Software: Practice and Experience

This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

m-JGRIM: A Novel Middleware for Gridifying Java
Applications

Journal: | Software: Practice and Experience

Manuscript ID: | draft

Wiley - Manuscript type: | Research Article

Date Submitted by the
Author:

Complete List of Authors: | Mateos Diaz, Cristian; ISISTAN - UNCPBA, Computacion y Sistemas
Zunino, Alejandro; ISISTAN - UNCPBA, Computacion y Sistemas
Campo, Marcelo; ISISTAN - UNCPBA, Computacion y Sistemas

Grid Computing, Gridification, Grid middlewares, JGRIM,

e Dependency Injection, Java

& scholarone"

Manuscript Central

http://mc.manuscriptcentral.com/spe

Page 1 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

Softw. Pract. Expe2009;00:1-40 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

4
5
6 SOFTWARE—PRACTICE AND EXPERIENCE
2
8
9

10 m-JGRIM: A Novel Middleware P
12 for Gridifying Java Applications &

15 Cristian Mateos2*, Alejandro Zunind:2 and Marcelo Campe?

16

17 1|SISTAN Research Institute - UNICEN

18 2 Consejo Nacional de Investigaciones Cientificas y Téc{ic@&NICET)

19

20

21

22 SUMMARY

gi The benefits of_ Grids for bl_JiIding massiv_ely di_stribute_d a_p|dications ha_ve been b_roadly acknowle_dged.
However, the high complexity of developing Grid applicatims compromises the widespread adoption of

25 the paradigm.In a previous article [1], we described JGRIM,a method for easily “gridifying” component-

26 oriented Java applications, which is based on non-invasilginjecting Grid functionality into ordinary code

27 through Dependency Injection. In this paper, we briefly revisit JGRIM and present m-JGRIM, a novel

28 Java middleware that materializes JGRIM concepts. We also pvide an evaluation of the performance

29 of m-JGRIM. Grid practitioners should find this paper useful in having an assessment of the practical

30 benefits and costs of gridifying applicatiqns With.the. middéware, and a down-to-garth description of
JGRIM, whose advantages for Grid-enabling applications fom a software engineering perspective have

31 been already evaluated.

32

33 KEY WORDS: Grid Computing, Gridification, Grid middlewares, JGRIMgpendency Injection, Java

34

35

36

37 1. INTRODUCTION

38

39 Grid Computing is a paradigm for distributed computing lobse virtualizing resources in a network

40 to execute resource-intensive applications. Such-angerant is called &rid [2]. Typically, Grid

41 applications are intended to solve scientific or engingepiroblems that require a large number of

42 computational resources such as CPU cycles, memory, nebaodwidth and data. Examples of such

43 applications include protein folding, financial modelimgaclimate simulation.

44 The first attempts to establish Grids focused on supportPg-@htensive, large-scale applications

45 by linking supercomputers[2]. By then, Grids were mostidimetworks that linked together powerful

46 and dedicated computers. With the inception of Internetdaeds, Internet-wide Grids and then

47 applications such as SETI@home [3] and Evolution@homedg#dieinto existence. At this stage, there

jg was not a solid idea of Grid resourggtualizationyet and implementing Grid applications required

50

51

52 *Correspondence to: Cristian Mateos (cmateos2006@gomal),c ISISTAN Research Institute, UNICEN. Campus

53 Universitario, Tandil (B7001BBO), Buenos Aires, ArgematiTel.: +54 (2293) 43-9682. Fax.: +54 (2293) 43-9681.

54

55 Received

56 Copyright(© 2009 John Wiley & Sons, Ltd. Revised

57

58

59

60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 2 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

2 C. MATEQGS, A. ZUNINO, M. CAMPO S E
&

to programmatically access the underlying infrastructiesv years later, the first Grid middlewares
appeared (e.g. Globus [5], Condor [6] and Legion [7]). Thelgd these technologies is twofold: to
virtualize Grid resources by meanss#rviceqe.g. job scheduling/balancing, resource brokering, data
movement, security, etc.) and to supply developers with AiBls for using these services.

Recently, besides delivering more Grid services to apfiting, research in Grid middlewares has
emphasized on botiteroperabilityandconsumabilityof the services. Efforts in the former category
have yielded as a result Grid standards such as OGSA and W8RFEse standards strongly rely
on Web Service technologies, which provide an adequatdiaolto the problem of heterogeneous
systems integration across administrative domains [9, T@]s has motivated the evolution of
Grid middlewares to new versions based on Web Services. onemtary, researchers have been
looking for better development tools to simplify the congiion of Grid services from within user
applications. These tools seek to provide facilities ta&atelopers to benefit from middleware services
with little (ideally zero) code provisioning. These effodre grouped into programming toolkits and
gridification methods [11]. The former provide high-levaPis that abstract away the details to use
middleware services (e.g. [12, 13, 14]). By using thesesto8tid programming is done at a higher
level of abstraction, thus less code and effort comparedréctty using middleware APIs is required.
However, as they are programming facilities, these app@acsually assume that developers are
proficient on the toolkit being used. Alternatively, griddtion methods (e.g. [15, 16, 17, 18]) allow
developersto easily incorporate Grid services into exgstiodes. Thus, these methods are intended to
support users having little and ideally no background oml Grogramming.

In [1], we described JGRIM, a gridification method that tasggomponent-based Java applications.
Conceptually, JGRIM works by non-invasively injecting &rservices into ordinary codes. With
JGRIM, developers can focus on-the development and tesfiagmication logic without worrying
about common Grid concerns such as, resource discovery aeclteon management. At the
middleware level, these concerns are materializednayaserviceswhich represent existing Grid
services. Metaservices are then “injected” by a JGRIM-d@anpmiddleware that provides a runtime
environment for gridified applications. This paper desesita proof-of-concept materialization of
JGRIM named m-JGRIM, focusing on explaining its metaserigection capabilities. We evaluated
m-JGRIM at the macro level by comparing it with Ibis [15] anaRctive [16], two well-established
Java-based Grid libraries. The experiments were carriedyomeasuring code quality, execution time
and network usage of two Grid applicationson a-WAN. We alsaluated the cost of performing
injection of various m-JGRIM metaservices to get an ins@ihthe penalty of gridifying applications
with m-JGRIM at the micro level. For injecting metaservices JGRIM extensively modifies the
anatomy of ordinary applications by intercepting intei@ts between their components and altering
their bytecode, which may impact on the performance of faansed applications. This assessment
guantifies this impact and provides guidelines for develg@rid applications with m-JGRIM.

The motivation for writing this paper stems from the facttlaspite of the engineering advantages
of JGRIM as a gridification method [1], materializing its c@pts raises a number of difficult issues
from a technological standpoint. Two of the most challeggiapects in this regard are how to support
metaservice injection without code madification, which niayolve the combined use of complex
techniques such as bytecode instrumentation and asgeotest programming, and how to exploit
existing Grid services at the middleware level and stillieck good performance. Therefore, besides
offering a by-example explanation of the features of m-J@®Rir gridifying applications, this paper
details how the middleware materializes such aspects.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 3 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
2 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 3

7

8

9 The rest of the paper is organized as follows. The next sedigcusses related works and explains
10 how m-JGRIM improves over them. Section 3 overviews JGRIMct®n 4 describes m-JGRIM.
11 Section 5 reports the evaluation of m-JGRIM. Section 6 amhes the paper.

12

13

14 2. RELATED WORK

15

16 Research in Grid middlewares has experienced a substgrdiath in the last years. A noticeable fact
17 is the way Java has influenced this growth due to its “writeegmgn anywhere” philosophy, which
18 promotes platform independence. Besides offering APIgfogramming Grid applications, many of
19 these middlewares actually materialize methods for gcigiion of Java software.

20 ProActive [16] is a Grid middleware that provideshnical servicesvhich allows users to address
21 non-functional concerns (mostly load balancing and falétrance) by plugging some configuration to
22 applications at deployment time. Applications are builtdoynposing mobile entities whose creation,
23 migration and lookup must be performed programmaticalkewise, JCGrid [19] supports distributed
24 job scheduling for CPU-intensive tasks. In both casesr gfidifying an application, the application
25 logic results mixed up with Grid-related code, renderinglification and software maintenance
g? thereafter difficult. Ibis [15] offers a Grid messaging &by on top of which a variety of popular

programming models are implemented (e.g. Satin [20] faalpelizing divide and conquer applications

28 on WANS). Like ProActive and JCGrid, Ibis offers limited sagut for interoperable Grid protocols such
29 as WSDL and UDDI. Similarly, GridGain [21] uses annotatitmsasily exploit distributed CPUs, but
30 it does not target interoperability or pluggability of etkigy Grid services.

g; GMarte [22] is a high-level, object-oriented API on top obBls services. With GMarte, users can
33 compose and coordinate the execution of existing binangsdry means of a (usually small) new
34 Java application. GMarte also features metaschedulingaartdtolerance via application-dependent
35 checkpointing. However, as GMarte treats these codes ek btxes, their structure cannot be altered
36 to better exploit Grids, this'is, parallelize or distribigeme portions of gridified codes. Similarly,
37 XCAT-Java [23] supports execution of component-basediegpins as OGSA services on top of
38 existing Grid middlewares (preferably Globus). Applicaticomponents can also represent legacy
39 binary programs. XCAT-Java provides an API for building gdex applications by assembling
40 service and legacy components. Though this task requitks dbding effort, developers still have
41 to programmatically manage component creation and linkéagides, similarto GMarte, XCAT does
42 not provide support for fine tuning components at the aptitindevel.

43 JavaSymphony [24] provides an execution model that setoirsatically deals with migration,
44 parallelism and load balancing. These features can be gidicidy controlled through API primitives
45 in the application code. Similarly, VCluster [25] suppagtBcient execution of parallel applications on
46 SMP clusters, while Babylon [26] offers weak mobility, magig and parallelism in an uniform API.
a7 Since these three middlewares are API-oriented Grid dpweémt tools, they require users to learn
48 their API and perform extensive modifications on their noitlified codes to use these APIs.

49 Our research started by conducting an exhaustive survegpnoaches to easily “plug” applications
50 to Grids [11]. One important finding from this recent studythat existing methods for gridifying
51 software fall into two major categories: those that aim giasating application logic from Grid code
52 (two-step gridifiers), and those that do not (one-step figidi). Particularly, two-step gridifiers are
53 some way off from being effective tools for gridifying apgditions. Tools relying on an APl-inspired
54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 4 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4 C. MATEQGS, A. ZUNINO, M. CAMPO S E
&

o A L Application layer
» <« Gridification > Cridified application I Gridified applications
. /‘ Metaservice that implicitly access Grid

injection services through metaservices
_ JGRIM container (e.g. m-JGRIM) Metaservice layer
Ordinary component- / | \ Platform-independent
based application Service Service || Application tuning metaservgeg representing
discovery || invocation || & reconfiguration concrete Grid services
Globus - Condor <<+ Ibis Service layer

Specialized
‘ Resource ‘ ‘ Parallelism/ | | services virtualizing

discovery || distribution | | the underlying
Grid resources

Job scheduling/
load balancing

‘ Data transfer/replication H Monitoring ‘

n - Resource layer

— CPU cycles, memory,
storage, networks, etc.

