This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.com. DO: 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. ExpeR007;00:1-40 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

A survey on approaches to P
gridification &

Cristian Mateos?+* Alejandro Zuniné2*-% and Marcelo Campe?

1|SISTAN Research Institute, UNICEN. Campus Universitatamdil (B7001BBO), Buenos Aires,
Argentina. Tel.: +54 (2293) 43-9682. Fax.: +54 (2293) 43836
2 Consejo Nacional de Investigaciones Cientificas y TécriC@NICET)

SUMMARY

The Grid shows itself as a globally distributed computing emironment, in which hardware and software
resources are virtualized to transparently provide appli@ations with vast capabilities. Just like the electrical
power grid, the Grid aims at offering a powerful yet easy-touse computing infrastructure to which
applications can be easily “plugged” and efficiently execwtd. Unfortunately, it is still very difficult to
Grid-enable applications, since current tools force userso take into account many details when adapting
applications to run on the Grid.-In this paper, we survey someof the recent efforts in providing tools for
easy gridification of applications, and propose several taxnomies to identify approaches followed in the
materialization of such tools. We conclude this paper by desibing common features among the proposed
approaches, and by pointing out open-issues and future dir¢ions in the research and development of
gridification methods.

KEY WORDS: Grid computing; Grid development; gridification tools

1. INTRODUCTION

The term "Grid Computing" came into daily usage about temsyago to describe a form of distributed
computing in which hardware and software resources frompedsed sites are virtualized to provide
applications with a single and powerful computing infrasture [L]. This infrastructure, known as the
Grid [2], is a distributed computing environment whose object®iprovide secure and coordinated
computational resource sharing between organizatiorthiihe Grid, the use of resources such as
processing power, disk storage, applications and daten sfiread across different physical locations
and administrative domains, is shared and optimized throirtualization and collective management.

*Correspondence to: Alejandro Zunino, ISISTAN Researchitite, UNICEN. Campus Universitario, Tandil (B7001BBO),
Buenos Aires, Argentina. Tel.: +54 (2293) 43-9682. Fax4 {&293) 43-9681.

*E-mail: cmateos@exa.unicen.edu.ar

SE-mail: azunino@exa.unicen.edu.ar

TResearchers commonly speak about “the Grid” as a singlyegitieit the underlying concept can be applied to any Gkiel-
setting.

Received 26 March 2007
Copyright(© 2007 John Wiley & Sons, Ltd. Revised 28 June 2007

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

2 C. MATEOS, A. ZUNINO, M. CAMPO

Grid infrastructures were originally intended to suppampute-intensive, large-scale scientific
problems and applications by linking supercomputing nofds During the first half of 1990s,
the inception and increasing popularity of Internet stadslagave birth to an early phase of the
Grid evolution later known as Volunteer Computindgj:[users from all over the world are able
to donate CPU cycles by running a free program that downlaatdb analyzes scientific data
while their PCs are idle (e.g., when the screensaver isaetl). Examples of these projects are
Distributed.net] (Internet’s first general-purpose distributed compugingject), Folding@homeg]
(protein folding), SETI@home7] (search for extraterrestrial intelligence) and, moreersly,
Evolution@home (evolutionary biology§]. Few years after the introduction of Volunteer Computing,
the first middlewares for implementing Grid systems over lhiernet appeared. Examples are
Legion [9], Condor [LO] and Globus 1.1].

Nowadays, Grid Computing is far from only attracting theestific community. Organizations
of all types and sizes are becoming aware of the great opgtets this paradigm offers to share
and exploit computational resources such as informatiahsamnvices. In fact, a number of projects
have been actively working towards providing an infrasiue for commercial and enterprise Grids
settings |12, 13, 14]. Furthermore, many well-established standardizationrfs have produced the
first global standards for the Grid. Recent results of thdimte include the Open Grid Services
Architecture (OGSA)15], a service-oriented Grid system architecture, and the 8éhices Resource
Framework (WSRF) 16], a framework for modeling and accessing Grid resourceagu$eb
services 17].

Although many technological changes both in software andiiare have occurred since the
term “Grid” was first introduced, a recent survedg] indicates that there are hardly any significant
disagreements within the Grid research community aboubtitkvision. In fact, lan Foster, considered
by researchers to be the father of the Grid, proposed a dee[dd] for determining whether a system
is a Grid or not, which has been broadly accepted.

Likewise, the basic Grid idea has not changed considerakilinithe last ten yearslp]. The
term “Grid” comes from an analogy with the electrical poweidg Essentially, the Grid aims to
let users access computational resources as transpaaedtlyervasively as electrical power is now
consumed by appliances from a wall sockef][Indeed, one of the goals of Grid computing is to
allow software developers to code an application (i.e.e ‘dppliance”), deploy it on the Grid (i.e.,
“plug it"), and then let the Grid to autonomously locate anitize the necessary resources to execute
the application. Ideally, it would be better to ta&my existing application and put it to work on the
Grid, thus effortlessly taking advantage of Grid resoutodmprove performance. Sadly, the analogy
does not completely hold yet since it is hard to “gridify” gopdication without manually rewriting or
restructuring it to make it Grid-aware. Unlike the eleatipower grid, which can be easily used in a
plug and play fashion, the Grid is rather complex to UsB.[

In this sense, the purpose of this paper is to summarize #te sf the art on Grid development
approaches focusing specifically on those that target@dgijication, this is, the process of adapting
an ordinary application to run on the Grid. It is worth mentig that this paper does not exhaustively
analyze the current technologies for implementing or dgptpGrid applications. Instead, this paper
discusses existing techniques to gridify software thatriwdeen at first thought to be deployed on
Grid settings, such as desktop applications or legacy dad&der to limit the scope of the analysis,
we will focus our discussion on the amount of effort each psmal approach demands from the user
in terms of source code refactoring and modification. As agement, for each approach, we will

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 3

analyze the anatomy of applications after gridification #Hredkind of Grid resources they are capable
of transparently leverage.

The rest of the paper is organized as follows. The next segiesents the most relevant related
work. After that, SectiorB briefly explains the anatomy of the Grid from a technical pafview.
Then, Sectiort discusses the evolution of gridification technologieset,gbectiorb surveys some of
the most representative approaches for gridifying apiiina. Sectiord summarizes the main features
of the surveyed approaches, and proposes several taxantoniapture the big picture of the area.
Based on these taxonomies, Sectiaddentifies common characteristics and trends. Finally;i®e&
presents concluding remarks.

2. RELATED WORK

In [22], the authors point out the programming and deploying cexipf inherent to Grid Computing.
They state there is a need for tools to allow application ipes to easily write and run Grid-enabled
applications, and propose OGSA as the reference Grid aothie towards the materialization of
such tools. The authors also identify a taxonomy of Grid impfibn-level tools that is representative
enough for many projects in‘the Grid community. This taxogalistinguishes between two classes
of application-level tools for the Grid: programming magl€i.e., tools that build on the Grid
infrastructure and provide high-level programming alittoms) and execution environments (i.e.,
software tools into which users-deploy their applicationf)e discussion is clearly focused on
illustrating how these models and environments can be usgeMelop Grid applications from scratch,
rather than gridify existing applications.

Another recent survey on Grid application programminggamn be found inZ3]. Here, several
functional and non-functional properties that a Grid pesgming environment should have are
identified, and some tools based on-these properties amwedi The survey concludes by deriving
a generic architecture for building programming tools the¢ capable of addressing the whole
set of properties, which prescribes a component-basedagipifor materializing both the runtime
environment and the application layer of a Grid platformwidger, the work does not discuss aspects
related to gridification of existing applications either.

A survey on Grid technologies for wide-area distributed patmg can be found inZ4], where the
most predominant trends for accelerating Grid applicgtimyramming and deployment are identified.
This work aims at providing an exhaustive list of Grid Compgtprojects ranging from programming
models and middlewares to application-driven efforts, levlniur focus is exclusively on methods
seeking to attain easy pluggability of conventional agglans into the Grid. The authors emphasize
on the need for a Grid framework that is adaptable and exiEnsinough to cope with the “waning
star” effect that has historically made predominant distieéd computing technologies less popular. In
other words, as Grid technologies evolve, this Grid frant&vsbould be able to evolve with them. A
similar work is 5], in which a thorough examination of technologies for theenalization of Data
Grids —those providing services and infrastructures toagaruge amounts of data— is presented. The
survey compares Data Grids to other distributed data-giterparadigms in great detail, and proposes
various taxonomies to characterize the approaches thatiemently being followed in the construction
and materialization of Data Grids, focusing on aspects agdlata transport and replication, resource
allocation and job scheduling. Based on this analysis, titiecas identify scalability, interoperability

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

4 C. MATEOS, A. ZUNINO, M. CAMPO

and data maintainability as the requirements that stiltiitede properly addressed before Data Grids
are massively adopted for developing large-scale, colkhve data sharing and scientific applications.
Finally, in [26], a taxonomy identifying architectural approaches fokalnvin the implementation
of resource management systems for the Grid is proposedjHRguhe survey describes common
requirements for resource management systems and praseatistract functional model, from where
it derives the proposed taxonomy. The survey found that apgstoaches to Grid resource management
are being developed in the context of computational ands=iariented Grids, but little research is
being done in the context of Data Grids.

The next section explains the internal structure of the @sid is conceived today.

3. THE GRID: CONCEPTS AND ARCHITECTURE

A good starting point to understand the analogy between tti@ &d the electrical power grid is
GridCafé p7], a project from CERN whose goal is to explain the basics of the Grid to a wider
audience. Basically, GridCafé compares both infrastrestaccording to the following features:

e Transparency: The electrical power grid is transparerabse users do not know how and from
where the power they use is obtained. The Grid is also traeepasince Grid users execute
applications without worrying about what computationadagrces are used to perform the
computations, or where these resources are located.

e Pervasiveness: Electricity is available almost everywhdhe Grid is also pervasive, since
according to the Grid vision, computing resources and sesvivill be accessible not only
from PCs but also from laptops and mobile devices. Consélyyesusing existing pervasive
infrastructures (e.g., the Internet) and ubiquitous Wethnielogies such as Web browsers,
Java P8 and Web Services could be a big step towards complete peeveess and therefore
easy adoption of the Grid.

e Payment: Grid resources are essentially utilities, sitay twill be provided —just like the
electricity— on an on-demand and pay-per-use basis. Tte dflidilling users for the actual
use of resources on the Grid finds its roots in an old computatibusiness model called
Utility Computing, also known as On-Demand Computing. Adesample of a project actively
working on utility-driven technologies for the Grid is Ghids [29].

While the power grid infrastructure links together transsion lines and underground cables to provide
users with electrical power, the Grid aims at using the haemas the main carrier for connecting
mainframes, servers and even PCs to provide scientistsgpidtation developers with a myriad of
computational resources. From a software point of vievg, shipport represents the bottommost layer
of a software stack that is commonly used to describe thei@adchitectural terms. This architecture
is depicted in Figuréd.

*The CERN (European Organization for Nuclear Researchjeisvtirld’s largest particle physics laboratory, which hasrely
become a host for Grid Computing projects

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 5

User Applications Tools and applications

Directory brokering,

Collective diagnostics, and monitoring

Secure access to

Resource and Connectivity resources and services

i Hardware resources such as
Fabric computers, storage media,
networks and sensors

Figure 1. The Grid software stack(Q

The stack is composed of four layefsabric, Resource and ConnectivjtZollective and User
Applications Roughly, the Resource and Connectivity layer consists sétaof protocols capable
of being implemented on top of many resource types (e.g., HIFPP). Resource types are defined
at the Fabric layer, which in turn are used to construct negtéses at the Collective layer, and Grid
applications at the User Applications layer. The main ctiaristics of each layer are described next:

e Fabric: As mentioned above, this layer represents the palyaifrastructure of the Grid,
including resources such as computing nodes and clustersge systems, communication
networks, database systems and sensors, which are acbgssedns of Grid protocols.

e Resource and Connectivity: Defines protocols to handle atl €pecific transactions between
different resources on the Grid. Protocols at this layerfaréher categorized as connectivity-
related protocols, which enable the secure exchange obaatseen Fabric layer resources and
perform user authentication, and resource-related potgpwhich permit authenticated users to
securely negotiate access to, interact with, control anditmoFabric layer resources.

e Collective: The collective layer contains protocols andviees associated with capturing
interactions across collections of resources. Servicksanf at this layer includelirectory
(discover resources by their attributespallocation(coordinated resource allocatiorjpb
schedulingresource brokeringmonitoringanddiagnosigdetect and handle failures, overloads,
etc.), anddata replication

e User Applications: Each one of the previous layers exposédeéined protocols and APIs
that provide access to services for resource managemeatadeess, resource discovery and
interaction, an so on. On the other hand, the User Applind&ger comprises the applications
that operate within the Grid, which are built upon Grid seeg by means of those APIs and
protocols.

