
This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2007;00:1–40 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

A survey on approaches to
gridification

Cristian Mateos1,2,‡, Alejandro Zunino1,2,∗,§ and Marcelo Campo1,2

1 ISISTAN Research Institute, UNICEN. Campus Universitario, Tandil (B7001BBO), Buenos Aires,
Argentina. Tel.: +54 (2293) 43-9682. Fax.: +54 (2293) 43-9681.
2 Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)

SUMMARY

The Grid shows itself as a globally distributed computing environment, in which hardware and software
resources are virtualized to transparently provide applications with vast capabilities. Just like the electrical
power grid, the Grid aims at offering a powerful yet easy-to-use computing infrastructure to which
applications can be easily “plugged” and efficiently executed. Unfortunately, it is still very difficult to
Grid-enable applications, since current tools force usersto take into account many details when adapting
applications to run on the Grid. In this paper, we survey someof the recent efforts in providing tools for
easy gridification of applications, and propose several taxonomies to identify approaches followed in the
materialization of such tools. We conclude this paper by describing common features among the proposed
approaches, and by pointing out open issues and future directions in the research and development of
gridification methods.

KEY WORDS: Grid computing; Grid development; gridification tools

1. INTRODUCTION

The term "Grid Computing" came into daily usage about ten years ago to describe a form of distributed
computing in which hardware and software resources from dispersed sites are virtualized to provide
applications with a single and powerful computing infrastructure [1]. This infrastructure, known as the
Grid† [2], is a distributed computing environment whose objective is to provide secure and coordinated
computational resource sharing between organizations. Within the Grid, the use of resources such as
processing power, disk storage, applications and data, often spread across different physical locations
and administrative domains, is shared and optimized through virtualization and collective management.

∗Correspondence to: Alejandro Zunino, ISISTAN Research Institute, UNICEN. Campus Universitario, Tandil (B7001BBO),
Buenos Aires, Argentina. Tel.: +54 (2293) 43-9682. Fax.: +54 (2293) 43-9681.
‡E-mail: cmateos@exa.unicen.edu.ar
§E-mail: azunino@exa.unicen.edu.ar
†Researchers commonly speak about “the Grid” as a single entity, albeit the underlying concept can be applied to any Grid-like
setting.

Received 26 March 2007
Copyright c© 2007 John Wiley & Sons, Ltd. Revised 28 June 2007

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

2 C. MATEOS, A. ZUNINO, M. CAMPO

Grid infrastructures were originally intended to support compute-intensive, large-scale scientific
problems and applications by linking supercomputing nodes[3]. During the first half of 1990s,
the inception and increasing popularity of Internet standards gave birth to an early phase of the
Grid evolution later known as Volunteer Computing [4]: users from all over the world are able
to donate CPU cycles by running a free program that downloadsand analyzes scientific data
while their PCs are idle (e.g., when the screensaver is activated). Examples of these projects are
Distributed.net [5] (Internet’s first general-purpose distributed computingproject), Folding@home [6]
(protein folding), SETI@home [7] (search for extraterrestrial intelligence) and, more recently,
Evolution@home (evolutionary biology) [8]. Few years after the introduction of Volunteer Computing,
the first middlewares for implementing Grid systems over theInternet appeared. Examples are
Legion [9], Condor [10] and Globus [11].

Nowadays, Grid Computing is far from only attracting the scientific community. Organizations
of all types and sizes are becoming aware of the great opportunities this paradigm offers to share
and exploit computational resources such as information and services. In fact, a number of projects
have been actively working towards providing an infrastructure for commercial and enterprise Grids
settings [12, 13, 14]. Furthermore, many well-established standardization forums have produced the
first global standards for the Grid. Recent results of these efforts include the Open Grid Services
Architecture (OGSA) [15], a service-oriented Grid system architecture, and the WebServices Resource
Framework (WSRF) [16], a framework for modeling and accessing Grid resources using Web
services [17].

Although many technological changes both in software and hardware have occurred since the
term “Grid” was first introduced, a recent survey [18] indicates that there are hardly any significant
disagreements within the Grid research community about theGrid vision. In fact, Ian Foster, considered
by researchers to be the father of the Grid, proposed a checklist [19] for determining whether a system
is a Grid or not, which has been broadly accepted.

Likewise, the basic Grid idea has not changed considerably within the last ten years [18]. The
term “Grid” comes from an analogy with the electrical power grid. Essentially, the Grid aims to
let users access computational resources as transparentlyand pervasively as electrical power is now
consumed by appliances from a wall socket [20]. Indeed, one of the goals of Grid computing is to
allow software developers to code an application (i.e., “the appliance”), deploy it on the Grid (i.e.,
“plug it”), and then let the Grid to autonomously locate and utilize the necessary resources to execute
the application. Ideally, it would be better to takeanyexisting application and put it to work on the
Grid, thus effortlessly taking advantage of Grid resourcesto improve performance. Sadly, the analogy
does not completely hold yet since it is hard to “gridify” an application without manually rewriting or
restructuring it to make it Grid-aware. Unlike the electrical power grid, which can be easily used in a
plug and play fashion, the Grid is rather complex to use [21].

In this sense, the purpose of this paper is to summarize the state of the art on Grid development
approaches focusing specifically on those that target easygridification, this is, the process of adapting
an ordinary application to run on the Grid. It is worth mentioning that this paper does not exhaustively
analyze the current technologies for implementing or deploying Grid applications. Instead, this paper
discusses existing techniques to gridify software that hasnot been at first thought to be deployed on
Grid settings, such as desktop applications or legacy code.In order to limit the scope of the analysis,
we will focus our discussion on the amount of effort each proposed approach demands from the user
in terms of source code refactoring and modification. As a complement, for each approach, we will

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 3

analyze the anatomy of applications after gridification andthe kind of Grid resources they are capable
of transparently leverage.

The rest of the paper is organized as follows. The next section presents the most relevant related
work. After that, Section3 briefly explains the anatomy of the Grid from a technical point of view.
Then, Section4 discusses the evolution of gridification technologies. Later, Section5 surveys some of
the most representative approaches for gridifying applications. Section6 summarizes the main features
of the surveyed approaches, and proposes several taxonomies to capture the big picture of the area.
Based on these taxonomies, Section7 identifies common characteristics and trends. Finally, Section 8
presents concluding remarks.

2. RELATED WORK

In [22], the authors point out the programming and deploying complexity inherent to Grid Computing.
They state there is a need for tools to allow application developers to easily write and run Grid-enabled
applications, and propose OGSA as the reference Grid architecture towards the materialization of
such tools. The authors also identify a taxonomy of Grid application-level tools that is representative
enough for many projects in the Grid community. This taxonomy distinguishes between two classes
of application-level tools for the Grid: programming models (i.e., tools that build on the Grid
infrastructure and provide high-level programming abstractions) and execution environments (i.e.,
software tools into which users deploy their applications). The discussion is clearly focused on
illustrating how these models and environments can be used to develop Grid applications from scratch,
rather than gridify existing applications.

Another recent survey on Grid application programming tools can be found in [23]. Here, several
functional and non-functional properties that a Grid programming environment should have are
identified, and some tools based on these properties are reviewed. The survey concludes by deriving
a generic architecture for building programming tools thatare capable of addressing the whole
set of properties, which prescribes a component-based approach for materializing both the runtime
environment and the application layer of a Grid platform. However, the work does not discuss aspects
related to gridification of existing applications either.

A survey on Grid technologies for wide-area distributed computing can be found in [24], where the
most predominant trends for accelerating Grid applicationprogramming and deployment are identified.
This work aims at providing an exhaustive list of Grid Computing projects ranging from programming
models and middlewares to application-driven efforts, while our focus is exclusively on methods
seeking to attain easy pluggability of conventional applications into the Grid. The authors emphasize
on the need for a Grid framework that is adaptable and extensible enough to cope with the “waning
star” effect that has historically made predominant distributed computing technologies less popular. In
other words, as Grid technologies evolve, this Grid framework should be able to evolve with them. A
similar work is [25], in which a thorough examination of technologies for the materialization of Data
Grids –those providing services and infrastructures to manage huge amounts of data– is presented. The
survey compares Data Grids to other distributed data-intensive paradigms in great detail, and proposes
various taxonomies to characterize the approaches that arecurrently being followed in the construction
and materialization of Data Grids, focusing on aspects suchas data transport and replication, resource
allocation and job scheduling. Based on this analysis, the authors identify scalability, interoperability

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

4 C. MATEOS, A. ZUNINO, M. CAMPO

and data maintainability as the requirements that still need to be properly addressed before Data Grids
are massively adopted for developing large-scale, collaborative data sharing and scientific applications.
Finally, in [26], a taxonomy identifying architectural approaches followed in the implementation
of resource management systems for the Grid is proposed. Roughly, the survey describes common
requirements for resource management systems and presentsan abstract functional model, from where
it derives the proposed taxonomy. The survey found that mostapproaches to Grid resource management
are being developed in the context of computational and service-oriented Grids, but little research is
being done in the context of Data Grids.

The next section explains the internal structure of the Gridas it is conceived today.

3. THE GRID: CONCEPTS AND ARCHITECTURE

A good starting point to understand the analogy between the Grid and the electrical power grid is
GridCafé [27], a project from CERN‡ whose goal is to explain the basics of the Grid to a wider
audience. Basically, GridCafé compares both infrastructures according to the following features:

• Transparency: The electrical power grid is transparent because users do not know how and from
where the power they use is obtained. The Grid is also transparent, since Grid users execute
applications without worrying about what computational resources are used to perform the
computations, or where these resources are located.

• Pervasiveness: Electricity is available almost everywhere. The Grid is also pervasive, since
according to the Grid vision, computing resources and services will be accessible not only
from PCs but also from laptops and mobile devices. Consequently, reusing existing pervasive
infrastructures (e.g., the Internet) and ubiquitous Web technologies such as Web browsers,
Java [28] and Web Services could be a big step towards complete pervasiveness and therefore
easy adoption of the Grid.

• Payment: Grid resources are essentially utilities, since they will be provided –just like the
electricity– on an on-demand and pay-per-use basis. The idea of billing users for the actual
use of resources on the Grid finds its roots in an old computational business model called
Utility Computing, also known as On-Demand Computing. A good example of a project actively
working on utility-driven technologies for the Grid is Gridbus [29].

While the power grid infrastructure links together transmission lines and underground cables to provide
users with electrical power, the Grid aims at using the Internet as the main carrier for connecting
mainframes, servers and even PCs to provide scientists and application developers with a myriad of
computational resources. From a software point of view, this support represents the bottommost layer
of a software stack that is commonly used to describe the Gridin architectural terms. This architecture
is depicted in Figure1.

‡The CERN (European Organization for Nuclear Research) is the world’s largest particle physics laboratory, which has recently
become a host for Grid Computing projects

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 5

Fabric
Hardware resources such as
computers, storage media,
networks and sensors

Resource and Connectivity
Secure access to
resources and services

Collective
Directory brokering,
diagnostics, and monitoring

User Applications Tools and applications

Figure 1. The Grid software stack [30]

The stack is composed of four layers:Fabric, Resource and Connectivity, Collective and User
Applications. Roughly, the Resource and Connectivity layer consists of aset of protocols capable
of being implemented on top of many resource types (e.g., TCP, HTTP). Resource types are defined
at the Fabric layer, which in turn are used to construct metaservices at the Collective layer, and Grid
applications at the User Applications layer. The main characteristics of each layer are described next:

• Fabric: As mentioned above, this layer represents the physical infrastructure of the Grid,
including resources such as computing nodes and clusters, storage systems, communication
networks, database systems and sensors, which are accessedby means of Grid protocols.