Figure 1: An overview of JGRIM

approach to gridification unavoidably require modificatida the code of the original applications,
which in turn requires developers to learn Grid APIs and tb rpore effort into maintaining the
gridified applications. Nevertheless, developers haveeroontrol of the internals of their applications.
Moreover, tools based on gridifying by wrapping or compgséxisting applications (e.g. GMarte,
XCAT-Java) simplify gridification, but prevent the usagetafing mechanisms such as parallelism,
mobility and distribution of individual application compents. This represents a tradeoff between ease
of gridification versus true flexibility to configure the rime aspects of gridified applications [11].

m-JGRIM targets this tradeoff by avoiding excessive soumnodification when gridifying applica-
tions, yet offering means to effectively tune Grid applicas. m-JGRIM preserves the integrity of the
application logic by letting developers to concentrate odicg the functionality of applications, and
then seamlessly adding Grid concerns to them. Unlike matiyeobove tools, its core API only have
to be explicitly used when performing application tuninglan such a case, the application logic is not
affected. Because of the component based roots of its ymaggridification method (i.e. JGRIM),
using m-JGRIM is similar to developing with popular Java migduch as JavaBeans or EJB.

3. JGRIM

JGRIM is a method for easily porting applications to a Gri@RIM simplifies the development of
Grid applications by separating the functional code from¢bde for accessing Grid services, which
is non-intrusively and implicitly injected instead. Cealtto JGRIM is its'semi-automatgridification
processhat developers have to follow to gridify their applicatitodGRIM accepts as input ordinary
component-based applications, and transforms them tacafiphs furnished witlmetaservicesvhich
allow developersto access Grid services while minimizirgdode modifications to interact with them.
We refer to such transformed applicationgjaslified or Grid-enabledapplications.

JGRIM (see Figure 1) adds a Metaservice layer that enahildifien applications to seamlessly use
existing Grid middleware services, thus their executiosuigject to a stack comprising four layers:

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 5 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
g S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 5

7

8

9 e Resourcewhich represents the physical infrastructure of a Grid.

10 e Service which provides, by means of existing Grid middlewares,talog of services including
11 resource brokering, job scheduling, parallelism, data agament, etc. These services offer
12 sophisticated Grid functionalities accessible to appilices through specific APIs.

13 e Metaservice which comprises metaservices that glue gridified apptioatand Grid services,
14 isolating Grid-enabled applications from technologyatet! details for accessing the lower layer.
15 A metaservice represents a set of Grid services offeringaifunctionality, namely:

16

17 — Service discoveryThe Service Discovery metaservice may talk, for exampla, ' DDI

18 registry [27] or the MDS-2 [28] to find a list of required Gridrgices, and to present the
19 results to the upper layer in a uniform format. This metaserhides all concrete Grid
20 lookup services behind a technology-neulwakup(servicelnterface) primitive.

21 — Service invocationOnce an instance of a required Grid service is discovengeraction
22 with-it comes next. This may involve to employ specific birgliprotocols and data
23 type formats. Typically, these elements are specified in ®W8escriptor [27], which
24 represents the contact information of an individual Gridviee. The goal of this
25 metaservice is to provide a genecidl(serviceDescriptor) primitive.

26 —~ Application tuning This metaservice is associated to certain applicationpmorants to
27 gain efficiency and robustness by leveraging existing Ceidises for parallelism, load
gg balancing and distribution. For example, all invocatiomsam embarrassingly parallel

operationmay be executed concurrently to improve perfaceand scalability. Similarly,

30 a mission critical computation may be submitted to Glokuss increasing fault tolerance.
31 The metaservice also materializeslicies[1, 29], this is, non-intrusive mechanisms by
gg which developers can customize the way an application keshaithin a Grid.

gg e Application which contains Grid-enabled applications. During gradifion, JGRIM enhances
36 some of the original application components and their attons via metaservices, so that at
37 runtime some internal operation requests originated bypmrants at this layer are handled by
38 metaservices. Furthermore, m-JGRIM is the software attifzat provides an implementation
39 for these metaservices.

22 JGRIM assumes that input applications are properly comptiresl, which is a common practice in
42 Java development as evidenced by the popularity of componedels such as JavaBeans or EJB [1].
43 This allows JGRIM to treat every application as a collectbmteracting components, and enhancing
44 some of these interactions with metaservices by using Dieny Injection (DI) [30].

45

46 3.1. Injecting metaservices into ordinary applications

47

48 DI achieves higher decoupling in component-based apjiitatby enforcing components to be
49 described through public interfaces, and reducing cogpliny delegating the responsibility for
50 component binding to a @ontaine30]. With DI, components only know each other’s interfacesd

51 it is up to the DI container to create and setifgect) into a (client) component an instance of another
52 (provider) component implementing a required interfadeede relationships are shown in Figure 2
53 (center). A DI container is a runtime entity that links clieemponents to provider components.

54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 6 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

6 C. MATEQGS, A. ZUNINO, M. CAMPO S E
&

[User-provided O Middleware [Third-party } <<interface>> <<uses>>
<<interface>> <<uses>> 1 <<interface>> <<uses>> Beeisariee << — - Client - =

BookService [<— 1 BookService [<€ = |

| Client |

<<Freates>>-

'
:
:
.
,
:
:
:
:
:
BookDB : S ookDp | <<creates>>
-oo — =4 : rmrrl 5| screates A
' -Amazon DIContainer
:
:
.
,
.
:
:
:
:
,
:
,
.
:
:

<|<injecls>>
1

<<imp|empnts>>

- 1
<finds>> - JGRIMContainer
IM -‘ !I = — — - Metaservice (e.g. m-JGRIM)
Amazon T
<<creates>> |
1

class Client {
BookService bs;
setBS(BookService bs){this.bs=bs;}

getBS(){return this.bs:}

1
Client -

<<imp|erf\ents>> <|<injects>>

<<|mplefnents>>

BookService bs =
new BookDB(...);
bs.find(...);

class Client { class Client {
BookService bs;
setBS(BookService bs){this.bs=bs:}

getBS(){return this.bs;}

<comp id="client” impl="Client">
9etBS(Ofind(-.):| <ref name="bs" id="bDB"/> or
id="bAZ"I>

<comp id="client" impl="Client">

etBS() find(...); <ref name="bs" id="bs"/>

</comp>
,

} </comp> <comp id="bs" impl="Metaservice"/>

}
<comp id="bDB" impl="BookDB"/>|

Before DI :> After DI <comp id="bAZ" impl="Amazon"/> :>After gridification

Figure 2: DI and metaservice injection

Consider-an application that implements a book cataldguekService) and aClient component
using it. The former is implemented via a relational datab@okDB). Figure 2 (left) depicts the
relationships between these components. Rougtignt setups an instance BbokBD by providing it
with initialization parameters (database location, dsye@isername/password). Thouglient is only
interested in browsing books (the operation8edkService), it has to know implementation details of
BookDB, thus it is coupled both to the catalogue interface and ifdéementation.

Figure 2 (center) shows the DI version of the applicatiore Th container now injects a concrete
implementation ofBookService, such as @&ookDB-or a Web Service interface to Amazon Books.
Consequently, DI removes the dependency between the aliehthe service implementation, since
Client no longer instantiateBookDB. Besides, any implementation®fokService can be used without
modifying Client. JGRIM takes DI a step-further by introducing an indirectimiween components
to inject Grid metaservices (right of Figure 2). After gfidation the container no longer injects a
service implementation into the client, but a metaserwddch is for example able to dynamically
discover an implementation residing in-a Grid. The clieneliacts with the metaservice, which in
turn interacts with an instance of the required servicesTihdirection is transparent to the client,
this is, there is no need to change its code, since both thiceemplementation and the metaservice
realizeBookService. Besides discovery and-invocation, metaservices als@sept tuning services.
For example, the above metaservice could choose the fastikible book service instance.

Upon gridification, the developer must select which compoiependencies should be enhanced
with Grid capabilities. This involves to prepare his apation so that'a JGRIM container can then
inject metaservices. To this end, JGRIM prescribgsidification procesgFigure 3) of four steps:

1. Hot-spot identificationA developer identifies the dependencibst{spot} into which meta-
services are injected. In the figure, hot-spots have beaatsk@with dashed lines. For example,
the implementation of£ may be outsourced to a third-party service. Then, the depenyd
from B to C may be equipped with runtime service discovery. By drawingagallel with

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 7 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4

2 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 7

7

8

9

10 [class B{]

11 ass B { class A { -

12 class A { (2) 9e180)-Somep() apopﬁég?iton

13 B = new B() » 3| geiog.exopy: | | (4) T

14 ?.'S.lomEOp()' 3) B Int{ » service (MGS)

15 Dexont; | My oK

16 Input application } m)extOP(): _b(; hégég’;‘lg) performed
(component-based) - (4) performed by JGRIM

17

ig Figure 3: JGRIM: Gridification process

20

21 the above exampleg and C would be theClient and BookDB components, respectively. The

22 dependency-D may be enhanced, for instance, with fault tolerance.

23 Components-likec, for which the application does not provide an implementatare called

24 external Conversely, components like B andD are callednternal. A dependency involving

Sg two internal components is an internal dependency. An patelependency (e.8-C) originates

27 when an internal component accesses an external one. JGBbMefines aelf dependency,

o8 which is the case when the two components of the dependeadh@isame. The next section

59 will exemplify these types of dependencies and the metaserthat can be injected into them.

30 2. Component interface definitioklere, the developer specifies the interfaces of the intema

31 external application.components so-as to separate whataarent does from how it does it. For

32 the internal interfaces, this is a common practice in Jduas the task is seldom necessary [1].

33 For the external ones, it involves specifying the methodatgres of the outsourced services.

34 3. Coding conventiondnvolves modifying the application to ensure that its caments follow

35 the JavaBeans specification [31]. Any reference to a comp@wenp within the code must be

36 done by calling a fictitiougetComp(), instead of accessing it directly @mp.operation(). For

37 example, reading data fronfile component should be done by invokigetFile().read() instead

38 of file().read(). These conventions must be followed for both internal anidreal dependencies.

39 As this coding style is commonplace in Java, this step ofteuires little effort [1].

40 4. Assembly and deploymedGRIM combines the outputs of (2) and (3) and deploys tHdifggd

41 application on a Grid. Under the current materializatiod@RIM, m-JGRIM, this application

42 is a Mobile Grid service (MGS) capable of migrating basedmrrenmental conditions such as

43 CPU availability, network latency and bandwidth, etc. M@8s described in Section 4.

44

45 JGRIM is a technology-agnostic gridification. method, in #emse that the above process does not

46 prescribe specific technologies either for implementingaservices or associating them to component

47 dependencies. This is precisely the role of m-JGRIM. The sezsection illustrates JGRIM concepts

48 through the gridification of an application in the contexhofIGRIM.

49

50 3.2. Anexample: Image restoration

51

52 This section describes the gridification of an application image restoration. Anatomically, the

53 application follows the master-worker pattern. Targetdemare located at a remote repository (e.g.