It is worth noting that some “applications” within the topstdayer may in turn be Grid programming
facilities such as frameworks and middlewares, exposieg#elves protocols and APIs upon which
more complex applications (e.g., workflow systems) aretecedn fact, these facilities can be seen as
the “wall socket” by which applications are connected to @ral. Application developers are likely

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

6 C. MATEOS, A. ZUNINO, M. CAMPO

to use high-level software tools that provide a convenieagmmming environment and isolate the
complexities of the Grid, rather than use Grid servicesatliye

However, applications that have not been written to run en@hid still have to be adapted in
order to use the functionality provided by Grid programmiagilities. In other words, these kind of
applications need to be gridified so they can take advantagid services and resources through
a specific middleware or framework. As a consequence, ama @dvelopment effort is required
from application programmers, which might not have the seary skills or expertise to port their
applications to the Grid. To sum up, the foreseen goal offigétion is to let conventional applications
benefit from Grid services without requiring these appiaa to be modified.

4. GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION

It is difficult to determine exactly when the term “gridifigat” was first introduced, but the idea
of achieving easy pluggability of ordinary applicationgoirthe Grid surely took a great impulse
at the time the analogy between electrical power grids amdpetational Grids was established.
Nowadays, the concept of gridification is widely recognizadong the Grid research community,
and many researchers explicitly use the term “gridificattorrefer to this idea. The evolution of Grid
technologies from the point of view of gridification is prased in the next paragraphs.

The first attempts to achieve gridification began with the afsgopular technologies traditionally
employed in the area of Parallel and-Distributed Computinghsas PVM B1], MPI [32] and
RMI [33]. Basically, the underlying programming models of thesehtmlogies were reconsidered
to be used in Grid settings, yielding as a result standadd&réd programming APIs such as MPICH-
G2 [34] (message passing) and GridRPES][(remote procedure call). Grid applications developed
under these models are usually fragmented into “mastes™aarkers” components communicating
through ad-hoc protocols and interaction mechanisms. IDpges are also responsible for managing
parallelization and location of application components.aAconsequence, at this stage there is not a
clear idea of Grid resourogrtualizationyet. Consequently, gridification was mainly concerned with
taking advantage of the Grid infrastructure, that is, thieriedayer of the software stack in Figute

The second phase of the evolution of gridification technie®involved the introduction of Grid
middlewares. Some of them were initially focused on pravidiervices for automating the scavenging
of processing power, memory and storage resources (e.gddtolLegion), while others aimed at
raising the level of abstraction of Grid functionality byopiding metaservicegbrokering, security,
monitoring, etc.). A representative example of a middl@niarthis category is Globus, which have
become thale factostandard for building Grid applications. Overall, users now supplied with
a concrete virtualization layer that isolates the compiesiof the Grid by means of services. In
fact, technologies like MPICH-G2 and GridRPC are now seemmaidleware-level services for
communication rather than Grid programming facilitiger se Gridification is therefore conceived
as the process of writing/modifying an application to mélithe various services provided by a specific
Grid middleware. As the reader can observe, the main goaidifigation technologies at this stage is
to materialize the middle layers of the Grid software stack.

The step that followed the appearance of the first Grid migaites was the introduction of Grid
programming toolkits and frameworks. In this step, the pFobof writing applications for the Grid
received more attention and the community recognized combetavior shared by different Grid

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 7
&

»

essage passq:
ing and RPC |
(MPICH-G2, |:
GridRPC) /: ,
Grid
middlewares

Grid awareness
(application developer)

Grid toolkits
and
frameworks

Semi-automa
| tic methods
‘\for gridification

Ideal tool/

method for
to<|:|ay gridification?
Little/no Grid— Virtualization/: High-level Grid : Two-step Evolution of
resource. : notionof ‘' programming ‘: gridification gridification
virtualization - Grid-service : models and APIs: metodology

technologies

Figure 2. Origins and evolution of gridification technolegi

applications. The idea behind these technologies is tagem@eneric APIs and programming templates
to unburden developers of the necessity to know the manycpkatities for contacting individual
Grid services (e.g. protocols and endpoints), to captunencon patterns of service composition (e.qg.
secure data transfer), and to offer convenient programatistractions (e.g. master-worker templates).
The most important contribution of these solutions is tot@egpcommon Grid-dependent code and
design in an application-independent manner. These t@oisbe seen as an incomplete application
implementing non-application specific functionality, iMtot-spotsor slotswhere programmers should
put application specific functionality in orderto build cplate applications3e, 37].

For example, the Java CoG KiB§ provides an object-oriented, framework-based interface
Globus-specific services. The Grid Application Toolkit (GA39, 40] and SAGA H|1] are similar
to the Java CoG Kit but they offer APIs for using Grid servitest are independent of the underlying
Grid middleware. With respect to template-based Grid fraorks, some _examples are MW,
AMWAT [43 and JaSkel44]. All in all, the goal of these tools is to make Grid programigneasier.
The conception of gridification at this phase does not chamgenuch from that of the previous one,
but Grid programming is certainly done at a higher level aftedction. As a consequence, less design,
code, effort and time is required when using these tools.

Up to this point, the most remarkable characteristic sharadng the above technologies is that
gridification is done in ane-stedashion, this is, there is not a clear separation betweetasies of

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

8 C. MATEOS, A. ZUNINO, M. CAMPO

writing the pure functional code of an application and addirGrid concerns. The Grid technology
being used plays a central role during the entire Grid apfiia development process, since developers
Grid-enable applications as they code them by keeping i mispecific Grid middleware, toolkit or
framework. Therefore, technologies promotige-stepgridification assume developers have a solid
knowledge on Grid programming and runtime facilities.

Alternatively, there are currently a number of Grid proggatomoting what we might calltavo-step
gridification methodology, which is intended to supportrsdgaving little or even no background on
Grid technologies. Basically, the ultimate goal of thiseliaf research is to come out with methods
that let developers to focus first on implementing and tgstie functional code of their applications,
andthento automatically Grid-enable them. As a consequence, gipsaach is suited for gridifying
applications that were not initially designed to run on th&dGlt is worth noting that technologies
under this gridification paradigm can be seen a complemehgtones previously described. In fact,
active research is being done to develop more usable aritviatGrid programming models, toolkits
and middlewares .

Figure2 shows how the evolution of Grid technologies have reduce#tiowledge that is necessary
to gridify an application. As depicted in the figure, we idgntour separate phases in this evolution.
Transitions between two consecutive phases is given by iaalachange in the conception of the
notion of gridification. At the first phase, “gridify” means manually use the Grid infrastructure. At
the second phase, virtualization of Grid resources thraaghices is introduced; “gridify” refers to
adapt applications to use Grid services. The third phaseeased the introduction of the first Grid
development technologies materializing.common behavi@ri applications, therefore gridification
takes place at a higher level of abstraction. Finally, thetfophase incorporated the notion of two-
step gridification: Grid technologies recognized the neegrovide methods teransformordinary
applications to Grid-aware ones with little effort.

Certainly, the relation between the two axis is not lineat,ibis descriptive enough to get an idea
about the consequences of gridification in the long term.h&sréader can see, tideal method for
gridification would yield an hypothetical value for Grid amaess equals trerq this is, the situation
in which developers can effectively exploit the Grid with@xplicitly using any Grid technology in
their code. In this paper, we are interested-in reviewingetkisting approaches that are focused on
supporting two-step gridification. The next section disessthe most relevant projects to the purpose
of this article.

5. GRIDIFICATION PROJECTS

In light of the gridification problem, a number of studies Bgwoposed solutions to port existing
software to the Grid. For example}q] presents an approach-to assist users in gridifying complex
engineering design problems, such as aerodynamic wingmleSimilarly, 6] introduces a scheme

of gridification specially tailored to gridify scientificdacy code. In addition4[/] proposes an OGSA-
compliantnaturalizatior? servicefor the Globus platform that automatically detects and Ikeso

8The American Heritage Dictionary defines naturalization“agapting or acclimating (a plant or an animal) to a new
environment; introducing and establishing as if native”.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 9

software dependencies (e.g., executables, system ébraiava classes, among others) when running
CPU-intensive jobs on the Grid.

Although the above technologies explicitly address thélem of achieving easy gridification, they
belong to what we might identify as early efforts in the dewshent of true gridification methods,
which are characterized by solutions lacking generalityf targeting a particular application type
or domain. Nonetheless, there are a number of projects jatitegnto provide more generic, semi-
automatic methods to gridify a broader range of Grid apfitica, mostly in the form of sophisticated
programming and runtime environments. In this sense, @esh.1 to 5.10 present some of these
projects.

5.1. GEMLCA

GEMLCA (Grid ExecutionM anagement fok egacyCodeArchitecture) £8] is a general architecture
for transforming legacy applications to Grid services withthe need for code modification. GEMLCA
let users to deploy a legacy program written in any programgntanguage as an OGSA-compliant
service. The access point for a client to GEMLCA is a frond-effering services for gridifying legacy
applications, and also for invoking and checking the stafusinning Grid services. An interesting
feature of this front-end is that it is fully integrated witie P-GRADE {19 workflow-oriented Grid
portal, thus allowing the creation of complex workflows wheasks are actually gridified legacy
applications.

GEMLCA aims at providing an infrastructure to deploy legapyplications as Grid services without
reengineering their source code. As depicted in FigU@EMLCA is composed of four layers:

e Compute Server Represents-hardware resources such as servers, PCsaistiedscbn which
legacy applications in the form of binary executables aremially available. Basically, the
goal of GEMLCA is to make these applications accessibleutind/NVeb Services-enabled Grid
services.

e Grid Host Environmentimplements a service-oriented Grid layer on top of a speCfSA-
compliant Grid middleware. Current distributions of GEMAGupports Globus version 3. X and
4.X.

e GEMLCA ResourceProvides portal services for gridifying existing legappécations.

e GEMLCA Client This layer comprises the client-side software (i.€., candiline interfaces
and browser-enabled portals) by which users may access @2AMkrvices.

The gridification scheme of GEMLCA assumes that all legagliegtions are binary executable code
compiled for a particular target platform and running on anpate Server. The Resource layer is
responsible to hide the native nature of a legacy applioditiowrapping it with a Grid service, and
processing service requests coming from users. It is upetosler, however, to describe the execution
environment and the parameter information of the legacyiegdn. This is done by configuring an
XML-based file called LCID (Legacy Code Interface Descop), which is used by the GEMLCA
Resource layer to map Grid service requests to job submsdi€ID files provide metadata about the
application, such as its executable binary path, the jobag@nand the minimum/maximum number

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

10 C. MATEQS, A. ZUNINO, M. CAMPO

Command- Browser— P
line interfacgs| enabled portals GEMLCA Client

——

Legacy code
process

Legacy Legé‘;y Leg acy G EM LCA
[code job] [code job] Tt Resource
OGSA Container (Globus 3.X,

Globus 4.X, G-Lite, etc.) Grid Host

Environment

Job Manager (e.g., Condor)|

Compute
Servers

Figure 3. Overview of GEMLCA

of processors to be used, and parameter information, giyénebname, type (input or output), order,
regular expressions for input validation, and so forth. Toléowing code presents the LCID file
corresponding to the gridification of the Unixkdir command:

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE GLCEnvironment "gemlcaconfig. dtd">
<GLCEnvironment id="mkdir"
executable="/bin/mkdir" jobManager="Condor"
maximumJob="5" minimumProcessors="1">
<Description>Unix mkdir command</Description>
<GLCParameters>
<Parameter name="—p" friendlyName="New_folder"
inputOutput="Input" order="0" mandatory="No">
<initialValue />
</Parameter>
</GLCParameters>
</ GLCEnvironment>

As explained, the GEMLCA gridification process demands zering effort and little configuration
from the user. In spite of this fact, users not having an iptdé&nowledge about GEMLCA concepts
may experience difficulties when manually specifying LCIRdi In this sense, the GEMLCA front-
end also provides user-friendly Web interfaces to easibcdibe and deploy legacy applications.

