological standpoint. In this section we describe m-JGRIM, a novel
Grid middleware that materializes JGRIM and as such bridgesthis gap.

Figure 5 shows the architecture of m-JGRIM, which comprisesthree layers:Application(represents
gridified applications),Core API (provides access to concrete Grid services through components that
materialize metaservices), andInjection (seamlessly wires application components and metaservices
together through a DI container). After passing through them-JGRIM gridification process, an ordinary
application becomes a mobile entity called MGS, which can move across the nodes of a Grid to locally
access resources. MGSs are created by injecting metaservices into the corresponding non-gridified
code, which are supplied at the Core API layer. Metaservicesare implemented through middleware-
level components that either wrap existing Grid services (e.g. UDDI discovery) or materialize new
ones (e.g. mobility, policies). These components are grouped in four subsystems:

• Service Discovery/Invocation subsystem(Section 4.1): Performs Grid service discovery and
invocation by providing concrete bindings between ordinary applications and Grid services.
Currently, service discovery is supported by inspection ofUDDI registries, while service
invocation is performed by extending the remoting facilities of Spring.

• Mobility subsystem(Section 4.2): Offers migration capabilities to gridified applications. m-
JGRIM features both explicit and implicit strong mobility [33].

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 12 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 13

• Execution subsystem(Section 4.3): Provides support for associating concrete Grid execution
services to self dependencies, thus leveraging existing services for parallelism, load balancing
and fault tolerance. At present, m-JGRIM is integrated withSatin [20], a module of Ibis [15].

• Policy subsystem(Section 4.4): Is an extensible framework that allows developers to specify
decisions related to application tuning regarding both internal and external dependencies.

The Injection layer relies on Spring [30], a DI framework including several built-in modules with
common middleware functionality. Entities instantiated by Spring are components that follow the
JavaBeans specification calledbeans. There are many DI frameworks for Java†, but we use Spring
since it is widely popular among Java developers. The rest ofthe section describes the subsystems of
m-JGRIM. From now on, by “bean” we will refer to components supplied at the Core API or Injection
layers. Similarly, by “application bean” we will refer to application-specific components.

4.1. The Service Discovery/Invocation subsystem

The Remoting module of Spring provides convenient programming abstractions for working with
various RPC technologies. The module isolates applications from the intricate configuration and coding
details involved in calling remote services. This separation is achieved by proxying such services with
special beans that decouple client applications from the protocols to access remote services.

The JaxRpcPortClientInterceptor bean provides access to Web Service operations via JAX-RPC,
a specification for interacting with WSDL-interfaced Web Services. Application beans can define a
dependency to a Web Service by supplying the dependency interface and the information for contacting
the service. For example, the following code shows the Spring configuration for an application bean
declaring a dependency to a currency converter Web Service:
1 <beans>
2 <bean id = " c l i e n t " c lass = " example . CurrencyConverterApp ">
3 <proper t y name=" cur rencyServ ice " >< r e f bean=" currencyWebService " / >< / p roper t y>< / bean>
4 <bean id = " currencyWebService " c lass= " org . spr ingframework . . . JaxRpcPortProxyFactoryBean" >
5 <proper t y name=" p o r t I n t e r f a c e ">example . ICur rencyConver terServ ice< / p roper t y>
6 <proper t y name=" wsdlDocumentUrl " > h t t p : / / example . edu / currency ?WSDL< / p roper t y>
7 <proper t y name=" namespaceUri "> h t t p : / / example . edu / currency < / p roper t y>
8 <proper t y name=" serviceName ">CurrencyService< / p roper t y>
9 <proper t y name=" portName" >CurrencyPort< / p roper t y>< / bean>
10 < / beans>

Lines 6-9 are the contact information of the Web Service, andportInterfaceis the service contract to
which client must adhere. At runtime, Spring creates a proxy and injects it into client to transparently
translate any method call issued on the dependency interface (ICurrencyConverterService) to the
corresponding operation of the Web Service (currencyWebService). In this way, Spring follows a
contract-firstapproach to service consumption: the client-side interface specified for a required service
must exactly match the interface of the Web Service at the server-side. The developer has therefore to
know in advancethe interface of any external service before using this latter in his application.

Conversely, m-JGRIM provides a specialized bean that mediates between the interface of an
external dependency and the actual interface of a Web Service. The bean gets rid of the configuration

†A comprehensive list can be found athttp://en.wikipedia.org/wiki/Dependency_injection#Existing_frameworks

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 13 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

14 C. MATEOS, A. ZUNINO, M. CAMPO

<<interface>>

GenericWSDLFinder

findWSDL() : Vector

SerializablePolicyBasedExternalServiceInterceptor

<<interface>>

Serializable

<<realize>>

JaxRpcPortClient−

Interceptor (from spring)

PolicyBasedExternalServiceInterceptor

WSDLMatcherPortClientInterceptor

<<realize>>

WSDLMatcherImpl

WSDLMatcher

newInstance(servInterface : Class,

isServiceMatching() : boolean

typeMaps : Map) :

def : Definition,

WSDLMatcher

(a) Simplified class diagram (b) Thematches(interface,WSDL) primitive

Figure 6: The Service Discovery/Invocation subsystem

details for contacting services (i.e. WSDL location, namespace, etc.) and otherwise extracts the
information from Web Service registries. Figure 6 (a) showsa simplified class diagram of this support.
This bean is called aservice discovery bean(SDB) and is implemented by extending the Web
Service support of Spring.GenericWSDLFinder represents registries of WSDL descriptions. Currently,
discovery in m-JGRIM is based on UDDI, but more discovery protocols can be added by realizing
GenericWSDLFinder (e.g. WS-QBE [34]). Moreover,WSDLMatcher determines whether an individual
WSDL contains the method signatures of a dependency interface likeICurrencyConverterService, this
is, it models amatches(interface, WSDL) primitive. The default implementation for this primitive
(WSDLMatcherImpl) is shown in Figure 6 (b).

The algorithm converts the input WSDL to a Java interface (wsdlInterface), and then checks whether
the operations specified ininterface are included inwsdlInterface. Thematches(method, wsdlMethod)
function matches two method signatures. Two methods match if they have the same name, the same
number of arguments, and a one-to-one correspondence between argument and return types can be
established. Immutable Java types are subject to an exact match. Matching of object types can be
customized by specifying mappings between client-side andserver-side types. Lastly, array-based
types match if their associated basic types also match according to the previous rules.