• Resource and Connectivity: Defines protocols to handle all Grid specific transactions between
different resources on the Grid. Protocols at this layer arefurther categorized as connectivity-
related protocols, which enable the secure exchange of databetween Fabric layer resources and
perform user authentication, and resource-related protocols, which permit authenticated users to
securely negotiate access to, interact with, control and monitor Fabric layer resources.

• Collective: The collective layer contains protocols and services associated with capturing
interactions across collections of resources. Services offered at this layer includedirectory
(discover resources by their attributes),coallocation (coordinated resource allocation),job
scheduling, resource brokering, monitoringanddiagnosis(detect and handle failures, overloads,
etc.), anddata replication.

• User Applications: Each one of the previous layers expose well-defined protocols and APIs
that provide access to services for resource management, data access, resource discovery and
interaction, an so on. On the other hand, the User Application layer comprises the applications
that operate within the Grid, which are built upon Grid services by means of those APIs and
protocols.

It is worth noting that some “applications” within the topmost layer may in turn be Grid programming
facilities such as frameworks and middlewares, exposing themselves protocols and APIs upon which
more complex applications (e.g., workflow systems) are created. In fact, these facilities can be seen as
the “wall socket” by which applications are connected to theGrid. Application developers are likely

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

6 C. MATEOS, A. ZUNINO, M. CAMPO

to use high-level software tools that provide a convenient programming environment and isolate the
complexities of the Grid, rather than use Grid services directly.

However, applications that have not been written to run on the Grid still have to be adapted in
order to use the functionality provided by Grid programmingfacilities. In other words, these kind of
applications need to be gridified so they can take advantage of Grid services and resources through
a specific middleware or framework. As a consequence, an extra development effort is required
from application programmers, which might not have the necessary skills or expertise to port their
applications to the Grid. To sum up, the foreseen goal of gridification is to let conventional applications
benefit from Grid services without requiring these applications to be modified.

4. GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION

It is difficult to determine exactly when the term “gridification” was first introduced, but the idea
of achieving easy pluggability of ordinary applications into the Grid surely took a great impulse
at the time the analogy between electrical power grids and computational Grids was established.
Nowadays, the concept of gridification is widely recognizedamong the Grid research community,
and many researchers explicitly use the term “gridification” to refer to this idea. The evolution of Grid
technologies from the point of view of gridification is presented in the next paragraphs.

The first attempts to achieve gridification began with the useof popular technologies traditionally
employed in the area of Parallel and Distributed Computing such as PVM [31], MPI [32] and
RMI [33]. Basically, the underlying programming models of these technologies were reconsidered
to be used in Grid settings, yielding as a result standardized Grid programming APIs such as MPICH-
G2 [34] (message passing) and GridRPC [35] (remote procedure call). Grid applications developed
under these models are usually fragmented into “masters” and “workers” components communicating
through ad-hoc protocols and interaction mechanisms. Developers are also responsible for managing
parallelization and location of application components. As a consequence, at this stage there is not a
clear idea of Grid resourcevirtualizationyet. Consequently, gridification was mainly concerned with
taking advantage of the Grid infrastructure, that is, the Fabric layer of the software stack in Figure1.

The second phase of the evolution of gridification technologies involved the introduction of Grid
middlewares. Some of them were initially focused on providing services for automating the scavenging
of processing power, memory and storage resources (e.g., Condor, Legion), while others aimed at
raising the level of abstraction of Grid functionality by providing metaservices(brokering, security,
monitoring, etc.). A representative example of a middleware in this category is Globus, which have
become thede factostandard for building Grid applications. Overall, users are now supplied with
a concrete virtualization layer that isolates the complexities of the Grid by means of services. In
fact, technologies like MPICH-G2 and GridRPC are now seen asmiddleware-level services for
communication rather than Grid programming facilitiesper se. Gridification is therefore conceived
as the process of writing/modifying an application to utilize the various services provided by a specific
Grid middleware. As the reader can observe, the main goal of gridification technologies at this stage is
to materialize the middle layers of the Grid software stack.

The step that followed the appearance of the first Grid middlewares was the introduction of Grid
programming toolkits and frameworks. In this step, the problem of writing applications for the Grid
received more attention and the community recognized common behavior shared by different Grid

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 7
G

ri
d

 a
w

a
re

n
e

s
s

(a
p

p
lic

a
ti
o

n
 d

e
v
e

lo
p

e
r)

Evolution of
gridification

technologies

Message pass−
ing and RPC
(MPICH−G2,

GridRPC)

today

Grid
middlewares

Grid toolkits
and

frameworks

Little/no Grid
resource

virtualization

Virtualization/
notion of

Grid service

Semi−automa−
tic methods

for gridification

High−level Grid
programming

models and APIs

Ideal tool/
method for

gridification?

Two−step
gridification
metodology

. . .

Figure 2. Origins and evolution of gridification technologies

applications. The idea behind these technologies is to provide generic APIs and programming templates
to unburden developers of the necessity to know the many particularities for contacting individual
Grid services (e.g. protocols and endpoints), to capture common patterns of service composition (e.g.
secure data transfer), and to offer convenient programmingabstractions (e.g. master-worker templates).
The most important contribution of these solutions is to capture common Grid-dependent code and
design in an application-independent manner. These tools can be seen as an incomplete application
implementing non-application specific functionality, with hot-spotsor slotswhere programmers should
put application specific functionality in order to build complete applications [36, 37].

For example, the Java CoG Kit [38] provides an object-oriented, framework-based interfaceto
Globus-specific services. The Grid Application Toolkit (GAT) [39, 40] and SAGA [41] are similar
to the Java CoG Kit but they offer APIs for using Grid servicesthat are independent of the underlying
Grid middleware. With respect to template-based Grid frameworks, some examples are MW [42],
AMWAT [43] and JaSkel [44]. All in all, the goal of these tools is to make Grid programming easier.
The conception of gridification at this phase does not changetoo much from that of the previous one,
but Grid programming is certainly done at a higher level of abstraction. As a consequence, less design,
code, effort and time is required when using these tools.

Up to this point, the most remarkable characteristic sharedamong the above technologies is that
gridification is done in aone-stepfashion, this is, there is not a clear separation between thetasks of

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

8 C. MATEOS, A. ZUNINO, M. CAMPO

writing the pure functional code of an application and adding it Grid concerns. The Grid technology
being used plays a central role during the entire Grid application development process, since developers
Grid-enable applications as they code them by keeping in mind a specific Grid middleware, toolkit or
framework. Therefore, technologies promotingone-stepgridification assume developers have a solid
knowledge on Grid programming and runtime facilities.

Alternatively, there are currently a number of Grid projects promoting what we might call atwo-step
gridification methodology, which is intended to support users having little or even no background on
Grid technologies. Basically, the ultimate goal of this line of research is to come out with methods
that let developers to focus first on implementing and testing the functional code of their applications,
andthento automatically Grid-enable them. As a consequence, this approach is suited for gridifying
applications that were not initially designed to run on the Grid. It is worth noting that technologies
under this gridification paradigm can be seen a complement tothe ones previously described. In fact,
active research is being done to develop more usable and intuitive Grid programming models, toolkits
and middlewares .

Figure2 shows how the evolution of Grid technologies have reduced the knowledge that is necessary
to gridify an application. As depicted in the figure, we identify four separate phases in this evolution.
Transitions between two consecutive phases is given by a radical change in the conception of the
notion of gridification. At the first phase, “gridify” means to manually use the Grid infrastructure. At
the second phase, virtualization of Grid resources throughservices is introduced; “gridify” refers to
adapt applications to use Grid services. The third phase witnessed the introduction of the first Grid
development technologies materializing common behavior of Grid applications, therefore gridification
takes place at a higher level of abstraction. Finally, the fourth phase incorporated the notion of two-
step gridification: Grid technologies recognized the need to provide methods totransformordinary
applications to Grid-aware ones with little effort.

Certainly, the relation between the two axis is not linear, but it is descriptive enough to get an idea
about the consequences of gridification in the long term. As the reader can see, theideal method for
gridification would yield an hypothetical value for Grid awareness equals tozero, this is, the situation
in which developers can effectively exploit the Grid without explicitly using any Grid technology in
their code. In this paper, we are interested in reviewing theexisting approaches that are focused on
supporting two-step gridification. The next section discusses the most relevant projects to the purpose
of this article.

5. GRIDIFICATION PROJECTS

In light of the gridification problem, a number of studies have proposed solutions to port existing
software to the Grid. For example, [45] presents an approach to assist users in gridifying complex
engineering design problems, such as aerodynamic wing design. Similarly, [46] introduces a scheme
of gridification specially tailored to gridify scientific legacy code. In addition, [47] proposes an OGSA-
compliantnaturalization§ service for the Globus platform that automatically detects and resolves

§The American Heritage Dictionary defines naturalization as“adapting or acclimating (a plant or an animal) to a new
environment; introducing and establishing as if native”.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 9

software dependencies (e.g., executables, system libraries, Java classes, among others) when running
CPU-intensive jobs on the Grid.

Although the above technologies explicitly address the problem of achieving easy gridification, they
belong to what we might identify as early efforts in the development of true gridification methods,
which are characterized by solutions lacking generality and targeting a particular application type
or domain. Nonetheless, there are a number of projects attempting to provide more generic, semi-
automatic methods to gridify a broader range of Grid applications, mostly in the form of sophisticated
programming and runtime environments. In this sense, Sections 5.1 to 5.10 present some of these
projects.

5.1. GEMLCA

GEMLCA (Grid ExecutionManagement forLegacyCodeArchitecture) [48] is a general architecture
for transforming legacy applications to Grid services without the need for code modification. GEMLCA
let users to deploy a legacy program written in any programming language as an OGSA-compliant
service. The access point for a client to GEMLCA is a front-end offering services for gridifying legacy
applications, and also for invoking and checking the statusof running Grid services. An interesting
feature of this front-end is that it is fully integrated withthe P-GRADE [49] workflow-oriented Grid
portal, thus allowing the creation of complex workflows where tasks are actually gridified legacy
applications.

GEMLCA aims at providing an infrastructure to deploy legacyapplications as Grid services without
reengineering their source code. As depicted in Figure3, GEMLCA is composed of four layers:

• Compute Servers: Represents hardware resources such as servers, PCs and clusters on which
legacy applications in the form of binary executables are potentially available. Basically, the
goal of GEMLCA is to make these applications accessible through Web Services-enabled Grid
services.

• Grid Host Environment: Implements a service-oriented Grid layer on top of a specific OGSA-
compliant Grid middleware. Current distributions of GEMLCA supports Globus version 3.X and
4.X.

• GEMLCA Resource: Provides portal services for gridifying existing legacy applications.
• GEMLCA Client: This layer comprises the client-side software (i.e., command-line interfaces

and browser-enabled portals) by which users may access GEMLCA services.

The gridification scheme of GEMLCA assumes that all legacy applications are binary executable code
compiled for a particular target platform and running on a Compute Server. The Resource layer is
responsible to hide the native nature of a legacy application by wrapping it with a Grid service, and
processing service requests coming from users. It is up to the user, however, to describe the execution
environment and the parameter information of the legacy application. This is done by configuring an
XML-based file called LCID (Legacy Code Interface Description), which is used by the GEMLCA
Resource layer to map Grid service requests to job submissions. LCID files provide metadata about the
application, such as its executable binary path, the job manager and the minimum/maximum number

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

10 C. MATEOS, A. ZUNINO, M. CAMPO

OGSA Container (Globus 3.X,
Globus 4.X, G−Lite, etc.)