A more serious problem of GEMLCA is concerned with the anataha gridified application.
GEMLCA applications are essentially an ordinary executdbé wrapped with an OGSA service

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 11

interface. GEMLCA services serve request according to § mengranular execution scheme (i.e.,
running the same binary code on one or more processors) buitermal changes are made in the
wrapped applications. As a consequence, the parallelismotebe controlled in a more grained
manner. For many applications, this capability is cru@ad¢hieve good performance.

5.2. GrADS

GrADS (Grid ApplicationDevelopmentoftware) (0] is a performance-oriented middleware whose
goal is to optimize the execution of numerical applicatiosmiten in C on distributed heterogeneous
environments. GrADS puts a strong emphasis on applicataility and scheduling issues in order to
optimize application performance and resource usagdoRtaievel mobility in GrADS is performed
through the so-calleReschedulemhich periodically evaluates the performance gains th&ntially
can be obtained by migrating applications to underloadsdukees. This mechanisms is known as
opportunistic migration

Users wanting to execute an application contact the GrAp§$lication ManagerThis, in turn,
contacts theResource Selectpwhich accesses the Globus MDS service to obtain the alaileih
of computing nodes and then uses the NWS (Network Weatheicgg51] to obtain the runtime
information (CPU load, free memory and disk space, etcthfeach of these nodes. This information,
along with execution parameters-and a user-generatedtexecoodel for the application, is passed
forth to the Performance Modelemwhich evaluates whether the discovered resources aregbrtou
achieve good performance or not. If the evaluation yieldssitiye result, theApplication Launcher
starts the execution of the application using Globus jobagament services. Running jobs can be
suspended or canceled atany time due to external eventsasusser intervention.

GrADS provides a user-level C library called SRS (Stop ReS&aftware) that offers applications
functionality for stopping at a certain point of their ex&oun, restarting from a previous point of
execution, and performing variable checkpointing. To SRR&ble an ordinary application, users have
to manually insertinstructions into the application s@urode in order to make calls to the SRS library
functions. Unfortunately, SRS is implemented on top of M#l,it can only be used in MPI-based
applications. Nonetheless, as these applications are asedpof a number of independent, mobile
communicating components, they are more granular, thusietly achieving better use of distributed
resources than conventional GrADS applications, this iout using SRS.

5.3. GRASG

GRASG Gridify and Running Applications onService-orientedGrids). [52] is a framework for
gridifying applications as Web Services with relativelilé effort. Also, in order to make better use
of Grid resources, GRASG provides a scheduling mechaniatrigtable to schedule jobs accessible
through Web Services protocols. Basically, GRASG provemwices for job execution, monitoring
and resource discovery that enhance those offered by Globus

The architecture of GRASG is depicted in Figutelts main components are four Web Services
named Information Service (IS), Resource Allocation anldeSicling Service (RASS), Job Execution

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIey
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is avail able at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

12 C. MATEQS, A. ZUNINO, M. CAMPO SRE

External
Client

Resource
Allocation and
Scheduling
Service

Job supmission > *..information

JES | [.UEs | [JEs-

Resource Resource

Figure 4. GRASG architecture

Service (JES), and Data Service (DS). Each Grid resoureg &.server) is equipped with the so-
calledsensorsand wrapped with a JES. Sensors are responsible for cagtamic publishing meta-
information about their hosting resource (platform typemier of processors, installed applications,
workload, etc.), while JES services are responsible forgeécution and guaranteeing Quality of
Service (QoS). More important, a JES wraps all the (gridjfiggplications installed on a server.
External clients can execute gridified applications antk™tto GRASG components by means of
SOAP B3], a well-known protocol for invoking Web Services.

The IS, RASS and DS services are placed orSitelayer, which sits on top of Grid resources. The
IS periodically collects information about the underlyimegources from their associated sensors, and
use this information to satisfy resource requests origigagither at the RASS or an external client.
The RASS bridges application clients to JESs. Specifictlly,RASS is in charge of processing job
execution requests coming from clients, allocating andmésg the needed Grid resources, monitoring
the status of running jobs, and returning the results battigalients. Lastly, the DS is used mainly for
moving data among computation servers. Itis implemented/ssb Service interface to GridFT#4],
an FTP-based, high-performance, secure, reliable datsfénaprotocol for Grid environments.

GRASG conceives “gridification” as the process of deployamg existing application (binary
executable) on a Grid resource. Once deployed, applicatan be easily accessed through their
corresponding JES, which stores all the necessary infiom@.g., executable paths, system variables,
etc.) to execute a gridified or a previously installed agian. Like GEMLCA, application granularity
after gridification is very coarse. To partially deal withtpotial performance issues caused by this
problem, users can define custom scheduling and resourcevdiy mechanisms for a gridified
application by writing new sensors that are based on shé&lkedrscripts.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 13

5.4. GridAspecting

GridAspecting b5 is a development process, based on aspect-oriented pnogrey (AOP) 6, to
explicitly separate crosscutting Grid concerns in pardiéeva applications. Its main goal is to offer
guidelines for Grid application implementation focusing separating the pure functional code as
much as possible from the Grid-related code. Besides, Gpaéting relies on a subset of the Java
thread model for application decomposition that enablesSiad application testing even outside a
Grid setting.

GridAspecting uses a finer level of granularity for gridifiedmponents than GEMLCA and
GRASG. GridAspecting assumes that ordinary applicaticars fee decomposed into a number of
independentasks which can-be computed separately. As a first step, the progsa is responsible
for identifying these tasks across the, yet non gridifieghliaption code, and then encapsulate them
as Java threads. Any form of data communication from the @jgjplication to its task threads should
be implemented via parameter passing to the task constrd&a second step, aspects have to be
provided by the programmer in order to map the creation ok ta a job execution request onto
a specific. Grid middleware (e.g., Globus). At runtime, Grig&cting uses the Aspectd7] AOP
language to dynamically intercept all thread creation anitinlization calls emitted by the gridified
application, replacing them with calls to the underlyingldieware-level execution services by means
of those aspects.

Despite being relatively simple, the process requires #neldper to follow a number of code
conventions. However, applying GridAspecting results imesy modular and testable code. After
passing through the gridification process, the functionalecof an application is entirely separated
from its Grid-related code. As a consequence, a differert Sl can be used without affecting the
code corresponding to the application logic.

5.5. GriddLeS

GriddLeS (Grid Enabling Legacy Software)d is a development environment that facilitates the
construction of complex Grid applications from legacy wafite. Specifically, it provides a high-level
tool for building Grid-aware workflows based on existingmaodified applications, callecbmponents
Overall, GriddLeS goals are directed towards leveragingtiexg scientific and engineering legacy
applications and easily wiring them together to constreet Grid applications.

The heart of GriddLeS is GridFiles, a flexible and extensikechanism that allows workflow
components to communicate between each other without thd fa@ source code modification.
Basically, GridFiles overloads the common file I/O primésv of conventional languages with
functionality for supporting file-based interprocess camination over a Grid infrastructure. In this
way, individual components behave as if they were executinthe same machine and using a
conventional file system, while they actually interchanggadacross the Grid. It is important to
note that GriddLeS is mainly suited for gridifying and comspmy legacy applications in which the
computation time/communication time ratio is very high.dittnally, components should expose a
clear interface in terms of required input and output filesasto simplify the composition process and
do not incur in component source code modification.

GridFiles makes use of a special language-dependent eputialled FileMultiplexer, which
intercepts file operations and processes them according teed@ection scheme. Current

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.com. DO: 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

14 C.MATEOS, A. ZUNINO, M. CAMPO

Component

Component

open, close. open, close

read, write, read, write,
seek seek
GridFTP) | ——— — . GridFTP) | ——— — .
Server ' Local file Server . Local file '
' client . X client :
: Remote file | ; Local 3 Remote file | ,
client file system|)

(" GNs . _(GNS (GriddLeS) . [~ GNS :
' client : Name Server : client '

+FileMultiplexer : .FileMultiplexer

I Remote : ' Remote :
' \ process client) | '\ process client) ,

Figure 5. GridFiles: file request redirection

materializations include local file system redirectiomote file system redirection based on GridFTP
and remote process redirection based on sockets. Whenprsiogss redirection, a multiplexer placed
on the sending component is linked with a multiplexer on #eeiving component through a buffered
channel, which automatically handles data synchroniratio any case, the type of redirection is
dynamically selected depending on whether the file identiépresents a local file, a remote file or
a socket, and the target'’s location for the redirection @file&eomponent) is obtained from the GNS
(GriddLeS Name Server). The GridFiles mechanism is sunmediin Figures.

The GriddLeS approach is simple yet very powerful. Applmwas programmers can write and
test components without taking into account any Grid-eglaissues such as data exchanging,
synchronization or fault-tolerance, which in turn are Haddby the underlying multiplexer being used.
Another interesting implication of this fact is that implemed components can transparently operate
either as a desktop program or as a block of a bigger apmizalhe weak point of GriddLes is that its
runtime support suffers from portability problems, sincis inecessary to have a new implementation
for each programming language and OS platform. Also, itslioitpsocket-based communication
mechanism lacks the level of interoperability required byrent Grids.

5.6. Ninf-G

Ninf-G [59] is a C/FORTRAN programming environment that aims at prmmgda simple Grid
programming model mostly for non-computer scientists. utlds on top of the Globus toolkit

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 15

Client side : Server side

Client part

Client §
Component : lGIobus I/
3) Invoke stub 4) Transfer
rguments generate
© [GRAM_Jrwesseeess »‘Remote Executable
1) Interface 2) Interface reply invoke

request — MDS ——| Interface
: retrieve | jnformation

Figure 6. Ninf-G architecture

and offers a reference implementation of the GridRPC sjgatifin. Ninf-G provides familiar RPC
semantics so that the complicated structure of a Grid ademithehind an RPC-like interface.

Figure 6 describes the architecture of Ninf-G, which is based on tvagomcomponentsClient
Componentand Remote Executahl@he Client Component consists of a client API and libraries
for GridRPC invocations. The Remote Executable comprisstila and system-supported wrapper
functions, both similar to those provided by Java RMI or C@RB(]. The stub is automatically
generated by Ninf-G from a special IDL file describing theenféice of a remote executable. Both
client and server programs are obtained after gridifyingplication.

When executing a gridified application, the Client Compdnand the Remote Executable
communicate with each other by using Globus services. ,Fihg Client: Component gets the
IDL information for the server-side stub, comprising thenmge executable path and parameter
encoding/decoding information. This is done by means of MBISnitoring and Discovery System),
the Globus network directory service. Then, the client pasise executable path to the Globus GRAM
(Grid Resource Allocation Manager), which invokes the seside part of the application. Upon
execution, the stub requests the invocation argumentseteltant, which are transferred using the
Globus-10 service.