PolicyBasedExternalServiceInterceptor implements apolicy-based SDB(PSDB), which contacts
Web Services based on policies (see Section 4.4). After querying a UDDI registry, a PSDB passes
on the candidate Web services to its associated policy bean(s) to find out which service instance must
be used, and how it must be contacted. Consequently, a PSDB bean may, for example, remotely invoke
the service or trigger the migration of the application to the node where the service is hosted instead.
SerializablePolicyBasedExternalServiceInterceptor provides support for using PSDBs in conjunction
with mobility beans (see Section 4.2).

To illustrate the DI-related configuration generated to useplain SDBs, let us inject service discovery
(without policies) into the application discussed at the beginning of this section. Instead of supplying
the application a hardcoded reference to a currency converter service, we will inject an SDB that
dynamically discovers a Web Service implementingICurrencyConverterService:

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 14 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 15

MGS

stateVariables : Hashtable

homeHost : String

Serializable

<<realize>>

<<realize>>
<<realize>>

<<interface>>

IContinuationMover

move(ce : ContinuationExecutor,nextHost : String) : boolean

Continuation

1..1

(from javaflow)

moveTo(hostAddress : String) : void

getCurrentHost() : String

getHomeHost() : String

addVariable(key : String,value : Object) : void

getVariable(key : String) : Object

run() : void

removeVariable(key : String) : void

<<realize>>

ContinuationExecutor

firstTime : boolean

movable : MGS

continuation : Continuation

continuationMover : IContinuationMover

run() : void

stop() : void

setContinuation(continuation : Continuation) : void

setMovable(movable : MGS) : void

setContinuationMover(continuationMover : IContinuationMover) : void

setFirstTime(firstTime : boolean) : void

<<interface>>

Runnable

<<interface>>

1..1

Figure 7: Class design of the Mobility subsystem

1 <beans>
2 <bean id = " c l i e n t " c lass = " example . CurrencyConverterApp ">
3 <proper t y name=" cur rencyServ ice " >< r e f bean=" currencyWebService " / >< / p roper t y>
4 < / bean>
5 <bean id = " currencyWebService " c lass= " WSDLMatcherPortProxyFactoryBean">
6 <proper t y name=" p roxy I n t e r f aces " >example . ICur rencyConver terServ ice< / p roper t y>
7 <proper t y name=" wsdlMatcher ">< r e f bean=" wsdlMatcher " / >< / p roper t y>
8 <proper t y name=" wsdlF inder ">< r e f bean=" wsdlF inder " / >< / p roper t y>
9 < / bean>
10 <bean id = " wsdlMatcher " c lass= " WSDLMatcherImpl " / >
11 <bean id = " wsdlF inder " c lass= " UDDIFinder ">< !−− UDDI−s p e c i f i c parameters −−>< / bean>
12 < / beans>

The client now accesses the currency service through an SDB (line 5). Web Service matching is
implemented by thewsdlMatcher bean (line 10), while UDDI inspection is performed by thewsdlFinder
bean (line 11), which holds the location and the authentication information of the UDDI registry.

4.2. The Mobility subsystem

Applications gridified with m-JGRIM automatically extend theMGS core class, which provides basic
primitives for handling mobility and managing application-specific state. These primitives are intended
to be invoked from within policies so as to keep the application logic clean from the m-JGRIM API.
We call thisimplicit mobility. Nevertheless, developers can also use mobility in anexplicitway, this is,
from within the application logic. The class design of this subsystem is shown in Figure 7.

m-JGRIM implements astrongmigration mechanism [33].Strongrefers to the ability of a runtime
system to support migration of both the binary code and the execution state of a running application.
When an application migrates from a hostH1 to a hostH2, its execution is resumed atH2 from the
point it left off when executing atH1. In opposition,weakmigration [33] cannot transfer the execution
state of applications. Developers must programmatically save and restore the execution state of their

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 15 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

16 C. MATEOS, A. ZUNINO, M. CAMPO

setContinuationMover(cm)

Local DI
Container

Remote DI
Container

ce:ContinuationExecutor cm:IContinuationMover app:MGS Continuation

setMovable(app)

run()
startWith(app): Continuation

<<static>> run()

run()

moveTo(s)

suspend()

<<static>>

run()

continueWith(c)

<<static>>

move(ce,s)

[c]: Continuation

(a) Initiating, suspending and resuming MGS execution: sequence diagram. The call to
moveTo(s) can be either implicit or explicit

Network
transferable
object graph

Object graph
containing se−
rializable ()
and non−
serializable
() objects

Serialization

(b) Serialization in m-JGRIM

Figure 8: Strong migration in m-JGRIM

applications, which has a negative impact in application design and implementation. Ibis is another
middleware featuring strong migration, while ProActive and Babylon rely on weak mobility.

TheMGS class mostly implements mobility-related functionality.The methodsgetCurrentHost and
getHomeHost return the IP of the hosts where an application is currently executing and where it was
initiated, respectively. Moreover,moveTo migrates the application to a host by capturing and storing the
execution of the MGS into acontinuation, which contains a snapshot of the stack trace, local variables
and program counter. This information is used to restore theexecution of the suspended application
once it has been migrated to a remote host. Support for continuations is based on Javaflow [35], a library
to fully capture the execution state of Java threads that internally relies on bytecode instrumentation
techniques. Each instance ofMGS is injected aContinuationExecutor bean, which actually controls the
transference and restoration ofContinuation objects. This bean is in turn injected anIContinuationMover
bean, which represent transport mechanisms for transferring continuations (e.g. sockets, RMI, etc.).
Figure 8 (a) depicts the process of executing and migrating an MGS.

Besides moving execution state, m-JGRIM also transfers thebytecode of an application when this
code is not present at the destination host. When a host receives a continuation, m-JGRIM transfers
from the origin host the missing Java classes to fully restore the execution of the application by using
a special network classloader. Received classes are storedon disk thus they can be sent to other hosts
too. In consequence, the deployment of MGS code across a Gridis done incrementally and without
involving the application developer.

A problem that arose when combining mobility with Spring concerned serialization. Java objects can
be transferred through a network provided they are eitherSerializable or Externalizable. Since for DI
purposes Spring make extensive use of classes which were notthought to be transferable (e.g. dynamic
proxy classes), marshalling the execution state of MGSs viastandard Java serialization is unfeasible.
We designed a serialization mechanism for converting objects into a serializable form, which works

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 16 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 17

public class MyAppl icat ion {
public void methodA () {

i f (methodB ()) { . . . }
}
public boolean methodB () { . . . }

}

public class MyAppl icat ion {
public void methodA () {

boolean r e s u l t = g e t s e l f () . methodB () ;
i f (r e s u l t) { . . . }

}
public boolean methodB () { . . . }

}
public in terface P a r a l l e l I F {

public boolean methodB () ;
}

Figure 9: Self dependencies in m-JGRIM

by modifying at runtime the bytecode of an object to force it to be serializable by using ASM [36].
This transformation is also recursively done on the object’s attributes to ensure that its whole object
graph is serializable (see Figure 8 (b)). Another problem concerns Java single inheritance, which may
prevent codes already using extension from being gridified with m-JGRIM. Nevertheless, this issue
can be addressed by using existing techniques that rely on object wrapping and Java reflection [37].