Job Manager (e.g., Condor)

Compute
Servers

Grid Host
Environment

GEMLCA
Resource

Legacy code
process

Legacy
code job

Legacy
code job

Legacy
code job

. . .

GEMLCA ClientCommand−
line interfaces

Browser−
enabled portals

Figure 3. Overview of GEMLCA

of processors to be used, and parameter information, given by the name, type (input or output), order,
regular expressions for input validation, and so forth. Thefollowing code presents the LCID file
corresponding to the gridification of the Unixmkdir command:

<?xml version=" 1.0 " encoding="UTF−8" ?>
< !DOCTYPE GLCEnvironment " gemlcaconf ig . dtd ">
<GLCEnvironment id = " mkdir "

executable =" / b in / mkdir " jobManager= " Condor "
maximumJob=" 5 " minimumProcessors=" 1 ">

< Desc r ip t i on >Unix mkdir command< / Desc r ip t i on >
<GLCParameters>

<Parameter name="−p " f r iendlyName="New f o l d e r "
inputOutput = " I npu t " order= " 0 " mandatory= "No" >

< i n i t i a l V a l u e / >
< / Parameter>

< / GLCParameters>
< / GLCEnvironment>

As explained, the GEMLCA gridification process demands zerocoding effort and little configuration
from the user. In spite of this fact, users not having an in-depth knowledge about GEMLCA concepts
may experience difficulties when manually specifying LCID files. In this sense, the GEMLCA front-
end also provides user-friendly Web interfaces to easily describe and deploy legacy applications.

A more serious problem of GEMLCA is concerned with the anatomy of a gridified application.
GEMLCA applications are essentially an ordinary executable file wrapped with an OGSA service

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 11

interface. GEMLCA services serve request according to a very nongranular execution scheme (i.e.,
running the same binary code on one or more processors) but nointernal changes are made in the
wrapped applications. As a consequence, the parallelism cannot be controlled in a more grained
manner. For many applications, this capability is crucial to achieve good performance.

5.2. GrADS

GrADS (Gr id ApplicationDevelopmentSoftware) [50] is a performance-oriented middleware whose
goal is to optimize the execution of numerical applicationswritten in C on distributed heterogeneous
environments. GrADS puts a strong emphasis on application mobility and scheduling issues in order to
optimize application performance and resource usage. Platform-level mobility in GrADS is performed
through the so-calledRescheduler, which periodically evaluates the performance gains that potentially
can be obtained by migrating applications to underloaded resources. This mechanisms is known as
opportunistic migration.

Users wanting to execute an application contact the GrADSApplication Manager. This, in turn,
contacts theResource Selector, which accesses the Globus MDS service to obtain the available list
of computing nodes and then uses the NWS (Network Weather Service) [51] to obtain the runtime
information (CPU load, free memory and disk space, etc.) from each of these nodes. This information,
along with execution parameters and a user-generated execution model for the application, is passed
forth to thePerformance Modeler, which evaluates whether the discovered resources are enough to
achieve good performance or not. If the evaluation yields a positive result, theApplication Launcher
starts the execution of the application using Globus job management services. Running jobs can be
suspended or canceled at any time due to external events, such as user intervention.

GrADS provides a user-level C library called SRS (Stop Restart Software) that offers applications
functionality for stopping at a certain point of their execution, restarting from a previous point of
execution, and performing variable checkpointing. To SRS-enable an ordinary application, users have
to manually insert instructions into the application source code in order to make calls to the SRS library
functions. Unfortunately, SRS is implemented on top of MPI,so it can only be used in MPI-based
applications. Nonetheless, as these applications are composed of a number of independent, mobile
communicating components, they are more granular, thus potentially achieving better use of distributed
resources than conventional GrADS applications, this is, without using SRS.

5.3. GRASG

GRASG (Gridify and Running Applications onService-orientedGrids) [52] is a framework for
gridifying applications as Web Services with relatively little effort. Also, in order to make better use
of Grid resources, GRASG provides a scheduling mechanism that is able to schedule jobs accessible
through Web Services protocols. Basically, GRASG providesservices for job execution, monitoring
and resource discovery that enhance those offered by Globus.

The architecture of GRASG is depicted in Figure4. Its main components are four Web Services
named Information Service (IS), Resource Allocation and Scheduling Service (RASS), Job Execution

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

12 C. MATEOS, A. ZUNINO, M. CAMPO

Resource layer

Data
Service

Site layer

External
Client

Information
Service

Resource
Allocation and

Scheduling
Service

Execute
job

Access
data

Resource
information

Resource
information

Grid
Resource

JES

Grid
Resource

JES

Grid
Resource

JES

Resource
information

sensor

Job submission

Figure 4. GRASG architecture

Service (JES), and Data Service (DS). Each Grid resource (i.e., a server) is equipped with the so-
calledsensorsand wrapped with a JES. Sensors are responsible for capturing and publishing meta-
information about their hosting resource (platform type, number of processors, installed applications,
workload, etc.), while JES services are responsible for jobexecution and guaranteeing Quality of
Service (QoS). More important, a JES wraps all the (gridified) applications installed on a server.
External clients can execute gridified applications and “talk” to GRASG components by means of
SOAP [53], a well-known protocol for invoking Web Services.

The IS, RASS and DS services are placed on theSitelayer, which sits on top of Grid resources. The
IS periodically collects information about the underlyingresources from their associated sensors, and
use this information to satisfy resource requests originating either at the RASS or an external client.
The RASS bridges application clients to JESs. Specifically,the RASS is in charge of processing job
execution requests coming from clients, allocating and reserving the needed Grid resources, monitoring
the status of running jobs, and returning the results back tothe clients. Lastly, the DS is used mainly for
moving data among computation servers. It is implemented asa Web Service interface to GridFTP [54],
an FTP-based, high-performance, secure, reliable data transfer protocol for Grid environments.

GRASG conceives “gridification” as the process of deployingan existing application (binary
executable) on a Grid resource. Once deployed, applications can be easily accessed through their
corresponding JES, which stores all the necessary information (e.g., executable paths, system variables,
etc.) to execute a gridified or a previously installed application. Like GEMLCA, application granularity
after gridification is very coarse. To partially deal with potential performance issues caused by this
problem, users can define custom scheduling and resource discovery mechanisms for a gridified
application by writing new sensors that are based on shell orPerl scripts.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 13

5.4. GridAspecting

GridAspecting [55] is a development process, based on aspect-oriented programming (AOP) [56], to
explicitly separate crosscutting Grid concerns in parallel Java applications. Its main goal is to offer
guidelines for Grid application implementation focusing on separating the pure functional code as
much as possible from the Grid-related code. Besides, GridAspecting relies on a subset of the Java
thread model for application decomposition that enables for Grid application testing even outside a
Grid setting.

GridAspecting uses a finer level of granularity for gridifiedcomponents than GEMLCA and
GRASG. GridAspecting assumes that ordinary applications can be decomposed into a number of
independenttasks, which can be computed separately. As a first step, the programmer is responsible
for identifying these tasks across the, yet non gridified, application code, and then encapsulate them
as Java threads. Any form of data communication from the mainapplication to its task threads should
be implemented via parameter passing to the task constructor. As a second step, aspects have to be
provided by the programmer in order to map the creation of a task to a job execution request onto
a specific Grid middleware (e.g., Globus). At runtime, GridAspecting uses the AspectJ [57] AOP
language to dynamically intercept all thread creation and initialization calls emitted by the gridified
application, replacing them with calls to the underlying middleware-level execution services by means
of those aspects.

Despite being relatively simple, the process requires the developer to follow a number of code
conventions. However, applying GridAspecting results in avery modular and testable code. After
passing through the gridification process, the functional code of an application is entirely separated
from its Grid-related code. As a consequence, a different Grid API can be used without affecting the
code corresponding to the application logic.

5.5. GriddLeS

GriddLeS (Grid Enabling Legacy Software) [58] is a development environment that facilitates the
construction of complex Grid applications from legacy software. Specifically, it provides a high-level
tool for building Grid-aware workflows based on existing, unmodified applications, calledcomponents.
Overall, GriddLeS goals are directed towards leveraging existing scientific and engineering legacy
applications and easily wiring them together to construct new Grid applications.

The heart of GriddLeS is GridFiles, a flexible and extensiblemechanism that allows workflow
components to communicate between each other without the need for source code modification.
Basically, GridFiles overloads the common file I/O primitives of conventional languages with
functionality for supporting file-based interprocess communication over a Grid infrastructure. In this
way, individual components behave as if they were executingin the same machine and using a
conventional file system, while they actually interchange data across the Grid. It is important to
note that GriddLeS is mainly suited for gridifying and composing legacy applications in which the
computation time/communication time ratio is very high. Additionally, components should expose a
clear interface in terms of required input and output files, so as to simplify the composition process and
do not incur in component source code modification.

GridFiles makes use of a special language-dependent routine, called FileMultiplexer, which
intercepts file operations and processes them according to aredirection scheme. Current

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

14 C. MATEOS, A. ZUNINO, M. CAMPO

Component

Local file
client

Remote file
client

Remote
process client

GNS
client

GNS (GriddLeS
Name Server

Local file
client

Remote file
client

Remote
process client

GNS
client

GridFTP
Server

Local
file system

FileMultiplexer FileMultiplexer

GridFTP
Server

Local
file system

open, close
read, write,

seek

Component

open, close
read, write,

seek

Figure 5. GridFiles: file request redirection

materializations include local file system redirection, remote file system redirection based on GridFTP
and remote process redirection based on sockets. When usingprocess redirection, a multiplexer placed
on the sending component is linked with a multiplexer on the receiving component through a buffered
channel, which automatically handles data synchronization. In any case, the type of redirection is
dynamically selected depending on whether the file identifier represents a local file, a remote file or
a socket, and the target’s location for the redirection (fileor component) is obtained from the GNS
(GriddLeS Name Server). The GridFiles mechanism is summarized in Figure5.

The GriddLeS approach is simple yet very powerful. Applications programmers can write and
test components without taking into account any Grid-related issues such as data exchanging,
synchronization or fault-tolerance, which in turn are handled by the underlying multiplexer being used.
Another interesting implication of this fact is that implemented components can transparently operate
either as a desktop program or as a block of a bigger application. The weak point of GriddLes is that its
runtime support suffers from portability problems, since it is necessary to have a new implementation
for each programming language and OS platform. Also, its implicit socket-based communication
mechanism lacks the level of interoperability required by current Grids.

5.6. Ninf-G

Ninf-G [59] is a C/FORTRAN programming environment that aims at providing a simple Grid
programming model mostly for non-computer scientists. It builds on top of the Globus toolkit

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 15

AM

ge

/O

Server part
Client part

Client side Server side

Client
Component

IDL Compiler

Interface
information

Remote Executable

MDS

GRAM

Globus−I/O

retrieve

invoke

generate

1) Interface
request

2) Interface reply

3) Invoke stub 4) Transfer
arguments

Figure 6. Ninf-G architecture

and offers a reference implementation of the GridRPC specification. Ninf-G provides familiar RPC
semantics so that the complicated structure of a Grid are hidden behind an RPC-like interface.

Figure 6 describes the architecture of Ninf-G, which is based on two major components:Client
Componentand Remote Executable. The Client Component consists of a client API and libraries
for GridRPC invocations. The Remote Executable comprises astub and system-supported wrapper
functions, both similar to those provided by Java RMI or CORBA [60]. The stub is automatically
generated by Ninf-G from a special IDL file describing the interface of a remote executable. Both
client and server programs are obtained after gridifying anapplication.