54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience Page 8 of 30

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 8 C.MATEOS, A. ZUNINO, M. CAMPO S E
&
7
8
9
10
11 hot-spot 1 (external dependency) -
I O hot-spot 2 i
12 gFTPCIient —O)%ImageRestorer)-I (self%e— Encoder
13 pendency)
) hot-spot 3
14 (internal dependency) Internal components' | External components
15
16 Figure 4: Components of the image restoration application
17
18
19
20
21 FTP). The master operates by downloading and splitting aagérinto two halves, which enables
22 the application to exploit dual core CPUs. Then, the mastsigas each subimage to a worker for
23 restoration, joins the results, and encodes the joinedérirag a bitmap format.
24 Suppose we have already implemented some of the comportfetiis application, including an
25 ImageRestorer (for restoring images and subimages) andrawClient (for transferring files and
26 obtaining file metadata). As we are not providing a compof@ritnage encoding, we will outsource
27 an implementation from the GridéinageRestorer is the master that coordinates the whole restoration
28 process. Enhancement of individual halves of an input imadendled by two concurrent workers
29 (threads). After processing subimageseatoder component is used to generate the final image:
30
31 public class ImageRestorer {
public byte[] restorelmage (String imageURI, String format) {

32 byte [][] halves = split ((new FTPClient()). getFile (imageURI));
33 WorkerThread worker0 = new WorkerThread(this, halves[0]);
34 WorkerThread workerl =new WorkerThread(this, halves[1]);
35 worker0. start (); workerl.start();

worker0O. join (); workerl.join(); // Wait until child threads are finished
36 byte[] result = combine(worker0.getResult(), workerl.getResult());
37 return encoder.encode(result, format); // Access to a missing component
gg public byte[] restoreSubimage (byte[] imgData) {...}
40 public class FTPClient {
41 public FileMetadata getMetadata(String fileURI) {...}
42 public byte[] getFile(String fileURI) {...}
43 public class WorkerThread extends Thread {
44 private ImageRestorer restorer = null;

private byte[] myHalf = null, result = null;
45 public WorkerThread(ImageRestorer restorer, byte[] myHalf) {
46 this.restorer = restorer; this.myHalf = myHalf;
47
48 public void run() { result = restorer.restoreSubimage (myHalf); }
49 public byte[] getResult() { return result; }
}

50
51 Figure 4 depicts the component diagram of the applicatiocawi\l take this code and generate its
52 gridified counterpart. For clarity reasons, we will not toll the process as presented in Section 3.1, but
53 take one hot-spot at a time and incrementally carry out theeguent steps (2) and (3) of the process.
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Page 9 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 S E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 9
&

7
8
9 3.2.1. Hot-spot 1: ThénageRestorer-encoder dependency
10 . . - .
11 The first hot-spot is thénageRestorer-encoder dependency. We have provided the expected interface
12 at the client-side for the encoding servit@ggeEncoderlF) and altered the code thageRestorer so
13 that all accesses tmcoder are performed throughgetEncoder() method. Conceptually, JGRIM takes
14 advantage of this code structure to inject a metaservidedyraamically finds a service adhering to
15 that interface. Then, processing this information with@RIM results in:
16 1 public class ImageRestorer extends core.MGS {
17 2 ImageEncoderlF encoder = null;
18 3 public ImageEncoderlF getEncoder() { return encoder; }
19 4 public void setEncoder(ImageEncoderlF encoder) { this.encoder = encoder; }
0 5 public byte[] restorelmage(String imageURI, String format) {

6
21 7 return getEncoder ().encode(result, format); // Interaction with an external component

8 }
22 9
23 10 public interface 1ImageEncoderlF {
24 11 public byte[] encode(byte[] imgData, String format);
25 12 }
26 m-JGRIM applications automatically inherit from tM&S class, which provides mobility primitives.
27 Note that m-JGRIM added an instance variaklecoder) and getter/setters for accessing it (lines 2-4).
28 These instructions enable m-JGRIMto non-invasively setice discovery and invocation capabilities
29 to ImageRestorer through DI. Currently, these metaservices are implemebyech-JGRIM through
30 runtime inspection of UDDI registries and invocation of WISIhterfaced services (see Section 4.1).
g; Moreover, metaservices are associated to the applicétiongh an automatically generated file:
33 <?xml version="1.0" encoding="UTF-8" 7>

<!DOCTYPE beans PUBLIC " —//SPRING //DTD BEAN//EN"
34 "http: //www. springframework . org/dtd/spring—beans. dtd ">
35 <beans>
36 <bean id="mainComponent" class="ImageRestorer">

<property name="encoder"><ref bean="encoderService"/></property>
37 </bean>
38 <bean id="encoderService" class="WSDLMatcherPortProxyFactoryBean">
39 <property name="proxylnterfaces">ImageEncoderlF</property> ...
</bean>

40 </beans>
41 . o . . . o
42 The file links application components and metaservicegshegydéorming a fully operative application.
43 Here,ImageRestorer is made dependent —via thecoder property— of arencoderService metaservice
44 whose interface ismageEncoderlF. The two benefits of this approach are that components are
45 decoupled, since binding to external Grid services is peréa at runtime, andncoderMetaService
46 can be easily mocked for testing purposes. For performingi2dGRIM is based on Spring [30], a DI
47 library that also features support for Web Services andcspéented constructs.
48
49 3.2.2. Hot-spot 2: ThénageRestorer-ImageRestorer dependency
50
51 As shown restorelmage in ImageRestorer issues two asynchronous callsréstoreSubimage. These
52 calls are independent between each other, hence they aratedeconcurrently by using threads.
53 However, Grids offers many alternatives to threads to hatith execution of parallel computations
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience Page 10 of 30

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
> 10 C.MATEOS, A. ZUNINO, M. CAMPO
: TGS, 2UNNO. 1 SRE
7
8
9 that come as sophisticated services. These servicesgebgsidallelism, may offer scheduling, load
10 balancing, fault tolerance, etc. JGRIM exploits such ekieaiservices through self dependencies.
11 Self dependencies originate when a component calls its ogthads. Applying steps (2) and (3) of
12 the gridification process to our analyzed hot-spot resnit&i) defining an interface including all those
13 methods that are subject to concurrent execution, and (b getters when invoking such methods.
13 Let us suppose we name this interf@bimageRestorerlF. Then, the gridified code is:
16 1 public class ImageRestorer extends core.MGS {
17 2
18 3 SublmageRestorerlF self = null;
19 4 public SublmageRestorerlF getSelf() { return self; }

5 public void setSelf(SublmageRestorerlF self) { this.self = self; }
20 6 public byte[] restorelmage (String imageURI, String format) {
21 7
22 8 byte[] result0 = getSelf().restoreSubimage (halves[0]);
2 9 byte[] resultl = getSelf ().restoreSubimage (halves[1]);
22 10 byte[] result = combine(result0, resultl); // Wait until computations are finished

11
25 12 }
26 13 }

14 public interface SublmageRestorerlF {
27 15 public byte[] restoreSubimage (byte[] imgData);
28 16 }
29
30 .
31 To Grid-enable our self-dependency, we must replace thechsynous calls teestoreSubimage
32 by sequential calls to the same operationseti (lines 8-9). Then, m-JGRIM appends the code to
33 support DI for this component (lines 3-5). The only extragreonming convention needed for the
34 mechanism to work is that the results of the parallel conmtjmrta must be placed on local variables
35 (lines 8-9). Further references to these variables (&g.1D) will transparently block the execution of
36 restorelmage until they are computed by a special middleware componeuitiercepts and executes
37 both calls concurrently. Behind scenes, m-JGRIM furtheppocess the code of calling methods (e.g.
38 restorelmage) to add instructions for synchronization purposes throtighuse of Java futures. To
39 configure the self dependency, a new metaservice is addbd thbve XML file:
40
41 <beans>
42 <bean id="mainComponent" class="ImageRestorer">

. <property name="self"><ref bean="executionService"/></property>
43 </bean>
44 <bean id="executionService" class="CondorBasedExecutionProxyFactoryBean">
45 <property name="proxylnterfaces">SublmageRestorerlF<property/> ...
</bean>

46 </beans>
47
48
49 which adds to the application —via theelf property— a concrete implementation of a service for
50 concurrently executing the operations defineflibimageRestorerIF. Here, we submit such operations
51 to Condor. Interestingly, the logic is free from (threadirgarallelization code. More important,
52 execution of spawned methods can be seamlessly handleddnsrmgexecution mechanisms suitable
53 for exploiting Grids. Section 4.3 discusses the support-di@RIM to leverage such services.
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Page 11 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
5
6 S E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 11

2
7
8
9 3.2.3. Hot-spot 3: ThénageRestorer-FTPClient dependency
10
11 The last hot-spot for gridification in our application is theageRestorer-FTPClient dependency.
12 Again, we have to isolate the implementatiorFaPClient behind an interface (e.§ileDownloader).
13 Note that this practice improves flexibility and extensthil For instance, it is now easier to use
14 another component for transferring files (e.g. GridFTP),38% long as this component adheres to
15 FileDownloader. Moreover, direct usage &fTPClient is disallowed, thus we have to replace any access
16 to FTPClient within the code by calls to the corresponding getter (@=tPownloader()).
17 m-JGRIM applications are mobile Grid entities. Indeed, itigybcan bring benefits in terms
18 of decreased latency and bandwidth usage when applicati@snoved to locally interact with
19 remote data. Particularly, an interesting performance@avgment is to move the application to the
20 repository location when the size of the target image fileeeds some threshold, this is, we could
21 customize the interaction betwekmgeRestorer andFTPClient. In m-JGRIM, this kind of tweaks are
22 introduced througlpolicies which are special components that mediate between thelenteats of
23 a dependency. Then, mobility can be added to our hot-spattagtang a policy to it:
24 1 public class MovePolicy extends core.policy.PolicyAdapter {
25 2 public void executeBefore() {
26 3 /I Obtains the file to download from the execution context of transferFile (imageURI)
27 4 String fileURI = (String)getExecContext (). getOperationArgument (0);

5 FileDownloader downloader = (FileDownloader)getExecContext ().getTargetComponent ();
28 6 if (downloader.getMetadata (fileURI).getSize () > 524288) {
29 7 MGS app = (MGS)getExecContext (). getSourceComponent ();
30 8 app.moveTo(parseServerLocation (fileURI));
31 J I
10}

32 11 }
33 . . .
34 Upon each interaction betweémnageRestorer andFileDownloader, MovePolicy is evaluated. The code
35 within executeBefore is executed just before the invocation of an operation défin€ileDownloader
36 takes place. Analogously, axecuteAfter method can be specified. The metainformation about the
37 operation being executed is made accessible to prograntimeusyh thegetExecContext method from
38 the policy framework (lines 4, 5, and 7). Concretely, theiggpomoves the application to the node
39 hosting the data (line 8) if the size of the image file exceddsKB. In such a case, the “downloading”
40 process will be started locally at that host. Policies cacdrgigured to act upon invocations on specific
41 operations of the target component. Here, we woviePolicy to be activated only whetnansferFile is
42 called. Section 4.4 explains the configuration generatadpport the injection of policies.
43 Policies can be also employed to customize external deperete For example, let us suppose that
a4 the restoration application is deployed on a Grid where nrages host an instance of the encoder
45 service. Additionally, let us assume that bandwidth-acrasges could drastically vary along time.
46 Under these conditions, accessing a service replica thraugusy network link might compromise
47 the application response time. We can control which ingascchosen for serving each call to
48 encode(imageData, format) by attaching a policy to thenageRestorer-encoder dependency:
49 public class BandwidthPolicy extends core.policy.ExternalPolicyAdapter {
50 public String accessFrom(String wsdlURI_1, String wsdIURI_2) {
51 double bwl = core.policy.Profiler.instance (). getBandwidth ("localhost", wsdIURI_1);

double bw2 = core.policy.Profiler.instance (). getBandwidth ("localhost", wsdlURI_2);
52 return (bwl < bw2) ? wsdlURI_1 : wsdIURI_2;
53 }
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience Page 12 of 30

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
5
12 C. MATEOS, A. ZUNINO, M. CAMPO
6 SRE
7
8
9
10
11 Application layer
12 CMGS > (CMGSD .-+ (MGSD

T Mobility Core API layer
14 Service Discovery/| |(Section 4.2)
15 Invocation

(Section 4.1), Policy Execution
16 (Section 4.4)%—>|(Section 4.3)

17 Injection layer

18 [Spring AOP‘ ’ Spring Remoting‘ (Spring)

19 | Spring Core |

20

21 . .

