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Abstract

Nowadays, Grid Computing has been widely recognized as the next big thing in distributed software de-
velopment. Grid technologies allow developers to implement massively distributed applications with enor-
mous demands for resources such as processing power, data and network bandwidth. Despite the impor-
tant benefits Grid Computing offers, contemporary approaches for Grid-enabling applications still force
developers to invest much effort into manually providing code to discover and access Grid resources and
services. Moreover, the outcome of this task is usually software that is polluted with Grid-aware code, thus
maintainability suffers. In a previous article we presented JGRIM, a novel approach to easily gridify Java
applications. In this paper, we report a detailed evaluation of JGRIM that was conducted by comparing it
with Ibis and ProActive, two platforms for Grid development. Specifically, we used these three platforms
for gridifying the k-Nearest Neighbor algorithm and an application for restoring panoramic images. The
results show that JGRIM simplifies gridification without resigning performance for these applications.

Key words: Grid Computing, Gridification, Grid services, JGRIM, Dependency Injection

1. Introduction

The term “Grid” refers to a widely distributed computing environment whose main purpose is to meet
the increasing demands of advanced science and engineering [1, 2]. Within a Grid, hardware and software
resources from distributed sites are virtualized to transparently provide applications with vast amounts
of resources. Just like an electrical power grid, a computational Grid offers a powerful yet easy-to-use
computing infrastructure to which applications can be plugged and efficiently executed without much effort
from the user [3]. Unfortunately, given the extremely heterogeneous, complex nature inherent to Grids,
writing and adapting applications to execute on a Grid is certainly a very difficult task. This raises the
challenge of providing appropriate techniques to gridify applications, that is, semi-automatic and ideally
automatic methods for easily transforming conventional applications to applications that are capable of
benefiting from Grid resources.

In this light, a number of tools for simplifying Grid application development have been proposed. Basi-
cally, the goal of these technologies is to unburden developers of the necessity to know the many particular-
ities to contact individual Grid services (e.g. protocols and endpoints), capture common patterns of service
composition (e.g. secure data transfer), and offer convenient programming abstractions (e.g. master-worker
templates). Roughly, these programming tools can be grouped into toolkits and frameworks. On one hand,
the idea behind programming toolkits is to provide high-level programming APIs that abstract away the
details of the services provided by existing Grid platforms. Examples of these tools include GSBL [4], Java
CoG Kit [5], MyCoG.NET [6], GAT [7] and SAGA [8]. On the other hand, Grid programming frameworks
capture common Grid-dependent code and design in an application-independent manner (e.g. application
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templates, service composition patterns, etc.) and provide slots where programmers can put application
specific functionality to build a complete Grid application. Examples of such frameworks include MW [9],
AMWAT [10] and JaSkel [11].

A remarkable feature of the above technologies is that gridification is accomplished through a one--
step process, that is, there is not a clear separation between the tasks of writing the pure functional code
of an application and adding Grid concerns to it [12]. Developers Grid-enable applications as they write
code by keeping in mind specific API calls or framework constructs. Hence, technologies promoting
one-step gridification assume developers have a solid knowledge on the programming tool being used.
Alternatively, there are some efforts promoting a two-step methodology to gridification (see [12] for a
comprehensive discussion of them), which are mostly aimed at supporting developers having little or even
no background on Grid technologies. Basically, the ultimate goal of approaches falling in this category is to
allow developers to incorporate Grid behavior to an application after the logic of the application has been
implemented. Consequently, projects in this line of research are mainly intended to provide gridification
methods rather than Grid programming facilities.

In a previous paper, we proposed JGRIM [13], a two-step gridification method for gridifying Java ap-
plications. Specifically, we described the features of JGRIM and showed its practical advantages through
preliminary experiments based on source code metrics. In this paper, we report a thorough evaluation of the
approach by comparing gridification effort as well as execution performance and network resource utiliza-
tion with respect to related approaches. To this end, two existing applications were gridified and deployed
on an Internet-based Grid. In order to assess gridification effort, we introduce a novel metric called GE
(Gridification Effort) that takes into account the amount of redesign, reimplementation and deployment
effort necessary to port an ordinary application to a Grid, which is independent of the gridification tool. All
in all, the experiments will contribute to have a better understanding of the benefits and potentials of our
approach for porting applications to a Grid, and executing the resulting Grid-enabled code.

The rest of the paper is organized as follows. The next section discusses the most relevant related
work. Then, Section 3 takes a deeper look at the concepts and notions underpinning JGRIM. The section
also illustrates through code examples the facilities offered by JGRIM for gridification. Later, Section 4
presents a detailed evaluation of the approach, which represents the main goal of the paper. Lastly, Section 5
concludes the paper.

2. Related work

Several approaches for gridifying conventional software can be found in the literature. Next, we briefly
describe the approaches that are more relevant to our work.

Ibis [14] is a Grid platform for implementing Java-based applications. Ibis is designed as an uniform,
extensible and portable communication library on top of which a variety of popular programming models
such as MPI [15] and RMI [16] have been implemented. Another interesting programming model of Ibis is
Satin [17, 18], which allows developers to parallelize CPU-bound, divide and conquer applications. Satin
is aimed at exploiting CPU resources, but does not provide support for taking advantage of other types of
Grid resources such as services, data repositories, applications, etc. Finally, Ibis does not offer support
for Web Service technologies such as WSDL [19] and UDDI [20]. Indeed, Web Services and generally
speaking Service Oriented Architectures (SOAs) play a very important role in Grid Computing because
they address the problem of heterogeneous systems integration Stockinger [21]. These technologies thus
supply the basis for more interoperable Grids and underlie several of the current Grid initiatives Munawar
et al. [22].

ProActive [23] is a Java platform for parallel distributed computing. Applications are composed of
mobile entities called active objects (AO). AOs serve method calls originated from other AOs and regular
Java objects based on the wait-by-necessity mechanism, which asynchronously handles individual calls,
and transparently blocks requesters upon the first attempt to read the result of an unfinished call. ProActive
also provides technical services [24], a flexible support that allow developers to address non-functional
concerns (e.g. load balancing and fault tolerance) by plugging certain configuration to applications at
deployment time. A drawback of ProActive is that AO creation, lookup and mobility are in charge of the
programmer. Therefore, the code for managing parallelism and AO migration is mixed with the application
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logic. Besides, ProActive provides limited/no support for Web Service invocation/discovery. Similarly,
JavaSymphony [25] deals semi-automatically with migration and parallelism, allowing programmers to
explicitly control such features as needed. However, JavaSymphony also suffers from the problems of
mixing these non-functional concerns with functional ones, rendering gridification difficult. Like Ibis,
JavaSymphony offers limited support for using common Grid protocols and technologies.

XCAT [26] supports distributed execution of component-based applications. An XCAT application
is a stateful functional Grid service comprising several components. XCAT runs on top of existing Grid
platforms (e.g. Globus [27]), linking individual components to concrete platform-level services. Besides,
application components can also represent legacy binary programs. XCAT provides an API that allows de-
velopers to build complex applications by assembling service components and legacy components. Though
this task can be carried out with little coding effort, developers still have to programmatically manage com-
ponent creation and linking at the application level. Furthermore, opportunities for application tuning
largely depend on the facilities the underlying Grid platform being used offers, as XCAT does not provide
support for fine tuning components at the application level.

Despite greatly simplifying the process of adapting the code of an application for Grid enabling it,
these approaches still require a significant amount of coding effort from the developer. As an alternative,
there are tools that follow what we might call a “gridify as is” philosophy. These approaches treat an
input application as a black box by taking either its source or executable code, along with some user--
provided configuration (e.g. input arguments, CPU/memory requirements, etc.), and wrap this code with
components that isolate the details of the underlying Grid [28, 29, 30, 31, 32]. In this way, the requirement
of source code modification when gridifying applications is eliminated. However, output applications
are coarse grained, monolithic Grid applications whose structure cannot be altered to make better use of
Grid resources. For example, most of these approaches do not prescribe mechanisms for parallelizing or
distributing individual application components.

Approaches relying on an API-inspired approach to gridification unavoidably require modifications to
the source code of the original application Mateos et al. [13]. Therefore, in many cases, the resulting appli-
cation code is harder to maintain. However, developers have more control of the internal structure of their
applications. On the other hand, the approaches based on wrapping techniques simplify gridification, but
in general prevent the usage of tuning mechanisms. This represents a tradeoff between ease of gridification
versus flexibility to configure the runtime aspects of gridified applications [12]. Precisely, JGRIM targets
this tradeoff by avoiding excessive code modification or provisioning when porting applications to a Grid,
nonetheless providing means to tune Grid applications. JGRIM preserves the integrity of the application
logic by encouraging developers to concentrate on coding the functionality of applications, and then non--
intrusively adding Grid concerns to them. Its core API only have to be explicitly used when performing
application tuning. Finally, because of its component based roots, using JGRIM does not differ too much
from using popular programming models for Java such as JavaBeans1 or EJB2.

3. The JGRIM approach

JGRIM Mateos et al. [13] is an approach for easily porting applications to service-oriented Grids.
JGRIM simplifies the construction of Grid applications by allowing users to focus first on the development
of the application logic without worrying about common Grid-related concerns such as resource discovery,
service invocation and execution management. Essentially, JGRIM lets applications to discover and use
the services offered by a Grid without the need to explicitly provide code for either finding or accessing
these services from within the application logic.

At the heart of JGRIM is a semi-automatic gridification process that developers have to follow to grid-
ify applications. This process accepts as input ordinary component-based applications, where components
do not share any state and are described through well-defined interfaces, and transforms these applications
to codes which are furnished with specialized components called metaservices. Metaservices allows de-
velopers to take advantage of existing Grid services, but minimizing the knowledge required to carry out

1JavaBeans http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
2Enterprise JavaBeans http://java.sun.com/products/ejb
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gridification. From now on, we will refer to such transformed applications as gridified or Grid-enabled
applications. Figure 1 depicts an overview of JGRIM. As illustrated, JGRIM adds an intermediate Meta-
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Figure 1: An overview of JGRIM

service layer that enables gridified applications to seamlessly use existing Grid services. In middleware
terms, the execution of gridified applications is subject to a software/hardware stack comprising:

• Resource layer: Represents the physical infrastructure of a Grid, given by resources such as comput-
ing nodes, networking facilities and storage systems, along with the necessary low-level protocols to
interact with them (e.g. TCP/IP).

• Service layer: Provides, by means of Grid platforms such as Globus, Condor [33], Ibis [14] and
ProActive [23], a catalog of services (e.g. job scheduling, load balancing, parallelism) to make
effective and efficient use of Grid resources. These platforms offer sophisticated Grid functionalities
that are accessible to applications through specific protocols and APIs.

• Metaservice layer: Is composed of a number of metaservices that act as a glue between gridified
applications and the Grid. Metaservices isolate Grid-enabled applications from technology-related
details for accessing the Service layer (i.e. the aforementioned protocols and APIs), and can be
understood as representatives of related concrete services, that is, those providing similar Grid func-
tionality. JGRIM provides metaservices for:

– Service Discovery: This metaservice can talk, for example, to a UDDI registry or the MDS-2
Globus system [34] to find a list of required Grid services, and then present the results to Grid
applications in a common format. This metaservice hides all concrete lookup Grid services
behind a generic, technology-neutral lookup(serviceInterface) primitive.

– Service Invocation: Isolates applications from the technologies involved in invoking Grid ser-
vices or, in other words, provides a generic call(serviceDescriptor) primitive. Typically, the
information to interact with an individual service (i.e. datatype formats, binding parameters,
etc.) are specified in a service descriptor such as a WSDL document.

– Application Tuning: This metaservice is associated to certain application elements to improve
performance. For example, all invocations performed on a mission critical computation can be
submitted to a Globus environment, increasing fault tolerance. Similarly, divide and conquer or
embarrassingly parallel operations can be executed concurrently to achieve better performance
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and scalability. Then, the purpose of this metaservice is to make the interaction between the in-
dividual components of gridified applications more efficient and robust by leveraging existing
Grid services for job execution, parallelism and mobility. The metaservice also materializes
policies Mateos et al. [35], that is, non-intrusive mechanisms by which developers can cus-
tomize the way an application behaves in a Grid.

• Application layer: Contains Grid-enabled applications that implicitly exploit Grid services. During
gridification, JGRIM alters some of the original application components and their interactions by
using metaservices, so that at runtime some internal operation requests originated by applications at
this layer are handled by metaservices instead.

The next subsections give a down-to-earth explanation of the concepts underpinning JGRIM and its asso-
ciated gridification process for Grid-enabling ordinary applications.