4.3. The Execution subsystem

The execution metaservices of m-JGRIM rely on Springinterceptors[30], beans that transparently
introduce behavior before/after certain application methods are invoked. Spring features an extensible
support for developing interceptors, and offers built-in interceptors to add cross-cutting concerns
(logging, profiling, debugging, etc.) into applications without code modification.

Commonly, interceptors are attached to application dependencies. If an application beanA depends
on another application beanB, an interceptor can act upon method calls fromA to B to transparently do
something in between. Recall that Spring interceptors werealso used to support external dependencies
(Section 4.1), whereA and B are an application bean and a Web Service, respectively, andthe
interceptor is an SDB or a PSDB. As for self dependencies,A is the same application bean asB.
In this context, interceptors are the beans that provide concurrency for self dependency methods.

Let us revisit the usage of self dependencies in JGRIM. Basically, they are specified by defining an
interface including the methods whose execution is delegated to specialized execution services. Access
to these methods in the application code is done by using a getter instead of calling them directly. For
example, upon gridification, the ordinary code of Figure 9 (left) must be modified by the developer
so as to access a fictitiousself application bean, and to store the result ofmethodB in a local variable.
In addition, the interface ofself must be defined. These tasks produce the code of Figure 9 (right).
m-JGRIM then makes the modified code to inherit from theMGS class, and adds an instance variable
of type ParallelIF and its getter/setter. The calls to methods inParallelIF (i.e. methodB) are executed
concurrently with the invocation to the calling method (i.e. methodA). Besides, m-JGRIM modifies
the body of calling methods to insert barriers that block their execution until the results of concurrent
computations are available. To this end, m-JGRIM relies on the java.util.concurrent package of Java.

At runtime, the execution of self dependency methods is handled by anexecution bean(EB), whose
definition is appended to the XML configuration of the application being gridified. EBs intercept and

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 17 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

18 C. MATEOS, A. ZUNINO, M. CAMPO

forward any call to such methods to existing Grid resource management systems. Therefore, EBs know
the protocol(s) to talk to the execution service of a particular middleware. Returning to the example,
and assuming Satin as the target system, the generated configuration is:

1 <beans>
2 <bean id = " app " c lass =" example . MyAppl icat ion " >
3 <proper t y name=" s e l f ">< r e f bean=" s e l f " / >< / p roper t y>< / bean>
4 <bean id = " s e l f " c lass =" org . spr ingframework . aop . framework . ProxyFactoryBean " >
5 <proper t y name=" p roxy I n t e r f aces ">example . P a r a l l e l I F< / p roper t y>
6 <proper t y name=" interceptorNames ">< l i s t ><value>executor < / value>< / l i s t >< / p roper t y>
7 < / bean>
8 <bean id = " executor " c lass = " S a t i n I n t e r c e p t o r " >
9 <proper t y name=" ownerApp ">< r e f bean=" app " / >< / p roper t y>< / bean>
10 < / beans>

The main application bean (app) declares a dependency to aself application bean (line 3), supported
via a factory bean (line 4) that instantiates theexecutorEB. The calls to the methods ofself (i.e.
those defined inParallelIF) are intercepted byexecutor(line 6), which delegates the execution of
those methods to Satin (line 9). Currently, m-JGRIM offers thread-based and Satin-based EBs. The
former operates by running each method call in a separate thread from a shared pool. The latter allow
applications to exploit the services of Satin/Ibis for executing divide and conquer methods on Grids.
Lastly, the development of EBs for using the execution services of ProActive and Condor is underway.

4.3.1. The Satin EB

Satin EBs handle the execution of divide and conquer self dependency operations, and to exploit the
parallelism and load balancing capabilities of Satin/Ibisbut without modifying the application code to
use the Satin API. The only requirement imposed to the developer for using Satin EBs is to place the
results of recursive calls on local variables. This is a simple modification that does not involve using
Grid APIs within the application code.

When building pure Satin applications, developers must obey some code conventions, namely
subclassing an API class and declaring an interface with themethods whose execution is spawned.
Developers must also include synchronization barriers. m-JGRIM automates these tasks. Injecting a
Satin EB into an MGS triggers the creation of apeerwhose code is automatically derived from the
MGS but altered so it follows these conventions. At runtime,the peer is indirectly used by the MGS
through a Satin EB. Recall the example application at the beginning of this section, which declared
a self dependency on amethodB operation. Let us supposemethodB is a CPU-intensive recursive
algorithm, thus it may be run with Satin. The peer created by m-JGRIM is:

public in terface Para l l e l I F _Peer extends i b i s . s a t i n . Spawnable {
public boolean methodB () ;

}
public class MyAppl icat ion_Peer extends i b i s . s a t i n . Sat inObjec t implements Para l l e l I F _Peer {

/ / Var iab les and dependencies of the owner MGS are copied here
public boolean methodB () {

boolean aBranch = methodB () ; / / spawned by Sat in
boolean anotherBranch = methodB () ; / / a lso spawned
. . .
super . sync () ; / / Sat in b a r r i e r (au t omat i ca l l y inse r t ed)
return (aBranch | | anotherBranch) ;

}

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 18 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 19

mgs:MyApplication si:Satin EB mj:mJGRIM s:SatinServer

peer:MyApplication_Peer

getSatinNetworkInfo() :SatinEntryPointinvoke(mi) :Object

methodB() :boolean

execute(mi, peer) :Object

Invokes, via Java

reflection, the method "mi"

on the peer object

Figure 10: Execution of self dependency methods under Satin

}

Moreover, since it is composed of spawnable calls to itself,methodB is analyzed and modified by
m-JGRIM to include calls to thesync Satin barrier, which ensures that the results of recursive calls
are available before they are read. Automatically inserting sync simplifies programming and isolates
developers from the Satin API, thus gridification is easier.Besides, programmers who are familiarized
enough with Satin can modify the generated peer to introducewell-known optimizations in divide and
conquer programs such as using a threshold on the number of spawns.