22 Figure 5: Architecture of m-JGRIM

23

24

25 J

26 Roughly,accessFrom is a hook by 'which developers can specify the rules that go\Wab Service
27 selection.BandwidthPolicy tells the application to use the service instance hosteldeaGtid node to
28 which the host where the MGS is executing experience thellaestwidth.

29

30

31 4. m-JGRIM: A PROOF-OF-CONCEPT MATERIALIZATION OF JGRIM

32

33 As explained, JGRIM is essentially based on transparenjiiciing metaservices, which are entities
34 provided at the middleware level that provide Grid behav®rordinary applications. While this
35 practice has many advantages from an engineering pengp§t}i achieving such a transparency is
36 indeed a daunting task from a technological standpoinhikgection we describe m-JGRIM, a novel
37 Grid middleware that materializes JGRIM-and as such britliegyap.

38 Figure 5 shows the architecture of m-JGRIM; which compribese layersApplication(represents
39 gridified applications)Core API(provides access to concrete Grid services through conmp®tieat
40 materialize metaservices), ahtjection (seamlessly wires application components and metaservice
4l together through a DI container). After passing througmth@GRIM gridification process, an ordinary
42 application becomes a mobile entity called MGS, which cameracross the hodes of a Grid to locally
43 access resources. MGSs are created by injecting metaseiivito the corresponding non-gridified
44 code, which are supplied at the Core API layer. Metasenatesmplemented through middleware-
45 level components that either wrap existing Grid serviceg. (@DDI discovery) or materialize new
jg ones (e.g. mobility, policies). These components are grdupfour subsystems:

48 e Service Discovery/Invocation subsystéBection 4.1): Performs Grid service discovery and
49 invocation by providing concrete bindings between ordinapplications and Grid services.
50 Currently, service discovery is supported by inspectionU@DI registries, while service
51 invocation is performed by extending the remoting fa@btof Spring.

52 e Mobility subsysten{Section 4.2): Offers migration capabilities to gridifiedpéications. m-
53 JGRIM features both explicit and implicit strong mobilityd].

54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

Page 13 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
2 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 13

7

8

9 e Execution subsystefiSection 4.3): Provides support for associating concratd €ecution
10 services to self dependencies, thus leveraging existingces for parallelism, load balancing
11 and fault tolerance. At present, m-JGRIM is integrated \@i#tin [20], a module of Ibis [15].

12 e Policy subsysteniSection 4.4): Is an extensible framework that allows dgvets to specify
13 decisions related to application tuning regarding botarimal and external dependencies.

14

The Injection layer relies on Spring [30], a DI framework linting several built-in modules with

15 common middleware functionality. Entities instantiateg $pring are components that follow the
16 JavaBeans specification calleéans There are many DI frameworks for Jdy&ut we use Spring
g since it is widely popular among Java developers. The resteo§ection describes the subsystems of
19 m-JGRIM. From now on, by “bean” we will refer to componentpplied at the Core API or Injection
0 layers. Similarly, by “application bean” we will refer to plcation-specific components.
g; 4.1. The Service Discovery/Invocation subsystem
23 . . :
e Remoting module of Spring provides convenient progrargrabstractions for working wi

o4 The R t dule of S d t bstract f k th
o5 various RPC technologies. The module isolates applicafimm the intricate configuration and coding
26 details involved in calling remote services. This separais achieved by proxying such services with
27 special beans that decouple client applications from tb&opols to access remote services.
28 The JaxRpcPortClientinterceptor bean provides access to Web Service operations via JAX-RPC,
29 a specification for interacting with WSDL-interfaced Webn8ees. Application beans can define a
30 dependency to a Web Service by supplying the dependencfaioéesand the information for contacting
31 the service. For example, the following code shows the §peonfiguration for an application bean
32 declaring a dependency to a currency converter Web Service:
33 1 <beans>
34 2 <bean id="client" class="example.CurrencyConverterApp ">

3 <property name="currencyService"><ref bean="currencyWebService"/></property></bean>
35 4 <bean id="currencyWebService" class="org.springframework ... JaxRpcPortProxyFactoryBean">
36 5 <property name="portinterface ">example.|ICurrencyConverterService</property>
37 6 <property name="wsdlDocumentUrl">http: //example.edu/currency 2WSDL</ property>

7 <property name="namespaceUri">http: //example.edu/currency</property>
38 8 <property name="serviceName">CurrencyService</property>
39 9 <property name="portName">CurrencyPort</property></bean>
40 10 </beans>
41 Lines 6-9 are the contact information of the Web Service,mortinterfacels the service contract to
42 which client must adhere. At runtime, Spring creates a proxy and injéatsa client to transparently
43 translate any method call issued on the dependency inée(faarrencyConverterService) to the
44 corresponding operation of the Web ServicerfencyWebService). In this way, Spring follows a
45 contract-firstapproach to service consumption: the client-side interfpecified for a required service
46 must exactly match the interface of the Web Service at theeseide. The developer has therefore to
a7 knowin advancehe interface of any external service before using thigtatt his application.
48 Conversely, m-JGRIM provides a specialized bean that neslibetween the interface of an
gg external dependency and the actual interface of a Web Seflite bean gets rid of the configuration
51
52 _
53 TA comprehensive list can be foundHatt p: // en. wi ki pedi a. or g/ wi ki / Dependency _i nj ect i on#Exi sti ng_f r amewor ks
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

Software: Practice and Experience

14 C. MATEOS, A. ZUNINO, M. CAMPO S E
&

<<interface>>

procedure MATCHES (interface, WSDL)

- GenericWSDLFinder <<interface>>
JaxRpcPortClient- Seriali wsdlInterface — WSDL2JAVA(WSDL)
Interceptor (from spring) | |findWSDL() : Vector for all method € interface do
I\ <<realize>> WSDLMatcher isSupported « false
: | K for all wsdIMethod € wsdlInterface and
' newlnstance(servinterface : Class, isSupported = false do
. -—— def : Definition, -
| WSDLMatcherPortClientinterceptor |- typeMaps : Map) : isSupported — MATCHES(method, wsdiMethod)
ZF WSDLMatcher end for
isServiceMatching() : boolean if isSupported = false then
PolicyBasedExternalServicelnterceptor A return false
<<realize>> | end if
ZF ! end for
SerializablePolicyBasedExternalServicelnterceptor return frue
end procedure
(a) Simplified class diagram (b) Thematches(interface, WSDL) primitive

Figure 6: The Service Discovery/Invocation subsystem

details for contacting services (i.e. WSDL location, napae®, etc.) and otherwise extracts the
information from Web Service registries. Figure 6 (a) shavgimplified class diagram of this support.
This bean is called &ervice discovery bea(SDB) and is implemented by extending the Web
Service support of SprinGeenericWSDLFinder represents registries of WSDL descriptions. Currently,
discovery in m-JGRIM is based on UDDI, but more discoveryt@ecols can be added by realizing
GenericWSDLFinder (e.g. WS-QBE [34]). MoreovevySDLMatcher determines whether an individual
WSDL contains the method signatures of a dependency intelifee ICurrencyConverterService, this

is, it models amatches(interface, WSDL) primitive. The default implementation for this primitive
(WSDLMatcherimpl) is shown in Figure 6 (b).

The algorithm converts the input WSDL to a Java interfaczi(nterface), and then checks whether
the operations specified interface are included irwsdlinterface. Thematches(method, wsdiMethod)
function matches two method signatures. Two methods métbley have the same name, the same
number of arguments, and a one-to-one correspondencedrergument and return types can be
established. Immutable Java types are subject to-an exachmdatching of object types can be
customized by specifying mappings between client-side serder-side types. Lastly, array-based
types match if their associated basic types also match dicgpto the previous rules.

PolicyBasedExternalServicelnterceptor implements apolicy-based SDEPSDB), which contacts
Web Services based on policies (see Section 4.4). Afteryingea UDDI registry, a PSDB passes
on the candidate Web services to its associated policy bpm{ind out which service instance must
be used, and how it must be contacted. Consequently, a PS@yBnhay, for example, remotely invoke
the service or trigger the migration of the application te ttode where the service is hosted instead.
SerializablePolicyBasedExternalServicelnterceptor provides support for using PSDBs in conjunction
with mobility beans (see Section 4.2).

To illustrate the DI-related configuration generated toplag SDBs, let us inject service discovery
(without policies) into the application discussed at thgibeing of this section. Instead of supplying
the application a hardcoded reference to a currency canveervice, we will inject an SDB that
dynamically discovers a Web Service implementi@grrencyConverterService:

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 14 of 30

Page 15 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 15
7
8
9
1
12 _________ f<592|i583> ___________ 1>' <<interface>> <<interface>> Continuation
L Serializable Runnable (from javaflow)
12 MGS AN VANAN 1.1
1 stateVariables : Hashtable <<realize>> ! <<realize>> : I
3 homeHost : String TSIy At J | <<realize>> 1.1
moveTo(hostAddress : String) : void N -
14 getCurrentHost() : String ContinuationExecutor
15 getHomeHost() : String firstTime : boolean
16 addVariable(key : String,value : Object) : void movable : MGS
removeVariable(key : String) : void |2 _ _ _ _ _]| continuation : Continuation
17 getVariable(key : String) : Object continuationMover : IContinuationMover
18 run() : void —- o= run() : voiq
stop() : void
19 y setContinuation(continuation : Continuation) : void
<<interface>> setMovable(movable : MGS) : void
20 IContinuationMover setContinuationMover(continuationMover : IContinuationMover) : void
21 move(ce : ContinuationExecutor,nextHost : String) : boolean | | setFirstTime(firstTime : boolean) : void
22
23 Figure 7: Class design of the Mobility subsystem
24
25
26
27 1 <beans>
28 2 <bean id="client" class="example.CurrencyConverterApp">
29 3 <property name="currencyService"><ref bean="currencyWebService"/></property>
4 </bean>
30 5 <bean id="currencyWebService" class="WSDLMatcherPortProxyFactoryBean">
31 6 <property name="proxylnterfaces">example.ICurrencyConverterService</property>
7 <property name="wsdIMatcher"><ref bean="wsdlMatcher"/></property>
32
33 8 <property name="wsdIFinder"><ref bean="wsdIFinder"/></property>
9 </bean>
34 10 <bean id="wsdIMatcher" class="WSDLMatcherlmpl"/>
11 <bean id="wsdIFinder" class="UDDIFinder"><!— UDDI-specific parameters —></bean>
35
36 12 </beans>
g; The client now accesses the currency service through an SDB (line 5). S¥evice matching is
39 implemented by theisdIMatcher bean (line 10), while UDDI inspection is performed by tilIFinder
0 bean (line 11), which holds the location and the autheritinabformation of the UDDI registry.
41
42 4.2. The Mobility subsystem
43 o e : . . .
44 Applications gridified with m-JGRIM automatically exterttetMGS core class, which provides basic
45 primitives for handling mobility and managing applicatispecific state. These primitives are intended
to be invoked from within policies so as to keep the applaratogic clean from the m-JGRIM API.
46 o - YN -
We call thisimplicit mobility. Nevertheless, developers can also use mobiligriexplicitway, this is,
47
48 from within the application logic. The class design of thibsystem-is shown in Figure 7.
49 m-JGRIM implements atrongmigration mechanism [33FBtrongrefers to the ability of a runtime
50 system to support migration of both the binary code and tleewtion state of a running application.
51 When an application migrates from a h#t to a hostH, its-execution is resumed &t from the
52 point it left off when executing atl1. In oppositionweakmigration [33] cannot transfer the execution
53 state of applications. Developers must programmaticalie sand restore the execution state of their
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience

Page 16 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
> 16
s C. MATEOS, A. ZUNINO, M. CAMPO S &E
8
9
10 Local DI ||R te DI

oca emote . . : . . : " " .
11 ConainaT Contlainer ce.ContmuatlIonExecutor cm:IContinuationMover app:MGS ‘ Continuation Objec_t graph
12 | setContinu tionMover(cm) ;il ﬁgﬂ;zg;g% %9;
13 sevowseten) 1 Smoase
14 run0 VFT' startWith(app): Continuation (O) objects
15 . <<dtatic>> . run()
16 veTo(s)
17 suspend() Serialization ‘
18 [c]: Continuation <<static>> vu
19 move(ce,s)
20 anp L " |
21] | continueWith(c) | Network
22 : <<static>> un() | ggjr;scfte;?g; é
23 T | | -
24 (a) Initiating, suspending and resuming MGS executionuseage diagram. The call to (b) Serialization in m-JGRIM
o5 moveTo(s) can be either implicit or explicit
g? Figure 8: Strong migration in m-JGRIM
28
29 applications, which has a negative impact in applicatiosigteand implementation. Ibis is another
30 middleware featuring strong migration, while ProActiveldabylon rely on weak mobility.
g; TheMGS class mostly implements mobility-related functionalifhie methodgetCurrentHost and
33 getHomeHost return the IP of the hosts where an application is currentgcating and where it was
34 initiated, respectively. MoreovanoveTo migrates the application to a host by capturing and stotieg t
35 execution of the MGS into eontinuation which contains a snapshot of the stack trace, local vasabl
36 and program counter. This information is used to restoreet@eution of the suspended application
37 once it has been migrated to-a remote host. Support for agttons is based on Javaflow [35], a library
38 to fully capture the execution state of Java threads thatnatly relies on bytecode instrumentation
39 techniques. Each instanceMES is injected eContinuationExecutor bean, which actually controls the
40 transference and restoration@ntinuation objects. This bean is in turn injected i@ontinuationMover
41 bean, which represent transport mechanisms for transfecontinuations (e.g. sockets, RMI, etc.).
42 Figure 8 (a) depicts the process of executing and migratind@s.
43 Besides moving execution state, m-JGRIM also transferdyitecode of an application when this
44 code is not present at the destination host. When a hoswescaicontinuation, m-JGRIM transfers
45 from the origin host the missing Java classes to fully restbe execution of the application by using
46 a special network classloader. Received classes are stordidk thus they can be sent to other hosts
47 too. In consequence, the deployment of MGS code across aiszdiahe incrementally and without
48 involving the application developer.
49 A problem that arose when combining mobility with Spring cemed serialization. Java objects can
50 be transferred through a network provided they are eifleeinllizable or Externalizable. Since for DI
51 purposes Spring make extensive use of classes which wetleaugtht to be transferable (e.g. dynamic
52 proxy classes), marshalling the execution state of MGSstaiadard Java serialization is unfeasible.
53 We designed a serialization mechanism for converting ebj@to a serializable form, which works
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Page 17 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
g S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 17
7
8
9
10 : _
11 publlc‘class‘ MyApplication {
public void methodA (){

12 public class MyApplication { boolean result = getself (). methodB ();
13 public void methodA (){ if (result){...}
14 if (methodB ()){...} I

} public boolean methodB (){...}
15 public boolean methodB (){...} }
16 } public interface ParallellF {
17 public boolean methodB ();
18 !
leg Figure 9: Self dependencies in m-JGRIM
21
22 by modifying at runtime the bytecode of an object to forceibe serializable by using ASM [36].
23 This transformation’is also recursively done on the objeatfributes to ensure that its whole object
24 graph isserializable (see Figure 8 (b)). Another problenteons Java single inheritance, which may
25 prevent codes already using extension from being gridifigd m-JGRIM. Nevertheless, this issue
g? can be addressed by using existing techniques that rely jentotrapping and Java reflection [37].
gg 4.3. The Execution subsystem
32 The execution metaservices of m-JGRIM rely on Spiimgrceptors[30], beans that transparently
32 introduce behavior before/after certain application rodghare invoked. Spring features an extensible
33 support for developing interceptors, and offers built4erceptors to add cross-cutting concerns
34 (logging, profiling, debugging, etc.) into applicationghgut code modification.
35 Commonly, interceptors are attached to application depecids. If an application beakdepends
36 on another application bed) an interceptor can act upon method calls frho B to transparently do
37 something in between. Recall that Spring interceptors ak@used to support external dependencies
38 (Section 4.1), wheréA and B are an application bean and a Web Service, respectively,ttaand
39 interceptor is an SDB or a PSDB. As for self dependendless, the same application bean Bs
40 In this context, interceptors are the beans that providewoancy for self dependency methods.
41 Let us revisit the usage of self dependenciesin JGRIM. BHgjthey are specified by defining an
42 interface including the methods whose execution is dedebfatspecialized execution services. Access
43 to these methods in the application code is done by usingtergestead of calling them directly. For
44 example, upon gridification, the ordinary code of Figureedt{Imust be modified by the developer
45 S0 as to access a fictitiogslIf application bean, and to-store the resultrethodB in a local variable.
46 In addition, the interface ofelf must be defined. These tasks produce the code of Figure 9)(righ
47 m-JGRIM then makes the modified code to inherit fromM@&S class, and adds an instance variable
48 of type ParallellF and its getter/setter. The calls to method®amallellF (i.e. methodB) are executed
49 concurrently with the invocation to the calling method .(heethodA). Besides, m-JGRIM modifies
50 the body of calling methods to insert barriers that blockrtBrecution until the results of concurrent
51 computations are available. To this end, m-JGRIM reliesheqal/a.util.concurrent package of Java.
52 At runtime, the execution of self dependency methods is leaifaly anexecution bea(EB), whose
53 definition is appended to the XML configuration of the appima being gridified. EBs intercept and
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 18 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

18 C. MATEOS, A. ZUNINO, M. CAMPO S E
&

forward any call to such methods to existing Grid resourceagament systems. Therefore, EBs know
the protocol(s) to talk to the execution service of a paliicmiddleware. Returning to the example,
and assuming Satin as the target system, the generatedwatitig is:

1 <beans>

2 <bean id="app" class="example.MyApplication">

3 <property name="self"><ref bean="self"/></property></bean>

4 <bean id="self" class="org.springframework.aop.framework .ProxyFactoryBean">

5 <property name="proxylnterfaces">example. ParallellF</property>

6 <property name="interceptorNames"><list><value>executor</value></list></property>

7 </bean>

8 <bean id="executor" class="SatinInterceptor">

9 <property name="ownerApp"><ref bean="app"/></property></bean>

10 </beans>

The main application beaayp) declares a dependency taeelf application bean (line 3), supported
via a factory bean (line 4) that instantiates #secutorEB. The calls to the methods &élf (i.e.
those defined irParallellF) are intercepted byxecutor(line 6), which delegates the execution of
those methods to Satin (line 9). Currently, m-JGRIM offéneéad-based and Satin-based EBs. The
former operates by running each method call in a separatadHrom a shared pool. The latter allow
applications to exploit the services of Satin/Ibis for extany divide and conquer methods on Grids.
Lastly, the development of EBs for using the execution sexwbf ProActive and Condor is underway.

4.3.1. The Satin EB

Satin EBs handle the execution of divide and conquer seléxdégncy operations, and to exploit the
parallelism and load balancing capabilities of Satin/thiswithout modifying the application code to
use the Satin API. The only requirement imposed to the deeelfor using Satin EBs is to place the
results of recursive calls on local variables. This is a $&mpodification that does not involve using
Grid APIs within the application code.

When building pure Satin applications, developers muslyamme code conventions, namely
subclassing an API class and declaring an interface withrtethods whose execution is spawned.
Developers must also include synchronization barrierdGRIM automates these tasks. Injecting a
Satin EB into an MGS triggers the creation opeerwhose code is automatically derived from the
MGS but altered so it follows these conventions. At runtithe, peer is-indirectly used by the MGS
through a Satin EB. Recall the example application at thénpégg of this section, which declared
a self dependency on rmethodB operation. Let us supposeethodB is a CPU-intensive recursive
algorithm, thus it may be run with Satin. The peer created bJGRIM is:

public interface ParallellF_Peer extends ibis.satin.Spawnable {
public boolean methodB ();

public class MyApplication_Peer extends ibis.satin.SatinObject implements ParallellF_Peer {
// Variables and dependencies of the owner MGS are copied here
public boolean methodB () {
boolean aBranch = methodB (); // spawned by Satin
boolean anotherBranch = methodB (); // also spawned

super.sync(); // Satin barrier (automatically inserted)
return (aBranch || anotherBranch);

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 19 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
g S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 19

7

8

9

10

11 mgs:MyApplication | \ si:Satlin EB mj:mJIGRIM i s:SatinISen/er

12 metflodB() :boolean : : :

13 invoke(mi) :Object 1 getSatinNetworkInfo(.) :S.atinEntryPoint =|_:l E

14 - oottt per] |

15 execute(mi, peer)!:Object ! !

16 o :

17 e

18 : : reﬂectian, the method "mi"

19 | ! X ! on the peerobjelct

20

g% Figure 10: Execution of self dependency methods under Satin

23

24

25 }

26 Moreover, since it is composed of spawnable calls to itsedthodB is analyzed and modified by
27 m-JGRIM to include calls to theync Satin barrier, which ensures that the results of recursalls ¢
28 are available before they are read. Automatically insgriimc simplifies programming and isolates
29 developers from the Satin API, thus gridification is eaBesides, programmers who are familiarized
30 enough with Satin-can modify the generated peer to introdugdeknown optimizations in divide and
31 conquer programs such as using athreshold on the numbeawhsp

32 Upon execution ofjetself().methodB(), the associated Satin EB instantiates and sends the peer for
33 execution to a Satin (see Figure 10). Particularly, a catiéthodB causes the EB to create an instance
gg of MyApplication_Peer by setting to this latter the MGS instance variables/depenigs, which is
36 necessary since the original recursive methods may usddtas The Satin server is an extended Satin
37 runtime that allows peers to be submitted to Satin in a cléemter fashion. Eventually, the computation
38 finishes and the server delivers the result back to the EBgwini turn passes it to the MGS. More
39 implementation details on this mechanisms can be founddn3g].

40 i

41 4.4. The Policy subsystem

jé Policies [1, 29] offer a non-invasive, programmatic supportune m-JGRIM applications. To code
44 policies, programmers only have to learn-a small subset efnthJGRIM API. In addition, the
45 separation between the tasks of implementing the logic dplication and associating policies to
46 it brings benefits to the process of gridifying an applicatiself, since these tasks can be performed
a7 independently by developers with different skills on Gridgramming.