3.1. Associating ordinary applications with Grid services

Unlike many of the existing approaches to gridification, in which users have to explicitly alter the
application code to use Grid services [12], the aim of JGRIM is to non-intrusively incorporate Grid services
into the logic of ordinary applications. The assumption that drives this idea is that it is possible to associate
Grid services to the various dependencies of individual software components. A component C1 has a
dependency to another component C2 if C1 explicitly uses any of the operations of C2

3. JGRIM is based
upon associating Grid services to dependencies via metaservices. In this way, interacting components can
indirectly benefit from Grid services without changing their internal implementation.
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Figure 2: Component dependencies and metaservices

Figure 2 summarizes the concepts exposed so far. Components of an ordinary application are designed
to interact with each other by means of their interfaces, thus establishing dependencies. Upon gridification,
individual dependencies are associated with one or more metaservices, which control how a dependency is
managed within a Grid setting. At the implementation level, dependencies and metaservices are associated
through Dependency Injection (DI) [36], a technique that allows software components to be externally and
non-invasively supplied with concrete implementations for their dependencies. For further details on the
usage of DI for metaservice injection, and the mechanisms by which metaservices are bridged to Grid
services see [13].

An interesting implication of dependencies is that, besides denoting links between application compo-
nents, they can be employed to refer to external functionality upon which one or more components depend
but for which an application does not provide an implementation. In fact, Grids often offer services not
only for managing hardware resources, but also for providing functional capabilities (e.g. numerical al-
gorithms, search engines, visualization software, etc.) that play the role of third-party building blocks for
creating new applications. Then, JGRIM distinguishes between two types of Grid services:

3Note that the concept of dependency is not exclusive to component-based software, but it is also present in any other programming
paradigm.
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• Functional Grid service (FGS): Is a callable service interface that mediates the access to one or
more software and data resources, such as a wrapper to a legacy program or a facade to various
data repositories. FGSs expose their functionality through clear interfaces (i.e. with well-defined
operations signatures) and, for interoperability and standardization purposes, are often implemented
with Web Services technologies [37]. Moreover, after gridification, any conventional application
may become itself a functional service, which other applications can discover and use. JGRIM
exploits FGSs through the Service Discovery and the Service Invocation metaservices.

Nowadays, Grid standards like OGSA [38] and WSRF [39] heavily rely on the notion of explicitly
interfaced service for materializing platform-level services. This has motivated the evolution of
Grid platforms from their pre-Web Service state to new versions based on Web Services [37], being
Globus and Condor examples of such evolved platforms. These platforms expose their APIs as Web
Services. Two representative examples are the Globus WS GRAM job submission service4 and
more recently the gLite CREAM job management service Aiftimiei et al. [40]. However, this kind
of services should not be confused with FGSs. The main difference is that the former are located at
the Basic layer, whereas the latter are located at the Application layer.

• Non-functional Grid service (NFGS): NFGSs differ from FGSs in that the latter are used as func-
tional building blocks for applications. NFGSs are further classified into interfaced platform-level
services, and those services representing abstract Grid concerns for which a clear and standard inter-
face to their capabilities cannot be specified. An example of interfaced NFGS is Globus WS GRAM.
Examples falling into the latter group are parallelism, distribution, mobility, load balancing, fault tol-
erance, security, among others. NFGSs are located at the Basic layer. An individual NFGS may have
many materializations. For instance, Globus and Condor provide job submission services. Similarly,
ProActive and Ibis implement parallelism. JGRIM exploits NFGSs through the Application Tuning
metaservice.

Table 1: FGSs versus NFGSs

FGSs NFGSs

Located at Application layer Service layer

Purpose To provide functional building
blocks

To address non-functional
concerns

Explicitly interfaced? Always Not always

Exploited through Service Discovery and Service
Invocation metaservices

Application Tuning
metaservice

Table 1 summarizes the two discussed types of Grid services. Note that exploiting functional Grid services
may imply the use of non-functional Grid services as well (e.g. using a secure mechanism to contact
an FGS), but not the other way around. Both FGSs and NFGSs are proxied and represented by JGRIM
through metaservices, which are injected into the dependencies between ordinary application components.
During the process of gridification, the developer is responsible for selecting which of these dependencies
and components are enhanced with Grid capabilities. The next subsection explains this process.

3.2. Gridification Process

In addition to metaservice provisioning, a fundamental aspect of JGRIM is its gridification process,
this is, the set of tasks developers have to follow to adapt their applications to run on a Grid. The JGRIM
gridification process is illustrated in Figure 3, and consists of the following steps:

4WS GRAM http://www.globus.org/toolkit/docs/4.0/execution/wsgram
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Figure 3: JGRIM: Gridification process

1. Hot-spot identification: A developer identify the particular dependencies and components that will
benefit from the Grid, which are basically the hot-spots for gridification within the application into
which metaservices are injected. In the figure, hot-spots have been sketched with dashed lines.
For example, the implementation of component C may be outsourced to an FGS. Therefore, the
dependency from B to C may be equipped with runtime service discovery and invocation. The
dependency A-D may be enhanced, for instance, with fault tolerance.
Components like C, whose implementation is outsourced to an FGS, are known as external. Con-
versely, components for which an implementation is supplied by the application (e.g. A, B, D) are
called internal. A dependency involving two internal components is an internal dependency, whereas
an external dependency originates when an internal component accesses an external one. JGRIM also
defines another type of dependency called self, which models the case when a component uses its
own methods to implement operations.

2. Coding conventions: This step involves the modification of an application code to ensure that the
application components interact between each other through get/set accessors using the JavaBeans
style. Any reference to a component Comp within the source code must be done by calling a fic-
titious method getComp(), instead of accessing it directly as Comp.operation(). For example, if
an application reads data from a file component, it should be accessed as getFile().read(). Then,
JGRIM takes the modified component code and introduces some minor modifications into it so as to
add the necessary support for DI.

3. Component interface definition: In this step, the developer specifies the interfaces of the internal
and external application components to separate what a component does from its implementation.
For the internal interfaces, this is a common practice in Java, thus most of the time this task is not
necessary. For the external interfaces, it involves defining the method signatures of the third-party
functional services used by the application.

4. Assembly and deployment: JGRIM combines the outputs of (2) and (3) and deploys the newly grid-
ified application on a Grid. The resulting application is a mobile functional Grid service (MFGS),
which migrates its execution based on environmental conditions [35] such as CPU/memory avail-
ability, network latency and bandwidth, etc. Anatomically, an MFGS is composed of a non-mobile
and a mobile part. The non-mobile part is given by a WSDL document describing the interface of the
MFGS (automatically built from the public methods of the original application) and a proxy. This
proxy resides on a specific host of the Grid and is in charge of acting as a bridge between the WSDL
and the mobile part of the MFGS. The mobile part is Grid-enabled code with migratory capabilities
that accesses Grid services through JGRIM metaservices.

The process assumes input applications as being designed under a component-based paradigm. Though this
paradigm is very popular among Java developers, the assumption does not hold for any kind of Java appli-
cation, for example legacy codes or applications having a monolithic structure in terms of object-oriented
design. Nevertheless, the problem of componentizing object-oriented applications has been already ad-
dressed Lee et al. [41], Kim and Chang [42], Li and Tahvildari [43]. We are investigating a similar approach
to supply the above process with an extra transformation step to ensure, prior to the step number (1), that
input applications are component-based.
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3.3. An example: Panoramic image restoration

This section describes the gridification of an application for restoring panoramic images. Target images
are located at a remote repository. Anatomically, the application is structured as a master-worker applica-
tion. The master operates by downloading, via FTP, an image from the repository. Then, it splits the image
into smaller images, assigns each subimage to a worker for restoration, and then joins the results. Finally,
the master encodes the restored image into a specific bitmap format (e.g. JPEG, PNG) that is passed as
a parameter to the restoration process. In the non-gridified application, the input image is split into two
halves. This enables the application to take advantage of dual core and biprocessor CPUs.

Suppose we have already implemented some of the components of the application but without keeping
in mind Grid concerns. Roughly, these components include an ImageRestorer declaring two operations
(restoreImage and restoreSubimage), an FTPClient implementing operations for obtaining file meta-
data (size, permissions, etc.) and transferring files, and a number of helper classes. The idea is then to take
the source code, along with some user-provided configuration (mainly for deployment purposes), and gen-
erate the corresponding gridified application. Since the original application does not provide a component
for image encoding, we will outsource an implementation from the Grid.

The ImageRestorer component materializes the above master that coordinates the whole restoration
process. This component uses the operations of FTPClient to download files. Enhancement of individ-
ual halves of the input image is separately handled by two concurrent threads (workers) that execute the
restoreSubimage method. After the two subimages have been processed, ImageRestorer contacts an
external encoder component to generate the final image in the desired format:

public class ImageRestorer {
private FTPClient f t p C l i e n t ;

public ImageRestorer ( ) {
f t p C l i e n t = new FTPClient ( ) ;

}
public byte [ ] restoreImage ( S t r i n g imageURI , S t r i n g format ) {

f t p C l i e n t . t r a n s f e r F i l e ( imageURI , " / tmp / tmpImage " ) ;
byte [ ] imageData = loadImage ( " / tmp / tmpImage " ) ;
byte [ ] [ ] halves = s p l i t ( imageData ) ;
/ / Create and s t a r t worker threads
WorkerThread worker0 = new WorkerThread ( this , halves [ 0 ] ) ;
WorkerThread worker1 = new WorkerThread ( this , halves [ 1 ] ) ;
worker0 . s t a r t ( ) ; worker1 . s t a r t ( ) ;
/ / Wait u n t i l c h i l d threads are f i n i s h e d
worker0 . j o i n ( ) ; worker1 . j o i n ( ) ;
byte [ ] r e s u l t = combine ( worker0 . getResu l t ( ) , worker1 . getResu l t ( ) ) ;
/ / I n t e r a c t i o n wi th an ex te rna l component
return encoder . encode ( r e s u l t , format ) ;

}
public byte [ ] restoreSubimage ( byte [ ] imageData ) { . . . }

}

public class FTPClient {
public Fi leMetadata getMetadata ( S t r i n g f i l e U R I ) { . . . }
public void t r a n s f e r F i l e ( S t r i n g f i l eURI , S t r i n g l o c a l D i r ) { . . . }

}

public class WorkerThread extends Thread {
private ImageRestorer r e s t o r e r = nul l ;
private byte [ ] h a l f = nul l ;
private byte [ ] r e s u l t = nul l ;

public WorkerThread ( ImageRestorer res to re r , byte [ ] h a l f ) {
th is . r e s t o r e r = r e s t o r e r ;
th is . h a l f = h a l f ;

}
public void run ( ) {

r e s u l t = r e s t o r e r . restoreSubimage ( h a l f ) ;
}
public byte [ ] ge tResu l t ( ) {

return th is . r e s u l t ;
8
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Figure 4: The image restoration application: components and dependencies

Figure 4 illustrates the components of the application and the relationships between them. For the sake of
clarity, we will not follow the gridification process in the exact order presented in Section 3.2. Instead, we
will take one hot-spot at a time from the figure and incrementally carry out the subsequent gridification
activities, that is, steps (2) and (3) of the gridification process.