Upon execution ofgetself().methodB(), the associated Satin EB instantiates and sends the peer for
execution to a Satin (see Figure 10). Particularly, a call tomethodB causes the EB to create an instance
of MyApplication_Peer by setting to this latter the MGS instance variables/dependencies, which is
necessary since the original recursive methods may use thisdata. The Satin server is an extended Satin
runtime that allows peers to be submitted to Satin in a client-server fashion. Eventually, the computation
finishes and the server delivers the result back to the EB, which in turn passes it to the MGS. More
implementation details on this mechanisms can be found in [38, 39].

4.4. The Policy subsystem

Policies [1, 29] offer a non-invasive, programmatic support to tune m-JGRIM applications. To code
policies, programmers only have to learn a small subset of the m-JGRIM API. In addition, the
separation between the tasks of implementing the logic of anapplication and associating policies to
it brings benefits to the process of gridifying an application itself, since these tasks can be performed
independently by developers with different skills on Grid programming.

The class design of the Policy subsystem is shown in Figure 11. Policy represents a generic bean
that can act before and after a method of some dependency is invoked. MethodsexecuteBefore and
executeAfter are hooks to specify custom actions that are executed upon a call to any method of
the dependency to which the policy is associated. Policies can be temporarily activated/deactivated
by specializingisActivated. Lastly, all policies have a reference to metadata information about the
operation being executed. In this way, policies are grantedaccess to the state and behavior of the

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 19 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

20 C. MATEOS, A. ZUNINO, M. CAMPO

Policy

executeBefore() : void

executeAfter() : void

isActivated() : boolean

callInfo : OperationCallInfo

PolicyAdapter

executeBefore() : void

executeAfter() : void

isActivated() : boolean

isStopped() : boolean

stop() : void

handleInvocation() : Object

stopped : boolean

callResult : Object

OperationCallInfo

OperationCallInfo(reifiedMethodCall : MethodInvocation)

getOperationName() : String

getOperationArguments() : Object[]

getOperationArgument(index : int) : Object

getSourceComponent() : Object

getTargetComponent() : Object

reifiedMethodCall : MethodInvocation

PolicyBasedExternalServiceInterceptor

PolicyBasedMethodInterceptor

getPolicy(methodSignature : String) : Policy

getPolicies() : HashMap

setPolicies(methodPolicies : HashMap) : void

invoke(invocation : MethodInvocation) : Object

policies : HashMap
1..N

0..1

1..N

0..N

interfacePolicy

methodPoliciesExternalPolicyAdapter

accessFrom(wsdlA : String,wsdlB : String) : String

getExecContext() : OperationCallInfo

Figure 11: Class design of the Policy subsystem

application beans they control.PolicyAdapter extendsPolicy with methods to permanently cease the
activity of a policy (stop) and to programmatically invoke a dependency method (handleInvocation).
For example, one might implement a policy to cache the results of the calls to methods of
internal/external dependencies by codinghandleInvocation thus the results of some invocations are
extracted from a cache maintained by the policy. Not overridinghandleInvocation means that m-JGRIM
will carry out the call directly on the target application bean. Moreover,ExternalPolicyAdapter models
a full-fledged m-JGRIM policy that customizes the interaction with external Web Services.

Instances ofPolicyAdapter are used by thePolicyBasedMethodInterceptor bean, which represents
policy-enabled internal dependencies. Thepoliciesattribute is a map containing policies that act upon
invocations on methods of the dependency interface. Each entry of the map is a (key, policy) pair,
wherekeyis a regular expression that represents the method signatures controlled bypolicy. Below is
the XML configuration generated for an application that usesa policy between the interaction of two
internal application beansA andB, this latter with interfaceB_Intf:

1 <beans>
2 <bean id = "A" c lass = " . . . ">
3 <proper t y name="B">< r e f bean=" po l icyHandler " / >< / p roper t y>< / bean>
4 <bean id = " po l icyHandler " c lass= " org . spr ingframework . aop . framework . ProxyFactoryBean ">
5 <proper t y name=" p roxy I n t e r f aces "> B_ I n t f < / p roper t y>
6 <proper t y name=" interceptorNames ">
7 < l i s t ><value> p o l i c y I n t e r c e p t o r< / value>
8 <value>B< / value>< / l i s t >
9 < / p roper t y>
10 < / bean>
11 <bean id = " p o l i c y I n t e r c e p t o r " c lass =" Pol icyBasedMethodInterceptor ">
12 <proper t y name=" p o l i c i e s ">
13 <map><en t r y><key>m∗< / key>< r e f bean=" somePolicy " / >< / en t r y>< /map>
14 < / p roper t y>
15 < / bean>
16 < / beans>

m-JGRIM injects apolicyHandler bean intoA (line 3). This bean, which is implemented through
the AOP support of Spring, intercepts the calls to methods defined in B_Intf (line 5) and delegates

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 20 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 21

their execution first to a policy (line 7) and, if not already handled viahandleInvocation, to the target
application bean (line 8). The methods of B_Intf which are subject to interception are listed in the
policies property (line 12). Here, we considered the methods whose name starts with “m” (line 13).

The basic elements upon which policies are built are system metrics. m-JGRIM provides a well-
defined Grid profiling interface on top of which tuning heuristics can be implemented, which currently
supports the following metrics:

• load(H): computes a forecast of the average CPU utilization (percentage) at the hostH. For
example, if an expensive operation of an internal application bean needs to be started, and the
local CPU load is twice the load of a remote hostR, the application may be moved toR. Similarly,
memLoad(H) obtains statistics about memory usage.

• size(App): Returns the estimated size (in bytes) of the allocated memory for the object graph of
an executing MGS. The metric is useful, when used in conjunction with network related metrics,
to determine whether it is convenient to migrate an MGS.

• latency(H1,H2): Represents the estimated latency (in seconds) for transmitting data between two
hosts. This metric is crucial to decide, for example, which Web Service to contact from a set of
available candidates. The profiling API also provides a primitive to estimate the network transfer
rate (in KB/s), and the percentage of information lost during transference per unit time.

To return accurate values for the above metrics, m-JGRIM implements a distributed monitoring service
that predicts the performance of both network and computational resources by employing regression
models. Within a single Grid node, metrics are gathered by using JMX [40], while predicted values are
communicated via GMAC [41], a P2P protocol that provides efficient multicast services across WANs.

5. EXPERIMENTAL EVALUATION OF M-JGRIM

This section describes the experiments that were carried out to provide evidence about the practical
soundness of m-JGRIM. Section 5.1 focus on its evaluation atthe macro level by comparing m-
JGRIM with similar initiatives for gridifying applications with respect to code quality and execution
efficiency. Section 5.2 describes microbenchmarks designed to measure the overhead of injecting m-
JGRIM metaservices in terms of aspects such as time, memory and bytecode penalty.