Roughly, the first step to gridify an application is to idéné client part and one or more server parts.
The user should properly restructure its application wkiena server part cannot be straightforwardly
obtained from the code, such as merge the most resourceroorgs functions into a new one and
pick this latter as the server program. In any case, the usst carefully remove any data dependence
between the client and the server program, or among servex (@ag., global variables). Up to this
point, the gridification process does not require to be peréal within a Grid setting.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

16 C.MATEOS, A. ZUNINO, M. CAMPO

main(){ main(){
pre_processing(); for (i=0;i<task_no;i++)
call_library(args): task_processing(args);
‘ Gridification ‘ Gridification
main(){ main(){
pre_processing(); for (i=0;i<task_no;i++)
grpc_call(handle, grpc_call_async(dest[i],
"call_library", "task_processing",
args); args);
} grpc_wait_all(dest);

Figure 7. Gridifying applications with Ninf-G: typical scarios

The next step is concerned with inserting Ninf-G functians ithe client program so as to enable it
to interact, via RPC, with its server parts(s). Ninf-G hasimber of built-in functions for initiating and
terminating RPC sessions and, of course, performing asgnols or synchronous RPC calls. Typical
scenarios when gridifying code with Ninf-G are illustratad-igure?.

Deploying a gridified application involves creating the extables on each server. First, the user
must specify the interface for the server program(s) usiim§-8 IDL, which are used to automatically
generate server-side stubs. Finally, the user must mamegiilster this information in MDS. Although
simple, these tasks can be tedious if several applicati@n®de gridified.

5.7. PAGIS

PAGIS [6]] is a Grid programming framework and execution environnseiitable for unskilled Grid
developers. PAGIS provides a component-based programmaugl that emphasizes on separating
whatan application does frofmowit does it. Roughly, putting an application to work onto theéd®vith
PAGIS first requires to divide the application into commuaiicg components, and then to implement
how these components are executed and controlled withindee@vironment.

A PAGIS application comprises a number of components cdedethrough a network of
unidirectional links called arocess networkn PAGIS terminology, components and links are known
as processesnd channels respectively. A process is a sequential Java program mcag¢rnentally
reads data from its incoming channels in a first-in first-aghion, transforms data, and produces
output to some or all of its outcoming channels. At runtim&GFS creates a thread for each process
of a network, and maintains a producer-consumer bufferdochehannel. Production of data is non-
blocking whereas consumption from an empty stream is biagkAs the reader can observe, this
mechanism shares many similarities with the Unix procegsslisiing model.

Like most component-based frameworks, PAGIS processedemaibed in terms gborts Ports
define a communication contract with a process in the samecleages define interfaces for objects
in object-oriented languages. In this way, applicatiors @escribed by connecting ports through

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 17

MetaA sending MetaB
receiving
A executing Meta level
Y Base level
ObjectA |™VoKe. .3l ObjectB

Figure 8. Overview of metalevel programming

channels. PAGIS- includes an API, called PNAPI (Process bigtvPl), that provides several useful
abstractions for describing applications in terms of psseeetworks. Additionally, it offers a graphical
tool for visually creating, composing and executing preasstworks.

PAGIS allows a process network to be supplied with Grid ba&ralsy means ofmetalevel
programming Conceptually, -metalevel programming divides an appbecatinto a base level,
composed of classes and objects implementing its fundtioetzavior, and anetalevel, consisting
of metaobjectghat reify elements of the application at runtime —mostlythmoe invocations— and
perform computations on them. Figusellustrates the basics of metalevel programming. Basel leve
objectsObjectAand ObjectBhave been both assigned two different metaobjects. As aqoesice,
MetaAreceives all method invocations sent fr@hjectAand redirects them to the target's metaobject
(in this caseMetaB), which actually carries out the invocations. The labelsafd represent the phases
of a method invocation in which customized user-actions eadsociated.

PAGIS introduces theéMetaComputatiormetaobject, specially designed to represent a running
process network as one single structure. Users can therriatiagee complex Grid functionality
by attaching metaobjectso MetaComputatiormetaobjects. For example, one might implement a
custom metaobject for transferring certain method-invooatto a remote metaobject, thus achieving
load balancing. Similarly, a metaobject that monitors aexbrds the various runtime aspects of an
application can be easily implemented by logging inforaasuch as timing, source and destination
objects, amongst others, prior to method redirection.

The gridification scheme proposed by PAGIS is indeed intexgssince it allows to furnish ordinary
applications (i.e., the base level) with Grid-dependehiber (i.e., the meta level) without affecting
its source code. The only requirement is that those apjaitatre appropriately transformed so that
they are structured as a process network. Similar to Gridétspg, a PAGIS application (i.e., a process)
is specified at a task level of granularity.

fIstrictly speaking, these are meta-metaobjects, sinceitibenzept method calls performed by other metaobjects.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

18 C. MATEQS, A. ZUNINO, M. CAMPO

5.8. Proactive

Proactive $2] is a Java-based middleware for object-oriented paratiedpile and distributed
computing. It includes an API that isolates many complexritieof the underlying communication and
reflection Java APls, on top of which a component-orientednis provided. This API also includes
functionality to transform conventional Java classes tor@aétive application. The programming
model featured by Proactive has also been implemented ina@d-Eiffel.

A typical Proactive application is composed of a number obiteoentities calledactive objects
Each active object has its own thread of control and an erdigtpcalled theroot, by which the
object functionality can be accessed from ordinary objebtsive objects serve methods calls issued
from other active/ordinary objects, and also request sesvimplemented by other local or remote
active objects. Method calls sent to active objects are taymized based on theait-by-necessity
mechanism, which transparently blocks the requester theilresults of a call are received. At the
ground level, this mechanism relies on meta programmirfynigces similar to that of PAGIS, thus it
is very transparent to the programmer.

JVMs participating in a computation can host one or muoodes A node is a logical entity that
groups and abstracts the physical location of a set of aotiyects. Nodes are identified through a
symbolic name, typically a URL. Therefore, active obje@s be programmatically attached/detached
from nodes without the need for manipulating low-level imf@tion like networks addresses or ports.
Similarly, active objects can be sent for execution to rembfMs by simply assigning them to a
different “container” node.

Standard Java classes can be easily transformed into abjiwets. For example, let us assume we
have a class named, which exposes two methodso andbar, with return typevoid and double
respectively. The API call:

C ¢ = (C) ProActive.newActive("C", args, "rmi://isistan.exa.unicen.edu.ar/myNode");

creates — by means of RMI — a new active object of type C on tlie ntyNode Further calls to

eitherfoo or bar are asynchronously handled by Proactive, and-any attenmetb the result of an
invocation tobar blocks the caller until the result is computed. In a similaywthe API can be used
to straightforwardly publish an active object as a SOAPb&sthWeb Service.

Another interesting feature provided by Proactive is th#amoof virtual nodes The idea behind
this concept is to abstract away the mapping of active abjecphysical nodes by eliminating from
the application code elements such as host names and coratianiprotocols. Each virtual node
declared by the application is identified through a plaimgtrand mapped to one or a set of physical
nodes by means of an external XML deployment descriptor Ale.a consequence, the resulting
application code is independent of the underlying exeaygiatform and can be deployed on different
Grid settings by just modifying its associated deploymessgadiptor file.

There are, however, some code conventions that progranmmess follow before gridifying an
ordinary Java class as an active object. First, classes bmuserializable, and include a default
constructor (i.e., with no arguments). Second, the re$altall to a non-void method should be placed
on a local variable for the wait-by-necessity mechanism aokwReturn types for non-void methods
should be replaced by system-provided wrappers accosdimgbur example, we have to replace the
return type in thévar method with a Proactive API class that wraps doebleJava primitive type.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 19

5.9. Satin

Satin B3] is a Java framework that lets programmers to easily paiwl@pplications based on the
divide and conquer paradigm. The ultimate goal of Satin ifrée programmers from the burden
of modifying and hand-tuning applications to exploit a Gsieltting. Satin is implemented on top
of Ibis [64], a programming environment whose goal is to provide aniefiicJava-based platform

for Grid programming. Ibis consists of a highly-efficientnamunication library, and a variety of

programming models, mostly for developing applicationsaasumber of components exchanging
messages through messaging protocols like Java RMI and MPI.

Satin extends Java with two primitives to parallelize siatfireaded conventional Java programs:
spawn to create subcomputations (i.e., divide), ayhG to block execution until the results from
subcomputations are available. Methods considered fallphexecution are identified by means of
marker interfacethat extend theatin.Spawnablmterface. Furthermore, a class containing spawnable
methods must extend ttsatin.SatinObjectlass and implement the corresponding marker interface.
In addition, the result of the invocation of a spawnable radtinust be stored on a local variable. The
next code shows the Satin version of a simple recursiveisalta compute th&" Fibonacci number:

interface FibMarkerinterface extends satin.Spawnable{
public long fibonacci(long k);

}
class Fibonacci extends satin.SatinObject implements FibMarkerinterface{

public long fibonacci(long K){

if (k <2)
return k;
I/l The next two calls are automatically Sspawned,
/1 because "fibonacci" is marked in FibMarkerinterface

long f1 = fibonacci(k — 1);

long f2 = fibonacci(k — 2);

/I Execution blocks until f1 and f2 are instantiated
super.sync();

return f1 + f2;

}
static void main(String [] args){

Fibonacci fib = new Fibonacci();

// also spawned

long result = fib.fibonacci(k);

/1 Blocks the main application thread
// until a result is obtained
fib.sync();

}
}

After indicating spawnable methods and inserting appedgrisynchronization calls into the
application source code, the programmer must feed a cothpdesion of the application to a tool
that translates, through Java bytecode instrumentatamh Evocation to a spawnable method into a

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

20 C. MATEOS, A. ZUNINO, M. CAMPO

Satin runtime task. For example, in the code shown aboveskaigagenerated for every single call to
thefibonaccimethod.

Since each task represents the invocation (recursive ptanatspawnable method, their granularity
is clearly smaller than the granularity of tasks like theosepported by GridAspecting or PAGIS. A
running application may therefore have associated a lang#oer of fine-grained tasks, which can be
executed on any machine. For overhead reasons, most tagk®aessed on the machine in which they
were created. In order to efficiently run gridified prograBestin uses a task execution scheme based on
a novel load-balancing algorithm called CRS (Cluster-awandom Stealing). With this algorithm,
when a machine becomes idle, it attempts to steal a taskgadtibe processed from a remote machine.
Finally, intra-cluster steals have a greater priority thaahe-area steals. This policy fundamentally aims
at saving bandwidth-and minimizing the latencies inherestaw wide-area networks.

5.10. XCAT

XCAT [65] is a component-based framework for Grid application paogming built on top of Web
Service technologies. XCAT applications are created byneoting distributed components (OGSA
Web Services) that communicate either by SOAP messaging onplicit notification mechanism.
XCAT is compliant with CCA (Common Component Architectufé}], a specification whose goal is
to come out with a reduced set of standard interfaces thagtaerformance component framework
should provide/expect to/from components in order to aehéasy distributed component composition
and interoperability.

XCAT components are connected pgrts A port is an abstraction representing the interface of
a component. Ports are described in SIDL (Scientific Interfaefinition Language), a language for
describing component operations in terms of the data tyfiea éound in scientific programs. There
are two kinds of portgprovidesports, representing the services offered by a componethtjsagorts,
which describes the functionality a component might negdsiimplemented by another component.
Furthermore, XCAT provides ports can be implemented as O®®A Services. XCAT uses ports
can connect to any typed XCAT provides port (i.e:, thosernilesd in SIDL) but also to any OGSA-
compliant Web Service.