3.3.1. Hot-spot 1: The ImageRestorer-encoder dependency
The first hot-spot is the ImageRestorer-encoder dependency. We have to provide the expected in-

terface at the client-side for the encoding service, and then alter the code of ImageRestorer so that all
invocations to operations of the encoder component are performed through a call to a fictitious getEn-
coder() method. JGRIM will then automatically inject metaservices capable of dynamically discovering
an FGS adhering to that interface. In the example, the expected operations for encoder have been defined
in ImageEncoderIF. Processing this information with JGRIM results in:

1 public class ImageRestorer extends j g r im . core .MFGS {
2 . . .
3 ImageEncoderIF encoder = nul l ;
4
5 public ImageEncoderIF getEnconder ( ) {
6 return th is . enconder ;
7 }
8 public void setEncoder ( ImageEncoderIF encoder ) {
9 th is . encoder = encoder ;

10 }
11 public byte [ ] restoreImage ( S t r i n g imageURI , S t r i n g format ) {
12 . . .
13 / / I m p l i c i t i n t e r a c t i o n wi th an FGS
14 return getEncoder ( ) . encode ( r e s u l t , format ) ;
15 }
16 }
17
18 public inter face ImageEncoderIF {
19 public byte [ ] encode ( byte [ ] imageData , S t r i n g format ) ;
20 }

Gridified applications extend the MFGS class, which implements basic primitives for performing applica-
tion mobility and exporting application methods as Web Services. Besides, note that JGRIM also added a
new instance variable (encoder) and proper getter/setters methods for accessing this variable (lines 3-10).
These instructions allows JGRIM to transparently incorporate service discovery and invocation capabil-
ities to ImageRestorer by means of DI. Basically, these metaservices are implemented by classes that
provide runtime inspection of UDDI registries and invocation of Web Services, which are associated to the
application through an automatically generated file:
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<?xml version=" 1.0 " encoding="UTF−8" ?>
< !DOCTYPE beans PUBLIC " − / /SPRING / / DTD BEAN 2 . 5 / /EN"

" h t t p : / /www. spr ingframework . org / dtd / spr ing−beans−2.5. dtd ">
<beans>

<bean i d =" mainComponent " c lass=" ImageRestorer ">
<proper ty name=" encoder ">

< r e f l o c a l = " encoderMetaService " / >
< / p roper ty>

< / bean>
<bean i d =" encoderMetaService " c lass=" j g r im . core . JGRIMServiceProxy ">

<proper ty name=" expec ted In te r face " value=" ImageEncoderIF " / >
< / bean>

< / beans>

The configuration file links the aforementioned classes together forming a fully operative application. The
two benefits of this approach are that components are heavily decoupled, since binding to external Grid
services is performed at runtime, and the source code is free from instructions for finding and invoking
these services. In addition, it is very easy to replace the reference to the encoding service for testing
purposes by simply replacing the encoderMetaService component in the configuration file with, for
example, a mock object. Currently, JGRIM is based on Spring [36], a popular DI framework in which all
of the wiring is performed by means of XML files.

3.3.2. Hot-spot 2: The ImageRestorer-ImageRestorer dependency
The restoreImage operation of ImageRestorer has been implemented by issuing two different asyn-

chronous invocations to restoreSubimage, and then combining the results. These calls are inherently
independent between each other, hence they have been implemented to execute concurrently by using
threads. Grids offer many alternatives to threads to handle the execution of parallel computations. These
alternatives come in the form of sophisticated services that, besides parallelism, include desirable features
such as load balancing, data distribution, fault tolerance, and so on. In JGRIM, these services can be
exploited through self dependencies.

Self dependencies originate when a method of a component calls other methods of the same component.
In this way, applying the steps (2) and (3) of the JGRIM gridification process to a self dependency results
in: (a) using get accessors when invoking any embarrassingly parallel method like restoreSubimage,
and (b) defining an interface including all those methods that are subject to concurrent execution. In our
example, we will name this interface SubImageRestorerIF. Then, the gridified source code is:

1 public class ImageRestorer extends j g r im . core .MFGS {
2 . . .
3 SubImageRestorerIF s e l f = nul l ;
4
5 public SubImageRestorerIF ge tSe l f ( ) {
6 return th is . s e l f ;
7 }
8 public void s e t S e l f ( SubImageRestorerIF s e l f ) {
9 th is . s e l f = s e l f ;

10 }
11 public byte [ ] restoreImage ( S t r i n g imageURI , S t r i n g format ) {
12 . . .
13 byte [ ] [ ] halves = s p l i t ( imageData ) ;
14 byte [ ] r e s u l t 0 = ge tSe l f ( ) . restoreSubimage ( halves [ 0 ] ) ;
15 byte [ ] r e s u l t 1 = ge tSe l f ( ) . restoreSubimage ( halves [ 1 ] ) ;
16 / / Wait u n t i l computat ions are f i n i s h e d
17 byte [ ] r e s u l t = combine ( resu l t 0 , r e s u l t 1 ) ;
18 . . .
19 }
20 }
21
22 public inter face SubImageRestorerIF {
23 public byte [ ] restoreSubimage ( byte [ ] imageData ) ;
24 }

To Grid-enable the self dependency, the programmer must replace the asynchronous invocations to the
restoreSubimage operation within restoreImage by sequential calls to the same operation through the
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self component (lines 14-15). Similar to the case of the image encoding service, JGRIM automatically
adds a metaservice definition to the configuration file previously shown, and appends the code to support
DI for this component (lines 3-10). The only extra programming convention needed for the mechanism to
work is that the results of the parallel computations must be placed on two different local Java variables
(lines 14-15). Further references to any of these results (e.g. line 17) will transparently block the execution
of restoreImage until they are computed by the metaservice, which dynamically intercepts both calls and
executes them concurrently. Behind scenes, JGRIM further modifies the source code implementing the
container method (i.e. restoreImage) to add the necessary instructions to support this synchronization
mechanism by relying on the concurrency API of the Java 2 Platform.

The advantages of the gridified code are twofold. One one hand, it is free from threading code, thus it
is more clean and legible. Even more important, execution of spawned methods can be handled by using
any of the existing Grid job submission services, which are implemented to exploit distributed processors.
At present, JGRIM utilizes the parallelization and scheduling services of the Satin subsystem of Ibis. In
addition, the materialization of metaservices for using the execution services of ProActive and Condor is
underway. This integration is in principle viable from a technical point of view, since ProActive is also
implemented in Java, and an interface to Condor clusters already exist for this language [44].

3.3.3. Hot-spot 3: The ImageRestorer-FTPClient dependency
The last hot-spot for gridification in the restoration application is the dependency between the Image-

Restorer and FTPClient components. Once more, direct usage of FTPClient is disallowed, thus we have
to replace any access to this object within ImageRestorer by calls to the corresponding getter method
(e.g. getDownloader()). Furthermore, we have to isolate the implementation of FTPClient behind a
generic interface, for example FileDownloader. Note that this practice helps in creating more flexible
component designs. For instance, another concrete component for file downloading (e.g. based on Grid-
FTP [45] instead of plain old FTP) can be easily configured, provided this new component adheres to
FileDownloader, this is, the service interface required by the application.

As mentioned in past paragraphs, with JGRIM, gridified applications are deployed on a Grid in the
form of mobile functional services. Broadly, mobility can bring significant benefits in terms of decreased
latency and bandwidth usage when applications are moved to locally interact with remote data. Particu-
larly, our example application could use mobility for accessing the remote image repository. For example,
an interesting performance improvement may be to move the application to the repository location in those
cases in which the size of the target image file exceeds a certain threshold. In JGRIM, this kind of perfor-
mance tweaks are introduced by means of policies. A policy is a component that mediates between the two
components involved in an internal or external dependency. In this sense, mobile behavior can be added to
the application by associating the following policy to the analyzed hot-spot:

1 import j g r im . core .MFGS;
2
3 public class MovePolicy extends j g r im . p o l i c y . Po l icyAdapter {
4 public void executeBefore ( ) {
5 / / Obtains the f i l e to download from the execut ion contex t o f
6 / / getDownloader ( ) . t r a n s f e r F i l e ( imageURI , " / tmp / tmpImage " )
7 Object [ ] args = getExecContext ( ) . getMethodInvocat ion ( ) . getArguments ( ) ;
8 S t r i n g f i l e U R I = ( S t r i n g ) args [ 0 ] ;
9 Fi leDownloader downloader = ( Fi leDownloader ) getExecContext ( ) . getTargetComponent ( ) ;

10 long f i l e S i z e = downloader . getMetadata ( f i l e U R I ) . getSize ( ) ;
11 i f ( f i l e S i z e > 1048576) {
12 MFGS app = (MFGS) getExecContext ( ) . getSourceComponent ( ) ;
13 / / Move ImageRestorer to the r e p o s i t o r y l o c a t i o n
14 app . moveTo( parseServerLocat ion ( f i l e U R I ) ) ;
15 }
16 }
17 }

Upon each interaction between ImageRestorer and FileDownloader (i.e. the source and target compo-
nents of the hot-spot, respectively), MovePolicy is evaluated by JGRIM. The code within executeBefore
is run just before the execution of an individual operation defined in FileDownloader takes place. Anal-
ogously, developers can specify an executeAfter method. The reified information about the execution
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of operations (source and target components, argument values, etc.) is made accessible to programmers
through the getExecContext method from the policy framework (lines 7, 9 and 12). Concretely, the policy
moves the application to the site hosting the data (line 13) if the size of the image file about to be down-
loaded is greater than 1 Mb. If that is the case, the “downloading” process will be started locally at that
host.

Policies are configured to act upon invocations on specific operations of a target component. In partic-
ular, we want MovePolicy to be activated only when the transferFile operation is called. Consequently,
the configuration file for the application results in:

1 <?xml version=" 1.0 " encoding="UTF−8" ?>
2 < !DOCTYPE beans PUBLIC " − / /SPRING / / DTD BEAN 2 . 5 / /EN"
3 " h t t p : / /www. spr ingframework . org / dtd / spr ing−beans−2.5. dtd ">
4 <beans>
5 <bean i d =" mainComponent " c lass=" ImageRestorer ">
6 . . .
7 <proper ty name=" downloader ">
8 < r e f l o c a l = " po l i cyMetaserv ice " / >
9 < / p roper ty>

10 < / bean>
11 . . .
12 <bean i d =" po l i cyMetaserv ice "
13 c lass=" org . spr ingframework . aop . framework . ProxyFactoryBean ">
14 <proper ty name=" p roxy In te r f aces " value=" Fi leDownloader " / >
15 <proper ty name=" interceptorNames ">
16 < l i s t >
17 <value>po l i cyExecu to r< / value>
18 <value>downloader< / value>
19 < / l i s t >
20 < / p roper ty>
21 < / bean>
22 <bean i d =" po l i cyExecu to r " c lass=" j g r im . core . Po l icyExecutor ">
23 <proper ty name=" p o l i c y ">
24 < r e f l o c a l = " movePolicy " / >
25 < / p roper ty>
26 <proper ty name=" act ivateOn ">
27 < l i s t >
28 <value> t r a n s f e r F i l e < / value>
29 < / l i s t >
30 < / p roper ty>
31 < / bean>
32 <bean i d =" movePolicy " c lass=" MovePolicy " / >
33 <bean i d =" downloader " c lass=" FTPClient " / >
34 < / beans>

JGRIM injects into ImageRestorer a policyMetaservice component (line 8), which intercepts the calls
to methods defined in FileDownloader (line 14) and delegates their execution first to the policy (line 17)
and then to the target component (line 18, the FTP client). Methods whose execution must be intercepted
by the metaservice are listed in the activateOn property (line 26).

Besides being useful for non-invasively introducing mobility to applications, policies are also employed
to customize the way an application interacts with external FGSs. For example, let us suppose a JGRIM
application is deployed on a Grid of several sites each hosting a replica of an FGS-wrapped database,
which is accessed by the Grid-enabled application. Additionally, let us assume that bandwidth between
sites could drastically vary along time. Under these conditions, bandwidth may significantly affect appli-
cation response time. Particularly, accessing a database replica through a busy network link might decrease
performance. Through a policy, we can control which candidate FGS is chosen for serving each application
request and, for example, select the service instance that offers the best transfer capabilities.

The rest of the paper contains a detailed evaluation of JGRIM so as to assess and report the practical
benefits of the gridification process exposed so far.
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4. Experimental evaluation

This section presents experiments that were carried out in order to provide empirical evidence about
the practical soundness of JGRIM. In [13], we conducted a preliminary comparison between JGRIM and
similar approaches to gridification based on classic source code metrics. Here, we report a more detailed
evaluation of JGRIM by quantifying gridification effort, and measuring execution time and network usage.

In short, ProActive, Ibis and JGRIM were employed to gridify existing implementations of two different
applications, namely the k-NN algorithm [46] and the application for enhancement of panoramic pictures
presented previously. After gridification, code metrics on the Grid-enabled applications were taken to
quantitatively assess how hard is to port these applications to our Grid setting with either of the three
alternatives. In addition, experiments were conducted to test various runtime aspects of the resulting Grid
applications.

In the next subsection, we describe the characteristics of our experimental Grid setting. Then, subsec-
tions 4.2 and 4.3 analyze the gridification of the k-NN algorithm and the image restoration application,
respectively.

4.1. The Grid setting

dani

Cluster ISISTAN

GridCluster1 GridCluster2 GridCluster3

GridCluster4 GridCluster5 VPNServer

Wired router

Cluster Bianca

cmateos-home-pc

(Internet Proxy)

cmateos-notebook

Direct 
network link

Cluster Ale

ADSL (Internet Proxy)

ale

Wireless router

(Internet Proxy)

Figure 5: Grid used for the experiments

Figure 5 depicts the anatomy of the Grid that was used to run the experiments. Specifically, three
clusters named ISISTAN, Bianca and Ale were linked through a virtual private network by using Open-
VPN [47], a software for creating point-to-point encrypted tunnels between Internet-connected computers.
The machines of the ISISTAN cluster are part of a larger, public network and share the 2 MB ADSL In-
ternet link. In contrast, Bianca and Ale clusters are local private networks with exclusive access to their
associated links.