When executing a gridified application, the Client Component and the Remote Executable
communicate with each other by using Globus services. First, the Client Component gets the
IDL information for the server-side stub, comprising the remote executable path and parameter
encoding/decoding information. This is done by means of MDS(Monitoring and Discovery System),
the Globus network directory service. Then, the client passes the executable path to the Globus GRAM
(Grid Resource Allocation Manager), which invokes the server-side part of the application. Upon
execution, the stub requests the invocation arguments to the client, which are transferred using the
Globus-IO service.

Roughly, the first step to gridify an application is to identify a client part and one or more server parts.
The user should properly restructure its application whenever a server part cannot be straightforwardly
obtained from the code, such as merge the most resource-consuming functions into a new one and
pick this latter as the server program. In any case, the user must carefully remove any data dependence
between the client and the server program, or among server parts (e.g., global variables). Up to this
point, the gridification process does not require to be performed within a Grid setting.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

16 C. MATEOS, A. ZUNINO, M. CAMPO

main(){
 pre_processing();
 call_library(args):
}

main(){
 for (i=0;i<task_no;i++)
 task_processing(args);
}

main(){
 pre_processing();
 grpc_call(handle,
 "call_library",
 args);
}

main(){
 for (i=0;i<task_no;i++)
 grpc_call_async(dest[i],
 "task_processing",
 args);
 grpc_wait_all(dest);
}

Gridification Gridification

Figure 7. Gridifying applications with Ninf-G: typical scenarios

The next step is concerned with inserting Ninf-G functions into the client program so as to enable it
to interact, via RPC, with its server parts(s). Ninf-G has a number of built-in functions for initiating and
terminating RPC sessions and, of course, performing asynchronous or synchronous RPC calls. Typical
scenarios when gridifying code with Ninf-G are illustratedin Figure7.

Deploying a gridified application involves creating the executables on each server. First, the user
must specify the interface for the server program(s) using Ninf-G IDL, which are used to automatically
generate server-side stubs. Finally, the user must manually register this information in MDS. Although
simple, these tasks can be tedious if several applications are to be gridified.

5.7. PAGIS

PAGIS [61] is a Grid programming framework and execution environmentsuitable for unskilled Grid
developers. PAGIS provides a component-based programmingmodel that emphasizes on separating
whatan application does fromhowit does it. Roughly, putting an application to work onto the Grid with
PAGIS first requires to divide the application into communicating components, and then to implement
how these components are executed and controlled within a Grid environment.

A PAGIS application comprises a number of components connected through a network of
unidirectional links called aprocess network. In PAGIS terminology, components and links are known
as processesand channels, respectively. A process is a sequential Java program that incrementally
reads data from its incoming channels in a first-in first-out fashion, transforms data, and produces
output to some or all of its outcoming channels. At runtime, PAGIS creates a thread for each process
of a network, and maintains a producer-consumer buffer for each channel. Production of data is non-
blocking whereas consumption from an empty stream is blocking. As the reader can observe, this
mechanism shares many similarities with the Unix process pipelining model.

Like most component-based frameworks, PAGIS processes aredescribed in terms ofports. Ports
define a communication contract with a process in the same wayclasses define interfaces for objects
in object-oriented languages. In this way, applications are described by connecting ports through

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 17

Base level

Meta level

ObjectA ObjectB

MetaA MetaB

invoke

sending

receiving

executing

Figure 8. Overview of metalevel programming

channels. PAGIS includes an API, called PNAPI (Process Network API), that provides several useful
abstractions for describing applications in terms of process networks. Additionally, it offers a graphical
tool for visually creating, composing and executing process networks.

PAGIS allows a process network to be supplied with Grid behavior by means ofmetalevel
programming. Conceptually, metalevel programming divides an application into a base level,
composed of classes and objects implementing its functional behavior, and ametalevel, consisting
of metaobjectsthat reify elements of the application at runtime –mostly method invocations– and
perform computations on them. Figure8 illustrates the basics of metalevel programming. Base level
objectsObjectAandObjectBhave been both assigned two different metaobjects. As a consequence,
MetaAreceives all method invocations sent fromObjectAand redirects them to the target’s metaobject
(in this caseMetaB), which actually carries out the invocations. The labels inbold represent the phases
of a method invocation in which customized user actions can be associated.

PAGIS introduces theMetaComputationmetaobject, specially designed to represent a running
process network as one single structure. Users can then materialize complex Grid functionality
by attaching metaobjects¶ to MetaComputationmetaobjects. For example, one might implement a
custom metaobject for transferring certain method invocations to a remote metaobject, thus achieving
load balancing. Similarly, a metaobject that monitors and records the various runtime aspects of an
application can be easily implemented by logging information such as timing, source and destination
objects, amongst others, prior to method redirection.

The gridification scheme proposed by PAGIS is indeed interesting, since it allows to furnish ordinary
applications (i.e., the base level) with Grid-dependent behavior (i.e., the meta level) without affecting
its source code. The only requirement is that those applications are appropriately transformed so that
they are structured as a process network. Similar to GridAspecting, a PAGIS application (i.e., a process)
is specified at a task level of granularity.

¶Strictly speaking, these are meta-metaobjects, since theyintercept method calls performed by other metaobjects.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

18 C. MATEOS, A. ZUNINO, M. CAMPO

5.8. Proactive

Proactive [62] is a Java-based middleware for object-oriented parallel,mobile and distributed
computing. It includes an API that isolates many complex details of the underlying communication and
reflection Java APIs, on top of which a component-oriented view is provided. This API also includes
functionality to transform conventional Java classes to a Proactive application. The programming
model featured by Proactive has also been implemented in C++and Eiffel.

A typical Proactive application is composed of a number of mobile entities calledactive objects.
Each active object has its own thread of control and an entry point, called theroot, by which the
object functionality can be accessed from ordinary objects. Active objects serve methods calls issued
from other active/ordinary objects, and also request services implemented by other local or remote
active objects. Method calls sent to active objects are synchronized based on thewait-by-necessity
mechanism, which transparently blocks the requester untilthe results of a call are received. At the
ground level, this mechanism relies on meta programming techniques similar to that of PAGIS, thus it
is very transparent to the programmer.

JVMs participating in a computation can host one or morenodes. A node is a logical entity that
groups and abstracts the physical location of a set of activeobjects. Nodes are identified through a
symbolic name, typically a URL. Therefore, active objects can be programmatically attached/detached
from nodes without the need for manipulating low-level information like networks addresses or ports.
Similarly, active objects can be sent for execution to remote JVMs by simply assigning them to a
different “container” node.

Standard Java classes can be easily transformed into activeobjects. For example, let us assume we
have a class namedC, which exposes two methodsfoo andbar, with return typevoid anddouble,
respectively. The API call:

C c = (C) ProAct ive . newActive ("C" , args , " rmi : / / i s i s t a n . exa . unicen . edu . ar / myNode") ;

creates – by means of RMI – a new active object of type C on the node myNode. Further calls to
either foo or bar are asynchronously handled by Proactive, and any attempt toread the result of an
invocation tobar blocks the caller until the result is computed. In a similar way, the API can be used
to straightforwardly publish an active object as a SOAP-enabled Web Service.

Another interesting feature provided by Proactive is the notion of virtual nodes. The idea behind
this concept is to abstract away the mapping of active objects to physical nodes by eliminating from
the application code elements such as host names and communication protocols. Each virtual node
declared by the application is identified through a plain string, and mapped to one or a set of physical
nodes by means of an external XML deployment descriptor file.As a consequence, the resulting
application code is independent of the underlying execution platform and can be deployed on different
Grid settings by just modifying its associated deployment descriptor file.

There are, however, some code conventions that programmersmust follow before gridifying an
ordinary Java class as an active object. First, classes mustbe serializable, and include a default
constructor (i.e., with no arguments). Second, the result of a call to a non-void method should be placed
on a local variable for the wait-by-necessity mechanism to work. Return types for non-void methods
should be replaced by system-provided wrappers accordingly. In our example, we have to replace the
return type in thebar method with a Proactive API class that wraps thedoubleJava primitive type.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 19

5.9. Satin

Satin [63] is a Java framework that lets programmers to easily parallelize applications based on the
divide and conquer paradigm. The ultimate goal of Satin is tofree programmers from the burden
of modifying and hand-tuning applications to exploit a Gridsetting. Satin is implemented on top
of Ibis [64], a programming environment whose goal is to provide an efficient Java-based platform
for Grid programming. Ibis consists of a highly-efficient communication library, and a variety of
programming models, mostly for developing applications asa number of components exchanging
messages through messaging protocols like Java RMI and MPI.

Satin extends Java with two primitives to parallelize single-threaded conventional Java programs:
spawn, to create subcomputations (i.e., divide), andsync, to block execution until the results from
subcomputations are available. Methods considered for parallel execution are identified by means of
marker interfacesthat extend thesatin.Spawnableinterface. Furthermore, a class containing spawnable
methods must extend thesatin.SatinObjectclass and implement the corresponding marker interface.
In addition, the result of the invocation of a spawnable method must be stored on a local variable. The
next code shows the Satin version of a simple recursive solution to compute thekth Fibonacci number:

in terface F ibMarke r I n t e r face extends s a t i n . Spawnable {
public long f i b o n a c c i (long k) ;

}

class F ibonacc i extends s a t i n . Sat inObjec t implements F ibMarke r I n t e r face {

public long f i b o n a c c i (long k) {
i f (k < 2)

return k ;
/ / The next two c a l l s are au t omat i ca l l y spawned ,
/ / because " f i b o n a c c i " i s marked in F ibMarke r I n t e r face
long f1 = f i b o n a c c i (k − 1) ;
long f2 = f i b o n a c c i (k − 2) ;
/ / Execut ion b locks u n t i l f1 and f2 are i n s t a n t i a t e d
super . sync () ;
return f1 + f2 ;

}

sta t i c void main (S t r i ng [] args) {
. . .
F ibonacc i f i b = new F ibonacc i () ;
/ / a lso spawned
long r e s u l t = f i b . f i b o n a c c i (k) ;
/ / Blocks the main a p p l i c a t i o n thread
/ / u n t i l a r e s u l t i s obtained
f i b . sync () ;
. . .

}
}

After indicating spawnable methods and inserting appropriate synchronization calls into the
application source code, the programmer must feed a compiled version of the application to a tool
that translates, through Java bytecode instrumentation, each invocation to a spawnable method into a

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

20 C. MATEOS, A. ZUNINO, M. CAMPO

Satin runtime task. For example, in the code shown above, a task is generated for every single call to
thefibonaccimethod.

Since each task represents the invocation (recursive or not) to a spawnable method, their granularity
is clearly smaller than the granularity of tasks like the ones supported by GridAspecting or PAGIS. A
running application may therefore have associated a large number of fine-grained tasks, which can be
executed on any machine. For overhead reasons, most tasks are processed on the machine in which they
were created. In order to efficiently run gridified programs,Satin uses a task execution scheme based on
a novel load-balancing algorithm called CRS (Cluster-aware Random Stealing). With this algorithm,
when a machine becomes idle, it attempts to steal a task waiting to be processed from a remote machine.
Finally, intra-cluster steals have a greater priority thanwide-area steals. This policy fundamentally aims
at saving bandwidth and minimizing the latencies inherent to slow wide-area networks.

5.10. XCAT

XCAT [65] is a component-based framework for Grid application programming built on top of Web
Service technologies. XCAT applications are created by connecting distributed components (OGSA
Web Services) that communicate either by SOAP messaging or an implicit notification mechanism.
XCAT is compliant with CCA (Common Component Architecture)[66], a specification whose goal is
to come out with a reduced set of standard interfaces that a high-performance component framework
should provide/expect to/from components in order to achieve easy distributed component composition
and interoperability.