XCAT allows scientific legacy applications to be deployedasponents without code modification
using the concept ofpplication manager(see Figure9). Basically, each legacy application is
wrapped with a generic component (application manageporesble for managing and monitoring
the execution of the application, and staging the necessput and output data. The manager also
serves as a forwarder for events taking place inside thepeidppplication such as file creation, errors,
and execution finalization/crash. Applications managarsh®e connected to each other, and have one
special port by which standard components can control thtiesnworth noting that legacy applications
have, in general, a large granularity. As a consequence,TX§hfares some of the limitations of
GEMLCA and GRASG with respect to granularity of gridified épations.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 21

SOAP control
events port

Application
Manager

data
stagerifiig

control
messages

application
events

Legacy
Application

Figure 9. XCAT application managers

6. A TAXONOMY OF GRIDIFICATION APPROACHES

Tablel summarizes the main characteristics of the approachesilok$dn the previous sections. To
better understand the structure of the table, the readeidhecall the analogy between the Grid and
the electrical power grid discussed.in Sectin

Basically, each row of the table represents a “wall sockgtivhich applications are gridified and
connected to the Grid. The “Appliance type” column symbedizhe kind of applications supported
by the gridification process, whereas the “Grid-aware appk” column briefly describes the new
anatomy of applications after passing through the gridificeprocess. In addition, lower-level Grid
technologies upon which each approach is built are alsedligtinally, we center our discussion on
the different approaches to gridification (i.e., the “plimggtechniques”) according to the taxonomies
presented in the next subsections.

In particular, the taxonomies of subsectiofd and 6.2 describe, from the point of view of
source code modification, the different ways in which-an mady application can be affected by the
gridification process. The taxonomy presented in-subseétid represents the observed granularity
levels to which applications are Grid-enabled. Finallg thxonomy included in subsectié briefly
categorizes the approaches according to the kind of Griduress they aim to virtualize. These
taxonomies are simple, but comprehensive enough to cogefattious aspects of gridification.

6.1. Application reengineering

The application reengineering taxonomy defines the exdemhtch an application must be manually
modified in order to obtain its gridified counterpart. In gexigthe static anatomy of every application
can be described as a numberaoimpilation unitscombined with a certaistructure Compilation

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

22 C. MATEOS, A. ZUNINO, M. CAMPO

Table I. Summary of gridification tools

Wall Appliance type Plugging technique Grid-aware appliance Underlying

socket highlights technologies

GEMLCA Binary executable The user must specify theGlobus-wrappered Web Services;
interface of his/her binary executable Globus
application (XML file)

GrADS C application Instruction insertion if Globus-wrappered Web Services;
(MPI-based if using SRS binary executable Globus; NWS;
explicit migration MPI
is'to be used)

GRASG Binary executable Hand-tuning of Binary executable SOAP-based

applications through interfaced through a Web Services;
Perl/shell scripting JESWeb Service Globus
Grid- Task-parallel Java Manual task Multi-threaded, Aspect]
Aspecting application decomposition and Grid aspect-enhanced Java
concerns (aspects) application
implementation

GriddLeS Stream-based Transparent overloading Globus-wrappered Globus;

binary executable of system libraries binary executable GridFTP

implementing file/sockets (component
operations across the Grid
Ninf-G C/Fortran Users decompose Client and server-side Globus;
application applications into binary executables GridRPC
client/server parts, and
connect them using
GridRPC calls
PAGIS Java application Users identify Binary executable -
components and assemble(proces$
them throughchannelsto
build process networks

Proactive Java application Source code conventiongctive object SOAP-based
proxy-based wrapping Web Services;
RMI
Satin Divide and Source code conventions; Single-threaded, Ibis
bytecode instrumentation parallel Java application
conquer Java . .
application enabling recursive
method calls to be
spawnable
XCAT Binary executable The user must specify theBinary executable Web Services
interface of his/her interfaced through an
executable in SIDL application manager
Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40

Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 23

No (GEMLCA, GRASG,

_ / Griddles, XCAT)
Modify

source Structure only (GridAspecting, PAGIS)

code? \
Yes ——— Compilation units only (GrADS, Proactive, Satin)

Structure and
compilation units (Ninf-G)

Figure 10. Application reengineering taxonomy

units are programming language-dependent pieces of sefii@ay., Java classes, C and Perl modules,
etc.) assembled together to form an application. Usualbgrapilation unit corresponds to a single
source code file. Furthermore, the' way compilation unitsarebined determines the structure of the
application (e.g. the class hierarchy of a Java applicative dependence graph between functions
within a C program). According to Figurg0, the anatomy of a conventional application might be
altered in the following manners:

e Structure onlySome approaches alter the internal structure of the agifit, restructuring it in
such a way some of its-constituent parts are reorganizedeample, GridAspecting requires
the user to identify tasks within the application that ptigdly can be executed concurrently.
Similarly, the PAGIS framework requires-to restructure lagapions as a set of components
exposing and invoking services through well-defined imteet. However, in both cases, the
user code originating these tasks and components prdgtieahains unchanged. In general,
this procedure makes the appearance of the original afiplicaignificantly different from
that of the Grid-aware application, but the pure implemémiacode is practically the same.
In other words, even though the code within compilationsiniay slightly change, the focus
of structure modification is on redesigning the applicatimtead of rewriting it (i.e., internally
modify methods/procedures).

Structure modification is a very common approachto gridificeamong template-based Grid
programming frameworks. With these frameworks, the useptdthe structure of his/her
application to a specific template implementing a recuremrgcution pattern defined by the
framework. For example, JaSkel4 is a Java framework for developing parallel applications
that provides a set of abstract classes and a skeleton gatalich implements interaction
paradigms such as farm, pipeline, divide and conquer andtbdeza templates. Another
example is MW §2], a framework based on the popular master-worker paradanpdrallel
programming.

e Compilation units onlyConversely, other approaches alter only some compilatiors of the
application. For instance, Proactive and Satin requiredtheloper to modify certain methods
within the application to make them compliant to a specifiting convention. But, in both cases,
the class hierarchy of the application is barely modifiedaxonomy of gridification techniques
for single compilation units is presented in the next sutisec

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

24 C. MATEQS, A. ZUNINO, M. CAMPO

Griddles, PAGIS, XCAT)

compilation Instruction insertion (GrADS)

units? \
Yes ——— Call replacement (Ninf-G)

Coding conventions (Proactive, Satin)

No (GEMLCA, GridAspecting, GRASG,
Modify /

Figure 11. Compilation unit modification taxonomy

Examples of compilation unit modification are commonly fdun the context of distributed
programming. For instance, this technique is frequentlpleyed when a single-machine Java
application is adapted to use a distributed object teclyyosmch as RMI or CORBA. Some
of the (formerly local) objects are explicitly distributesh different machines and looked up
by adding specific API calls-inside the application code. leeav, the behavioral relationships
between those distributed objects do not change. Additigsamilar examples can be found in
distributed procedural programming using technologiefsas MPI or RPC.

e Structure and compilation unit$Of course, gridification methods may also modify both the
structure and compilation units of the application. Formagke, Ninf-G demands the developer
to split an application into client and server-side partd #ren to modify the client so as to
remotely interact with the server(s). Notice that the ing&structure of the application changes
dramatically, since a single server part may contain codebtoing the functions originally
placed at different compilation units. Overall, not onlg thrdinary application is refactored by
creating many separate programs, but also-several moitifisab some of the original functions
are introduced.

Intuitively, the first technique enables the user to perforadifications at a higher level of abstraction
than the second one. Users are not required to provide codesfiog Grid functionality and deal
with Grid details, but have to change the application sh&gea consequence, the application logic
is not significantly affected after gridification. In pripée, the most undesirable technique is by far to
modify the structure and the compilation units of an appiicg since not-only the application shape is
changed, but also the nature of its code. However, it is vifigult to-determine whether a technique
is better than the others, as the amount of effort necessagsidify an application with either of the
three approaches depends on its complexity/size, the aftypeof modifications imposed by the
gridification method for restructuring and/or rewritingtlpplication, the programming language, and
the particular Grid setting and underlying technologigs®esed for application execution.

6.2. Compitation unit modification

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 25

The compilation unit modification taxonomy determines hoppleations are altered after
gridification with respect to modification of theirs compitan units. As shown in Figurél, we can
broadly identify the following categories:

e Instruction insertion The most intuitive way to gridify is, as it name indicatey, tnanually
inserting instructions implementing specific Grid funotidity at proper places within the
code. A case of instruction insertion arises in GrADS wheea tiser wants to explicitly
control application migration and data staging. A clearaadage of this technique is that the
programmer can optimize his/her application at differemels of granularity to produce a very
efficient Grid application. However, in most cases, the impfibn logic is literally mixed up with
Grid-related code, thus making maintainability, legifyiltesting and portability to different Grid
platforms very hard.

There are many Grid middlewares that require users to emiplstyuction insertion when
gridifying compilation units. For example, JavaSympho@y] [is a programming model whose
purpose is to simplify the development of performancertigd, object-based Grid applications.
It provides a semi-automatic execution model that dealb wiigration, parallelism and load
balancing of applications, and at'the same time allows tbgnammer to control —via instruction
insertion— such features as needed. Other examples alenJa0g68] and GridWay p9], two
platforms for deployment and execution of CPU-intensivpligations which require users to
modify applications in order to exploit job checkpointingoeparallelization.

e Call replacementA very common technique to gridify compilation units is gptacing certain
groups of sequential instructions by appropriate callheounderlying middleware API. Such
instructions may range from operationsfor carrying owiiptocess communication to code for
manipulating data. Unlike the previous case, call replaa@mputs more emphasis on replacing
certain pieces of conventional code by Grid-aware code#&musbf inserting new instructions
throughout the user application.

Call replacement assumes users know what portions of tbde should be replaced in order
to adapt it for running on a particular Grid middleware. N#leless, in order to help users
in doing this task, Grid middlewares usually offer guidebntutoring users on how to port
their applications. For instance, gridifying with the Glsbplatform involves replacing socket-
based communication code by calls to the Globus I/O libriaayysforming conventional data
copy/transfers operations by GridFTP operations, andlyimaplacing all resource discovery
instructions (e.g., for obtaining available execution @g)by calls to the MDS service.

Clearly, call replacement is a form of gridification suitaldbr users who are familiar with
the target middleware API. Users not having a good undeisignof the particular API
to be used may encounter difficult to port their applicatibmghe Grid. Another drawback
of the approach is that the resulting code is highly-couplétth a specific Grid API, thus
having many of the problems suffered by instruction insertiThese issues are partially solved
by toolkits that attempt to offer a comprehensive; higleeel programming APl on top of
middleware-level APIs (e.g., Java CoG Kit, GAT). Howevezyelopers are forced to learn yet
another programming API. Indeed, Grid toolkits help alivig developer pain caused by call
replacement, but certainly they are not the cure.

e Coding conventionsThis technique is based on the idea that all the compilatioits of an
ordinary application must obey certain conventions akbueit structure and coding style prior to

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

26 C. MATEOS, A. ZUNINO, M. CAMPO

gridification. These conventions allow tools to propergnisform a gridified application into one
or more middleware-level execution units. For exampleaPtige requires application classes to
extend the Jav&erializableinterface. Moreover, Satin requires that the result of angdation

to a recursive method is placed on a variable, rather thagsaotg it directly (e.g., pass it on as
an argument to another method). Unlike instruction insaréind call replacement, the gridified
code is in general not tied to any specific Grid API or library.

To provide an illustrative example in the context of coniemal software, we could cite
JavaBeans7[(], a widely-known specification from Sun that defines coniaTs for writing
reusable software components in Java. In order to operaelasaBean, a class must follow
conventions about method naming and behavior. This, in emables easy graphical reuse and
composition of JavaBeans to create complex applicatiotisliitie implementation effort.

It is worth pointing out that using any of the above techni&jdees not automatically exclude from
using the others. In fact, they usually complement eachroflee example, Satin, though it is focused
on gridifying by imposing coding conventions, requiresgrmammers to coordinate several calls to
a spawnable computation within a'method by explicitly itisgrspecial synchronizing instructions.
Furthermore, it is unlikely that an application that hasrbadapted to use a specific Grid API (e.g.,
GridFTP in the case of Ninf-G) doesnot include user-prodihstructions for performing some API
initialization or disposal tasks.