An OpenVPN server was installed on the “VPNServer” machine (ISISTAN cluster) thus establish-
ing a simple star configuration for the VPN. Preliminary network benchmarks showed that, on average,
communication between nodes of the Bianca or the Ale cluster and any machine of the ISISTAN cluster
experienced a latency in the range of 60-90 milliseconds, whereas communication between Bianca and Ale
clusters was subject to a latency of 100-150 milliseconds. All tests described further in this paper were
performed during night time (approximately from 11 P.M. to 8 A.M.), that is, when Internet traffic is lower
and network latency is less variable. Furthermore, all tests were launched from the “ale” machine.
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Table 2: CPU and memory specifications of the Grid machines

Machine name CPU model CPU frequency Memory (MB)

GridCluster1 Pentium III (Coppermine) 852 Mhz. 256

GridCluster2 Pentium III (Coppermine) 852 Mhz. 256

GridCluster3 Pentium III (Coppermine) 852 Mhz. 384

GridCluster4 Pentium III (Coppermine) 852 Mhz. 384

GridCluster5 Pentium III (Coppermine) 798 Mhz. 256

VPNServer Intel Pentium 4 2.80 Ghz. 512

cmateos-home-pc AMD Athlon XP 2200+ 1.75 Ghz. 256

cmateos-notebook Intel Core2 T5600 1.83 Ghz. (per core) 1.024

ale AMD Athlon 64 X2 Dual
Core 3.600+

2 Ghz. (per core) 1.024

dani AMD Sempron 1.9 Ghz. 512

Table 2 details the hardware specifications (CPU5 and memory) of the nodes of our Grid setting. Ma-
chines were equipped with Ubuntu Linux 2.6.20 and the Sun JDK 1.5.0. Finally, to keep the system
clocks accurately synchronized across the Grid, NTP6 was used. NTP is a protocol for synchronizing the
clocks of computer systems over packet-switched networks that is designed to resist the effects of vari-
able latency. Both CPU power and memory availability varied not only among different clusters, but also
among machines of the same cluster. Similarly, communication bandwidth and latency across clusters were
quite different. In fact, Grids are characterized by being an arrangement of (usually very) heterogeneous
machines connected through network infrastructures with different capabilities. In this sense, we used a
testbed with these characteristics so as to perform the experiments on a realistic Grid setting.

4.2. The k-NN algorithm

The k-nearest neighbor algorithm (k-NN for short) is a supervised learning technique. k-NN classifies
a new object (or instance) by assigning to it the most common class label among its k nearest neighbors
in a multidimensional feature space (or dataset). In other words, k-NN finds the k objects (or training
instances) which are closest to a given input instance. The algorithm is CPU-intensive, hence it is a suitable
application to be deployed on a Grid.

Suppose we have a dataset containing data about paper tissues, where each training instance is repre-
sented by two features (acid durability and strength) and a class label that indicates whether a particular
tissue is good or not. Table 3 shows four training samples of this hypothetical dataset. Now, if a factory
produces a new paper tissue that pass a laboratory test with acid durability = 3 and strength = 7, k-NN can
establish the quality of the paper based on the new sample and the information stored in the dataset.

The k parameter of k-NN is a positive integer, typically small. The best choice of k depends upon the
data. Usually, larger values of k reduce the effect of noise on the classification, but make boundaries be-
tween classes less distinct. A good k can be selected by various heuristic techniques (e.g. cross-validation).
However, to experiment with time-consuming computations, performance tests used a large, fixed value
for k.

A pseudo code of k-NN is shown in Algorithm 1. The original version of the application was im-
plemented as a single Java class accessing a file-based dataset through a Dataset class. The application
provided two operations classifyInstance and classifyInstances for classifying one instance and a list of

5Dual core features were disabled due to limitations in the current implementation of JGRIM
6The Network Time Protocol project http://www.ntp.org
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Table 3: A sample dataset with four training instances

Acid durability
(seconds)

Strength
(kg/square meter)

Class
(quality)

7 7 Bad

7 4 Bad

3 4 Good

1 4 Good

Algorithm 1 The k-nearest neighbor algorithm
procedure CLASSIFY(instance, k) . Returns the class label associated to an instance

double[] attrs← GETATTRIBUTES(instance)
Vector neighbors← INITIALIZENEIGHBORSLIST(k)
for all trainingInstance ∈ Dataset do

double[] trainingAttrs← GETATTRIBUTES(trainingInstance)
String trainingClassLabel← GETCLASSLABEL(trainingInstance)
double distance← EUCLIDEANDISTANCE(instance, trainingInstance)
SORTEDINSERTION(neighbors,distance,trainingClassLabel) . neighbors is kept sorted

(smaller distances first)
if LISTSIZE(neighbors) > k then

REMOVELAST(neighbors)
end if

end for
return MOSTFREQUENTLABEL(neighbors)

end procedure

instances, respectively. The latter was implemented as a loop that iterates the input list and calls classify-
Instance. On the other hand, Dataset included a method for reading a block of training instances and a
method for obtaining the number of instances of the dataset. During gridification, Dataset was replaced
with an FGS, and parallelism and policies were introduced into the application.

The dataset file was wrapped with a Web Service exposing analogous operations to those implemented
by the Dataset class, and a replica of this service (along with the associated data) was deployed on each
cluster of the above Grid. The dataset contained 10.000 records, each described by 20 attributes with
randomly-generated numerical values, and a numerical class label representing three predefined categories.
Data was generated by using the Weka7 data mining toolkit. Finally, a UDDI registry pointing to the WSDL
definitions of the dataset services was installed on the ISISTAN cluster.

Section 4.2.1 describes the effort incurred by each Grid platform when gridifying k-NN. Section 4.2.2
evaluates performance issues.

4.2.1. Analysis of gridification effort
Certainly, measuring gridification effort and quantifying the impact of this process on the application

code is difficult. Therefore, we elaborated a metric to estimate the effort when gridifying k-NN with Ibis,
ProActive and JGRIM. Essentially, the estimation of the effort invested in gridification was performed by
comparing the values of relevant code metrics for both the original application and its gridified counterparts.
Compilation units implementing the dataset service were not considered, because the experiments were
carried out as if the Grid (and therefore its services) was already established. Specifically, we employed
the following code metrics [48, 49, 50]:

7Weka http://www.cs.waikato.ac.nz/ml/weka

15



On the Evaluation of Gridification Effort and Runtime Aspects of JGRIM Applications. (C. Mateos,
A. Zunino, M. Campo). Future Generation Computer Systems: The International Journal of
Grid Computing: Theory, Methods and Applications. Elsevier Science. ISSN: 0167-739X. Ed.:
P. Sloot. Vol. 26, Num. 6, pp 797-819. 2010. DOI: 10.1016/j.future.2010.02.014

• TLOC (Total Lines Of Code) counts the total non-blank and non-commented lines across the entire
application code, including the code implementing the k-NN algorithm itself, plus the code for in-
teracting with the dataset, performing Grid exception handling and taking advantage of execution
parallelization. TLOC is directly related to the extra implementation effort that is necessary to pre-
pare the source code of an ordinary application to execute on a Grid platform.

• PLOC (Platform-specific Lines Of Code) counts the number of code lines that access the underly-
ing API of the target Grid platform. Specifically, instructions pointing to API classes or invoking
methods defined in these classes are computed as a PLOC line.

The larger the value of PLOC, the more the level of tying between the application code and the
Grid platform API. Clearly, it is highly desirable to keep PLOC as low as possible, so as to avoid
applications to be dependent on a particular Grid platform, which in turn hinders their portability to
other platforms. Intuitively, as PLOC grows, so does the time developers must spent in learning the
corresponding platform API.

• NOC/NOI (Number Of Classes/Interfaces) represent the number of user-implemented application
classes/interfaces, that is, not provided by either the Grid platform, the JVM or third-party libraries.
Although simple, these metrics are useful to give an idea of the amount of object-oriented design
present in the application.

• NOT (Number Of Types) computes the number of object types (classes and interfaces) which are
defined in, and referenced from within, any of the compilation units of the application. NOT does
not consider neither the Java primitive types nor the JVM bootstrap classes defined in the java.lang
package. NOT can be viewed as the sum of NOC, NOI and the number of classes/interfaces used after
the Java reserved keywords extends, implements or import. As a corollary, NOT − (NOC +NOI)
yields as a result the number of classes/interfaces not considered by the NOC/NOI metrics, that is,
the object types which are defined in either the runtime system API or third-party libraries. A class
which is simultaneously subclassed and imported –or similarly, an interface which is implemented
and imported– is counted as one object type.

In order to perform a fair comparison, the following tasks were carried out on the source code of the
applications before taking metrics:

• The source code was transformed to a common formatting standard, thus sentence layout was uni-
form across the different implementations of the application.

• Java import statements within compilation units were optimized by using the source code optimizing
tool of the Eclipse IDE. This tool provides support for automatic import resolution, thus leaving in
the application code only those classes/interfaces which are actually referenced by an application.

• Applications were Java 1.5 compliant, but Java generics across the source code were removed to
avoid counting a line including a declaration of the form <PlatformClass> as a PLOC line. Other-
wise, variants repeatedly using this feature across the code (e.g. in method signatures, data structure
declarations, etc.) would have been unfairly resulted in greater PLOC.

Besides, all Grid-enabled versions were implemented by the same person. The developer had very good
expertise on distributed programming, and a minimal background on the facilities provided by either of
the three Grid platforms. In this way, the analysis is not biased by the experience, or by different design
and implementation criteria that potentially might have arisen if more than one person were involved in the
gridification of the application.

Table 4 shows the resulting metrics for each implementation of the k-NN application: original, Ibis,
ProActive and JGRIM. Figure 6 (a) depicts TLOC, whereas Figure 6 (b) shows the overhead in terms of
extra source code lines.
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Table 4: Gridification of the k-NN algorithm: code metrics

Implementation TLOC PLOC NOC NOI NOT Code overhead (%)

Original 192 – 4 0 11 –

Ibis 1477 10 25 3 79 669.27

ProActive 404 11 5 0 37 110.42

JGRIM 166 4 4 2 12 -13.54
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Figure 6: TLOC and source code overhead (%) after gridification

Ibis. The size of the source code of the Ibis application was 1477 lines (seven times bigger than the original
implementation). As a consequence, only a small percentage of the code resulted in pure application logic,
since it was necessary to provide a lot of code mostly to implement and use a client-side proxy to the
dataset Web Service. Therefore, NOC and NOT also suffered (six and seven times bigger, respectively),
since more application classes and interfaces were created, and also extra APIs for low-level interaction
with Web Services were imported, because Ibis does not support Web Services.

As the original k-NN application was thought to be executed on a single core machine, its classifyIn-
stances operation was straightforwardly implemented by means of a loop control structure that iteratively
feeds the classifyInstance method with the elements of the list received as an argument. To take advan-
tage of parallelism, classifyInstances was rewritten to use the Ibis method spawning mechanism, thus
each invocation to classifyInstance is concurrently executed by the Ibis platform. In this way, signifi-
cant performance benefits were obtained at the cost of having an extra implementation effort since more
changes to the original application were introduced. Figure 7 shows a simplified class diagram of the
resulting application. Communication and coordination between the execution of classifyInstances and
spawned computations was achieved by means of a shared object [51], a mechanism provided by Ibis to
transparently share and update the state of a Java object among the distributed spawned computations of an
executing application.