5.1. Analysis of performance and network usage

We conducted a comparison between Ibis, ProActive and m-JGRIM by using these tools to gridify
the k-NN algorithm (a popular data mining algorithm that employs a relational dataset to perform
instance classification) and the picture enhancement application discussed in Section 3.2. The original
codes were implemented by an experienced Java developer, whereas gridification was performed by
another programmer with good skills in distributed Java development but minimal background on
these middlewares. The execution of the parallel portions of the m-JGRIM applications were handled
with Satin execution beans (Section 4.3). Basically, we decided to compare m-JGRIM against Ibis and
ProActive as these tools have goals similar to our work, thisis, to facilitate the construction of Grid
applications while minimizing the need for API code upon gridification.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 21 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

22 C. MATEOS, A. ZUNINO, M. CAMPO

Table I. The experimental testbed (machines had single coreCPUs)

Cluster Internet bandwidth (Kbps) Machine CPU frequency (Ghz.) Memory (MB)

C1 2.048 M1,1 0.83 256

M1,2 0.83 256

M1,3 0.83 384

M1,4 0.83 384

M1,5 0.78 256

M1,6 2.80 512

C2 256 M2,1 1.75 256

M2,2 1.83 1.024

C3 256 M3,1 2.00 1.024

M3,2 1.90 512

Experiments were performed on a Grid comprising three Internet-connected local clusters, each
hosting a Web Service-interfaced replica of the dataset. Input images were stored on clusterC1 and
were accessible through FTP. All runs were launched from clusterC2. Moreover, the experiments were
performed during nighttime to avoid high Internet traffic and jitter (inter-cluster latency was 100-150
milliseconds). Table I details the characteristics of the machines of our experimental testbed.

We assessed the impact of gridification on the application code by comparing TLOC (total lines of
code without considering neither blank nor comment lines) and GLOC (developer-supplied lines using
Grid APIs/protocols for accessing Grid resources) metricsfor the original codes and their gridified
counterparts. Before measuring, all source codes were formatted with Eclipse. Table II summarizes
these metrics (lower values are better). We did not take intoaccount the configuration files in each
case since m-JGRIM, unlike Ibis and ProActive, generates these files automatically. For the m-JGRIM
applications we obtained two variants by implementing a caching policy for k-NN that keeps in
main memory some dataset accesses to reduce network traffic,and a mobility policy for the image
application that always moves the application to the FTP repository location to reduce network latency.

From the table it can be seen that, for both applications, m-JGRIM obtained good TLOC and GLOC.
Ibis k-NN resulted in high TLOC as it does not fully support Web Services. Therefore, a lot of code
had to be manually provided to interact with the dataset replicas. On the other hand, ProActive support
for Web Service protocols is minimal. This feature, however, is necessary to achieve interoperability
of Grid applications [9, 10]. Conversely, SDBs allowed m-JGRIM k-NN to smoothly delegate dataset
discovery and access to the underlying middleware. Moreover, achieving parallelism with Ibis and
ProActive demanded more API code. Remarkably, unlike its competitors, the m-JGRIM API was only
used for coding policies, without affecting the original codes. This enforces the fact that using m-
JGRIM may lead to more maintainable Grid code, since it follows a two-step approach to gridification
in which the application logic is effectively isolated fromthe Grid-related code [1].

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 22 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 23

Table II. Test applications: code metrics

k-NN variant TLOC GLOC Image app. variant TLOC GLOC

Original 192 – Original 241 –
Ibis 1477 10 Ibis 227 5
ProActive 404 11 ProActive 299 17
m-JGRIM 166 4 m-JGRIM 226 0
m-JGRIM (caching) 179 6 m-JGRIM (mobility) 233 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5 10 15 20 25

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
in

)
(l
e
s
s
 i
s
 b

e
tt
e
r)

Number of instances

Ibis
ProActive
m−JGRIM

m−JGRIM (caching)

(a) k-NN

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

435.40 903.12 1515.56 1819.16 2408.18

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
in

)
(l
e
s
s
 i
s
 b

e
tt
e
r)

Image size (KB)

Ibis
ProActive
m−JGRIM

m−JGRIM (mobile)

(b) Image restoration

Figure 12: Execution time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

5 10 15 20 25

T
o
ta

l
L
A

N
 a

n
d
 W

A
N

 t
ra

ff
ic

 (
M

B
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Number of instances

Ibis
ProActive
m−JGRIM

m−JGRIM (caching)

(a) k-NN

 0

 20

 40

 60

 80

 100

 120

435.40 903.12 1515.56 1819.16 2408.18

T
o
ta

l
W

A
N

 t
ra

ff
ic

 (
M

B
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Image size (KB)

Ibis
ProActive
m−JGRIM

m−JGRIM (mobile)

(b) Image restoration

Figure 13: Network traffic

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 23 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

24 C. MATEOS, A. ZUNINO, M. CAMPO

 2

 4

 6

 8

 10

 12

5 10 15 20 25

S
p
e
e
d
u
p
 f
a
c
to

r
(m

o
re

 i
s
 b

e
tt
e
r)

Number of instances

Ibis
ProActive
m−JGRIM

m−JGRIM caching policy

(a) k-NN

 2

 3

 4

 5

 6

 7

435.40 903.12 1515.56 1819.16 2408.18

S
p
e
e
d
u
p
 f
a
c
to

r
(m

o
re

 i
s
 b

e
tt
e
r)

Image size (KB)

Ibis
ProActive
m−JGRIM

m−JGRIM move policy

(b) Image restoration

Figure 14: Speedup

To evaluate runtime aspects, each gridified version of k-NN was used to classify several list
of input instances with different sizes. For the image application we used five picture sizes. We
averaged the execution time (AET) and accumulated the network traffic for 10 executions per test.
AET deviations were around 5%. Loopback network traffic was filtered out. Figures 12 and 13 show
the obtained results. As expected, m-JGRIM behaved similarto the alternatives. Besides, m-JGRIM
policies (caching and mobility) improved both performanceand network usage.

When not using the caching policy, m-JGRIM k-NN added a performance overhead of 10-15%
compared to Ibis k-NN. However, this overhead was associated to service discovery, a desirable Grid
feature not present in Ibis and limitedly supported in ProActive. Besides, caching allowed m-JGRIM
to continue using service discovery and to stay competitive. ProActive k-NN, on the other hand,
performed poorly. ProActive is oriented towards easy deployment, which makes application setup
slower. This suggests that ProActive may not be suitable formoderately long running computations
in which execution time is slightly greater than setup time.Moreover, caching significantly reduced
network traffic, which is a consequence of performing less remote dataset accesses. Of course, Ibis
and ProActive k-NN might have benefited from this caching technique, but this would have required
yet more modifications to the original k-NN code as these middlewares do not follow a non-intrusive
approach to application tuning. In other words, most performance improvements must be explicitly
introduced in the application code, jeopardizing the maintainability of the resulting Grid application.