6.3. Gridification granularity

Granularity is a software metric that attempts to quantify the size ofitldévidual componentsthat
make up a software system. Large components (i.e., tholsgling much functionality) are commonly
called coarse-grainedwhile those components providing little functionalityeansually calledine-
grained For example, with Service-Oriented Architectures (SOA[) [applications are built in terms
of components calledervices|In this context, component granularity is determined lgyamount of
functionality exposed by services, which may range fromlsfaay., querying a database) to big (e.g.,
a facade service to a travel business).

Notwithstanding, granularity is usually associated witle size of application components from
a user’s point of view, the concept can also be applied to getlea of how granular the runtime
components of a gridified application are. We defgmlification granularityas the granularity of
the individual components that constitute an executindifigd application from the point of view
of the Grid middleware. Basically, these Grid-enabled congmts are execution units like jobs or
tasks to which the Grid directly provides scheduling anccakien services. Note that “conventional”
granularity does not necessarily determines gridificagi@amularity. Clearly, this is because the former
is concerned with the size of componebé&forean application'is transformed to run on a Grid setting.

IThe term “component” refers to any single piece of softwardtided in a larger system, and should not be confused wth th
basic building blocks of the component-based programmiadeh

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 27

Coarse—grained (GEMLCA, GrADS, GRASG,
/ Griddles, Proactive, XCAT)
Gridification

granularity T Medium-—grained (GridAspecting, Ninf-G, PAGIS)
Fine—grained (Satin)

Figure 12. Gridification granularity taxonomy

For example, during gridification, a single coarse-graised/ice might be partitioned into several
more granular services to achieve scalability.

Like conventional granularity, gridification granularitsgkes continuous values ranging from the
smallest to the largest possible component size. As shouimeitaxonomy of Figurd 2, we divided
the spectrum of gridification granularities into three di$e values:

e Coarse-grainedA running-application is composed of a number of “heavy” @k@®n units.
Typically, the application execution is handled by just anatime component. This level of
granularity usually results fromemploying solutions sasitGEMLCA, GRASG, GriddLes and
XCAT, which adapt the executable of an ordinary applicatmibe executed as a single Grid-
aware job. At runtime, a job behaves like a “black box” thatiges a pre-determined set of input
parameters (e.g., numerical values, files, etc.), perf@onse computation, and returns results
back to the executor. A similar case occurs with compilegieas of applications gridified with
GrADS.

Coarse-grained gridification granularity suffers from tw@jor problems. On one hand, the
application s treated by the middleware as a single executiit. Therefore, unless refactored, it
may not be possible for the individual resource-consumanrtsof a running application to take
advantage of mechanisms such as distribution, paralielizar scheduling to achieve higher
efficiency. On the other hand, the middleware sees a runipiplication as an indivisible unit of
work. As a consequence, some of its portions that might bamyeally reused by other Grid
applications (e.g., a data mining algarithm) cannot bealisoed or invoked.

To a lesser extent, Proactive applications can also beaenesl as coarse-grained. An ordinary
Java application (i.e., its main class and helper classegyidified by transforming it to a
self-contained active object. The user sees the non-grid#ipplication as composed of a
number of (medium-grained) objects. On the other hand,d®k@esees the gridified application
as one big (active) object. When executing the applicatiba, Proactive runtime performs
scheduling and distribution activities on active objeatsier than on plain objects. Nevertheless,
Proactive is more flexible than the other approaches in titisgory, since it lets developers to
explicitly manage mobility inside an active object, invakethods from other active objects and
externalize the methods implemented by an active object.

e Medium-grained The running application has a number of execution units adenate
granularity. Systems following this approach are GridAdgy, Ninf-G and PAGIS. In the
former and latter case, the user identifies those tasksniti@ application code that can be
executed concurrently. Then, they are mapped by the middéet® semi-granular runtime task

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

28 C. MATEOS, A. ZUNINO, M. CAMPO

Ir(lafrastrlécturg resgur&es %néy ____— Scavenger
EMLCA, GrADS, GRASG,
(Ninf—G, Satin) ~——— Non-scavenger

Yes
/ \ Infrastructure resources _____— Intra—application linking
Resource and Grid applications

harvesting (Griddles, Proactive, XCAT) ~— = Extra—application linking

\ No (GridAspecting, PAGIS)

Figure 13. Resource harvesting taxonomy

objects. Similarly, a running Ninf-G application is compd®f several IDL-interfaced processes
that are distributed across a network. Unlike GridAspertind PAGIS, this approach affords an
opportunity for dynamic component invocation, as a Ninfgplacation might perform calls to
the functions exposed by the components of another Ninfyflicgiion.

e Fine-grained This category represents the gridification granularitgoasated to runtime
components generated uponthe invocation of a method/guoeeA representative case of fine-
grained granularity is Satin. Basically, a middlewareelaask is created after every single call
to a spawnable method, regardless of whether calls aresieewr not. From the application
point of view, there is a better control of parallelism angirehronism. However, a running
application may generate a large number of tasks that shweildfficiently handled by the
underlying middleware. This fact suggests the need for am@support providing sophisticated
execution services smart enough to efficiently deal witlk sheduling and synchronization
issues.

It is worth noting that, in some cases, the user may indyeatljust (e.g., by refactoring code)
the gridification granularity to fit specific application mse For example, a set of medium-grained
tasks could be grouped into one bigger task in-order to redaoemunication and synchronization
overhead. Conversely, the functionality performed by & tasuld be decomposed into one or more
tasks to achieve better parallelism. Nonetheless, thisgs®can be cumbersome and sometimes
counterproductive. For example, Proactive applicati@mstze restructured by turning standard objects
into active objects, but then the programmer must expligitbvide code for handling active object
lookup and coordination. Similarly, gridification grantitg of Ninf-G-applications can be reduced by
increasing the number of server-side programs. Howevisrctiuld cause the application to spend
more time communicating than doing useful computations.

6.4. Resource harvesting

The resource harvesting taxonomy describes, in a genemgl tha kind of Grid resources to
which access is made transparent by each gridification rdefftte utmost goal of Grid Computing,
as explained at the beginning of this article, is to viralidistributed resources so they can

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 29

be transparently used and consumed by ordinary applicati©artainly, gridification tools play a
fundamental role in achieving such a transparency. Thauresdharvesting taxonomy is depicted in
Figurel3.

Surprisingly, some gridification methods do not pursue ues® virtualization. Specifically,
solutions such as GridAspecting or PAGIS aim at preservirggintegrity of the application logic
during gridification and make them independent of a specifid @atform or middleware. In this way,
users have the flexibility to choose the runtime support atdieiware that better suits their needs.
However, as these approaches do not offer facilities farqu€rid services, the burden of providing
the “glue” code for interacting with the Grid is entirely pkd on the application developer, which
clearly demands a lot of programming effort.

Most gridification methods, however, provide some form ofd@esource leveraging, along with a
minimal or even no effort from the application developersiBally, these are integrated solutions that
offer services for gridifying ordinary applications as et accessing Grid resources. Depending on
the type of resource they attempt to virtualize, these nustlsan be further classified as:

e Infrastructure resources onlypplications resulting from applying the gridificationquess are
not concerned with providing services to other Grid appidce. Applications are simply ported
to the Grid to transparently leverage middleware-levelises (e.g., resource brokering, load-
balancing, mobility, scheduling, parallelization, sgeamanagement, etc.) that virtualize and
enhance the capabilities of computational resources ligegssing power, storage, bandwidth,
and so forth. Moreover, some approaches are more focusedrnadsing idle CPU power (the
so called “scavengers”; GrADS, Ninf-G, Satin), wherea®ahalso include simple abstractions
and easy-to-use services to deal with data management @nith6GEMLCA, GRASG). In any
case, the emphasis is solely put on taking advantage of @siources, rather than using Grid
servicesaandservices implemented by other Grid applications.

e Infrastructure resources and Grid applicatianhe goal of these approaches is to simplify the
consumption of both Grid services and functionality oftetey gridified applications. At the
middleware level, gridified applications are treated just bny other individual Grid resource:
an entity providing special capabilities that can be usmtdumed by other applications by
means of specialized Grid services. Note that this is a aealsirproperty for a gridification
tool, since reusing existing Grid applications may imprapglication modularity and drastically
reduce development efforf).

Linking together Grid applications requires the underymiddleware to provide, in principle,
mechanisms for communicating applications. These meshenimay range from low-level
communication services such as those implemented by Gegldb high-level, interoperable
messaging services like SOAP. In addition, mechanismsaremonly provided to describe the
interface of a gridified application in terms of the intersatvices that are made accessible to
the outside, and also to discover existing Grid applicatidior example, popular technologies
for describing and discovering Grid applications-are WSDE] fand UDDI [74], respectively.
Tablell briefly compares the tools that support application linkoygshowing how they deal
with application interface description, communicationl aiscovery.

There are basically two forms to connect applicatiandgra-applicationandintra-application

In the extra-application approach, existing Grid applaa can be reused by combining and
composing them into a new application. For example, XCATcedres gridified applications as

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

30 C. MATEOS, A. ZUNINO, M. CAMPO

Table 1l. Comparison between gridification tools leverggioth Grid resources
and applications

Tool Interface description Communication protocol Apption discovery

GriddLeS Implicit (file-based) Sockets No

Proactive Explicit (WSDL) SOAP Yes (lookup by active
object identifier)

XCAT Explicit (WSDL) SOAP or XML-based No

implicit notification

being indivisible components that can be combined — wittelitoding effort — into a bigger
application, but no binding actions are ever carried outnfinside any of these components.
Another example of a gridification tool following this appiah is GMarte 79, a high-level
Java API that offers an object-oriented view on top of Globeiwices. With GMarte, users can
compose and coordinate the execution of existing binangsdy means of a (usually small)
new Java application. On the other hand, in the intra-agpdin linking approach, users are not
required to implement a new “container” application, sibo®ling to existing Grid applications
is performed within the scope of a client application. GlgRland Proactive are examples of
approaches based on intra-application linking.

Gridification approaches oriented towards consuming Gsburces are engaged in finding ways
to make the task of porting applications-to use Grid servezsier. On the other hand, approaches
seeking to effortlessly take advantage of Grid resourcdseaisting applications generalize this idea
by providing a unified view over Grid resources in-which apgiions not only consume but also
offer Grid services. It is important to note that this-apmtoahares many similarities with the service-
oriented model, where applications may act both as cliemispsoviders of services. In fact, many
global Grid standards such as OGSA and WSRF have alreadydéechihe convergence of SOA and
Grid Computing technologies.

7. DISCUSSION

Table Il summarizes the approaches discussed so far. Each cell dalke corresponds to the
taxonomic value associated to a particular tool (row) wigkpect to each one of the taxonomies
presented in the previous section.

There are approaches that let users to gridify applicatitteout modifying a single line of code.
Solutions belonging to this category take the applicatiotheir binary form, along with some user-
provided configuration (e.g., input and output parametatsrasource requirements), and wrap the
executable code with a software entity that isolates theptexndetails of the underlying Grid. It is
important to note that this approach has both advantagesliaadvantages. On one hand, the user

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 31

Table Ill. Summary of gridification approaches

Tool Application Compilation unit ~ Gridification Resource
reengineering modification granularity harvesting

GEMLCA No No Coarse-grained Grid resources

GrADS Yes (compilation Instruction Coarse-grained Grid resources
units only) insertion

GRASG No No Coarse-grained Grid resources

Grid- Yes (structure only) No Medium-grained No

Aspecting

GriddLeS No No Coarse-grained Grid resources

and applications

Ninf-G Yes (structure and Call replacement ~ Medium-grained Grid resources
compilation units)

PAGIS Yes (structure only) No Medium-grained No

Proactive Yes (compilation Code conventions Coarse-grained Grid resources
units-only) and applications

Satin Yes (compilation Code conventions Fine-grained Grid resources
units only)

XCAT No No Coarse-grained Grid resources

and applications

does not need to have a good expertise on Grid technologgridify his/her applications. Besides,
applications can be plugged into the Grid even whenthe saade is not available. On the other hand,
the approach results in extremely coarse-grained gridégalications, thus users generally cannot
control the execution of their applications in-a fine-graimeanner. This represents a clear tradeoff
between ease of gridification versus flexibility to contiod tvarious runtime aspects of a gridified
application.