48 The class design of the Policy subsystem is shown in-Figur@diity represents a generic bean
49 that can act before and after a method of some dependencyoiseith. MethodsexecuteBefore and

50 executeAfter are hooks to specify custom actions that are executed upail docany method of
51 the dependency to which the policy is associated. Polickshe temporarily activated/deactivated
52 by specializingisActivated. Lastly, all policies have a reference to metadata infoilonaabout the
53 operation being executed. In this way, policies are graatmess to the state and behavior of the
54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience Page 20 of 30

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 20 C.MATEOS, A. ZUNINO, M. CAMPO S E
&
7
8
9
10
11 PolicyAdapter . _ OperationCaIII.nfo
12 Stopped - boolean Policy reifiedMethodCall : MethodInvocation
13 callResult : Object calllnfo : OperationCallinfo OperationCallinfo(reifiedMethodCall : MethodInvocation)
teBefore() : void _|> ol getOperationName() : String
14 2?223@\;;5 vo‘:gl Ziziﬂ{:,?ﬁfe",ﬁ‘kov,;"d - — —>getOperationArguments() : Object]
isActivated() : boolean isActivated() : boolean getOperatlonArgument(lnde% - int) : Object
15 isStopped() : boolean getExecContext() : OperationCallinfo! getSourceComponent().: O?Jem
stop() : void getTargetComponent() : Object
16 handlelnvocation() : Object 0.N 01 _ -
17 Zﬁ inteffacePolicy PolicyBasedMethodinterceptor
18 J() policies : HashMap
ExternalPolicyAdapter mejthodPolicies <> getPolicy(methodSignature : String) : Policy
19 accessFrom(wsdIA : String,wsdIB : String) : String 1.N getPolicies() : HashMap
setPolicies(methodPolicies : HashMap) : void
32 [PolicyBasedExternalServicelnterceptor ‘_l> invoke(invocation : MethodInvocation) : Object
22 ‘ . .
23 Figure 11: Class design of the Policy subsystem
24
25 N .) .
26 application-beans they contrdlolicyAdapter extendsPolicy with methods to permanently cease the
27 activity of a policy (stop) ant_d to programmati_cally invoke a dependency methaadlelnvocation).
28 For example, one might implement a policy to cache the resoftthe calls to methods of
internal/external dependencies by codhamndlelinvocation thus the results of some invocations are
29
30 extracted froma cache maintained by the policy. Not ovargtandlelnvocation means that m-JGRIM
31 will carry out the call directly on the target applicatiorame MoreovergxternalPolicyAdapter models
32 a full-fledged m-JGRIM policy that customizes the interactivith external Web Services.
33 Instances ofolicyAdapter are used by th@olicyBasedMethodInterceptor bean, which represents
34 policy-enabled internal dependencies. Podiciesattribute is a map containing policies that act upon
35 invocations on methods of the dependency interface. Eatly ehthe map is a (key, policy) pair,
36 wherekeyis a regular expression that represents the method sigrsatontrolled byolicy. Below is
37 the XML configuration generated for an-application that useslicy between the interaction of two
38 internal application bear’sandB, this latter-with interfac®_|Intf:
39 1 <beans>
40 2 <bean id="A" class="...">
41 3 <property name="B"><ref bean="policyHandler"/></property></bean>
4 <bean id="policyHandler" class="org.springframework.aop.framework .ProxyFactoryBean">
42 5 <property name="proxylnterfaces">B_Intf</property>
43 6 <property name="interceptorNames">
44 7 <list><value>policylnterceptor</value>
45 8 <value>B</value></list>
9 </property>
46 10 </bean>
47 11 <bean id="policylnterceptor" class="PolicyBasedMethodlInterceptor">
12 <property name="policies">
48 13 <map><entry><key>m«</key><ref bean="somePolicy" /></entry></map>
49 14 </property>
50 15 </bean>
16 </beans>
51
52 m-JGRIM injects gpolicyHandler bean intoA (line 3). This bean, which is implemented through
y
53 the AOP support of Spring, intercepts the calls to methodmel@ in B_Intf (line 5) and delegates
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Page 21 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
2 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 21

7

8

9 their execution first to a policy (line 7) and, if not alreadynidled viahandlelnvocation, to the target
10 application bean (line 8). The methods of B_Intf which arbjsct to interception are listed in the
11 policies property (line 12). Here, we considered the methods whoserstarts with “m” (line 13).

12 The basic elements upon which policies are built are systetnica. m-JGRIM provides a well-
13 defined Grid profiling interface on top of which tuning hetids can be implemented, which currently
14 supports the following metrics:

15

16 e load(H): computes a forecast of the average CPU utilization (peéagen) at the hostl. For
17 example, if an expensive operation of an internal applicatiean needs to be started, and the
18 local CPU load is twice the load of a remote hBsthe application may be moved® Similarly,

19 memLoadH) obtains statistics about memory usage.

20 e siz€App): Returns the estimated size (in bytes) of the allocated mgfoothe object graph of
21 an executing MGS. The metric is useful, when used in conjonetith network related metrics,
22 to determine whether it is convenient to migrate an MGS.

23 e latencyHi, Hy): Represents the estimated latency (in seconds) for trétsgrdata between two
24 hosts This-metric is crucial to decide, for example, which Web $svo contact from a set of
25 available candidates. The profiling API also provides a jiieto estimate the network transfer
26 rate (in KB/s), and the percentage of information lost dyitiansference per unit time.

27

28 To return accurate values for the above metrics, m-JGRIMémpnts a distributed monitoring service
29 that predicts the performance of both network and compmrtatiresources by employing regression
30 models. Within a single Grid node, metrics are gathered lmgulviX [40], while predicted values are
31 communicated via GMAC [41], a P2P protocol that providesadfit multicast services across WANS.
32

33

gg 5. EXPERIMENTAL EVALUATION OF M-JGRIM

g? This section describes the experiments that were carrietbqurovide evidence about the practical
38 soundness of m-JGRIM. Section 5.1 focus on its evaluatioth@tmacro level by comparing m-
39 JGRIM with similar initiatives for gridifying applicatianwith respect to code quality and execution
40 efficiency. Section 5.2 describes microbenchmarks dedigmeneasure the overhead of injecting m-
a1 JGRIM metaservices in terms of aspects such as time, memdryecode penalty.

42

43 5.1. Analysis of performance and network usage

44

45 We conducted a comparison between lbis, ProActive and miJIGHy using these tools to gridify
46 the k-NN algorithm (a popular data mining algorithm that éoyp a relational dataset to perform
47 instance classification) and the picture enhancementegiolh discussed in Section 3.2. The original
48 codes were implemented by an experienced Java developereasgridification was performed by
49 another programmer with good skills in distributed Javaettggment but minimal background on
50 these middlewares. The execution of the parallel portidriseom-JGRIM applications were handled
51 with Satin execution beans (Section 4.3). Basically, wedigtto compare m-JGRIM against Ibis and
52 ProActive as these tools have goals similar to our work, ithiso facilitate the construction of Grid
53 applications while minimizing the need for API code upordditation.

54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 22 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

22 C. MATEOS, A. ZUNINO, M. CAMPO S E
&

Table I. The experimental testbed (machines had single@Bids)

Cluster Internet bandwidth (Kbps) Machine CPU frequencha Memory (MB)
C 2.048 M1 0.83 256
My2 0.83 256
M3 0.83 384
My.4 0.83 384
Mis 0.78 256
M1 2.80 512
C 256 Mz1 1.75 256
M2, 1.83 1.024
Cs 256 Mz 1 2.00 1.024
Ms 2 1.90 512

Experiments were performed-on-a Grid comprising three mreteconnected local clusters, each
hosting a Web Service-interfaced replica of the dataseutlimages were stored on cluster and
were accessible through FTP. All runs were launched frostetC,. Moreover, the experiments were
performed during nighttime to-avoid-high Internet trafficigitter (inter-cluster latency was 100-150
milliseconds). Table | details the characteristics of treehines of our experimental testbed.

We assessed the impact of gridification on the applicatiaiedry comparing TLOC (total lines of
code without considering neither blank nor comment lines) @LOC (developer-supplied lines using
Grid APIls/protocols for accessing Grid resources) mefiacgthe original codes and their gridified
counterparts. Before measuring, all source codes wereattechwith Eclipse. Table Il summarizes
these metrics (lower values are better). We did not take aotmunt the configuration files in each
case since m-JGRIM, unlike Ibis and ProActive, generatesslfiles automatically. For the m-JGRIM
applications we obtained two variants by implementing ahtag policy for k-NN that keeps in
main memory some dataset accesses to reduce network taaffica mobility policy for the image
application that always moves the application to the FTBs&pry location to reduce network latency.

From the table it can be seen that, for both applicationsiiRM obtained good TLOC and GLOC.
Ibis k-NN resulted in high TLOC as it does not fully support M8ervices. Therefore, a lot of code
had to be manually provided to interact with the dataseteapl On the other hand, ProActive support
for Web Service protocols is minimal. This feature, howeignecessary to achieve interoperability
of Grid applications [9, 10]. Conversely, SDBs allowed mR18 k-NN to smoothly delegate dataset
discovery and access to the underlying middleware. Momeaahieving parallelism with Ibis and
ProActive demanded more API code. Remarkably, unlike itsgetitors, the m-JGRIM API was only
used for coding policies, without affecting the originaldes. This enforces the fact that using m-
JGRIM may lead to more maintainable Grid code, since it fefl@ two-step approach to gridification
in which the application logic is effectively isolated fraire Grid-related code [1].

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 23 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

g b w

S E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 23
&

Table Il. Test applications: code metrics
12 k-NN variant TLOC GLOC Image app. variant TLOC GLOC

13 Original 192 - Original 241 -
14 Ibis 1477 10 Ibis 227 5
15 ProActive 404 11 ProActive 299 17
16 m-JGRIM 166 4 m-JGRIM 226 0
m-JGRIM (caching) 179 6 m-JGRIM (mobility) 233 1

45 T T T T T T T
Ibis ' —+— j Ibis ——
22 ProActive ----- X ProActive --3---
M-JGRIM -+ 6L %
23 4 m-JGRIM(caching) & L 1

-
m-JGRIM (mobile) &

(less is better)
(less is better)

N

~
Average execution time (min)
Average execution time (min)

. 0
32 5 10 15 20 25 435.40 903.12 1515.56 1819.16 2408.18
Number of instances Image size (KB)

33 (a) k-NN (b) Image restoration

35 Figure 12: Execution time

120

39 2000 T T T
e ProAc{?/I: == X-e-
40 1800 |- e 1 m-JGRIM ¥
m-JGRIM (caching) & > 100 | ™JGRIM (mobile) -~
41 1600 |-]
1400

N
N
(MB)

80 [
1200

1000 ~ 60 [

%

(less is better)
(less is better)

800 [

Total WAN traffic (MB)
o

40 -

Total LAN and WAN traffic

600

47 400 |
48 200 |

20

o
n
5

" I L 0
10 15 20 25 435.40 903.12 1515.56 1819.16 2408.18
50 Number of instances Image size (KB)

51 (@) k-NN (b) Image restoration

53 Figure 13: Network traffic

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 24 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

24 C. MATEOS, A. ZUNINO, M. CAMPO
&
12 — 7 T T T T —
Ibis —=+— Ibis —=+—
ProActive ---%--- ProActive ---%---
M-JGRIM - m-JGRIM -
m-JGRIM caching policy & m-JGRIM move policy &
10 4 6
55 8t 8% 5 =} = a
5% 5% a8 o)
Se Se
Be e | X
g =2
SE 6 SE 4r - * . R *
— Ik
4t 3t
-
) ‘ ‘ ‘ ‘ ‘) ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 435.40 903.12 1515.56 1819.16 2408.18
Number of instances Image size (KB)
(a) k-NN (b) Image restoration

Figure 14: Speedup

To evaluate runtime aspects, each gridified version of k-N&& wsed to classify several list
of input instances with different sizes. For the image appion we used five picture sizes. We
averaged the execution time (AET) and accumulated the mkttwaffic for 10 executions per test.
AET deviations were around 5%. Loopback network traffic whisréd out. Figures 12 and 13 show
the obtained results. As expected, m-JGRIM behaved sirtdl#ne alternatives. Besides, m-JGRIM
policies (caching and mobility) improved both performaaoé network usage.