With respect to the image processing application, m-JGRIM (without the mobility policy) performed
better than Ibis, due to the fact that m-JGRIM extends the scheduler of its Satin module with a remote
client server-like job submission interface. In this way, Ibis and m-JGRIM applications are subject
to different execution conditions. Moreover, ProActive generated the least amount of WAN traffic.
Unlike Ibis and therefore m-JGRIM, its job scheduling algorithm is not subject to random factors.
Nevertheless, mobility allowed m-JGRIM to improve performance and reduce this traffic. Again, the
policy did not affect the original source code. Unfortunately, Ibis does not let developers to explicitly
control mobility, whereas ProActive only offers weak mobility, which –as discussed in Section 4.2–

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 24 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 25

requires extensive code modifications to save and restore the execution state of computations across
migrations.

Figure 14 shows the speedup achieved by the applications, computed as AET over the average
execution time of the original codes on a single machine. In both graphics, the speedup curves of Ibis
and m-JGRIM seemed to have the same behavior, as m-JGRIM alsorelies on Satin for parallelism. In
addition, the random nature of the task scheduler of Satin (and hence our Satin EBs) caused Ibis k-NN
and m-JGRIM k-NN to have lower speedups for larger experiments (see for example the dip in the
curves associated to Ibis and m-JGRIM in Figure 14 (a) for 20 instances). To a lesser extent, this effect
was also present in the image application. Furthermore, ProActive appeared to linearly gain efficiency
as the size of the input to the experiments increased, but this trend should be further corroborated. The
implications of the speedups are twofold. On one hand, the original codes certainly benefited from
being gridified, thus they are appropriate Grid applications to evaluate m-JGRIM. On the other hand,
by using policies m-JGRIM achieved competitive speedups levels compared to Ibis and ProActive.

It is worth noting that, although the above experiments treated Ibis and ProActive as competitors of
m-JGRIM, these platforms are somewhat complementary to ourwork. m-JGRIM promotes separation
of concerns between application logic and Grid behavior, this latter including Grid services provided by
existing platforms. In other words, m-JGRIM provides an alternative method for gridifying applications
while it does not “reinvent the wheel” by providing Grid execution capabilities for these applications.
In fact, m-JGRIM is currently able to leverage the executionand parallelization services of Ibis, and
efforts to integrate it with other projects (specifically ProActive and Condor) are underway. This is,
m-JGRIM aims at allowing developers to push the Grid-related code out of the application logic while
reusing existing Grid middleware services and still be competitive with these middlewares.

5.2. Analysis of the cost of injecting m-JGRIM metaservices

We quantified the cost of injecting Web Service discovery (Section 5.2.1) and mobility (Section 5.2.2).
Experiments were performed on a 1.83 Ghz. PC with 1GB RAM under Linux 2.6.20 and Java 5.
The Execution and the Policy subsystems were left out of the analysis as their performance heavily
depends on the particular execution services and policies being injected, thus it is difficult to generalize
the overhead introduced by them. Besides, as the middleware-level bridge between applications and
execution services/policies is just one conventional Spring interceptor, the overhead is intuitively
negligible compared to the time required to execute code with these services or process policy code.

5.2.1. Cost of injecting service discovery

We developed two applications for invoking remote Web Services by using Spring remoting and
m-JGRIM SDBs. Figure 15 shows the average allocated memory for 20 runs when incrementally
invoking these services. For the m-JGRIM implementation, we obtained two variants by enabling
and disabling caching, an m-JGRIM feature that allows applications to cache downloaded WSDL
definitions and UDDI queries. We took memory snapshots upon initializing the Java and the Spring
runtimes (snapshot 1) and after calling 2, 4, 6, 8 and 10 Web Services (snapshots 2 through 6) by using
hat [42], a tool to dump the Java heap. Accidentally, the Spring variant initially used more RAM than
its m-JGRIM counterparts, because both applications are subject to quite different bean configurations.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 25 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

26 C. MATEOS, A. ZUNINO, M. CAMPO

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7

J
a
v
a
 h

e
a
p
 s

iz
e
 (

M
B

)
(l
e
s
s
 i
s
 b

e
tt
e
r)

Snapshot

Spring remoting
m−JGRIM (cache enabled)
m−JGRIM (cache disabled)

Figure 15: Injecting service discovery: memory usage

As expected, the memory allocated by the Spring and the m-JGRIM applications behaved linearly.
The m-JGRIM variant using caching reduced memory consumption with respect to the variant not
using caching by 1%. Moreover, this latter incurred in overheads of 1.5-3.0 MB compared to the Spring
solution, which means that maintaining one m-JGRIM SDB requires at the average only 400 KB of
extra memory compared to a Spring Web Service proxy (in fact,less when having more SDBs, because
they share many factories and internal structures of Springand m-JGRIM). We believe this small
overhead is acceptable as using discovery simplifies configuration (i.e. hardcoding the information to
contact services is avoided) and allows for applications that better adapt to the dynamics of Grids (e.g.
new services may be available, providers may be temporarilydown, etc.).

5.2.2. Cost of injecting mobility

The second set of experiments involved the injection of m-JGRIM mobility into five conventional CPU-
intensive codes: fast Fourier transform (fft), sieve of Eratosthenes (sieve), towers of Hanoi (hanoi),
Gaussian random generator (gaussian) and prime number generator (prime). All applications were
implemented iteratively, totaling 281, 79, 116, 135, and 54lines of code, respectively. Figure 16 (a)
shows the average execution time for 10 runs of the codes on a single PC, and their mobile versions
enhanced with Javaflow plus BCEL [43] and ASM [36], two libraries for bytecode instrumentation.