To further optimize the application, IbisDatasetClient was implemented to choose, upon classification
of a particular instance, the service replica that is located at the cluster where the associated spawned
computation is executing. The client operates as its own service broker: when data needs to be read,
the client simply performs a ping to select the most appropriate WSDL description –in terms of network
latency– from a list of known candidate addresses. Consequently, better interaction with the dataset was
achieved. However, this mechanism forced the source code to be tied to specific dataset services, therefore
lacking reusability as the information for invoking a service instance on a Grid (mostly its WSDL location)
or the list of available instances for a service may vary along time. Even when this problem can be solved
by employing a service registry, or alleviated by passing the list of available instances as a parameter to

17



On the Evaluation of Gridification Effort and Runtime Aspects of JGRIM Applications. (C. Mateos,
A. Zunino, M. Campo). Future Generation Computer Systems: The International Journal of
Grid Computing: Theory, Methods and Applications. Elsevier Science. ISSN: 0167-739X. Ed.:
P. Sloot. Vol. 26, Num. 6, pp 797-819. 2010. DOI: 10.1016/j.future.2010.02.014

<<realize>>

<<interface>>

Serializable

<<realize>>

SatinObject (from ibis.satin)

<<interface>>

Spawnable (from ibis.satin)

ValueHolder

ValueHolder(instances : int)

setValue(child : int,value : double) : void

getResults() : double[]

array : double[]

<<interface>>

WriteInterface

setValue(child : int,value : double) : void

<<realize>>

SharedObject (from ibis.satin)

IbisDatasetClient

IbisDatasetClient()

selectEndpoint() : String

parseHostAddr(fullUrl : String) : String

selectFromPair(stra : String,strb : String) : String

pingHost(host : String) : double

setUp() : void

getStub() : DatasetIF_Stub

numInstances() : int

readItem(itemNumber : int) : Instance

readRange(startItemNumber : int,

datasetService : DatasetService

endpoint : String

stub : DatasetIF_Stub

endItemNumber : int) : Instance[]

<<interface>>

KNNSpawnInterface

spawn_classify(holder : ValueHolder,i : Instance,
k : int,child : int) : void

KNNAlgorithm

KNNAlgorithm()

getInstances(startIndex : int) : Instance[]

classifyInstance(instance : Instance,k : int) : double

classifyInstances(instances : Instance[],k : int) : double[]

spawn_classify(holder : ValueHolder,i : Instance,k : int,

dataset : IbisDatasetClient

child : int) : void

(from java.io)

<<interface>>

WriteMethodsInterface (from ibis.satin)

<<realize>>

Figure 7: Class diagram of the Ibis implementation of the k-NN application

the application, the heuristic for service selection still remains hardwired in the dataset client code. In
consequence, using other selection heuristic requires to reimplement/refactor this code.

ProActive. The ProActive application introduced a source code overhead near to 110%. The PLOC was
slightly greater than for the Ibis case (11 lines, less than 3%) but, as indicated by NOT, the number of object
types were reduced to less than a half (37 against 79). Figure 8 shows the class diagram of this application.
Note that the class design is clearly much simpler than that of Ibis. However, some problems arose when
gridifying with ProActive.

ProActive also lacks full support for using Web Services, as it only offers a set of classes for calling
either SOAP-based services [52] or active objects. Web Service consumption within a client application
is carried out by working directly with the SOAP APIs, since ProActive does not provide abstractions
to support other bindings to services such as CORBA or EJB. In this sense, since all dataset replicas
were initially wrapped with a non-SOAP Web Service, it was necessary to implement an active object for
interfacing the data, expose it as a SOAP service, and finally write a client to use it. Directly using SOAP
instead of a more generic support for Web Service invocation significantly reduced both NOC and NOT, but
caused the application to be tied to a specific transport protocol for interacting with services. Furthermore,
in order to allow efficient interaction between the application and the dataset, ProActiveDatasetClient
was coded to employ the latency-based replica selection heuristic described before. In consequence, the
dataset client shares the reusability and flexibility problems suffered by its Ibis counterpart.

Like Ibis, parallelization of classifyInstances was achieved by concurrently classifying individual
instances at different Grid hosts. Specifically, a master-worker approach was followed in which, for each
instance, a clone of the KNNAlgorithm class in the form of an active object is created, programmatically
deployed on a particular host, and asked to perform a single classification. Whenever an active object
becomes idle, another job is sent to it. Synchronization between the parent active object (i.e. the main
execution thread of the application) and these clones was accomplished through the ProActive wait-by--
necessity mechanism [23], which was used to block the execution of classifyInstances until any worker
active object finishes its assigned job.
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Figure 8: Class diagram of the ProActive version of the k-NN application

Sadly, some code to complement the ProActive synchronization support had to be supplied. The pur-
pose of this code was mainly to implement behavior for keeping track of busy workers as well as assigning
pending tasks to idle ones. Another alternative that was explored in an attempt to avoid this problem was
to delegate job execution management to the platform. ProActive provides the so-called technical ser-
vices, which allows developers to add non-functional concerns such as load balancing and fault tolerance
to their applications without modifying their functional code [24]. However, at the time the performance
experiments were performed, load balancing based on technical services was unstable.

Finally, another negative aspect that arose as a consequence of parallelization was related to the ProAc-
tive wait-by-necessity mechanism. Basically, this mechanism caused the interface of the gridified applica-
tion to differ from the interface of the original implementation, because a method was changed its return
type (i.e. replace the type with a ProActive API class) in order to enable the method to be called asyn-
chronously. Particularly, the original return type of classifyInstance was modified to return instances of
the GenericTypeWrapper ProActive built-in type. Consequently, the interface of the gridified application
contained non-standard datatypes and interaction conventions. From the point of view of service-oriented
software, this makes the interface of the ordinary version of the application no longer valid, as the gridified
application does not adhere to that interface anymore. Thus, external applications (e.g. other active objects)
relying on methods of k-NN have to be modified accordingly.

JGRIM. The JGRIM implementation resulted in 166 lines of code, plus 126 lines of DI-related configura-
tion automatically generated by JGRIM (similar values were obtained for a variant using a caching policy,
which is described later). The code was even smaller than the non-gridified version, since dataset access is
transparently performed through discovery and invocation metaservices. Besides, exceptions caught when
calling services (e.g. communication errors, timeouts, etc.) are mostly handled at the platform level and
not at the application level, which helps in reducing the gridification effort and clarifying the code.

The class diagram of the JGRIM implementation of k-NN is illustrated in Figure 9. It is worth
emphasizing that the tasks of extending the MFGS and PolicyAdapter classes, adding proper instance
variables/setters/getters, and realizing DatasetInterface and ParallelMethodInterface were automati-
cally performed by JGRIM. From the diagram, it can be seen that the application logic (KNNAlgorithm)
does not directly reference concrete components providing Grid behavior.

The component decoupling and metaservice injection capabilities featured by JGRIM enabled to im-
plement the interaction with the dataset service with little coding effort. Only few lines (those invoking
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Figure 9: Class diagram of the JGRIM implementation of the k-NN application

dataset operations) were altered to use the corresponding getter, which also made the resulting code very
clean and easy to understand. Moreover, introducing and testing further improvements over the algorithm
outside the Grid setting is straightforward, since another implementation for the dependency to the dataset
(e.g. a mock Java object) can be easily configured without modifying the application code. This is not
always the case in Ibis and ProActive, since the portions of applications that are tied to Grid technologies
or configuration have to be rewritten.

A policy materializing exactly the same service selection heuristic used by the Ibis and ProActive
implementations was configured for the JGRIM application. Apart from its benefits in terms of flexibility
and reconfigurability, an interesting aspect of using policies is that it concentrated the underlying platform
API within a few classes that were external to the original application code. Besides using less API code
than Ibis and ProActive (4 lines against 10/11 lines) all PLOC lines of the JGRIM application were located
exclusively in the classes implementing policies, which made the application logic free from platform code.
These PLOC lines were mostly calls to the profiling services of the JGRIM API, which allows developers
to query the status of hardware and network resources.

The aspect of the JGRIM solution that demanded more attention from the developer was parallelism.
As explained in past paragraphs, JGRIM complements self dependencies with a coordination technique
that works by blocking the execution of an application the first time it reads the result of an unfinished
parallel computation. As a consequence, the technique is by far less effective if an operation of a self
dependency is called inside a loop control structure which accesses the result of a call before another call
takes place. For example, dumbly replacing this by a self dependency in the original implementation of
classifyInstances would have resulted in a code similar to:

1 public double [ ] c l a s s i f y I n s t a n c e s ( Ins tance [ ] instances , i n t k ) {
2 double [ ] r e s u l t = new double [ ins tances . leng th ] ;
3 for ( i n t i = 0 ; i < ins tances . leng th ; ++ i ) {
4 double iC lass = g e t s e l f ( ) . c l a s s i f y I n s t a n c e ( ins tances [ i ] , k ) ;
5 r e s u l t [ i ] = iC lass ;
6 }
7 return r e s u l t ;
8 }

, which executes classification sequentially, as the computation of the class label associated to instances[i+1]
do not starts until the class value of instances[i] is available. In other words, the execution remains blocked
at line 5 until the computation started at line 4 calculates and assigns a value to the iClass variable.

Parallelization of classifyInstances was achieved by splitting its original implementation into two
new operations: a method keeping the original interface of classifyInstances that accesses, through a
self dependency, another method that actually classify a list of instances. To take advantage of the Ibis
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parallelization services, the latter method was implemented in a recursive way by following the Ibis coding
conventions. The resulting code was:

public double [ ] c l a s s i f y I n s t a n c e s ( Ins tance [ ] instances , i n t k ) {
return g e t s e l f ( ) . c l a s s i f y I n s t a n c e s ( instances , k , 0 , ins tances . leng th ) ;

}

public double [ ] c l a s s i f y I n s t a n c e s ( Ins tance [ ] instances , i n t k ,
i n t s t a r t , i n t end ) {

i f ( end − s t a r t == 1 ) {
double iC lass = c l a s s i f y I n s t a n c e ( ins tances [ s t a r t ] , k ) ;
return new double [ ] { iC lass } ;

}
i n t mid = ( s t a r t + end ) / 2 ;
double [ ] l e f t = c l a s s i f y I n s t a n c e s ( instances , k , s t a r t , mid ) ;
double [ ] r i g h t = c l a s s i f y I n s t a n c e s ( instances , k , mid , end ) ;
double [ ] r e s u l t = new double [ l e f t . l eng th + r i g h t . leng th ] ;
System . arraycopy ( l e f t , 0 , r e s u l t , 0 , l e f t . l eng th ) ;
System . arraycopy ( r i g h t , 0 , r e s u l t , l e f t . length , r i g h t . l eng th ) ;
return r e s u l t ;

}

In this way, the execution of classifyInstances(Instance[], int, int, int) is delegated to an external ex-
ecution service, in this case Ibis, and the signature of the original classifyInstances method is maintained.
Therefore, the resulting MFGS exposes the same service interface as the original application. Additionally,
note that the transformation did not require to use any Grid API code at all. Finally, many simple methods
can be found in the literature to manually convert from iterative to recursive code, and vice versa.

The situation described before is an example of a common tradeoff in parallel programming: indepen-
dence from programming APIs versus flexibility to control application execution [53]. At the programming
language level, the approaches to parallel processing can be classified into implicit or explicit. Implicit
parallelism allows programmers to write their programs without any concern about the exploitation of par-
allelism, which is instead automatically performed by the runtime system. Conversely, languages based on
explicit parallelism offer synchronization/coordination primitives for describing the way parallel compu-
tations take place. The programmer has absolute control over parallel execution, thus it is feasible to take
advantage of parallelism to implement very efficient applications. However, programming with explicit
parallelism is more difficult, since the burden of initiating, stopping and synchronizing parallel executions
is placed on the programmer.

Platforms like ProActive and to a lesser extent Ibis are designed to provide explicit parallelization, as
they are performance-oriented. The programmer has finer control of parallelism, but gridified applications
are more difficult to understand and to maintain. JGRIM promotes implicit parallelism, which does not
require to explicitly use extra API code. In other words, JGRIM not only takes care of performance, but
also pays attention to portability, maintainability and legibility of gridified code.

Discussion. An interesting result of the evaluation is the size of the compiled versions of the different
k-NN implementations. Table 5 shows bytecode information, given by the number of generated .class files
and the total size (in Bytes) of these files after compilation, and plugging information, given by the number
of total lines of code (and PLOC lines) destined to run the applications on our Grid.

Table 5: Characteristics of the k-NN implementations upon execution on the Grid setting

Implementation # of
.class

Bytecode
size

Bytecode
overhead (%)

Plugging lines
(regular/PLOC)

Original 4 8242 – –

Ibis 45 111452 1252 43/0

ProActive 5 17750 115 72/15

JGRIM 13 32028 288 48/4
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After source code gridification and compilation, the binary size of the ProActive implementation was
about 17 KB, versus 31 KB and 108 KB of the JGRIM and Ibis, respectively. In this latter case, though
much functionality for interacting with the Web Service dataset was added to the original application (re-
sulting in approximately 74 KB of bytecode), the final deployment generated a lot of .class files for support-
ing parallelism, managing shared objects and carrying out platform-specific object serialization, therefore
increasing the amount of bytecode of the whole application. Thus, transferring the code for execution on
a remote host will require more bandwidth than either the ProActive and JGRIM implementations. At
present, the Ibis platform does not support automatic bytecode transfer for applications.