XCAT components are connected byports. A port is an abstraction representing the interface of
a component. Ports are described in SIDL (Scientific Interface Definition Language), a language for
describing component operations in terms of the data types often found in scientific programs. There
are two kinds of ports:providesports, representing the services offered by a component, and usesports,
which describes the functionality a component might need but is implemented by another component.
Furthermore, XCAT provides ports can be implemented as OGSAWeb Services. XCAT uses ports
can connect to any typed XCAT provides port (i.e., those described in SIDL) but also to any OGSA-
compliant Web Service.

XCAT allows scientific legacy applications to be deployed ascomponents without code modification
using the concept ofapplication manager(see Figure9). Basically, each legacy application is
wrapped with a generic component (application manager) responsible for managing and monitoring
the execution of the application, and staging the necessaryinput and output data. The manager also
serves as a forwarder for events taking place inside the wrapped application such as file creation, errors,
and execution finalization/crash. Applications managers can be connected to each other, and have one
special port by which standard components can control them.It is worth noting that legacy applications
have, in general, a large granularity. As a consequence, XCAT shares some of the limitations of
GEMLCA and GRASG with respect to granularity of gridified applications.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 21

Legacy
Application

Application
Manager

application
events

control
messages

control
port

SOAP
events

data
stagering

Figure 9. XCAT application managers

6. A TAXONOMY OF GRIDIFICATION APPROACHES

TableI summarizes the main characteristics of the approaches described in the previous sections. To
better understand the structure of the table, the reader should recall the analogy between the Grid and
the electrical power grid discussed in Section3.

Basically, each row of the table represents a “wall socket” by which applications are gridified and
connected to the Grid. The “Appliance type” column symbolizes the kind of applications supported
by the gridification process, whereas the “Grid-aware appliance” column briefly describes the new
anatomy of applications after passing through the gridification process. In addition, lower-level Grid
technologies upon which each approach is built are also listed. Finally, we center our discussion on
the different approaches to gridification (i.e., the “plugging techniques”) according to the taxonomies
presented in the next subsections.

In particular, the taxonomies of subsections6.1 and 6.2 describe, from the point of view of
source code modification, the different ways in which an ordinary application can be affected by the
gridification process. The taxonomy presented in subsection 6.3 represents the observed granularity
levels to which applications are Grid-enabled. Finally, the taxonomy included in subsection6.4briefly
categorizes the approaches according to the kind of Grid resources they aim to virtualize. These
taxonomies are simple, but comprehensive enough to cover the various aspects of gridification.

6.1. Application reengineering

The application reengineering taxonomy defines the extent to which an application must be manually
modified in order to obtain its gridified counterpart. In general, the static anatomy of every application
can be described as a number ofcompilation unitscombined with a certainstructure. Compilation

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

22 C. MATEOS, A. ZUNINO, M. CAMPO

Table I. Summary of gridification tools

Wall
socket

Appliance type Plugging technique
highlights

Grid-aware appliance Underlying
technologies

GEMLCA Binary executable The user must specify the
interface of his/her
application (XML file)

Globus-wrappered
binary executable

Web Services;
Globus

GrADS C application
(MPI-based if
explicit migration
is to be used)

Instruction insertion if
using SRS

Globus-wrappered
binary executable

Web Services;
Globus; NWS;
MPI

GRASG Binary executable Hand-tuning of
applications through
Perl/shell scripting

Binary executable
interfaced through a
JESWeb Service

SOAP-based
Web Services;
Globus

Grid-
Aspecting

Task-parallel Java
application

Manual task
decomposition and Grid
concerns (aspects)
implementation

Multi-threaded,
aspect-enhanced Java
application

AspectJ

GriddLeS Stream-based
binary executable

Transparent overloading
of system libraries
implementing file/sockets
operations across the Grid

Globus-wrappered
binary executable
(component)

Globus;
GridFTP

Ninf-G C/Fortran
application

Users decompose
applications into
client/server parts, and
connect them using
GridRPC calls

Client and server-side
binary executables

Globus;
GridRPC

PAGIS Java application Users identify
components and assemble
them throughchannelsto
build process networks

Binary executable
(process)

-

Proactive Java application Source code conventions;
proxy-based wrapping

Active object SOAP-based
Web Services;
RMI

Satin
Divide and
conquer Java
application

Source code conventions;
bytecode instrumentation
enabling recursive
method calls to be
spawnable

Single-threaded,
parallel Java application

Ibis

XCAT Binary executable The user must specify the
interface of his/her
executable in SIDL

Binary executable
interfaced through an
application manager

Web Services

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 23

No (GEMLCA, GRASG,
 Griddles, XCAT)

Modify
source
code?

Structure only (GridAspecting, PAGIS)

Structure and
compilation units (Ninf−G)

Yes Compilation units only (GrADS, Proactive, Satin)

Figure 10. Application reengineering taxonomy

units are programming language-dependent pieces of software (e.g., Java classes, C and Perl modules,
etc.) assembled together to form an application. Usually, acompilation unit corresponds to a single
source code file. Furthermore, the way compilation units arecombined determines the structure of the
application (e.g. the class hierarchy of a Java application, the dependence graph between functions
within a C program). According to Figure10, the anatomy of a conventional application might be
altered in the following manners:

• Structure only: Some approaches alter the internal structure of the application, restructuring it in
such a way some of its constituent parts are reorganized. Forexample, GridAspecting requires
the user to identify tasks within the application that potentially can be executed concurrently.
Similarly, the PAGIS framework requires to restructure applications as a set of components
exposing and invoking services through well-defined interfaces. However, in both cases, the
user code originating these tasks and components practically remains unchanged. In general,
this procedure makes the appearance of the original application significantly different from
that of the Grid-aware application, but the pure implementation code is practically the same.
In other words, even though the code within compilation units may slightly change, the focus
of structure modification is on redesigning the applicationinstead of rewriting it (i.e., internally
modify methods/procedures).
Structure modification is a very common approach to gridification among template-based Grid
programming frameworks. With these frameworks, the user adapts the structure of his/her
application to a specific template implementing a recurringexecution pattern defined by the
framework. For example, JaSkel [44] is a Java framework for developing parallel applications
that provides a set of abstract classes and a skeleton catalog, which implements interaction
paradigms such as farm, pipeline, divide and conquer and heartbeat templates. Another
example is MW [42], a framework based on the popular master-worker paradigm for parallel
programming.

• Compilation units only: Conversely, other approaches alter only some compilationunits of the
application. For instance, Proactive and Satin require thedeveloper to modify certain methods
within the application to make them compliant to a specific coding convention. But, in both cases,
the class hierarchy of the application is barely modified. A taxonomy of gridification techniques
for single compilation units is presented in the next subsection.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

24 C. MATEOS, A. ZUNINO, M. CAMPO

No (GEMLCA, GridAspecting, GRASG,
 Griddles, PAGIS, XCAT)

Modify
compilation

units?
Instruction insertion (GrADS)

Yes Call replacement (Ninf−G)

Coding conventions (Proactive, Satin)

Figure 11. Compilation unit modification taxonomy

Examples of compilation unit modification are commonly found in the context of distributed
programming. For instance, this technique is frequently employed when a single-machine Java
application is adapted to use a distributed object technology such as RMI or CORBA. Some
of the (formerly local) objects are explicitly distributedon different machines and looked up
by adding specific API calls inside the application code. However, the behavioral relationships
between those distributed objects do not change. Additionally, similar examples can be found in
distributed procedural programming using technologies such as MPI or RPC.

• Structure and compilation units: Of course, gridification methods may also modify both the
structure and compilation units of the application. For example, Ninf-G demands the developer
to split an application into client and server-side parts and then to modify the client so as to
remotely interact with the server(s). Notice that the internal structure of the application changes
dramatically, since a single server part may contain code combining the functions originally
placed at different compilation units. Overall, not only the ordinary application is refactored by
creating many separate programs, but also several modifications to some of the original functions
are introduced.

Intuitively, the first technique enables the user to performmodifications at a higher level of abstraction
than the second one. Users are not required to provide code for using Grid functionality and deal
with Grid details, but have to change the application shape.As a consequence, the application logic
is not significantly affected after gridification. In principle, the most undesirable technique is by far to
modify the structure and the compilation units of an application, since not only the application shape is
changed, but also the nature of its code. However, it is very difficult to determine whether a technique
is better than the others, as the amount of effort necessary to gridify an application with either of the
three approaches depends on its complexity/size, the amount/type of modifications imposed by the
gridification method for restructuring and/or rewriting the application, the programming language, and
the particular Grid setting and underlying technologies being used for application execution.

6.2. Compitation unit modification

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 25

The compilation unit modification taxonomy determines how applications are altered after
gridification with respect to modification of theirs compilation units. As shown in Figure11, we can
broadly identify the following categories:

• Instruction insertion: The most intuitive way to gridify is, as it name indicates, by manually
inserting instructions implementing specific Grid functionality at proper places within the
code. A case of instruction insertion arises in GrADS when the user wants to explicitly
control application migration and data staging. A clear advantage of this technique is that the
programmer can optimize his/her application at different levels of granularity to produce a very
efficient Grid application. However, in most cases, the application logic is literally mixed up with
Grid-related code, thus making maintainability, legibility, testing and portability to different Grid
platforms very hard.
There are many Grid middlewares that require users to employinstruction insertion when
gridifying compilation units. For example, JavaSymphony [67] is a programming model whose
purpose is to simplify the development of performance-oriented, object-based Grid applications.
It provides a semi-automatic execution model that deals with migration, parallelism and load
balancing of applications, and at the same time allows the programmer to control –via instruction
insertion– such features as needed. Other examples are Javelin 3.0 [68] and GridWay [69], two
platforms for deployment and execution of CPU-intensive applications which require users to
modify applications in order to exploit job checkpointing and parallelization.

• Call replacement: A very common technique to gridify compilation units is by replacing certain
groups of sequential instructions by appropriate calls to the underlying middleware API. Such
instructions may range from operations for carrying out interprocess communication to code for
manipulating data. Unlike the previous case, call replacement puts more emphasis on replacing
certain pieces of conventional code by Grid-aware code instead of inserting new instructions
throughout the user application.
Call replacement assumes users know what portions of their code should be replaced in order
to adapt it for running on a particular Grid middleware. Nevertheless, in order to help users
in doing this task, Grid middlewares usually offer guidelines tutoring users on how to port
their applications. For instance, gridifying with the Globus platform involves replacing socket-
based communication code by calls to the Globus I/O library,transforming conventional data
copy/transfers operations by GridFTP operations, and finally replacing all resource discovery
instructions (e.g., for obtaining available execution nodes) by calls to the MDS service.
Clearly, call replacement is a form of gridification suitable for users who are familiar with
the target middleware API. Users not having a good understanding of the particular API
to be used may encounter difficult to port their applicationsto the Grid. Another drawback
of the approach is that the resulting code is highly-coupledwith a specific Grid API, thus
having many of the problems suffered by instruction insertion. These issues are partially solved
by toolkits that attempt to offer a comprehensive, higher-level programming API on top of
middleware-level APIs (e.g., Java CoG Kit, GAT). However, developers are forced to learn yet
another programming API. Indeed, Grid toolkits help alleviating developer pain caused by call
replacement, but certainly they are not the cure.