Using BCEL led to a time overhead of at most 7% compared to the non-mobile variants, which is
acceptable given the benefits of mobility for exploiting Grids. Nevertheless, this overhead could be
cut down by letting developers to selectively instrument only those application methods which use
mobility, instead of instrumenting the whole application bytecode. Moreover, we experienced a high
performance overhead with ASM when runningfft andgaussian. We found that Javaflow does not
fully support ASM, thus further tests should be conducted with an updated version of Javaflow when
available. All in all, supporting mobility with BCEL did notincur in excessive execution overhead.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 26 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 27

 0

 5

 10

 15

 20

 25

 30

fft sieve hanoi gaussian prime

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Non−mobile
Mobile (Javaflow + BCEL 5.2)

Mobile (Javaflow + ASM 2.2.3)

(a) Average execution time

 0

 2000

 4000

 6000

 8000

 10000

fft sieve hanoi gaussian prime

B
y
te

c
o
d
e
 s

iz
e
 (

b
y
te

s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Non−mobile
Mobile (Javaflow + BCEL 5.2)

Mobile (Javaflow + ASM 2.2.3)

(b) Bytecode size

Figure 16: Injecting mobility: test results

 0

 50

 100

 150

 200

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

A
v
e
ra

g
e
 s

e
ri
a
liz

a
ti
o
n
 t
im

e
 (

m
s
e
c
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Sun serialization
m−JGRIM serialization

Test

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Input data

byte[1000000]

int[1000000]

double[1000000]

Vector<Byte>(100000)

Vector<Integer>(100000)

Vector<Double>(100000)

Vector of 100 WSDL documents

Size (MB)

0.95

3.81

7.63

1.48

1.77

2.15

7.91

Figure 17: Performance of m-JGRIM serialization

Figure 16 (b) shows the overhead introduced by mobility in terms of extra bytecode. ASM incurred in
overheads of 0.3-2.4% with respect to BCEL. Moreover, the mobile variants added a bytecode overhead
of 20-90%, which is a consequence of inserting instructionsinto the bytecode for strong migration. A
negative implication of this is that transferring the instrumented bytecode to remote hosts will require
more bandwidth than the non-instrumented one. For larger applications, the required bandwidth could
be bigger. Selective instrumentation and/or bytecode compression [44] could alleviate this problem.
Another alternative consists of instrumenting application classes at load time. This approach is adopted,

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 27 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

28 C. MATEOS, A. ZUNINO, M. CAMPO

for example, by ProActive. In this way, code transfer is moreefficient: the binary code a host receives
is just the non-instrumented version, which is then locallyaltered.

We also compared the performance of m-JGRIM serialization against standard Java serialization.
Figure 17 shows the average execution time for 20 runs (all tests used serializable data). The input
of Test 7 was 10 copies of the WSDL documents of the services ofthe previous subsection. Java
and m-JGRIM serialization performed similar under tests 1,2, and 3. Under tests 4, 5, and 6, Java
serialization performed about 5-7% better than m-JGRIM, because our mechanism must dynamically
check whether each individual object within the input vector is serializable, and in that case, delegate
their serialization to Java. Finally, under test 7, m-JGRIMonly added an overhead of 2%, even when the
amount of in-memory objects of each WSDL was high. The overheads are acceptable for two reasons.
First, m-JGRIM offers an alternative to Java serializationfor conveniently supporting strong mobility.
Second, m-JGRIM is targeted at running resource intensive applications, which by nature spend a large
percentage of their lifetime doing useful computations rather than just moving around.

6. CONCLUSIONS

We presented m-JGRIM, a novel middleware for developing Grid applications that materializes
JGRIM. The article discussed the design and implementationof m-JGRIM, focusing on how it supports
the non-invasive incorporation of Grid functionality suchas discovery, mobility and parallelism into
ordinary applications. The middleware is based on Java, which makes it portable to various operating
systems. In addition, m-JGRIM is fully integrated with standard Web Service technologies.

A major goal of m-JGRIM is to isolate developers as much as possible from the complexities of
the Grid while keeping performance and reusability of existing Grid services in mind. We showed
its advantages through comparisons with Ibis and ProActive, two Java-based Grid middlewares that
materialize alternative approaches for Grid-enabling applications. Roughly, Ibis, ProActive and m-
JGRIM were used for gridifying the k-NN algorithm and an application for image restoration. The
experiments suggest that m-JGRIM better preserves application logic, which intuitively makes Grid-
aware codes easier to maintain, while provides mechanisms to allow gridified applications to perform
in a competitive way with respect to related approaches. Despite these encouraging results, we will
experiment with more applications and Grid topologies to further validate our middleware.

We also assessed the incidence of the m-JGRIM metaservice layer when executing applications for
two common Grid functionalities, namely service discoveryand mobility. The results suggest that the
overhead in terms of execution time, memory consumption andextra bytecode introduced by m-JGRIM
are acceptable, considering the benefits of Grid service injection for simplifying the development of
Grid applications [1]. We are enhancing m-JGRIM to further reduce this overhead though.

We are integrating m-JGRIM with other Grid middlewares apart from Satin/Ibis in order to offer a
broader variety of services to applications. Besides, as m-JGRIM uses a centralized discovery scheme
on top of UDDI that may not be suitable for large Grids, we are extending the P2P facilities of
GMAC [41] with decentralized service discovery. In addition, we are redesigning m-JGRIM to support
newer Web Service standards (e.g. JAX-WS), and to abstract away its DI container so developers can
employ one of their choice. Lastly, we have developed an Eclipse plug-in that lets programmers to
gridify their applications by graphically indicating and configuring hot-spots, attaching policies, etc.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 28 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 29

REFERENCES

1. Mateos C, Zunino A, Campo M. JGRIM: An Approach for Easy Gridification of Applications.Future Generation
Computer Systems2008;24(2):99–118.

2. Foster I, Kesselman C, Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual Organization.International Journal
of High Performance Computing Applications2001;15(3):200–222.

3. Anderson D, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: An Experiment in Public-Resource Computing.
Communications of the ACM2002;45(11):56–61.

4. Loewe L. Evolution@home: Observations on Participant Choice, Work Unit Variation and Low-Effort Global Computing.
Software: Practice and Experience2007;37(12):1289–1318.

5. Foster I. Globus Toolkit Version 4: Software for Service-Oriented Systems.Network and Parallel Computing - IFIP
International Conference, Beijing, China, vol. 3779, Springer, 2005; 2–13.

6. Thain D, Tannenbaum T, Livny M. Condor and the grid.Grid Computing: Making the Global Infrastructure a Reality,
Berman F, Fox G, Hey A (eds.). John Wiley & Sons Inc.: New York,NY, USA, 2003; 299–335.

7. Natrajan A, Humphrey M, Grimshaw A. The Legion Support forAdvanced Parameter-Space Studies on a Grid.Future
Generation Computer Systems2002;18(8):1033–1052.

8. Grimshaw A, Morgan M, Merrill D, Kishimoto H, Savva A, Snelling D, Smith C, Berry D. An Open Grid Services
Architecture Primer.Computer2009;42(2):27–34.

9. Atkinson M, DeRoure D, Dunlop A, Fox G, Henderson P, Hey T, Paton N, Newhouse S, Parastatidis S, Trefethen A,
et al.. Web Service Grids: An Evolutionary Approach.Concurrency and Computation: Practice and Experience2005;
17(2-4):377–389.