When not using the caching policy, m-JGRIM k-NN added a pentmce overhead of 10-15%
compared to Ibis k-NN. However, this overhead was assattatservice discovery, a desirable Grid
feature not present in Ibis.and limitedly supported in Prid4c Besides, caching allowed m-JGRIM
to continue using service discovery and to stay competiRr@Active k-NN, on the other hand,
performed poorly. ProActive is oriented towards easy daplent, which makes application setup
slower. This suggests that ProActive'may not be suitablenfoderately long running computations
in which execution time is slightly greater than setup titalreover, caching significantly reduced
network traffic, which is a consequence of performing lessate dataset accesses. Of course, Ibis
and ProActive k-NN might have benefited from this cachinditegue, but this would have required
yet more modifications to the original k-NN code as these iigdres do not follow a non-intrusive
approach to application tuning. In other words, most penfmice improvements must be explicitly
introduced in the application code, jeopardizing the naivability of the resulting Grid application.

With respect to the image processing application, m-JGRii¢hout the mobility policy) performed
better than Ibis, due to the fact that m-JGRIM extends thedaler of its Satin-module with a remote
client server-like job submission interface. In this wayisland m-JGRIM applications are subject
to different execution conditions. Moreover, ProActivengeated the least amount of WAN traffic.
Unlike Ibis and therefore m-JGRIM, its job scheduling algon is not subject to random factors.
Nevertheless, mobility allowed m-JGRIM to improve perfamee and reduce this traffic. Again, the
policy did not affect the original source code. Unfortutgtibis does not let developers to explicitly
control mobility, whereas ProActive only offers weak madtgjlwhich —as discussed in Section 4.2—

Copyright(© 2009 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Softw. Pract. Expe2009;00:1-40

http://mc.manuscriptcentral.com/spe

Page 25 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
2 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 25

7

8

9 requires extensive code modifications to save and resterexcution state of computations across
10 migrations.

11 Figure 14 shows the speedup achieved by the applicationspuied as AET over the average
12 execution time of the original codes on a single machineolth lgraphics, the speedup curves of Ibis
13 and m-JGRIM seemed to have the same behavior, as m-JGRIMedils® on Satin for parallelism. In
14 addition, the random nature of the task scheduler of Satid f@nce our Satin EBs) caused Ibis k-NN
15 and m-JGRIM k-NN to have lower speedups for larger experimésee for example the dip in the
16 curves associated to Ibis and m-JGRIM in Figure 14 (a) fon8@inces). To a lesser extent, this effect
17 was also present in the image application. Furthermoréd@nge appeared to linearly gain efficiency
18 as the size of the input to the experiments increased, lutriid should be further corroborated. The
19 implications of the speedups are twofold. On one hand, tiginad codes certainly benefited from
20 being gridified, thus they are appropriate Grid applicaitmevaluate m-JGRIM. On the other hand,
21 by using policies m-JGRIM achieved competitive speedugsidecompared to Ibis and ProActive.

gg It is worth noting that, although the above experimentstéeébis and ProActive as competitors of
o m-JGRIM, these platforms are somewhat complementary tavotk. m-JGRIM promotes separation
o5 of coneerns between application logic and Grid b(_ehavidB,IHHte_r including Grid s_e_rvi_ces prO_/ide_d by
26 existing platforms. In other words, m-JGRIM provides aermdative method for gridifying applications
27 while it does not “reinvent the wheel” by providing Grid exion capabilities for these applications.
28 In fact, m-JGRIM is currently able to'leverage the executiod parallelization services of Ibis, and
29 efforts to integrate it with other projects (specificallyoRctive and Condor) are underway. This is,
30 m-JGRIM aims at allowing developers to push the Grid-relatede out of the application logic while
31 reusing existing Grid middleware services and still be cetitipe with these middlewares.

32

22 5.2. Analysis of the cost of injecting m-JGRIM metaservices

35 We quantified the cost of injecting Web Service discovergfia 5.2.1) and mobility (Section 5.2.2).
36 Experiments were performed on a 1.83 Ghz. PC with 1GB RAM wmhifeux 2.6.20 and Java 5.
37 The Execution and the Policy subsystems were left out of tiadyais as their performance heavily
38 depends on the particular execution services and polieieglinjected, thus it is difficult to generalize
39 the overhead introduced by them. Besides, as the middleieeebridge between applications and
40 execution services/policies is just one conventional r&pinterceptor, the overhead is intuitively
j; negligible compared to the time required to execute code thiése services or process policy code.
43

44 5.2.1. Cost of injecting service discovery

45

46 We developed two applications for invoking remote Web Smwiby using Spring remoting and
47 m-JGRIM SDBs. Figure 15 shows the average allocated menmr2@ runs when incrementally
48 invoking these services. For the m-JGRIM implementatioa, abtained two variants by enabling
49 and disabling caching, an m-JGRIM feature that allows a&ppibns to cache downloaded WSDL
50 definitions and UDDI queries. We took memory snapshots upttializing the Java and the Spring
51 runtimes (snapshot 1) and after calling 2, 4, 6, 8 and 10 Welics (snapshots 2 through 6) by using
52 hat [42], a tool to dump the Java heap. Accidentally, therpvariant initially used more RAM than
53 its m-JGRIM counterparts, because both applications djesuto quite different bean configurations.
54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience Page 26 of 30

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

4
5
6 26 C.MATEOS, A. ZUNINO, M. CAMPO S &E
7
8
9
10

10 T T T T T T
i remEREE e e
13 5 ’
14 z, e
15 H
16
17
18 % . //Q/?_‘—é’
19 5 | /./
20 /
21 i i
22 0 1 2 3Snapshot 4 5 6 7
23
24 Figure 15: Injecting service discovery: memory usage
25
26
27
28 As expected, the memory allocated by the Spring and the mMG@Rplications behaved linearly.
29 The m-JGRIM variant using caching reduced memory consumpiith respect to the variant not
30 using caching by 1%. Moreover, this latter incurred in oeartis of 1.5-3.0 MB compared to the Spring
31 solution, which means that maintaining one m-JGRIM SDB ieguat the average only 400 KB of
32 extramemory compared to a Spring Web Service proxy (in fas$,when having more SDBs, because
33 they share many factories-and internal structures of Spaitd) m-JGRIM). We believe this small
34 overhead is acceptable as using discovery simplifies camatiign (i.e. hardcoding the information to
35 contact services is avoided) and allows for applicatioas better adapt to the dynamics of Grids (e.g.
g? new services may be available, providers may be tempodoilyn, etc.).
38 L o
39 5.2.2. Cost of injecting mobility
22 The second set of experiments involved the injection of mRIMEMobility into five conventional CPU-
42 intensive codes: fast Fourier transforfft)(sieve of Eratosthenesiéveg, towers of Hanoi ltanoj),
43 Gaussian random generat@a(ssian and prime number generatgorime). All applications were
44 implemented iteratively, totaling 281, 79, 116, 135, andibds of code, respectively. Figure 16 (a)
45 shows the average execution time for 10 runs of the codes omgke $C, and their mobile versions
46 enhanced with Javaflow plus BCEL [43] and ASM[36], two libearfor bytecode instrumentation.
47 Using BCEL led to a time overhead of at most 7% compared to timeemobile variants, which is
48 acceptable given the benefits of mobility for exploiting dari Nevertheless, this overhead could be
49 cut down by letting developers to selectively instrumenydhose application methods which use
50 mobility, instead of instrumenting the whole applicatioytdcode. Moreover, we experienced a high
51 performance overhead with ASM when runnifigand gaussian We found that Javaflow does not
52 fully support ASM, thus further tests should be conductetth\ain updated version of Javaflow when
53 available. All in all, supporting mobility with BCEL did namcur in excessive execution overhead.
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

Page 27 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java
Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

g b w

S E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 27
&

30 10000
11 Non-mobile Non-mobile

Mobile (Javaflow + BCEL 5.2) mmmmm Mobile (Javaflow + BCEL 5.2) mmmmm
1 2 Mobile (Javaflow + ASM 2.2.3) s Mobile (Javaflow + ASM 2.2.3) s

8000 -
6000

4000

Bytecode size (bytes) (less is better)

2000

[EnN
(o3}
Average execution time (secs) (less is better)

fft sieve hanoi gaussian prime fft sieve hanoi gaussian prime

23 (a) Average execution time (b) Bytecode size

Figure 16: Injecting mobility: test results

Sun serialization

29 200 m-JGRIM serialization s

150

100

Test |Input data Size (MB)
Test 1| byte[1000000] 0.95
Test 2|int[1000000] 3.81
Test 3| double[1000000] 7.63
Test 4| Vector<Byte>(100000) 1.48
Test 5| Vector<Integer>(100000) 1.77
0 Test 6| Vector<Double>(100000) 2.15
40 Test 1 Test 2 Test 3 Test 4 Test5 Test 6 Test7 Test 7| Vector of 100 WSDL documents| 7.91

50

w
i
Average serialization time (msecs) (less is better)

42 Figure 17: Performance of m-JGRIM serialization

47 Figure 16 (b) shows the overhead introduced by mobilityimteof extra bytecode. ASM incurred in
48 overheads of 0.3-2.4% with respect to BCEL. Moreover, thbitawariants added a bytecode overhead
49 of 20-90%, which is a consequence of inserting instructiottsthe bytecode for strong migration. A
50 negative implication of this is that transferring the instrented bytecode to remote hosts will require
51 more bandwidth than the non-instrumented one. For largaicgions, the required bandwidth could
52 be bigger. Selective instrumentation and/or bytecode cesson [44] could alleviate this problem.
53 Another alternative consists of instrumenting applicatitasses at load time. This approach is adopted,

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 28 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

Applications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
which has been published in final form at http://dx.doi.org/10.1002/spe.961

28 C. MATEOS, A. ZUNINO, M. CAMPO S E
&

for example, by ProActive. In this way, code transfer is meffecient: the binary code a host receives
is just the non-instrumented version, which is then localtgred.

We also compared the performance of m-JGRIM serializatgairest standard Java serialization.
Figure 17 shows the average execution time for 20 runs (st tesed serializable data). The input
of Test 7 was 10 copies of the WSDL documents of the servicadheofprevious subsection. Java
and m-JGRIM serialization performed similar under test2,land 3. Under tests 4, 5, and 6, Java
serialization performed about 5-7% better than m-JGRIMalee our mechanism must dynamically
check whether each individual object within the input vedscserializable, and in that case, delegate
their serialization to Java. Finally, under test 7, m-JGRMNy added an overhead of 2%, even when the
amount of in-memory objects of each WSDL was high. The oweitk@re acceptable for two reasons.
First, m-JGRIM offers an alternative to Java serializafimnconveniently supporting strong mobility.
Second, m-JGRIM is targeted at running resource intengigkaations, which by nature spend a large
percentage of their lifetime doing useful computationeeathan just moving around.

6. CONCLUSIONS

We presented m-JGRIM, a novel middleware for developingd Gpplications that materializes

JGRIM. The article discussed the design and implementafiorJGRIM, focusing on how it supports

the non-invasive incorporation of Grid functionality suak discovery, mobility and parallelism into

ordinary applications. The middleware is based on Javegtwimiakes it portable to various operating
systems. In addition, m-JGRIM is fully integrated with sfand Web Service technologies.