• Coding conventions: This technique is based on the idea that all the compilationunits of an
ordinary application must obey certain conventions about their structure and coding style prior to

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

26 C. MATEOS, A. ZUNINO, M. CAMPO

gridification. These conventions allow tools to properly transform a gridified application into one
or more middleware-level execution units. For example, Proactive requires application classes to
extend the JavaSerializableinterface. Moreover, Satin requires that the result of any invocation
to a recursive method is placed on a variable, rather than accessing it directly (e.g., pass it on as
an argument to another method). Unlike instruction insertion and call replacement, the gridified
code is in general not tied to any specific Grid API or library.
To provide an illustrative example in the context of conventional software, we could cite
JavaBeans [70], a widely-known specification from Sun that defines conventions for writing
reusable software components in Java. In order to operate asa JavaBean, a class must follow
conventions about method naming and behavior. This, in turn, enables easy graphical reuse and
composition of JavaBeans to create complex applications with little implementation effort.

It is worth pointing out that using any of the above techniques does not automatically exclude from
using the others. In fact, they usually complement each other. For example, Satin, though it is focused
on gridifying by imposing coding conventions, requires programmers to coordinate several calls to
a spawnable computation within a method by explicitly inserting special synchronizing instructions.
Furthermore, it is unlikely that an application that has been adapted to use a specific Grid API (e.g.,
GridFTP in the case of Ninf-G) does not include user-provided instructions for performing some API
initialization or disposal tasks.

6.3. Gridification granularity

Granularity is a software metric that attempts to quantify the size of theindividual components‖ that
make up a software system. Large components (i.e., those including much functionality) are commonly
calledcoarse-grained, while those components providing little functionality are usually calledfine-
grained. For example, with Service-Oriented Architectures (SOA) [71], applications are built in terms
of components calledservices. In this context, component granularity is determined by the amount of
functionality exposed by services, which may range from small (e.g., querying a database) to big (e.g.,
a facade service to a travel business).

Notwithstanding, granularity is usually associated with the size of application components from
a user’s point of view, the concept can also be applied to get an idea of how granular the runtime
components of a gridified application are. We definegridification granularityas the granularity of
the individual components that constitute an executing gridified application from the point of view
of the Grid middleware. Basically, these Grid-enabled components are execution units like jobs or
tasks to which the Grid directly provides scheduling and execution services. Note that “conventional”
granularity does not necessarily determines gridificationgranularity. Clearly, this is because the former
is concerned with the size of componentsbeforean application is transformed to run on a Grid setting.

‖The term “component” refers to any single piece of software included in a larger system, and should not be confused with the
basic building blocks of the component-based programming model

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 27

Coarse−grained (GEMLCA, GrADS, GRASG,
 Griddles, Proactive, XCAT)

Gridification
granularity Medium−grained (GridAspecting, Ninf−G, PAGIS)

Fine−grained (Satin)

Figure 12. Gridification granularity taxonomy

For example, during gridification, a single coarse-grainedservice might be partitioned into several
more granular services to achieve scalability.

Like conventional granularity, gridification granularitytakes continuous values ranging from the
smallest to the largest possible component size. As shown inthe taxonomy of Figure12, we divided
the spectrum of gridification granularities into three discrete values:

• Coarse-grained: A running application is composed of a number of “heavy” execution units.
Typically, the application execution is handled by just oneruntime component. This level of
granularity usually results from employing solutions suchas GEMLCA, GRASG, GriddLes and
XCAT, which adapt the executable of an ordinary applicationto be executed as a single Grid-
aware job. At runtime, a job behaves like a “black box” that receives a pre-determined set of input
parameters (e.g., numerical values, files, etc.), performssome computation, and returns results
back to the executor. A similar case occurs with compiled versions of applications gridified with
GrADS.
Coarse-grained gridification granularity suffers from twomajor problems. On one hand, the
application is treated by the middleware as a single execution unit. Therefore, unless refactored, it
may not be possible for the individual resource-consuming parts of a running application to take
advantage of mechanisms such as distribution, parallelization or scheduling to achieve higher
efficiency. On the other hand, the middleware sees a running application as an indivisible unit of
work. As a consequence, some of its portions that might be dynamically reused by other Grid
applications (e.g., a data mining algorithm) cannot be discovered or invoked.
To a lesser extent, Proactive applications can also be considered as coarse-grained. An ordinary
Java application (i.e., its main class and helper classes) is gridified by transforming it to a
self-contained active object. The user sees the non-gridified application as composed of a
number of (medium-grained) objects. On the other hand, Proactive sees the gridified application
as one big (active) object. When executing the application,the Proactive runtime performs
scheduling and distribution activities on active objects rather than on plain objects. Nevertheless,
Proactive is more flexible than the other approaches in this category, since it lets developers to
explicitly manage mobility inside an active object, invokemethods from other active objects and
externalize the methods implemented by an active object.

• Medium-grained: The running application has a number of execution units of moderate
granularity. Systems following this approach are GridAspecting, Ninf-G and PAGIS. In the
former and latter case, the user identifies those tasks within the application code that can be
executed concurrently. Then, they are mapped by the middleware to semi-granular runtime task

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

28 C. MATEOS, A. ZUNINO, M. CAMPO

Yes

Resource
harvesting

No (GridAspecting, PAGIS)

Infrastructure resources only
(GEMLCA, GrADS, GRASG,
 Ninf−G, Satin)

Infrastructure resources
and Grid applications
(Griddles, Proactive, XCAT)

Scavenger

Non−scavenger

Intra−application linking

Extra−application linking

Figure 13. Resource harvesting taxonomy

objects. Similarly, a running Ninf-G application is composed of several IDL-interfaced processes
that are distributed across a network. Unlike GridAspecting and PAGIS, this approach affords an
opportunity for dynamic component invocation, as a Ninf-G application might perform calls to
the functions exposed by the components of another Ninf-G application.

• Fine-grained: This category represents the gridification granularity associated to runtime
components generated upon the invocation of a method/procedure. A representative case of fine-
grained granularity is Satin. Basically, a middleware-level task is created after every single call
to a spawnable method, regardless of whether calls are recursive or not. From the application
point of view, there is a better control of parallelism and asynchronism. However, a running
application may generate a large number of tasks that shouldbe efficiently handled by the
underlying middleware. This fact suggests the need for a runtime support providing sophisticated
execution services smart enough to efficiently deal with task scheduling and synchronization
issues.

It is worth noting that, in some cases, the user may indirectly adjust (e.g., by refactoring code)
the gridification granularity to fit specific application needs. For example, a set of medium-grained
tasks could be grouped into one bigger task in order to reducecommunication and synchronization
overhead. Conversely, the functionality performed by a task could be decomposed into one or more
tasks to achieve better parallelism. Nonetheless, this process can be cumbersome and sometimes
counterproductive. For example, Proactive applications can be restructured by turning standard objects
into active objects, but then the programmer must explicitly provide code for handling active object
lookup and coordination. Similarly, gridification granularity of Ninf-G applications can be reduced by
increasing the number of server-side programs. However, this could cause the application to spend
more time communicating than doing useful computations.

6.4. Resource harvesting

The resource harvesting taxonomy describes, in a general way, the kind of Grid resources to
which access is made transparent by each gridification method. The utmost goal of Grid Computing,
as explained at the beginning of this article, is to virtualize distributed resources so they can

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 29

be transparently used and consumed by ordinary applications. Certainly, gridification tools play a
fundamental role in achieving such a transparency. The resource harvesting taxonomy is depicted in
Figure13.

Surprisingly, some gridification methods do not pursue resource virtualization. Specifically,
solutions such as GridAspecting or PAGIS aim at preserving the integrity of the application logic
during gridification and make them independent of a specific Grid platform or middleware. In this way,
users have the flexibility to choose the runtime support or middleware that better suits their needs.
However, as these approaches do not offer facilities for using Grid services, the burden of providing
the “glue” code for interacting with the Grid is entirely placed on the application developer, which
clearly demands a lot of programming effort.

Most gridification methods, however, provide some form of Grid resource leveraging, along with a
minimal or even no effort from the application developer. Basically, these are integrated solutions that
offer services for gridifying ordinary applications as well as accessing Grid resources. Depending on
the type of resource they attempt to virtualize, these methods can be further classified as:

• Infrastructure resources only: Applications resulting from applying the gridification process are
not concerned with providing services to other Grid applications. Applications are simply ported
to the Grid to transparently leverage middleware-level services (e.g., resource brokering, load-
balancing, mobility, scheduling, parallelization, storage management, etc.) that virtualize and
enhance the capabilities of computational resources like processing power, storage, bandwidth,
and so forth. Moreover, some approaches are more focused on harnessing idle CPU power (the
so called “scavengers”; GrADS, Ninf-G, Satin), whereas others also include simple abstractions
and easy-to-use services to deal with data management on theGrid (GEMLCA, GRASG). In any
case, the emphasis is solely put on taking advantage of Grid resources, rather than using Grid
servicesandservices implemented by other Grid applications.

• Infrastructure resources and Grid applications: The goal of these approaches is to simplify the
consumption of both Grid services and functionality offered by gridified applications. At the
middleware level, gridified applications are treated just like any other individual Grid resource:
an entity providing special capabilities that can be used/consumed by other applications by
means of specialized Grid services. Note that this is a desirable property for a gridification
tool, since reusing existing Grid applications may improveapplication modularity and drastically
reduce development effort [72].
Linking together Grid applications requires the underlying middleware to provide, in principle,
mechanisms for communicating applications. These mechanisms may range from low-level
communication services such as those implemented by GriddLes, to high-level, interoperable
messaging services like SOAP. In addition, mechanisms are commonly provided to describe the
interface of a gridified application in terms of the internalservices that are made accessible to
the outside, and also to discover existing Grid applications. For example, popular technologies
for describing and discovering Grid applications are WSDL [73] and UDDI [74], respectively.
TableII briefly compares the tools that support application linkingby showing how they deal
with application interface description, communication and discovery.
There are basically two forms to connect applications:extra-applicationandintra-application.
In the extra-application approach, existing Grid applications can be reused by combining and
composing them into a new application. For example, XCAT conceives gridified applications as

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

30 C. MATEOS, A. ZUNINO, M. CAMPO

Table II. Comparison between gridification tools leveraging both Grid resources
and applications

Tool Interface description Communication protocol Application discovery

GriddLeS Implicit (file-based) Sockets No
Proactive Explicit (WSDL) SOAP Yes (lookup by active

object identifier)
XCAT Explicit (WSDL) SOAP or XML-based

implicit notification
No

being indivisible components that can be combined – with little coding effort – into a bigger
application, but no binding actions are ever carried out from inside any of these components.
Another example of a gridification tool following this approach is GMarte [75], a high-level
Java API that offers an object-oriented view on top of Globusservices. With GMarte, users can
compose and coordinate the execution of existing binary codes by means of a (usually small)
new Java application. On the other hand, in the intra-application linking approach, users are not
required to implement a new “container” application, sincebinding to existing Grid applications
is performed within the scope of a client application. GriddleS and Proactive are examples of
approaches based on intra-application linking.

Gridification approaches oriented towards consuming Grid resources are engaged in finding ways
to make the task of porting applications to use Grid serviceseasier. On the other hand, approaches
seeking to effortlessly take advantage of Grid resources and existing applications generalize this idea
by providing a unified view over Grid resources in which applications not only consume but also
offer Grid services. It is important to note that this approach shares many similarities with the service-
oriented model, where applications may act both as clients and providers of services. In fact, many
global Grid standards such as OGSA and WSRF have already embodied the convergence of SOA and
Grid Computing technologies.

7. DISCUSSION

Table III summarizes the approaches discussed so far. Each cell of thetable corresponds to the
taxonomic value associated to a particular tool (row) with respect to each one of the taxonomies
presented in the previous section.