10. Stockinger H. Defining the Grid: A Snapshot on the CurrentView. Journal of Supercomputing2007;42(1):3–17.
11. Mateos C, Zunino A, Campo M. A Survey on Approaches to Gridification. Software: Practice and Experience2008;

38(5):523–556.
12. Goodale T, Jha S, Kaiser H, Kielmann T, Kleijer P, von Laszewski G, Lee C, Merzky A, Rajic H, Shalf J. SAGA: A Simple

API for Grid Applications - High-Level Application Programming on the Grid.Computational Methods in Science and
Technology2006;12(1):7–20.

13. Bazinet A, Myers D, Fuetsch J, Cummings M. Grid Services Base Library: A High-Level, Procedural Application
Programming Interface for Writing Globus-Based Grid Services.Future Generation Computer Systems2007;23(3):517–
522.

14. Allen G, Davis K, Goodale T, Hutanu A, Kaiser H, Kielmann T, Merzky A, van Nieuwpoort R, Reinefeld A, Schintke
F, et al.. The Grid Application Toolkit: Towards Generic and Easy Application Programming Interfaces for the Grid.
Proceedings of the IEEE2005;93(3):534–550.

15. van Nieuwpoort R, Maassen J, Wrzesinska G, Hofman R, Jacobs C, Kielmann T, Bal H. Ibis: A Flexible and Efficient Java
Based Grid Programming Environment.Concurrency and Computation: Practice and Experience2005; 17(7-8):1079–
1107.

16. Baduel L, Baude F, Caromel D, Contes A, Huet F, Morel M, Quilici R. Grid Computing: Software Environments and Tools,
chap. Programming, Composing, Deploying on the Grid. Springer: Berlin, Heidelberg, and New York, 2006; 205–229.

17. Balís B, Bubak M, Wegiel M. LGF: A Flexible Framework for ExposingLegacy Codes as Services.Future Generation
Computer Systems2008;24(7):711–719.

18. McGough S, Lee W, Das S. A Standards Based Approach to Enabling Legacy Applications on the Grid.Future Generation
Computer SystemsJul 2008;24(7):731–743.

19. Sourceforge. JCGrid.http://jcgrid.sourceforge.net.
20. Wrzesinska G, van Nieuwport R, Maassen J, Kielmann T, BalH. Fault-tolerant Scheduling of Fine-grained Tasks in Grid

Environments.International Journal of High Performance Computing Applications2006;20(1):103–114.
21. GridGain Systems. GridGain.http://www.gridgain.com.
22. Alonso J, Hernández V, Moltó G. GMarte: Grid Middleware to Abstract Remote Task Execution.Concurrency and

Computation: Practice and Experience2006;18(15):2021–2036.
23. Gannon D, Krishnan S, Fang L, Kandaswamy G, Simmhan Y, Slominski A. On Building Parallel and Grid Applications:

Component Technology and Distributed Services.Cluster Computing2005;8(4):271–277.
24. Fahringer T, Jugravu A. JavaSymphony: A Programming Model for the Grid.Future Generation Computer Systems2005;

21(1):239–246.
25. Zhang H, Lee J, Guha R. VCluster: A Thread-based Java Middleware for SMP and Heterogeneous Clusters with Thread

Migration Support.Software: Practice and Experience2008;38(10):1049–1071.
26. van Heiningen W, MacDonald S, Brecht T. Babylon: Middleware for Distributed, Parallel, and Mobile Java Applications.

Concurrency and Computation: Practice and Experience2008;20(10):1195–1224.
27. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana S. Unraveling the Web Services Web: An Introduction

to SOAP, WSDL, and UDDI.IEEE Internet Computing2002;6(2):86–93.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 29 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

For Peer Review

30 C. MATEOS, A. ZUNINO, M. CAMPO

28. Czajkowski K, Kesselman C, Fitzgerald S, Foster I. Grid Information Services for Distributed Resource Sharing.10th
IEEE International Symposium on High Performance Distributed Computing, San Francisco, CA, USA, IEEE Computer
Society: Washington, DC, USA, 2001; 181–194.

29. Mateos C, Zunino A, Campo M. Extending movilog for supporting web services.Computer Languages, Systems &
Structures2007;33(1):11–31.

30. Johnson R. J2EE Development Frameworks.Computer2005;38(1):107–110.
31. Sun Microsystems. JavaBeans.http://java.sun.com/products/javabeans.
32. Rizk P, Kiddle C, Simmonds R, Unger B. Performance of a GridFTP Overlay Network.Future Generation Computer

Systems2008;24(5):442–451.
33. Milanés A, Rodriguez N, Schulze B. State of the Art in Heterogeneous Strong Migration of Computations.Concurrency

and Computation: Practice and Experience2008;20(13):1485–1508.
34. Crasso M, Zunino A, Campo M. Easy Web Service discovery: aQuery-By-Example Approach.Science of Computer

Programming2008;72(2):144–164.
35. Apache Software Foundation. Jakarta Commons Javaflow.http://commons.apache.org/sandbox/javaflow.
36. ObjectWeb. ASM.http://asm.objectweb.org.
37. Lyon D. Simulating Multiple Inheritance in Java.Concurrency and Computation: Practice and Experience2002;

14(12):987–1008.
38. Mateos C. An Approach to Ease the Gridification of Conventional Applications. PhD Thesis, UNCPBA 2008.http:

//www.exa.unicen.edu.ar/~cmateos/files/phdthesis.pdf.
39. Mateos C, Zunino A, Campo M, Trachsel R.Parallel Programming and Applications in Grid, P2P and Networked-based

Systems, chap. BYG: An Approach to Just-in-Time Gridification of Conventional Java Applications. Advances in Parallel
Computing, IOS Press: Amsterdam, The Netherlands, 2009. Toappear.

40. Sun Microsystems. Java Management Extensions (JMX).http://java.sun.com/products/JavaManagement.
41. Gotthelf P, Zunino A, Mateos C, Campo M. GMAC: An Overlay Multicast Network for Mobile Agent Platforms.Journal

of Parallel and Distributed Computing2008;68(8):1081–1096.
42. Sun Microsystems. Heap Analysis Tool (hat).https://hat.dev.java.net.
43. Apache Software Foundation. Byte Code Engineering Library (BCEL).http://jakarta.apache.org/bcel.
44. Stefanov E, Sloane A. On the Implementation of Bytecode Compression for Interpreted Languages.Software: Practice

and Experience2009;39(2):111–135.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–40
Prepared usingspeauth.cls

Page 30 of 30

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