A remarkable result of the survey is the diversity of prognsimg models existing among the
analyzed tools: procedural and message passing (GrADS), (@DidAspecting, PAGIS), workflow-
oriented (GriddLes), RPC (Ninf-G), component-based (P&\@roactive, XCAT), object-oriented
(Proactive, Satin), just to name a few. This evidences tiserad®e of a widely-adopted programming
model for the Grid, in contrast to other distributed envirants (e.g., the Web) where well-established
models for implementing applications are fourf@|[

Another interesting result is the way technologies likeaJaweb Services and Globus have
influenced the development of gridification tools within tBed. Specifically, many of the surveyed
tools are based on Java or rely on Web Services, and almosf #llem either build on top of
Globus or provide some integration with it. Neverthelebss result should not be surprising for
several reasons. Java has been widely recognized as ateakcibice for implementing distributed

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

32 C. MATEOS, A. ZUNINO, M. CAMPO

applications mainly because of its “write once, run anywh@hilosophy, which promotes platform
independence. Web Services technologies enable higloparability across the Grid by providing
a layer that abstracts clients and Grid services from né&welated details such as protocols and
addresses. Lastly, Globus — baptized by lan Foster as tmuXLof the Grid” — has become thie
factostandard toolkit for implementing Grid middlewares, siitqarovides a continuous evolving and
robust API for common low-level Grid functionality such a&source discovery and monitoring, job
execution and data management.

8. CONCLUSIONS

Grid Computing promises users to effortlessly take adwntaf the vast amounts and types of
computational resources available on the Grid by simplygging applications into it. However,
given the extremely heterogeneous, complex nature inhéoetihe Grid, adapting applications to
run on a Grid setting has been widely recognized as a verulifitask. So comes the challenge
to provide appropriate methodsgoidify applications, this is, semi-automatic and automatic natho
for transforming conventional applications to benefit fr@rd resources. In this sense, a number of
gridification approaches have been proposed in an atterhptpiaeality to catch up with this ambitious
dream.

Unfortunately, current approaches to gridification onlpeavith a subset of the problems that are
essential to truly achieving gridification, while not adssmg the others. Ideally, ordinary applications
should be made Grid-aware without the need for manual cddetoging, modification or adaptation.
Besides reducing development effort, this would enable éve most novice Grid users to quickly and
easily put their applications to run on the Grid.- Similadgers should also be able to take advantage of
Grid resources and existing Grid applications with litthe,eventually non, coding effort. Last but
not least, the gridification process should also take inmact the runtime characteristics of the
applications being gridified to provide-mechanisms by whiskrs easily adjust the granularity of
application components, so as to produce Grid-aware aijglits that can be efficiently executed.
Consequently, there is a need for new approaches capalffecthively coping with all these issues.

Recently, SOAs have appeared as an elegant approach te tleih some of the problems suffered
by current gridification methods. SOAs provide the basiddose couplinginteracting applications
that know little about each other in the sense they discdwenecessary information to use external
services (protocols, interfaces, location, and so on) igreachic fashion. This frees developers from
explicitly providing code for connecting applications &tlger and accessing resources from within an
application. Moreover, SOAs enable application modufaitteroperability, reusability and various
application granularities. As a matter of fact, it is notele/here to draw the line between Grid Services
and Web Services technologielsg]. Furthermore, current Grid standards are actively pramgahe
use of SOAs and Web Services for materializing the next gaioerarchitectures and middlewares for
the Grid [72].

Finally, although the analysis throughout this paper hanlexplicitly centered around the notion
of gridification as the process of transforming the souradecof an application to run on the Grid,
an aspect that deserves special attention is the amounnfifjacation that may be necessary to truly
make this transformation happen. In a broader sense, gridifin application is not only concerned
with making conventional source code Grid-aware, but al#h wupplying some Grid-dependent

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 33

configuration in order to run the adapted application, whisbally ranges from application-specific
parameters (e.g. expected execution time and memory ugadeployment information (e.g. number
of nodes to use). Sadly, this demands developers to knowviangeé many platform-related details
before an application can take advantage of Grid services.

As gridification methods evolve, difficulties in gridifyiraydinary applications seem to move from
adapting source code to configuring and deploying Grid-awaplications. For example, this fact is
evidentin those approaches (e.g. GEMLCA, GRASG, XCAT) wtede modification is not required
but deployment becomes difficult. Nevertheless, the prolbé simplifying the deployment of Grid
applications has been acknowledged by some of the currilification tools. For instance, a Proactive
application can be executed on several Internet-connentahines by configuring and launching
the application at a single location. Another incipient kvtowards this end can be found ii7, a
middleware whose goal is to ease both programming and deyglotof conventional Java applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful commants suggestions to improve the quality of the
paper.

REFERENCES

1. lan Foster and Carl Kesselman (ed$he Grid 2: Blueprint for a New Computing Infrastructudorgan-Kaufmann, San
Francisco, CA, USA, 2003.

2. lan Foster, ‘The Grid: Computing without boundSgientific American2884), 78—85 (2003).

3. lan Foster, Carl Kesselman, and Steven Tuecke, ‘The myatd the Grid: Enabling scalable virtual organizatiomhe
International Journal of High Performance Computing Applions 15(3), 200-222 (2001).

4. Luis F. G. Sarmenta and Satoshi Hirano, ‘Bayanihan: Bgldind studying volunteer computing systems using Java’,
Future Generation Computer Systems, Special Issue on btafading 155-6), 675-686 (1999).

5. Distributed.net. The distributed.net projeat.t p: / / wwv. di st ri but ed. net (last accessed December 2006).

6. Folding@home. The folding@home projeét.t p:/7f ol di-ng. st anf or d. edu/ (last accessed December 2006).

7. David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofskyd Dan Werthimer, ‘SETI@home: an experiment in public-
resource computingCommunications of the ACM5(11), 5661 (2002).

8. Laurence Loewe, ‘Evolution@home: observations on gipeit choice, work unit variation and low-effort global
computing’,Software: Practice and Experien¢2007). To appear.

9. Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshabe Legion support for advanced parameter-space studies
on a Grid’, Future Generation Computer Systerh§(8), 1033-1052 (2002).

10. Douglas Thain, Todd Tannenbaum, and Miron Livny, ‘Carated the Grid’, in Fran Berman, Geoffrey Fox, and Anthony
Hey (eds.)Grid Computing: Making the Global Infrastructure a Realitlohn Wiley & Sons Inc., New York, NY, USA,
April 2003, pp. 299-335.

11. lan Foster, ‘Globus toolkit version 4: Software for seevoriented systemslFIP International Conference on Network
and Parallel Computingvolume 3779. Springer-Verlag GmbH, 2005, pp. 2-13.

12. Andrew Chien, Brad Calder, Stephen Elbert, and Karari@H&ntropia: architecture and performance of an enisepr
desktop Grid systemJournal of Parallel and Distributed Computing3(5), 597-610 (2003).

13. David Levine and Mark Wirt, ‘Interactivity with scaldity: Infrastructure for multiplayer games’, in lan Fostand Carl
Kesselman (eds.J;he Grid 2: Blueprint for a New Computing Infrastructuitdorgan-Kaufmann, 2003, pp. 167-178.

14. Sun Microsystems. Sun nl grid engineh®t p: / / wwv. sun. coni sof t war e/ gri dwar e/ (last accessed January 2007).

15. OGSA-WG. Defining the Grid: A roadmap for OGSA standatds.p: / / www. gr i df or um or g/ docunent s/ GFD. 53. pdf,
September 2005.

16. OASIS Consortium. Web services resource framework (WSR primer v1.2. committee draft 02.
http://docs. oasi s- open. org/wsrf/wsrf-primer-1. 2-priner-cd-02. pdf, May 2006.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

http://www.distributed.net
http://folding.stanford.edu/
http://www.sun.com/software/gridware/
http://www.gridforum.org/documents/GFD.53.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

34 C.MATEOS, A. ZUNINO, M. CAMPO

17. Steven J. Vaughan-Nichols, ‘Web services: Beyond tipe'hZomputer 352), 18-21 (2002).

18. Heinz Stockinger, ‘Defining the Grid: A snapshot on theent view’, Journal of Supercomputin@007). To appear.

19. lan Foster, ‘What is the Grid? a three point checklistid Today 1(6) (2002).

20. lan J. TaylorFrom P2P to Web Services and Grids: Peers in a Client/ServerldVComputer Communications and
Networks, Springer, 2005.

21. Madhu Chetty and Rajkumar Buyya, ‘Weaving computatigbads: How analogous are they with electrical Grids?’,
Computing in Science and Engineerjdg4), 61-71 (2002).

22. Henri Bal, Henri Casanova, Jack Dongarra, and Satoslsudka, ‘Application-level tools’, in lan Foster and Carl
Kesselman (eds.J;he Grid 2: Blueprint for a New Computing Infrastructutdorgan-Kaufmann, 2003, pp. 463-489.

23. Thilo Kielmann, Andre Merzky, Henri Bal, Francoise Baudenis Caromel, and Fabrice Huet, ‘Grid application
programming environmentskuture Generation GridsSpringer-Verlag GmbH, November 2006, pp. 286—-306.

24. Mark Baker, Rajkumar Buyya, and Domenico Laforenza,id&rand Grid technologies for wide-area distributed
computing’,Software Practice & Experienc82(15), 1437-1466 (2002).

25. Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramlaamarao, ‘A taxonomy of data Grids for distributed data
sharing, management, and processidgM Computing Survey88(1) (2006).

26. Klaus Krauter, Rajkumar Buyya, and Muthucumaru MaheawdA taxonomy and survey of Grid resource management
systems for distributed computingoftware: Practice and Experiencg?2(2), 135-164 (2002).

27. CERN. The GridCafé projechttp://gridcafe.web. cern.ch/gridcafe/ (last accessed January 2007).

28. K. Arnold and J. Goslingrhe Java Programming Languag&ddison-Wesley, Reading, MA, USA, 1996.

29. GRIDS Laboratory. The GridBus projedtt t p: / / ww. gri dbus. or g (last accessed January 2007).

30. lan Foster and Carl Kesselman, ‘Concepts and archigcin lan Foster and Carl Kesselman (ed$he Grid 2: Blueprint
for a New Computing Infrastructurélorgan-Kaufmann, 2003, pp. 37-63.

31. A. Geist, A. Beguelin, Jack Dongarra, W.Jiang, R. Makched V. SunderanRVM Parallel Virtual Machine, A User’s
Guide and Tutorial for Networked Parallel ComputiigIT Press, Cambridge, Massachusetts, 1994.

32. J. Dongarra and D. Walker, ‘MPI: A standard message pagsierface’,.Supercomputerl2(1), 56—68 (1996).

33. Troy Bryan DowningJava RMI:-Remote Method InvocatioidG Books Worldwide, Foster City, CA, USA, 1998.

34. N. Karonis, B. Toonen, and |. Foster, ‘MPICH-G2: A Gridabled implementation of the message passing interface’,
Journal of Parallel and Distributed Computing3(5), 551-563 (2003).

35. H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra; C. leHa Casanova, ‘A GridRPC model and API for end-user
applications’, Technical reportGridRPC Working Group, July 2005.

36. R. E. Johnson, ‘Frameworks = (components + patter@sfhmunications of the ACM0(10), 39-42 (1997).

37. Wim Codenie, Koen De Hondt, Patrick Steyaert, and Aglgdrcammen, ‘From custom applications to domain-specific
frameworks’,Communications of the ACM0(10), 71-77 (1997).

38. Globus Alliance. The Java CoG kitht t p: //wi ki . cogki t.org/index. php/ Java_CoG Kit (last accessed January
2007).

39. Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkasjkblaos D. Doulamis, Tom Goodale, Thilo Kielmann, André
Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas Radkeshi®l Russell, Ed Seidel, John Shalf, and lan Taylor,
‘Enabling applications on the Grid: A GridLab overviewhternational Journal of High Performance Computing
Applications, Special issue on Grid Computing: Infrastcre and Applications17(4), 449-466 (2003).

40. Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei HutarHartmut Kaiser, Thilo Kielmann, Andre Merzky, Rob V. van
Nieuwpoort, Alexander Reinefeld, Florian Schintke, ThensSchott, Ed Seidel, and Brygg Ulimer, ‘The Grid applicati
toolkit: Towards generic and easy application programniieyfaces for the Grid’Proceedings of the IEEEolume 93,
March 2005, pp. 534-550.

41. Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo-Kialmdascal Kleijer, Gregor von Laszewski, Craig Lee, Andre
Merzky, Hrabri Rajic, and John Shalf, ‘SAGA: A simple API f@rid applications - high-level application programming
on the Grid’,Computational Methods in Science and Technal@g{1), 7-20 (2006).

42. Jean-Pierre Goux, Sanjeev Kulkarni, Jeff Linderothd Michael Yoder, ‘An enabling framework for master-worker
applications on the computational GridEEE International Symposium on-High Performance DistidalComputing
(HPDC'00), Pittsburgh, Pennsylvania, USA, August 2000, pp. 43-5BHEonputer Society.

43. Francine Berman, Richard Wolski, Henri Casanova, \&atfrCirne, Holly Dail, Marcio Faerman, Silvia Figueira, Jim
Hayes, Graziano Obertelli, Jennifer Schopf, Gary Shaoy&Baallen, Neil Spring, Alan Su, and Dmitrii Zagorodnov,
‘Adaptive computing on the Grid using AppLeSEEE Transactions on Parallel Distributed Systerig(4), 369—-382
(2003).

44. Jodo F. Ferreira, Jodo L. Sobral, and Alberto J. Proedeakel: A Java skeleton-based framework for structuraster
and Grid computing’,Proceedings of the Sixth IEEE International Symposium amst€t Computing and the Grid
(CCGRID’06) Washington, DC, USA, 2006, pp. 301-304. IEEE Computeredgci

45. Q. Ho, Y. Ong, and Wentong Cai, "Gridifying’ aerodynanesign problem using GridRPC’, Minglu Li, X. Sun, Qianni
Deng, and Jun Ni (eds.fzrid and Cooperative Computing - GCC 2Q0&lume 3032 ofLecture Notes in Computer

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

http://gridcafe.web.cern.ch/gridcafe/
http://www.gridbus.org
http://wiki.cogkit.org/index.php/Java_CoG_Kit

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 35

Science Springer-Verlag, 2003, pp. 83-90.

46. Bin Wang, Zhuoqun Xu, Cheng Xu, Yanbin Yin, Wenkui Dinggddduashan Yu, ‘A study of gridifying scientific computing
legacy codes’, Hai Jin, Yi Pan, Nong Xiao, and Jianhua Sus.]g8rid and Cooperative Computing - GCC 2Q@blume
3251 ofLecture Notes in Computer Scien@pringer-Verlag, 2004, pp. 404-412.

47. Paul Z. Kolano, ‘Facilitating the portability of usemipations in grid environments’, J. Stefani, Isabelle MerBeure, and
Daniel Hagimont (eds.)istributed Applications and Interoperable Systew8,IFIP WG6.1 International Conference
volume 2893 oL ecture Notes in Computer Scien&pringer-Verlag, 2003, pp. 73-85.

48. T. Delaittre, T. Kiss, A. Goyeneche, G. TerstyanszkyVister, and P. Kacsuk, ‘GEMLCA: Running legacy code
applications as Grid servicesdournal of Grid Computing3(1-2), 75-90 (2005).

49. Péter Kacsuk and Gergely Sipos, ‘Multi-Grid, multi-useorkflows in the P-GRADE Grid portal’Journal of Grid
Computing 3(3-4), 221-238 (2005).

50. Sathish Vadhiyar and Jack Dongarra, ‘Self adaptabilit$rid computing’,Concurrency and Computation: Practice and
Experience, Special Issue on Grid Performaric&2—4), 235-257 (2005).

51. Rich Wolski, Neil Spring, and Jim Hayes, ‘The network thea service: A distributed resource performance foraogst
service for metacomputingFuture Generation Computer Systerh§(5-6), 757-768 (1999).

52. Q. Ho, Terence Hung, Wei Jie, H. Chan, Emilda Sindhu, 8&ubniam Ganesan, Tianyi Zang, and Xiaorong Li, ‘GRASG
- a framework for 'gridifying’ and running applications oersice-oriented Grids’Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2006EE Computer Society, 2006, pp. 305-312.

53. W3C Consortium. SOAP version 1.2 part 0: Primer. W3C Reunendationht t p: // www. w3. or g/ TR/ soap12- part 0/,
June 2003.

54. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Cheakenlan Foster, Carl Kesselman, Sam Meder, Veronika
Nefedova, Darcy Quesnel, and Steven Tuecke, ‘Data manageand transfer in high-performance computational Grid
environments'Journal of Parallel Computing28(5), 749-771 (2002).

55. Paulo Henriqgue M. Maia, Nabor C. Mendonca, Vasco Furtadtlalfredo Cirne, and Katia Saikoski, ‘A process for
separation of crosscutting Grid concerrBtoceedings of the ACM Symposium on Applied Compubtegv York, NY,
USA, 2006, pp. 1569-1574. ACM Press.

56. Gregor Kiczales, John Lamping, Anurag Menhdhekar,9<aeda, Cristina Lopes, J. Loingtier, and John Irwin, ‘Agtpe
oriented programming’, Mehmet Aksit and Satoshi Matsua@s(),Proceedings of tha 1" European Conference on
Object-Oriented Programmingolume 1241, Berlin, Heidelberg, and New York, 1997, pf-2242. Springer-Verlag.

57. Gregor Kiczales, Erik Hilsdale, Jim-Hugunin, Mik Kersteleffrey Palm, and William Griswold, ‘Getting started fwit
AspectJ’,Communications of the ACM4(10), 59-65 (2001).

58. Jagan Kommineni and David Abramson, ‘GriddLeS enhaeo¢snand building virtual applications for the Grid with
legacy components’, Peter M. A. Sloot, Alfons G. Hoekstraigiry Priol, Alexander Reinefeld, and Marian Bubak (eds.)
Advances in Grid Computing - EGC 2Q0®lume 3470 of_ecture Notes in Computer Scien&pringer-Verlag, 2005, pp.
961-971.

59. Hiroshi Takemiya, Kazuyuki Shudo, Yoshio Tanaka, and$a Sekiguchi, ‘Constructing grid applications usingnstard
grid middleware’ Journal of Grid Computingl1(2), 117-131 (2003).

60. Alan LaMont PopeThe CORBA reference guide: understanding the Common- OBjequest Broker Architecture
Addison-Wesley, Boston, MA, USA, 1998.

61. Darren Webb and Andrew L. Wendelborn, ‘The PAGIS Gridiapfion environment’, Peter M. A. Sloot, David Abramson,
Alexander V. Bogdanov, Jack Dongarra, Albert'Y. Zomaya, sad E. Gorbachev (eds.)nternational Conference on
Computational Scienceolume 2659 ot ecture Notes in Computer Scien&pringer-Verlag, 2003.

62. Laurent Baduel, Francoise Baude, Denis Caromel, Arizames, Fabrice Huet, Matthieu Morel, and Romain Quilici,
Grid Computing: Software Environments and Toalsapter Programming, Deploying, Composing, for the Goj,205—
229, Springer-Verlag, January 2006.

63. Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmand, tenri E. Bal, ‘Satin: Simple and efficient Java-based Grid
programming’,Scalable Computing: Practice and Experien6€3), 19-32 (2005).

64. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesifakger Hofman, Ceriel Jacobs, Thilo Kielmann, and Henri E.
Bal, ‘lbis: a flexible and efficient Java based Grid programgnénvironment’,Concurrency and Computation: Practice
and Experiencel7(7-8), 10791107 (2005).

65. Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kamdasy, Yogesh Simmhan, and Aleksander Slominski, ‘On
building parallel and Grid applications: Component tedbgy and distributed servicesCluster Computing8(4), 271—
277 (2005).

66. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, lcities, S. Parker, and B. Smolinski, ‘Toward a common
component architecture for high-performance scientifimpoting’, IEEE International Symposium on High Performance
Distributed ComputinglEEE Computer Society, 1999, pp. 115-124.

67. Alexandru Jugravu and Thomas Fahringer, ‘JavaSymphargrogramming model for the GridFuture Generation
Computer System21(1), 239-247 (2005).

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

http://www.w3.org/TR/soap12-part0/

This is a preprint of an article published in: SOFTWARE- PRACTI CE AND
EXPERI ENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in WIley
I nterScience (ww.interscience.wley.con). DO : 10.1002/spe. 847

The final publication is available at
http://ww3.interscience.w | ey.conljournal/ 115806092/ abstract

36 C. MATEOS, A. ZUNINO, M. CAMPO

68. Michael O. Neary and Peter Cappello, ‘Advanced eageediding for Java-based adaptive parallel computing’,
Concurrency and Computation: Practice and Experiericé€7-8), 797—-819 (2005).

69. Eduardo Huedo, Ruben S. Montero, and Ignacio M. LloréAtéramework for adaptive execution in Grids3oftware:
Practice and Experienc&4(7), 631-651 (2004).

70. Robert EnglandeDeveloping Java bean®’'Reilly & Associates, Inc., Sebastopol, CA, USA, 1997.

71. Michael N. Huhns and Munindar P. Singh, ‘Service-ogdntomputing: Key concepts and principleEZEE Internet
Computing 9(1), 75-81 (2005).

72. Malcolm Atkinson, David DeRoure, Alistair Dunlop, G&ely Fox, Peter Henderson, Tony Hey, Norman Paton, Steven
Newhouse, Savas Parastatidis, Anne Trefethen, Paul WatswhJim Webber, ‘Web service Grids: an evolutionary
approach: Research article€pncurrency And Computation: Practice And Experiericé2-4), 377-389 (2005).

73. W3C Consortium. Web services description language Ijwasatsion 2.0 part 1: Core language. W3C Candidate
Recommendatiorit t p: / / ww.w3. or g/ TR/ wsdl 20/, March 2006.

74. OASIS Consortium. Uddi version 3.0.2. UDDI Spec Techhic Committee Draft,
http://uddi.org/ pubs/ uddi _v3. htm October 2004.

75. J. M. Alonso, V. Hernandez,-and G. Moltd, ‘GMarte: Grictiaieware to abstract remote task executi@oncurrency and
Computation: Practice and Experience3(15), 2021-2036 (2006).

76. Rod Johnson, ‘J2EE development frameworksmputey 38(1), 107—-110 (2005).

77. Cristian Mateos, Alejandro Zunino, and Marcelo Camg@RIM: An approach for easy gridification of applications’,
Future Generation Computer Systems: The Internationairiuwf Grid Computing: Theory, Methods and Applications
(2007). To appear.

Copyright(© 2007 John Wiley & Sons, Ltd. Softw. Pract. Expe2007;00:1-40
Prepared usingpeauth.cls

http://www.w3.org/TR/wsdl20/
http://uddi.org/pubs/uddi_v3.htm

	1 INTRODUCTION
	2 RELATED WORK
	3 THE GRID: CONCEPTS AND ARCHITECTURE
	4 GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION
	5 GRIDIFICATION PROJECTS
	5.1 GEMLCA
	5.2 GrADS
	5.3 GRASG
	5.4 GridAspecting
	5.5 GriddLeS
	5.6 Ninf-G
	5.7 PAGIS
	5.8 Proactive
	5.9 Satin
	5.10 XCAT

	6 A TAXONOMY OF GRIDIFICATION APPROACHES
	6.1 Application reengineering
	6.2 Compitation unit modification
	6.3 Gridification granularity
	6.4 Resource harvesting

	7 DISCUSSION
	8 CONCLUSIONS