The bytecode of the ProActive solution was about a half of the bytecode of the JGRIM application.
However, it is worth noting that ProActive dynamically adds mobility to applications by enhancing their
bytecode not at deployment time, but at runtime, thus this overhead is not present in the above results
because it is very difficult to measure. On the other hand, it was determined that a big percentage of
bytecode for the JGRIM implementation were instructions for dealing with thread-level serialization and
migration, and bridging the application with the Ibis services, this latter representing a 72% of the total
bytecode. In fact, the binary size without this support was even smaller than the compiled version of
the original k-NN implementation. In this sense, to make the binary code lighter and more compact, at
least in appearance, a technique for instrumenting bytecode similar to the one used by ProActive could
be implemented. Basically, the idea is to develop a special Java class loader that instruments applications
at runtime, thus dynamically enabling them for being parallel as well as mobile. In this way, dynamic
code transfer is more efficient: when a host does not have the necessary bytecode to execute a JGRIM
application, the binary code that is transferred to it is just the non-instrumented version, thus saving network
bandwidth. In addition, a mechanism for caching instrumented classes could be employed so as to avoid
instrumenting the same application many times.

Table 5 also includes the amount of source code that was implemented to execute the applications, and
how much of this code was concerned with accessing the underlying platform API. To a certain extent,
the amount of implemented lines can be interpreted as an indicator of the effort demanded by either of
those platforms to execute a gridified application onto the Grid. Quantifying this effort is important since
a major goal of Grids is to allow users to run applications in a plug and play fashion. Taking into account
that learning a Grid API is indeed a time-consuming task, the effort can be approximated by the following
formula:

PlugE f f ort = (PlugLines−PLOCPlug)+PLOCPlug ∗APIFactor

where APIFactor is a numeric value that represents the complexity of the platform API being used (i.e.
ProActive, Ibis or JGRIM). The formula adjusts the lines representing Grid code to incorporate the effort
invested by a programmer in learning these APIs. As here defined, APIFactor is highly influenced by how
much the programmer knows about a particular Grid API and its associated abstractions before performing
gridification. In our experiments, as the k-NN application was gridified by only one person who did not
have a solid knowledge about any of the platforms, this influence is not present. In addition, since the
developer had a good background on distributed and parallel programming, the difficulty in learning each
API was similar. Hence, we can assume that APIFactorIbis =APIFactorProActive =APIFactorJGRIM , which
means the developer spent almost the same time to learn each one of the three APIs.

The above formula is a rough approximation to truly quantifying the necessary effort to execute a
gridified application on a Grid. Certainly, many aspects intimately related to Grid application execution
and deployment (e.g. creating/editing configuration files, performing network-specific settings, initiating
the execution of the application itself, and so on) are obviously out of the scope of this formula. However,
as the purpose of this article is not to measure gridification effort beyond implementation code, the formula
is a good approximation.

We can extend this idea to take into account the code metrics reported previously to obtain an esti-
mation of the effort incurred by each platform in gridifying an application. Two fundamental aspects that
characterize the existing gridification tools are concerned with how much redesign and code modification
(within compilation units) they impose on input applications [12]. Hence, the overall gridification effort
can be thought as composed of three different effort factors: restructuring the application (e.g. merging
or splitting components), adapting the code of its individual compilation units, and plugging the resulting
application into a Grid (modeled by PlugE f f ort).
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Since the implementation language of the original k-NN application and the gridified applications is
the same (Java), we can obtain an estimation of the effort, in terms of source code lines, necessary to carry
out this transformation, plus the effort to put the application to work, by the formula:

GE (Gridi f icationE f f ort) = ReimplE f f ort +RedesignE f f ort +PlugE f f ort

where:

ReimplE f f ort = |T LOCGrid−T LOCOrig|+PLOC ∗APIFactor

PlugE f f ort = (PlugLines−PLOCPlug)+PLOCPlug ∗APIFactorPlug

ReimplEffort is computed as the difference between the amount of source code lines of the original
and the gridified application, plus the adjustment of PLOC lines. If the difference is positive, extra lines
to the original implementation are added, whereas a negative difference indicates that the size of the new
application is smaller. To model these cases with a single expression, we assume that adding code lines
is as laborious as removing lines from the original application. As ProActive, Ibis and JGRIM focus on
gridifying by modifying the compilation units of an application but not its structure, RedesignE f f ort was
assumed to be zero.

Intuitively, APIFactor at implementation time should always be greater than the one included in the
computation of PlugE f f ort, because at plugging time the developer is likely to be more familiarized with
the Grid programming API. In our experiments, this rule does not hold since the portions of the platform
APIs (i.e. object types) that were used when performing both steps were disjoint. Then, APIFactor at
implementation and plugging time were the same, and they were both set to 30 (i.e. a PLOC line is worth
30 regular code lines). Although this factor was determined arbitrarily, in the future it may be obtained
from experiences in gridifying similar applications.

As the gridification processes of Ibis, ProActive and JGRIM produce Java applications, comparison
of the GE values resulted from gridifying the original k-NN application (also written in Java) is possible.
To further simplify the comparison and to better perceive the relative differences between the computed
values, GE was normalized according to the following formula:

NormalizedGE =
GE

ScalingFactor

where:

ScalingFactor = 10truncate(log10[max(GEIbis,GEProActive,GEJGRIM)])

Computing NormalizedGE on the gridified versions of the k-NN algorithm resulted in 1.63 (Ibis), 1.05
(ProActive) and 0.31 (JGRIM) (see Figure 10). Roughly speaking, GE suggests that Ibis demanded more
effort from the developer than both ProActive and JGRIM, which decreased Ibis effort by 36% and 81%,
respectively. It is worth emphasizing that these results cannot be generalised to other applications, since
they merely represent an indicator of how much effort each platform demanded to gridify the original k-NN
implementation taking into account the assumptions explained in previous paragraphs.

4.2.2. Analysis of performance and network usage
To evaluate the runtime behavior of the applications with respect to response time and network re-

source usage, each gridified version of the algorithm was employed to classify several list of instances
with different sizes. Network resource consumption (generated TCP traffic and amount of data packets)
was measured by using the tcpdump network monitoring program8 and then analyzed with the Wireshark9

software. Loopback network traffic was filtered out.

8Tcpdump/libpcap http://www.tcpdump.org
9The Wireshark Network Protocol Analyzer http://www.wireshark.org
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Figure 10: Gridification effort for the k-NN application

Furthermore, all tests were started in one Grid machine, thus launching conditions were exactly the
same. In addition, since Ibis does not support dynamic transfer of application bytecode, the executable
codes of the gridified applications were manually copied to each host of the Grid. Besides, Ibis and JGRIM
used the Satin cluster-aware random stealing algorithm [18] for scheduling parallel computations. These
tasks, which enabled a fair evaluation of the runtime behavior of the gridified k-NN applications, were also
carried out when experimenting with the restoration application.

Each test battery performed on a gridified application involved ten executions of the classification
algorithm on input lists composed of 5, 10, 15, 20 and 25 instances. The resulting execution times were
averaged to compute the total execution time (TET). On the other hand, for practical reasons, network
resource consumption was measured by taking into account the total amount of network traffic and packets
generated during an entire test battery.

Comparison of TET. The TET obtained from the different Grid-enabled implementations of k-NN is shown
in Figure 11. Particularly, the figure shows the average response time for Ibis, ProActive, JGRIM, and a
variant of JGRIM using a policy that, besides selecting services based on network bandwidth, stored in an
in-memory local cache the data read from the dataset. Caches were configured to have an unlimited size
(big enough to hold the entire dataset) and non-volatile entries, thus cached information persisted across
the executions of individual test batteries. Consequently, dataset replicas were accessed completely from
each Grid host only once per test battery. The implementation of the caching policy was straightforward
(13 lines of code), and explicitly used only two operations of the JGRIM policy API. The figure also shows
errorbars in the y axis corresponding to the standard deviation in each case.

The ProActive application experienced lower performance with respect to the Ibis application and the
plain version of JGRIM (i.e. not using the caching policy). A considerable percentage of the time was
spent by ProActive in remotely creating JVMs on every Grid node before executing the application, which
demanded on average 40 seconds. Indeed, easy deployment of Grid applications is one of the good features
of ProActive. However, the results show that this feature conditioned the overall performance of the k-NN
application. In principle, the results suggest that ProActive may not be suitable for running computations
whose response time is similar or slightly greater than the time required to remotely initialize the ProActive
runtime system on a Grid.

The Ibis application performed better than the JGRIM application. Specifically, the JGRIM implemen-
tation added a performance overhead in the range of 10-20%. However, much of this time (20 seconds on
average) corresponded to querying the UDDI registry. Despite the obvious overhead of service brokering,
it allows the application code to be completely isolated from the actual service instances implementing a
certain functionality, which are instead discovered at runtime by the JGRIM platform. In consequence,
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Figure 11: TET (min) of the k-NN application

the implementation code is shorter and cleaner, and remains free from instructions for finding Grid ser-
vices. Furthermore, brokering enables for a better reuse of services, since applications and Grid services
are bound in a dynamic, more flexible way. For example, executing applications can discover new services
as they are published. It is worth mentioning that brokering capabilities in JGRIM can be disabled without
modifying the application code by simply editing external configuration. In this way, better performance
can be potentially obtained, at the cost of underexploiting the available Grid services.

To keep the JGRIM application using the UDDI registry and at the same time decrease its response time,
a simple caching mechanism was implemented through a policy. This policy was basically an extension
of the policy for selecting the nearest dataset service replica. As depicted in Figure 11, the alternative
JGRIM application reduced the TET of the non-cached JGRIM implementation by 8-16%, and achieved
performance levels similar to the Ibis implementation.

The weak point of the solution is that it increased the total memory usage within the Grid by about
100 MB, that is, the extra cache memory that was allocated across hosts to store objects representing the
instances of the dataset. In production Grids, where many different applications compete for the available
resources, allocating memory and storage resources at will may be disallowed. However, the goal here was
to show the flexibility of policies to effectively and non-invasively tune JGRIM applications. Note that
both the ProActive and Ibis applications might have benefited from the same caching mechanism, but this
would have lead to introducing yet more modifications to the original application code, thus increasing GE.

In parallel computing, speedup refers to how much a parallel algorithm is faster than its sequential
counterpart [54]. Speedup is defined as T1/Tp, where T1 is the execution time of the sequential algorithm,
and Tp represents the execution time of the parallel version of the algorithm on p CPUs. Figure 12 depicts
the speedups associated to the k-NN application, this is, the time necessary to execute the original imple-
mentation, which sequentially classifies instances based on a file-based dataset, over the time required to
run the Grid-enabled implementations, which classify instances in parallel based on a dataset service. All
tests corresponding to the original application were run on “VPNServer”, which is a fast machine.

Note that, despite achieving different speedup levels, the speedup curves of the Ibis and the two variants
of JGRIM seemed to have the same behavior. Basically, this is because these implementations share the
same execution model (i.e. the scheduling mechanism of Satin) to classify individual instances in parallel,
which is the stage of the whole classification process where applications spent most of the time. ProActive
appeared to gain efficiency as the number of instances increased, but more experiments should be con-
ducted to corroborate this trend. Overall, the implications of the resulting speedups are twofold. First, the
original application certainly benefited from being ported to the Grid. Second, and more important, JGRIM
achieved speedups levels that are similar to those achieved by Ibis and ProActive.
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Figure 12: Speedup introduced by the gridified versions of k-NN

Comparison of network traffic. Figure 13 (a) illustrates the total network traffic (measured in GB) that was
generated across the Grid for ten runs of each gridified implementation of k-NN. This traffic includes the
amount of data that was sent from any of the Grid machines to another one residing in the same or other
cluster. Although LAN communication is significantly cheaper than communication between Internet--
connected machines, the traffic associated to intra and extra cluster communication was not discriminated
because the latter just represented a very small fraction of the total traffic. In other words, even when the
Grid-enabled applications are service-bound (i.e. they perform a large number of accesses to the dataset
service), each cluster hosted a replica of the dataset thus service requests were always performed through
local network links.

Concretely, the traffic destined to extra cluster communication was only 23.46 MB (Ibis), 12.98 MB
(ProActive), 30.06 MB (JGRIM, without caching), and 26.95 MB (JGRIM, with caching). The relation
between these values clearly cannot be generalised, but they are certainly a consequence of the way each
tool manages the execution of applications at the platform level. In Ibis, idle machines –that is, machines
not executing a spawned computation– periodically generate requests to other nodes of the Grid partici-
pating in the execution of an application to get an unfinished computation from those nodes. Of course,
requests can be sent to local as well as remote nodes. JGRIM applications inherit this behavior since paral-
lelization is based on Satin/Ibis. Then, extra cluster traffic in JGRIM comprises the traffic generated when
sending steal requests, querying UDDI and propagating profiling information. On the other hand, instead
of employing this pull approach to job execution, the ProActive application used a push approach to send
execution request to Grid machines only when they became idle. In this way, less extra cluster commu-
nication was generated. However, the application code resulted in a mix of logic code and instructions to
manage the classification of individual instances on specific nodes.