A major goal of m-JGRIM isto isolate developers as much asiptesfrom the complexities of
the Grid while keeping performance and reusability of exgsiGrid services in mind. We showed
its advantages through comparisons with Ibis and ProActive Java-based Grid middlewares that
materialize alternative approaches for Grid-enablingliegfions. Roughly, Ibis, ProActive and m-
JGRIM were used for gridifying the k-NN algorithm and an apation for image restoration. The
experiments suggest that m-JGRIM better preserves afiplidagic, which intuitively makes Grid-
aware codes easier to maintain, while provides mechanismltoiv gridified applications to perform
in a competitive way with respect to related approachespibethese encouraging results, we will
experiment with more applications and Grid topologies tthfer validate our middleware.

We also assessed the incidence of the m-JGRIM metaseryieevdien executing applications for
two common Grid functionalities, namely service discovang mobility. The results suggest that the
overhead in terms of execution time, memory consumptioreatrd bytecode introduced by m-JGRIM
are acceptable, considering the benefits of Grid servieetian for simplifying the development of
Grid applications [1]. We are enhancing m-JGRIM to furthertuce this overhead though.

We are integrating m-JGRIM with other Grid middlewares afram Satin/Ibis in order to offer a
broader variety of services to applications. Besides, a&RIM uses a centralized discovery scheme
on top of UDDI that may not be suitable for large Grids, we axtemrding the P2P facilities of
GMAC [41] with decentralized service discovery. In additigve are redesigning m-JGRIM to support
newer Web Service standards (e.g. JAX-WS), and to abstnast #s DI container so developers can
employ one of their choice. Lastly, we have developed anpEeliplug-in that lets programmers to
gridify their applications by graphically indicating andrdiguring hot-spots, attaching policies, etc.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
Prepared usingpeauth.cls

http://mc.manuscriptcentral.com/spe

Page 29 of 30 Software: Practice and Experience

1

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 S &E M-JGRIM: A NOVEL MIDDLEWARE FOR GRIDIFYING JAVA APPLICATIONS 29
7
8
9 REFERENCES
10
11 1. Mateos C, Zunino A, Campo M. JGRIM: An Approach for EasydBication of Applications.Future Generation
Computer Systen)08;24(2):99-118.
12 2. Foster I, Kesselman C, Tuecke S. The Anatomy of the Gridblimg Scalable Virtual Organizatiomternational Journal
13 of High Performance Computing Applicatio2801;15(3):200-222.
14 3. Anderson D, Cobb J, Korpela E, Lebofsky M, Werthimer D. 8&home: An Experiment in Public-Resource Computing.
15 Communications of the ACI2002;45(11):56-61.
4. Loewe L. Evolution@home: Observations on Participarti€ Work Unit Variation and Low-Effort Global Computing.
16 Software: Practice and Experien@907;37(12):1289-1318.
17 5. Foster I. Globus Toolkit Version 4: Software for Serviddgented SystemdNetwork and Parallel Computing - IFIP
18 International Conference, Beijing, Chingol. 3779, Springer, 2005; 2-13.
6. Thain D, Tannenbaum T, Livny M. Condor and the gf&tid Computing: Making the Global Infrastructure a Reality
19 Berman F, Fox G, Hey A (eds.). John Wiley & Sons Inc.: New Yok, USA, 2003; 299-335.
20 7. Natrajan A, Humphrey M, Grimshaw A. The Legion Support Aglvanced Parameter-Space Studies on a Giitiure
21 Generation Computer Syster2602;18(8):1033—-1052.
8. Grimshaw A, Morgan M, Merrill D, Kishimoto H, Savva A, Sfirg D, Smith C, Berry D. An Open Grid Services
22 Architecture PrimerComputer2009;42(2):27-34.
23 9. Atkinson M, DeRoure D, Dunlop A, Fox G, Henderson P, Hey &oR N, Newhouse S, Parastatidis S, Trefethen A,
24 et al. Web Service Grids: An Evolutionary ApproacBoncurrency and Computation: Practice and Experie2665;
25 17(2-4):377-389.
10. Stockinger H. Defining the Grid: A Snapshot on the Curkéetv. Journal of Supercomputing007;42(1):3-17.
26 11. Mateos C, Zunino A, Campo M. A Survey on Approaches to ification. Software: Practice and Experien@9008;
27 38(5):523-556.
28 12. Goodale T, Jha S, Kaiser H, Kielmann T, Kleijer P, von leagki G, Lee C, Merzky A, Rajic H, Shalf J. SAGA: A Simple
29 API for Grid Applications - High-Level Application Programing on the Grid Computational Methods in Science and
Technology2006;12(1):7—20.
30 13. Bazinet A, Myers D, Fuetsch J, Cummings M. Grid ServiceseBLibrary: A High-Level, Procedural Application
31 Programming Interface for Writing Globus-Based Grid SegsiFuture Generation Computer SysteB®7;23(3):517—
522.
32 14. Allen G, Davis K, Goodale T, Hutanu A, Kaiser H, KielmannMerzky A, van Nieuwpoort R, Reinefeld A, Schintke
33 F, et al. The Grid Application-Toolkit: Towards Generic and Easy Apation Programming Interfaces for the Grid.
34 Proceedings of the IEEB005;93(3):534-550.
35 15. van Nieuwpoort R, Maassen J, Wrzesinska G, Hofman RpdaCpKielmann T, Bal H. Ibis: A Flexible and Efficient Java

36 Based Grid Programming Environme@oncurrency and Computation: Practice and Experie@685; 17(7-8):1079—
1107.

37 16. Baduel L, Baude F, Caromel D, Contes A, Huet F, Morel Mi@gR. Grid Computing: Software Environments and Tools
38 chap. Programming, Composing, Deploying on the Grid. $rinBerlin, Heidelberg, and New York, 2006; 205-229.
17. Balé B, Bubak M, Wegiel M. LGF: A Flexible Framework for Exposihggacy Codes as Servicdsuture Generation

39 Computer Systen)08;24(7):711-719.

40 18. McGough S, Lee W, Das S. A Standards Based Approach tdigalegacy Applications on the Grittuture Generation

41 Computer Systemiul 2008;24(7):731-743.

42 19. Sourceforge. JCGridit t p: //j cgri d. sour ceforge. net.

20. Wrzesinska G, van Nieuwport R, Maassen J, Kielmann THB&ault-tolerant Scheduling of Fine-grained Tasks in Grid

43 Environmentsinternational Journal of High Performance Computing Applions2006;20(1):103-114.

44 21. GridGain Systems. GridGaint t p: / / www. gri dgai n. com

45 22. Alonso J, Hernandez V, Molté G. GMarte: Grid Middlewape Abstract Remote Task Executio@oncurrency and
Computation: Practice and Experien2606;18(15):2021-2036.

46 23. Gannon D, Krishnan S, Fang L, Kandaswamy G, Simmhan Yhi@kki A. On Building Parallel and Grid Applications:

47 Component Technology and Distributed Servidglister Computin@005;8(4):271-277.

48 24. Fahringer T, Jugravu A. JavaSymphony: A ProgrammingVifmt the Grid.Future Generation Computer SysteR805;
21(1):239-246.

49 25. Zhang H, Lee J, Guha R. VCluster: A Thread-based Javal®&fidde for SMP and Heterogeneous Clusters with Thread

50 Migratiqn_SupportSoftware: Practice and Experien@@OS;38(10):10{19—_1071. ‘ o

51 26. van Heiningen W, MacDonald S, Brecht T. Babylon: Middievfor Distributed, Parallel, and Mobile Java Applicason
Concurrency and Computation: Practice and ExperieB0688;20(10):1195-1224.

52 27. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, WeerawzeisS. Unraveling the Web Services Web: An Introduction

53 to SOAP, WSDL, and UDDILEEE Internet Computin@002;6(2):86—93.

54

55

56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40

57 Prepared usingpeauth.cls

58

59

60

http://mc.manuscriptcentral.com/spe

1

Software: Practice and Experience Page 30 of 30

2This is the pre-peer reviewed version of the following article: "C. Mateos, A. Zunino and M. Campo: "m-JGRIM: A Novel Middleware for Gridifying Java

3App|ications into Mobile Grid Services". Software: Practice and Experience. Vol. 40, Number 4, pp. 331-362. John Wiley & Sons. 2010. ISSN 0038-0644.",
4Which has been published in final form at http://dx.doi.org/10.1002/spe.961
5
6 30 C.MATEOS, A. ZUNINO, M. CAMPO S E
7 &
8
9 28. Czajkowski K, Kesselman C, Fitzgerald S, Foster |. Gnifbimation Services for Distributed Resource Sharit@th
10 IEEE International Symposium on High Performance DistidslComputing, San Francisco, CA, USBEE Computer
Society: Washington, DC, USA, 2001; 181-194.
11 29. Mateos C, Zunino A, Campo M. Extending movilog for supimgr web servicesComputer Languages, Systems &
12 Structure2007;33(1):11-31.
13 30. Johnson R. J2EE Development Framewo@@nputer2005;38(1):107-110.
31. Sun Microsystems. JavaBeahst p: //j ava. sun. con product s/ j avabeans.
14 32. Rizk P, Kiddle C, Simmonds R, Unger B. Performance of al6FP Overlay NetworkFuture Generation Computer
15 System008;24(5):442-451.
16 33. Milanés A, Rodriguez N, Schulze B. State of the Art in Hegeneous Strong Migration of Computatio@oncurrency
and Computation: Practice and Experien2@08;20(13):1485-1508.
17 34. Crasso M, Zunino A, Campo M. Easy Web Service discover@uary-By-Example ApproactScience of Computer
18 Programming2008;72(2):144~164.
19 35. Apache Software Foundation. Jakarta Commons Javaflow: / / conmons. apache. or g/ sandbox/ j avaf | ow.
36. ObjectWeb. ASMhtt p: //-asm obj ect web. or g.
32 37. Lyon D. Simulating Multiple Inheritance in Jav&oncurrency and Computation: Practice and Experierk@02;
14(12):987-1008.
22 38. Mateos C. An-Approach to Ease the Gridification of Corneeal Applications. PhD Thesis, UNCPBA 200&.t p:
/[www. exa.-uni cen. edu. ar/ ~cmat eos/ fi | es/ phdt hesi s. pdf .
23 39. Mateos C, Zunino A, Campo M, TrachselRarallel Programming and Applications in Grid, P2P and Netked-based
24 Systemschap. BYG: An Approach to Just-in-Time Gridification of Gentional Java Applications. Advances in Parallel
25 Computing, 10S Press: Amsterdam, The Netherlands, 2008pfear.
26 40. Sun Microsystems. Java Management Extensions (JMX}p: //j ava. sun. conl product s/ JavaManagenent .
41. Gotthelf P, Zunino A, Mateos C, Campo M. GMAC: An Overlaylitast Network for Mobile Agent Platformsournal
27 of Parallel and Distributed Computing008;68(8):1081-1096.
28 42. Sun Microsystems. Heap Analysis Tool/(hat)t ps: // hat. dev. j ava. net.
29 43. Apache Software Foundation. Byte Code EngineeringaypfBCEL).ht t p: // j akart a. apache. or g/ bcel .
30 44. Stefanov E, Sloane A. On the Implementation of Bytecodm@ession for Interpreted Languag&aftware: Practice
and Experienc009;39(2):111-135.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-40
57 Prepared usingpeauth.cls
58
59
60

http://mc.manuscriptcentral.com/spe