The plain JGRIM implementation added an overhead of less than 1% to the total traffic generated by
the Ibis implementation, which represented about 4 MB of extra traffic per run in a test battery. Note
that the overhead is acceptable because part of this traffic was destined to support Grid service brokering,
whose benefits have been already discussed. Furthermore, the traffic related to the diffusion of profiling
information gradually spread over the entire execution time, which, unlike bursty communication, do not
causes communication bottlenecks. In short, these results show that the JGRIM solution did not incur in
high communication overheads with respect to the application directly using the Ibis runtime.

The JGRIM application with the caching policy drastically decreased the total traffic. Particularly, it
reduced the traffic generated by the plain JGRIM implementation by 92%. Obviously, these gains are a
direct consequence of reducing the number of accesses to the dataset service. Interestingly, the caching
mechanism was implemented without altering the structure or the logic of the application code. Again,
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Figure 13: Total traffic (GB) and amount of TCP packets generated during each test battery

similar improvements might have been added to the Ibis and ProActive solutions, but this would have
required to alter the code of the dataset client.

Figure 13 (b) illustrates the amount of network packets generated by each variant of the k-NN applica-
tion during an entire test battery. The amount of packets generated by the Ibis and the plain JGRIM variants
were very similar. On the other hand, for reasons that are similar to that of network traffic, the ProActive
solution outperformed both the Ibis and JGRIM implementations. Finally, the JGRIM version using the
caching policy reduced the amount of packets generated by ProActive by 84%.

4.3. Panoramic image restoration
This section reports the experiments with the application for image restoration discussed in Section 3.3.

Specifically, Section 4.3.1 analyzes gridification effort. Section 4.3.2 describes the experiments related to
performance and usage of network resources.

4.3.1. Analysis of gridification effort
To evaluate the characteristics of the gridified versions of the application, the same code metrics of Sec-

tion 4.2.1 were employed. Besides, we used a modified version of the application presented in Section 3.3
that processed input images by using several workers. Each worker was initially implemented as a thread
that communicated results to a master thread by means of explicit object referencing. Enhancement of
individual portions of the image was implemented based on the algorithm proposed in [55]. Table 6 shows
the resulting code metrics for the Ibis, ProActive and JGRIM implementations of this application.

Table 6: Gridification of the restoration application: code metrics

Implementation TLOC PLOC NOC NOI NOT Code overhead (%)

Original 241 – 3 1 37 –

Ibis 227 5 3 1 40 -5.81

ProActive 299 17 4 1 46 24

JGRIM 226 0 3 1 36 -6.22

As illustrated in the table, the size of the applications did not vary significantly among each other.
The ProActive version introduced a code overhead of 24%, while the Ibis and JGRIM implementations
reduced the size of the original code by about 6%. Unfortunately, the negative overhead resulted from
removing source code lines implementing critical portions of the non-gridified application, namely, code
implementing synchronization and coordination behavior between the master and its workers. In opposi-
tion, the ProActive application preserved the interaction scheme originally designed to communicate and
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coordinate the master and its workers. In fact, one of the first official uses of ProActive was precisely
master-worker Grid applications [56]. Nevertheless, Ibis and JGRIM solutions were also able to provide a
fitting alternative to coordinate these components.

Master and workers in ProActive were implemented as active objects. ProActive provides a mechanism
so that references between active objects are transparently managed by means of specialized proxies that
hide the physical location of active objects. When a method call is performed on an active object A, the
invocation is transparently forwarded to the actual object instance representing A, regardless where it is
currently located. In consequence, worker instances in the ProActive application were easily implemented
to send their results to the master active object, to which a reference is obtained when a worker is first
created and transparently maintained when the worker is migrated. However, while ProActive greatly pre-
served the interaction mechanism of the original application components (i.e. explicit references between
master and workers), some code using API calls had to be supplied to implement active object deployment
and task management, which in turn affected TLOC and PLOC.

In contrast, unless explicitly managed by means of its communication API, Ibis does not transparently
maintain references upon distribution of application objects. As a consequence, spawning a computation W
from within a method of a master M which passes itself as an argument to W results in losing the reference
to M in W . Another alternative that was explored, similar to the k-NN Ibis implementation, involved the use
of a shared object to indirectly communicate the master and the workers. Unlike the k-NN application, in
which the output of spawned computations are just numerical values, the results coming from workers are
processed subimages that may be large in size. Since Ibis automatically broadcasts an individual write to
a shared object to its distributed copies, employing this mechanism would had required too much network
resources. This can be avoided by maintaining a list of shared objects, each handling the communication of
the master and exactly one worker. However, this would had made the implementation of the application
more difficult.

To overcome this situation, the iterative-like work submitting structure of the original application was
transformed to a recursive algorithm, in which each leaf of the execution tree represents a computation in
charge of processing an individual portion of the image being restored. The code structure was similar to
the one presented in Section 4.2.1. A code snippet of the master component is presented next:

public void restoreSubImages ( Vector t i l e s ) {
. . .
Vector r e s u l t s = restoreSubImages ( t i l e s , 0 ) ;
/ / I b i s synchron iza t ion p r i m i t i v e
super . sync ( ) ;
. . .

}

public Vector restoreSubImages ( Vector t i l e s , i n t cu r ren t Ch i l d ) {
i f ( t i l e s . s i ze ( ) == 1 ) {

byte [ ] subImagePixels = ( byte [ ] ) t i l e s . f i r s t E l e m e n t ( ) ;
Hashtable data = new Hashtable ( ) ;
data . put ( " p i x e l s " , subImagePixels ) ;
data . put ( " i t e r a t i o n s " , i t e r a t i o n s ) ;
Worker worker = new Worker ( data , c u r re n tCh i l d ) ;
Vector r e s u l t = new Vector ( ) ;
r e s u l t . addElement ( worker . run ( ) ) ;
return r e s u l t ;

}
i n t mid = t i l e s . s ize ( ) / 2 ;
Vector t i l e s S t a r t = s p l i t T i l e s ( t i l e s , 0 , mid ) ;
Vector t i l e sEnd = s p l i t T i l e s ( t i l e s , mid , t i l e s . s ize ( ) ) ;
/ / Spawned computat ions
Vector l e f t = restoreSubImages ( t i l e s S t a r t , cu r r en t Ch i l d ) ;
Vector r i g h t = restoreSubImages ( t i l esEnd , cu r ren t Ch i l d + mid ) ;
/ / I b i s synchron iza t ion p r i m i t i v e
super . sync ( ) ;
l e f t . addAl l ( r i g h t ) ;
return l e f t ;

}

The JGRIM implementation demanded some modifications that can be grouped in two categories.
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On one hand, similar to its Ibis counterpart, a recursive restoreSubImages method was implemented
to take advantage, through a self dependency, of the execution and parallelization services provided by
the Ibis platform. Besides for leveraging the Ibis services, the transformation was necessary since JGRIM
discourages explicit referencing between application components (in this case master and workers) because
in practice tight coupling leads to poor reusability and portability of component code. In the end, the master
component of the JGRIM application indirectly used workers through a self dependency.

On the other hand, the dependency from the master component (implemented by the ImageRestorer
class) to the FTP downloader component was identified as a hot-spot. In consequence, direct accesses to
this component were replaced across the source code of ImageRestorer by calls to the corresponding get-
downloader method. As in the case of the k-NN application and the dataset component, this replacement
enables the use of other components for downloading images implementing different protocols (e.g. HTTP,
Web Services, GridFTP, and so on) without modifying the application logic. Moreover, a simple policy
to move the gridified application to the image repository location upon the initial attempt to download an
input image was associated to this hot-spot:
import j g r im . core .MFGS;

public class AlwaysMovePolicy extends j g r im . p o l i c y . Po l icyAdapter {
public void executeBefore ( ) {

MFGS app = (MFGS) getExecContext ( ) . getSourceComponent ( ) ;
app . moveTo( " VPNServer " ) ;

}
}

In contrast, this kind of performance improvement could not be introduced in the Ibis implementation,
since Ibis implicitly manages migration of spawned computations between machines and does not let ap-
plications to explicitly control this feature. Moreover, ProActive do provide a migrateTo primitive for
moving active objects. However, this primitive implements a weak migration mechanism [57], thus plac-
ing a burden on the developer since inherently complex and lengthy code to manually capture and resume
the execution state of applications must be supplied. It was decided not to add mobility to the ProActive
application so as to fairly keep its TLOC and PLOC values low.

Table 7 shows the bytecode information associated to the different versions of the restoration appli-
cation, including a simple application launcher. Since the restoration application required less Grid func-
tionality than the k-NN application (i.e. parallelism but not FGSs), bytecode information can be used to
get a more accurate estimation of the minimum bytecode overhead introduced by each platform to any
application. Since ProActive instruments applications at runtime, the bytecode overhead after compiling
the gridified application was less than the one introduced by Ibis and JGRIM. Furthermore, the JGRIM
implementation introduced a bytecode overhead of 15% compared to the Ibis solution, which arose as a
consequence of enabling the application for being mobile and using the Satin parallelization support. This
is an undesirable nevertheless acceptable overhead given the added value of JGRIM applications in terms
of component reusability and decoupling, and the possibility of leveraging the execution services provided
by other Grid platforms. In any case, dynamic class instrumentation could be employed to cut down some
of this overhead.

Table 7: Characteristics of the restoration applications upon execution on the Grid setting

Implementation # .class Bytecode
size

Bytecode
overhead (%)

Plugging lines
(regular/PLOC)

Original 4 12731 – –

Ibis 10 30515 139 32/0

ProActive 5 16852 32 48/11

JGRIM 11 35137 175 23/7

Figure 14 shows the resulting GE for the different versions of the image restoration application. To
make these results comparable to the ones described in Section 4.2.1, GE values were scaled down by
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using the same factor (103). According to GE, the restoration application was easier to gridify than the
k-NN application. This situation truly makes sense because the gridification of the former application
required less Grid services (i.e. only parallelism). Specifically, functional Grid services were not used, and
less policy code was implemented when gridifying with JGRIM.
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Figure 14: Gridification effort for the restoration application

The resulting GE was 0.046 (Ibis), 0.095 (ProActive) and 0.045 (JGRIM), which indicates that, for the
case of this application, gridifying with ProActive demanded more effort than doing so with Ibis or JGRIM.
Specifically, Ibis reduced GE of ProActive by about 51.5%, whereas JGRIM decreased this effort by about
52.6%. As illustrated in the figure, most of the effort when gridifying with Ibis and JGRIM was invested
in providing code to launch the execution of the Grid-enabled application. In any case, the plugging effort
can be further reduced by providing better tools to easily run gridified applications. In fact, one important
feature that is currently missing in JGRIM, but will be supplied in the near future, is concerned with the
provision of tools to graphically launch and monitor the execution of gridified applications.

As observed, the reimplementation effort in JGRIM was slightly greater than in Ibis. However, one im-
portant point must be clarified. The restoration application is inherently a pure parallel application, and is
not intended to take advantage of other Grid resources or services but distributed processors. These charac-
teristics makes the parallelization services of Ibis an appropriate support for implementing the application.
Furthermore, JGRIM is a gridification tool whose goal is to isolate applications from specific Grid services
and therefore how parallelization is performed, which in the experiments translated in a little extra effort at
gridification time. Nevertheless, this small overhead is acceptable given the benefits of JGRIM in terms of
maintainability and portability of gridified code. The logic of the JGRIM restoration application resulted
absolutely clean of Grid API code and was decoupled from concrete parallelization services, thus workers
can be configured to be deployed on other execution services (e.g. threads, Globus jobs, ProActive active
objects, etc.) without source code modification. In this sense, existing Grid platforms like ProActive or
Ibis and our work complement each other.

Since the k-NN and the restoration application were gridified by the same person, and this former was
ported first to our Grid, it is clear that the developer had knowledge about each Grid API at the time of
gridifying the latter application. In this light, GE was computed by using APIFactor = 1 (i.e. a PLOC line
is worth one regular code line). The goal of this adjustment is to model the fact that programmers often
face a steep learning curve when employing new Grid technologies, but as they use them, the learning
effort tends to disappear. Learning curves corresponding to the three platforms used in the experiments
were assumed to be very close to each other because the developer had a strong background on distributed
and parallel programming, the complexity of the Grid APIs was similar, and the programming language
was Java.
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4.3.2. Analysis of performance and network usage
This section reports the performance tests that were conducted based on the various implementations

of the restoration application. To better understand the runtime behavior of these applications, and set the
basis for a more detailed comparison, a simple benchmark based on the original application was prepared.
To this end, we installed an image repository (FTP server) on the “VPNServer” machine at the ISISTAN
cluster. The repository contained an RGB image in JPEG format of 2408.18 KB (10120 x 2200), and four
more pictures obtained from rescaling this image down to 76, 63, 37 and 18 percent. Rescaled images
resulted in a size of about 1.8 MB (9100 x 1980), 1.5 MB (8080 x 1760), 900 KB (6060 x 1320) and
400 KB (4040 x 880), respectively.

The purpose of the benchmark was to have an estimation of the average time necessary to download
and restore an image from the repository. These two factors were estimated separately. On one hand,
the average transfer time was measured by performing five different downloads of each image from the
remote “ale” machine residing at the Ale cluster. To avoid unnecessary noise, all tests were run under low
network load. On the other hand, the average execution time required to enhance an image was estimated
by averaging five runs of the restoration process on a random horizontal portion of a size of 1/20 of the
above images, and multiplying the elapsed time by 20. These tests were run on the “VPNServer” machine.

The experiments using the gridified versions of the application were performed by processing each
image from the repository ten times, and then computing the resulting TET (in minutes) and throughput (in
KB restored per minute). Furthermore, images were restored by splitting them into 20 subimages. As in
the case of the k-NN application, network resources consumed by applications, namely the generated TCP
traffic (in MB) and the amount of data packets, were measured by using the tcpdump and Wireshark tools.
These tests were initiated in the “ale” machine.

Comparison of TET. The TET values of the gridified applications are shown in Figure 15. Specifically,
the figure illustrates the execution performance of the Ibis, ProActive and JGRIM implementations, and
the variant of JGRIM employing the policy that moves the application to the image repository location
upon downloading an individual image. As explained, the implementation of the policy was easy, because
only involved the use of two lines of code for moving the MFGS to “VPNServer”. The graphic includes
errorbars in the y axis corresponding to the standard deviation of the elapsed times.
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Figure 15: TET (min) of the restoration application

From the figure, it can be observed that JGRIM experienced performance levels similar to the related
approaches. Specifically, the resulting JGRIM TET curve is close to the ProActive TET. In addition, the
variant of JGRIM using the policy for moving the gridified application brought significant benefits in terms
of increased execution performance. Another interesting fact is that coding this policy was very easy. Also,
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as policies are software components that are non-intrusively injected by JGRIM into applications, they do
not affect the code of the application logic and can be reused in other applications.

A result that may confuse is that the JGRIM version of the application performed better than the Ibis
variant, even when the former used Ibis as the underlying support for application parallelization. The
reason of this fact is that the code that is interpreted by the Ibis runtime in either cases is subject to different
execution conditions. On one hand, the implementation of the Ibis version comprises the application logic
plus the code (main method) to run the application, which is called by the Ibis runtime to carry out the
handshaking process among Ibis hosts to start and cooperatively execute the application. On the other
hand, upon the execution of a self dependency operation in JGRIM (i.e. restoreSubImages), an Ibis
object is created and sent by the JGRIM platform to an already deployed Ibis network, which is running
a pure Ibis application that is able to execute other Ibis applications. All in all, JGRIM did not performed
worse than Ibis, even when JGRIM adds a software layer on top of the execution services of Ibis.

Figures 16 (a) and 16 (b) show the throughput and the speedup achieved by the different variants of the
application. Throughput was calculated as the average amount of data processed per time unit, that is, the
amount of image data (KB) restored per minute. Speedup represents the time that is necessary to execute
the original implementation (estimated by the aforementioned benchmark) over the time required to run
the Grid-enabled implementations. As reported, the JGRIM application achieved a throughput similar to
that of Ibis and ProActive. Besides, better throughput and speedup was achieved by using mobility.
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Figure 16: Throughput (KB/min) and speedup of the restoration applications

Comparison of network traffic. To profile the network resource consumption of the variants of the restora-
tion application, the network traffic (in MB and TCP packets) generated during the test runs was measured.
Figure 17 shows the total traffic in MB generated by each variant during the whole experiment, that is, the
traffic accumulated throughout the ten runs that were performed to compute TET. Traffic was discriminated
into two types: intra cluster, which counts the LAN traffic generated to communicate any pair of machines
residing in the same cluster, and extra cluster, which measures the total network traffic for sending data be-
tween two machines belonging to different clusters. Since clusters are connected to each other by Internet
links, it is highly desirable to generate little extra cluster traffic because Internet communication is several
orders of magnitude more expensive than local communication.

The plain JGRIM variant of the application (without mobility) generated less and more traffic than the
Ibis and ProActive implementations, respectively. However, extra cluster communication in the JGRIM
version represented the 84% of its total traffic, against a higher value of 89% for ProActive. Naturally,
using the mobility policy allowed JGRIM to further reduce the total traffic. Besides, the percentage of ex-
tra cluster communication with respect to the total traffic in the policy-based JGRIM application dropped
to 57%. In addition, the extra cluster traffic generated by this application was almost 18% lower (30 MB)
compared to the extra cluster communication of the ProActive solution. These results evidence an impor-
tant aspect of JGRIM: policies may be useful not only to achieve higher performance but also to make a
better use of Grid network resources.
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There are other interesting points that can be observed from the figure. First, the platform that generated
the least amount of total network traffic was ProActive. Unlike the rest of the implementations in which
nodes randomly try to steal jobs from their peers and thus many messages may be sent before actually get
a job to execute, ProActive promotes the use of a job submission model in which the application decides
which active object should handle the execution of the next unfinished job. In consequence, less traffic is
generated, but more source code have to be provided by the programmer to support this mechanism. Sec-
ond, similar to the case of TET discussed in the previous subsection, JGRIM accidentally used less network
resources than Ibis since both implementations access the core services provided by the Ibis platform under
different execution conditions.
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Figure 18: Total traffic (MB) generated during each test battery

As a complement, Figure 18 illustrates the extra cluster network traffic (in MB) generated by the ap-
plications during the restoration process of an individual image. Naturally, the total traffic results in higher
values as the size of the input image increases. In all cases, the variant of JGRIM with mobility was the
most efficient application in terms of network usage. Finally, the percentage of extra cluster packets with

33



On the Evaluation of Gridification Effort and Runtime Aspects of JGRIM Applications. (C. Mateos,
A. Zunino, M. Campo). Future Generation Computer Systems: The International Journal of
Grid Computing: Theory, Methods and Applications. Elsevier Science. ISSN: 0167-739X. Ed.:
P. Sloot. Vol. 26, Num. 6, pp 797-819. 2010. DOI: 10.1016/j.future.2010.02.014

respect to the total generated packets was 52 (Ibis), 89 (ProActive), 72 (JGRIM) and 57 (JGRIM with pol-
icy). In consequence, the non-mobile and mobile JGRIM implementations of the application experienced
network performance levels –with respect to TCP packets– similar to that of ProActive and Ibis, respec-
tively. The amount of packets used to carry out local communication can be ignored, as they are subject to
very small latency values compared to extra cluster communication. Finally, in both JGRIM implementa-
tions, a considerable percentage of extra cluster packets corresponded to communication performed by the
underlying Ibis execution services.

5. Conclusions

In this paper, we have presented JGRIM, a new approach to simplify the gridification of conventional
Java applications. The utmost goal of JGRIM is to isolate developers as much as possible from the com-
plexities of the Grid and its services. We showed the advantages of JGRIM through comparisons with Ibis
and ProActive, two Java-based platforms for Grid application development that materialize alternative ap-
proaches to gridification. Ibis, ProActive and JGRIM were used for gridifying two applications, namely the
k-NN algorithm and an application for enhancement of panoramic images. We then performed an analysis
on the Grid-enabled codes via a novel formula that estimates gridification effort. Moreover, experiments
related to execution time and network usage of these applications were conducted on an Internet-connected
Grid.

All in all, the reported experiments showed that JGRIM simplifies gridification and better preserves the
application logic. Consequently, the Grid-aware code is easier to maintain, test, and port to different Grid
platforms. In addition, experiments suggest that, even when JGRIM may cause gridified applications to
consume more Grid resources than its related approaches, this do not directly translate into an irremediable
problem, since policies can be used to easily and non-intrusively improve resource usage and to allow
JGRIM applications to perform in a very competitive way. Furthermore, although the evaluation conceived
Ibis and ProActive as competitors of JGRIM, these platforms are in some respect complementary to our
work. Essentially, JGRIM promotes separation of concerns between application logic and Grid behavior,
being this latter Grid services provided by existing applications and platforms. In this way, JGRIM provides
an alternative method for gridifying applications while it does not “reinvent the wheel” by providing Grid
execution services for these applications. In fact, JGRIM is currently able to leverage the services of Ibis.
Besides, efforts to integrate JGRIM with ProActive and Condor are underway.

It is worth emphasizing that the goal of the experiments was not only to evaluate the performance of
JGRIM but also to quantify the effort necessary to gridify applications. The comparison of gridification
effort among the employed approaches was achieved through a novel metric (GE) that considers the di-
mensions of the gridification problem first identified in Mateos et al. [12]. On the other hand, the rest of the
experiments were performed based on a Grid setting with extremely heterogeneous hardware capabilities
as well as different and very dissimilar public Internet links, therefore ensuring environment heterogene-
ity and complexity. Moreover, recent experiments Mateos et al. [58, 59] performed in the context of the
BYG project Mateos et al. [60] with seven CPU-intensive applications and a larger heterogeneous simu-
lated wide-area Grid, suggest that JGRIM metaservices add an acceptable overhead that does not depend
on the size of the setting. BYG is essentially a JGRIM-compliant middleware for just-in-time gridification
of Java bytecode. In addition, to measure the impact of metaservices in the resulting performance, we have
shown that GMAC Gotthelf et al. [61] –a P2P protocol of our own currently used by JGRIM to manage
host communication– is scalable enough to support Grids of thousands of nodes while introducing a small
overhead in terms of network resource usage Gotthelf et al. [61]. Despite these encouraging results, we
will further experiment with JGRIM to provide more evidence on its performance and thus delineate future
optimizations. For example, we are working on the gridification of several scientific Java-based applica-
tions (e.g. sequence alignment) on a large real (not simulated) wide-area Grid. The infrastructure is a result
of a country-wide Grid initiative of the Argentinian government that will connect academic clusters across
different provinces of Argentina, which was officially initiated on October 200910, but it is not yet available
for experimentation purposes.

10http://indico.cern.ch/conferenceProgram.py?confId=66398
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At present, JGRIM is being extended in several directions. We are working on tools to make JGRIM
easier to adopt and use. We have developed a prototype implementation of an Eclipse plug-in that lets de-
velopers to gridify their applications by graphically identifying hot-spots, configuring policies, etc. Eventu-
ally, this plug-in will also offer proper support for deploying and monitoring the execution of applications.
It is expected that the plug-in will also let developers to inspect the execution state of gridified applications
for debugging purposes. In summary, the goal of this line of research is to supply programmers with a
full-fledged IDE for developing JGRIM applications.

Also, we are exploring the viability of materializing JGRIM in other programming languages, such as
C++, Python, Ruby or Perl. The main motivation behind this is that many of these languages, specially
C++, are being extensively used for programming Grid and parallel applications. In this way, developers
will be able to take advantage of JGRIM by using the programming language of their choice. Note that
materializing JGRIM concepts to a particular language will require to study whether the language supports
core features such as application migration, dependency injection and Web Service invocation capabilities.
Fortunately, a number of DI frameworks for C++, Python, Ruby and Perl already exist. Moreover, APIs
for invoking Web Services and libraries implementing process migration techniques for some of these
languages also exist.

Finally, another issue that will be addressed is the use of scalable mechanisms for service discovery.
Currently, JGRIM employs a centralized discovery scheme developed on top of UDDI registries. However,
tomorrow’s Grids will offer thousands if not millions of services, and so will be the number of potential
clients for these services. In this context, scalability will be crucial, therefore rendering solutions for
service discovery based on centralized mechanisms totally inappropriate. Precisely, a good alternative to
centralized service discovery are P2P technologies [62]. In this sense, a line toward this end is the extension
of GMAC with service discovery capabilities.
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