There are approaches that let users to gridify applicationswithout modifying a single line of code.
Solutions belonging to this category take the application in their binary form, along with some user-
provided configuration (e.g., input and output parameters and resource requirements), and wrap the
executable code with a software entity that isolates the complex details of the underlying Grid. It is
important to note that this approach has both advantages anddisadvantages. On one hand, the user

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 31

Table III. Summary of gridification approaches

Tool Application
reengineering

Compilation unit
modification

Gridification
granularity

Resource
harvesting

GEMLCA No No Coarse-grained Grid resources
GrADS Yes (compilation

units only)
Instruction
insertion

Coarse-grained Grid resources

GRASG No No Coarse-grained Grid resources
Grid-
Aspecting

Yes (structure only) No Medium-grained No

GriddLeS No No Coarse-grained Grid resources
and applications

Ninf-G Yes (structure and
compilation units)

Call replacement Medium-grained Grid resources

PAGIS Yes (structure only) No Medium-grained No
Proactive Yes (compilation

units only)
Code conventions Coarse-grained Grid resources

and applications
Satin Yes (compilation

units only)
Code conventions Fine-grained Grid resources

XCAT No No Coarse-grained Grid resources
and applications

does not need to have a good expertise on Grid technologies togridify his/her applications. Besides,
applications can be plugged into the Grid even when the source code is not available. On the other hand,
the approach results in extremely coarse-grained gridifiedapplications, thus users generally cannot
control the execution of their applications in a fine-grained manner. This represents a clear tradeoff
between ease of gridification versus flexibility to control the various runtime aspects of a gridified
application.

A remarkable result of the survey is the diversity of programming models existing among the
analyzed tools: procedural and message passing (GrADS), AOP (GridAspecting, PAGIS), workflow-
oriented (GriddLes), RPC (Ninf-G), component-based (PAGIS, Proactive, XCAT), object-oriented
(Proactive, Satin), just to name a few. This evidences the absence of a widely-adopted programming
model for the Grid, in contrast to other distributed environments (e.g., the Web) where well-established
models for implementing applications are found [76].

Another interesting result is the way technologies like Java, Web Services and Globus have
influenced the development of gridification tools within theGrid. Specifically, many of the surveyed
tools are based on Java or rely on Web Services, and almost allof them either build on top of
Globus or provide some integration with it. Nevertheless, this result should not be surprising for
several reasons. Java has been widely recognized as an excellent choice for implementing distributed

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

32 C. MATEOS, A. ZUNINO, M. CAMPO

applications mainly because of its “write once, run anywhere” philosophy, which promotes platform
independence. Web Services technologies enable high interoperability across the Grid by providing
a layer that abstracts clients and Grid services from network-related details such as protocols and
addresses. Lastly, Globus – baptized by Ian Foster as the “Linux of the Grid” – has become thede
factostandard toolkit for implementing Grid middlewares, sinceit provides a continuous evolving and
robust API for common low-level Grid functionality such as resource discovery and monitoring, job
execution and data management.

8. CONCLUSIONS

Grid Computing promises users to effortlessly take advantage of the vast amounts and types of
computational resources available on the Grid by simply plugging applications into it. However,
given the extremely heterogeneous, complex nature inherent to the Grid, adapting applications to
run on a Grid setting has been widely recognized as a very difficult task. So comes the challenge
to provide appropriate methods togridify applications, this is, semi-automatic and automatic methods
for transforming conventional applications to benefit fromGrid resources. In this sense, a number of
gridification approaches have been proposed in an attempt tohelp reality to catch up with this ambitious
dream.

Unfortunately, current approaches to gridification only cope with a subset of the problems that are
essential to truly achieving gridification, while not addressing the others. Ideally, ordinary applications
should be made Grid-aware without the need for manual code refactoring, modification or adaptation.
Besides reducing development effort, this would enable even the most novice Grid users to quickly and
easily put their applications to run on the Grid. Similarly,users should also be able to take advantage of
Grid resources and existing Grid applications with little,or eventually non, coding effort. Last but
not least, the gridification process should also take into account the runtime characteristics of the
applications being gridified to provide mechanisms by whichusers easily adjust the granularity of
application components, so as to produce Grid-aware applications that can be efficiently executed.
Consequently, there is a need for new approaches capable of effectively coping with all these issues.

Recently, SOAs have appeared as an elegant approach to tackle down some of the problems suffered
by current gridification methods. SOAs provide the basis forloose coupling: interacting applications
that know little about each other in the sense they discover the necessary information to use external
services (protocols, interfaces, location, and so on) in a dynamic fashion. This frees developers from
explicitly providing code for connecting applications together and accessing resources from within an
application. Moreover, SOAs enable application modularity, interoperability, reusability and various
application granularities. As a matter of fact, it is not clear where to draw the line between Grid Services
and Web Services technologies [18]. Furthermore, current Grid standards are actively promoting the
use of SOAs and Web Services for materializing the next generation architectures and middlewares for
the Grid [72].

Finally, although the analysis throughout this paper has been explicitly centered around the notion
of gridification as the process of transforming the source code of an application to run on the Grid,
an aspect that deserves special attention is the amount of configuration that may be necessary to truly
make this transformation happen. In a broader sense, gridifying an application is not only concerned
with making conventional source code Grid-aware, but also with supplying some Grid-dependent

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 33

configuration in order to run the adapted application, whichusually ranges from application-specific
parameters (e.g. expected execution time and memory usage)to deployment information (e.g. number
of nodes to use). Sadly, this demands developers to know in advance many platform-related details
before an application can take advantage of Grid services.

As gridification methods evolve, difficulties in gridifyingordinary applications seem to move from
adapting source code to configuring and deploying Grid-aware applications. For example, this fact is
evident in those approaches (e.g. GEMLCA, GRASG, XCAT) where code modification is not required
but deployment becomes difficult. Nevertheless, the problem of simplifying the deployment of Grid
applications has been acknowledged by some of the current gridification tools. For instance, a Proactive
application can be executed on several Internet-connectedmachines by configuring and launching
the application at a single location. Another incipient work towards this end can be found in [77], a
middleware whose goal is to ease both programming and deployment of conventional Java applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful commentsand suggestions to improve the quality of the
paper.

REFERENCES

1. Ian Foster and Carl Kesselman (eds.),The Grid 2: Blueprint for a New Computing Infrastructure, Morgan-Kaufmann, San
Francisco, CA, USA, 2003.

2. Ian Foster, ‘The Grid: Computing without bounds’,Scientific American, 288(4), 78–85 (2003).
3. Ian Foster, Carl Kesselman, and Steven Tuecke, ‘The anatomy of the Grid: Enabling scalable virtual organization’,The

International Journal of High Performance Computing Applications, 15(3), 200–222 (2001).
4. Luis F. G. Sarmenta and Satoshi Hirano, ‘Bayanihan: Building and studying volunteer computing systems using Java’,

Future Generation Computer Systems, Special Issue on Metacomputing, 15(5-6), 675–686 (1999).
5. Distributed.net. The distributed.net project.http://www.distributed.net (last accessed December 2006).
6. Folding@home. The folding@home project.http://folding.stanford.edu/ (last accessed December 2006).
7. David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer, ‘SETI@home: an experiment in public-

resource computing’,Communications of the ACM, 45(11), 56–61 (2002).
8. Laurence Loewe, ‘Evolution@home: observations on participant choice, work unit variation and low-effort global

computing’,Software: Practice and Experience(2007). To appear.
9. Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw, ‘The Legion support for advanced parameter-space studies

on a Grid’,Future Generation Computer Systems, 18(8), 1033–1052 (2002).
10. Douglas Thain, Todd Tannenbaum, and Miron Livny, ‘Condor and the Grid’, in Fran Berman, Geoffrey Fox, and Anthony

Hey (eds.),Grid Computing: Making the Global Infrastructure a Reality, John Wiley & Sons Inc., New York, NY, USA,
April 2003, pp. 299–335.

11. Ian Foster, ‘Globus toolkit version 4: Software for service-oriented systems’,IFIP International Conference on Network
and Parallel Computing, volume 3779. Springer-Verlag GmbH, 2005, pp. 2–13.

12. Andrew Chien, Brad Calder, Stephen Elbert, and Karan Bhatia, ‘Entropia: architecture and performance of an enterprise
desktop Grid system’,Journal of Parallel and Distributed Computing, 63(5), 597–610 (2003).

13. David Levine and Mark Wirt, ‘Interactivity with scalability: Infrastructure for multiplayer games’, in Ian Fosterand Carl
Kesselman (eds.),The Grid 2: Blueprint for a New Computing Infrastructure, Morgan-Kaufmann, 2003, pp. 167–178.

14. Sun Microsystems. Sun n1 grid engine 6.http://www.sun.com/software/gridware/ (last accessed January 2007).
15. OGSA-WG. Defining the Grid: A roadmap for OGSA standards.http://www.gridforum.org/documents/GFD.53.pdf,

September 2005.
16. OASIS Consortium. Web services resource framework (WSRF) - primer v1.2. committee draft 02.

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, May 2006.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

http://www.distributed.net
http://folding.stanford.edu/
http://www.sun.com/software/gridware/
http://www.gridforum.org/documents/GFD.53.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

34 C. MATEOS, A. ZUNINO, M. CAMPO

17. Steven J. Vaughan-Nichols, ‘Web services: Beyond the hype’, Computer, 35(2), 18–21 (2002).
18. Heinz Stockinger, ‘Defining the Grid: A snapshot on the current view’,Journal of Supercomputing(2007). To appear.
19. Ian Foster, ‘What is the Grid? a three point checklist’,Grid Today, 1(6) (2002).
20. Ian J. Taylor,From P2P to Web Services and Grids: Peers in a Client/Server World, Computer Communications and

Networks, Springer, 2005.
21. Madhu Chetty and Rajkumar Buyya, ‘Weaving computational Grids: How analogous are they with electrical Grids?’,

Computing in Science and Engineering, 4(4), 61–71 (2002).
22. Henri Bal, Henri Casanova, Jack Dongarra, and Satoshi Matsuoka, ‘Application-level tools’, in Ian Foster and Carl

Kesselman (eds.),The Grid 2: Blueprint for a New Computing Infrastructure, Morgan-Kaufmann, 2003, pp. 463–489.
23. Thilo Kielmann, Andre Merzky, Henri Bal, Francoise Baude, Denis Caromel, and Fabrice Huet, ‘Grid application

programming environments’,Future Generation Grids. Springer-Verlag GmbH, November 2006, pp. 286–306.
24. Mark Baker, Rajkumar Buyya, and Domenico Laforenza, ‘Grids and Grid technologies for wide-area distributed

computing’,Software Practice & Experience, 32(15), 1437–1466 (2002).
25. Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao, ‘A taxonomy of data Grids for distributed data

sharing, management, and processing’,ACM Computing Surveys, 38(1) (2006).
26. Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, ‘A taxonomy and survey of Grid resource management

systems for distributed computing’,Software: Practice and Experience, 32(2), 135–164 (2002).
27. CERN. The GridCafé project.http://gridcafe.web.cern.ch/gridcafe/ (last accessed January 2007).
28. K. Arnold and J. Gosling,The Java Programming Language, Addison-Wesley, Reading, MA, USA, 1996.
29. GRIDS Laboratory. The GridBus project.http://www.gridbus.org (last accessed January 2007).
30. Ian Foster and Carl Kesselman, ‘Concepts and architecture’, in Ian Foster and Carl Kesselman (eds.),The Grid 2: Blueprint

for a New Computing Infrastructure, Morgan-Kaufmann, 2003, pp. 37–63.
31. A. Geist, A. Beguelin, Jack Dongarra, W. Jiang, R. Manchek, and V. Sunderam,PVM Parallel Virtual Machine, A User’s

Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, Massachusetts, 1994.
32. J. Dongarra and D. Walker, ‘MPI: A standard message passing interface’,Supercomputer, 12(1), 56–68 (1996).
33. Troy Bryan Downing,Java RMI: Remote Method Invocation, IDG Books Worldwide, Foster City, CA, USA, 1998.
34. N. Karonis, B. Toonen, and I. Foster, ‘MPICH-G2: A Grid-enabled implementation of the message passing interface’,

Journal of Parallel and Distributed Computing, 63(5), 551–563 (2003).
35. H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova, ‘A GridRPC model and API for end-user

applications’,Technical report, GridRPC Working Group, July 2005.
36. R. E. Johnson, ‘Frameworks = (components + patterns)’,Communications of the ACM, 40(10), 39–42 (1997).
37. Wim Codenie, Koen De Hondt, Patrick Steyaert, and Arlette Vercammen, ‘From custom applications to domain-specific

frameworks’,Communications of the ACM, 40(10), 71–77 (1997).
38. Globus Alliance. The Java CoG kit.http://wiki.cogkit.org/index.php/Java_CoG_Kit (last accessed January

2007).
39. Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis, Tom Goodale, Thilo Kielmann, André

Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas Radke, Michael Russell, Ed Seidel, John Shalf, and Ian Taylor,
‘Enabling applications on the Grid: A GridLab overview’,International Journal of High Performance Computing
Applications, Special issue on Grid Computing: Infrastructure and Applications, 17(4), 449–466 (2003).

40. Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut Kaiser, Thilo Kielmann, Andre Merzky, Rob V. van
Nieuwpoort, Alexander Reinefeld, Florian Schintke, Thorsten Schott, Ed Seidel, and Brygg Ullmer, ‘The Grid application
toolkit: Towards generic and easy application programminginterfaces for the Grid’,Proceedings of the IEEE, volume 93,
March 2005, pp. 534–550.

41. Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Gregor von Laszewski, Craig Lee, Andre
Merzky, Hrabri Rajic, and John Shalf, ‘SAGA: A simple API forGrid applications - high-level application programming
on the Grid’,Computational Methods in Science and Technology, 20(1), 7–20 (2006).

42. Jean-Pierre Goux, Sanjeev Kulkarni, Jeff Linderoth, and Michael Yoder, ‘An enabling framework for master-worker
applications on the computational Grid’,IEEE International Symposium on High Performance Distributed Computing
(HPDC’00), Pittsburgh, Pennsylvania, USA, August 2000, pp. 43–50. IEEE Conputer Society.

43. Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail, Marcio Faerman, Silvia Figueira, Jim
Hayes, Graziano Obertelli, Jennifer Schopf, Gary Shao, Shava Smallen, Neil Spring, Alan Su, and Dmitrii Zagorodnov,
‘Adaptive computing on the Grid using AppLeS’,IEEE Transactions on Parallel Distributed Systems, 14(4), 369–382
(2003).

44. João F. Ferreira, João L. Sobral, and Alberto J. Proenca,‘JaSkel: A Java skeleton-based framework for structured cluster
and Grid computing’,Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06), Washington, DC, USA, 2006, pp. 301–304. IEEE Computer Society.

45. Q. Ho, Y. Ong, and Wentong Cai, ‘’Gridifying’ aerodynamic design problem using GridRPC’, Minglu Li, X. Sun, Qianni
Deng, and Jun Ni (eds.),Grid and Cooperative Computing - GCC 2003, volume 3032 ofLecture Notes in Computer

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

http://gridcafe.web.cern.ch/gridcafe/
http://www.gridbus.org
http://wiki.cogkit.org/index.php/Java_CoG_Kit

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

A SURVEY ON APPROACHES TO GRIDIFICATION 35

Science. Springer-Verlag, 2003, pp. 83–90.
46. Bin Wang, Zhuoqun Xu, Cheng Xu, Yanbin Yin, Wenkui Ding, and Huashan Yu, ‘A study of gridifying scientific computing

legacy codes’, Hai Jin, Yi Pan, Nong Xiao, and Jianhua Sun (eds.),Grid and Cooperative Computing - GCC 2004, volume
3251 ofLecture Notes in Computer Science. Springer-Verlag, 2004, pp. 404–412.

47. Paul Z. Kolano, ‘Facilitating the portability of user applications in grid environments’, J. Stefani, Isabelle M. Demeure, and
Daniel Hagimont (eds.),Distributed Applications and Interoperable Systems,4th IFIP WG6.1 International Conference,
volume 2893 ofLecture Notes in Computer Science. Springer-Verlag, 2003, pp. 73–85.

48. T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kacsuk, ‘GEMLCA: Running legacy code
applications as Grid services’,Journal of Grid Computing, 3(1-2), 75–90 (2005).

49. Péter Kacsuk and Gergely Sipos, ‘Multi-Grid, multi-user workflows in the P-GRADE Grid portal’,Journal of Grid
Computing, 3(3-4), 221–238 (2005).

50. Sathish Vadhiyar and Jack Dongarra, ‘Self adaptabilityin Grid computing’,Concurrency and Computation: Practice and
Experience, Special Issue on Grid Performance, 17(2–4), 235–257 (2005).

51. Rich Wolski, Neil Spring, and Jim Hayes, ‘The network weather service: A distributed resource performance forecasting
service for metacomputing’,Future Generation Computer Systems, 15(5-6), 757–768 (1999).

52. Q. Ho, Terence Hung, Wei Jie, H. Chan, Emilda Sindhu, Subramaniam Ganesan, Tianyi Zang, and Xiaorong Li, ‘GRASG
- a framework for ’gridifying’ and running applications on service-oriented Grids’,Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2006). IEEE Computer Society, 2006, pp. 305–312.

53. W3C Consortium. SOAP version 1.2 part 0: Primer. W3C Recommendation,http://www.w3.org/TR/soap12-part0/,
June 2003.

54. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl Kesselman, Sam Meder, Veronika
Nefedova, Darcy Quesnel, and Steven Tuecke, ‘Data management and transfer in high-performance computational Grid
environments’,Journal of Parallel Computing, 28(5), 749–771 (2002).

55. Paulo Henrique M. Maia, Nabor C. Mendonca, Vasco Furtado, Walfredo Cirne, and Katia Saikoski, ‘A process for
separation of crosscutting Grid concerns’,Proceedings of the ACM Symposium on Applied Computing, New York, NY,
USA, 2006, pp. 1569–1574. ACM Press.

56. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, J. Loingtier, and John Irwin, ‘Aspect-
oriented programming’, Mehmet Aksit and Satoshi Matsuoka (eds.),Proceedings of the11th European Conference on
Object-Oriented Programming, volume 1241, Berlin, Heidelberg, and New York, 1997, pp. 220–242. Springer-Verlag.

57. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William Griswold, ‘Getting started with
AspectJ’,Communications of the ACM, 44(10), 59–65 (2001).

58. Jagan Kommineni and David Abramson, ‘GriddLeS enhancements and building virtual applications for the Grid with
legacy components’, Peter M. A. Sloot, Alfons G. Hoekstra, Thierry Priol, Alexander Reinefeld, and Marian Bubak (eds.),
Advances in Grid Computing - EGC 2005, volume 3470 ofLecture Notes in Computer Science. Springer-Verlag, 2005, pp.
961–971.

59. Hiroshi Takemiya, Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi, ‘Constructing grid applications using standard
grid middleware’,Journal of Grid Computing, 1(2), 117–131 (2003).

60. Alan LaMont Pope,The CORBA reference guide: understanding the Common ObjectRequest Broker Architecture,
Addison-Wesley, Boston, MA, USA, 1998.

61. Darren Webb and Andrew L. Wendelborn, ‘The PAGIS Grid application environment’, Peter M. A. Sloot, David Abramson,
Alexander V. Bogdanov, Jack Dongarra, Albert Y. Zomaya, andYuri E. Gorbachev (eds.),International Conference on
Computational Science, volume 2659 ofLecture Notes in Computer Science. Springer-Verlag, 2003.

62. Laurent Baduel, Françoise Baude, Denis Caromel, ArnaudContes, Fabrice Huet, Matthieu Morel, and Romain Quilici,
Grid Computing: Software Environments and Tools, chapter Programming, Deploying, Composing, for the Grid,pp. 205–
229, Springer-Verlag, January 2006.

63. Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal, ‘Satin: Simple and efficient Java-based Grid
programming’,Scalable Computing: Practice and Experience, 6(3), 19–32 (2005).

64. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesinska,Rutger Hofman, Ceriel Jacobs, Thilo Kielmann, and Henri E.
Bal, ‘Ibis: a flexible and efficient Java based Grid programming environment’,Concurrency and Computation: Practice
and Experience, 17(7-8), 1079–1107 (2005).

65. Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy, Yogesh Simmhan, and Aleksander Slominski, ‘On
building parallel and Grid applications: Component technology and distributed services’,Cluster Computing, 8(4), 271–
277 (2005).

66. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mcinnes, S. Parker, and B. Smolinski, ‘Toward a common
component architecture for high-performance scientific computing’, IEEE International Symposium on High Performance
Distributed Computing. IEEE Computer Society, 1999, pp. 115–124.

67. Alexandru Jugravu and Thomas Fahringer, ‘JavaSymphony, a programming model for the Grid’,Future Generation
Computer Systems, 21(1), 239–247 (2005).

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

http://www.w3.org/TR/soap12-part0/

This is a preprint of an article published in: SOFTWARE-PRACTICE AND
EXPERIENCE. Softw. Pract. Exper. 2008; 38:523-556. Published online 21 August 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

The final publication is available at
http://www3.interscience.wiley.com/journal/115806092/abstract

36 C. MATEOS, A. ZUNINO, M. CAMPO

68. Michael O. Neary and Peter Cappello, ‘Advanced eager scheduling for Java-based adaptive parallel computing’,
Concurrency and Computation: Practice and Experience, 17(7-8), 797–819 (2005).

69. Eduardo Huedo, Ruben S. Montero, and Ignacio M. Llorente, ‘A framework for adaptive execution in Grids’,Software:
Practice and Experience, 34(7), 631–651 (2004).

70. Robert Englander,Developing Java beans, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1997.
71. Michael N. Huhns and Munindar P. Singh, ‘Service-oriented computing: Key concepts and principles’,IEEE Internet

Computing, 9(1), 75–81 (2005).
72. Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter Henderson, Tony Hey, Norman Paton, Steven

Newhouse, Savas Parastatidis, Anne Trefethen, Paul Watson, and Jim Webber, ‘Web service Grids: an evolutionary
approach: Research articles’,Concurrency And Computation: Practice And Experience, 17(2-4), 377–389 (2005).

73. W3C Consortium. Web services description language (wsdl) version 2.0 part 1: Core language. W3C Candidate
Recommendation,http://www.w3.org/TR/wsdl20/, March 2006.

74. OASIS Consortium. Uddi version 3.0.2. UDDI Spec Technical Committee Draft,
http://uddi.org/pubs/uddi_v3.htm, October 2004.

75. J. M. Alonso, V. Hernández, and G. Moltó, ‘GMarte: Grid middleware to abstract remote task execution’,Concurrency and
Computation: Practice and Experience, 18(15), 2021–2036 (2006).

76. Rod Johnson, ‘J2EE development frameworks’,Computer, 38(1), 107–110 (2005).
77. Cristian Mateos, Alejandro Zunino, and Marcelo Campo, ‘JGRIM: An approach for easy gridification of applications’,

Future Generation Computer Systems: The International Journal of Grid Computing: Theory, Methods and Applications
(2007). To appear.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper.2007;00:1–40
Prepared usingspeauth.cls

http://www.w3.org/TR/wsdl20/
http://uddi.org/pubs/uddi_v3.htm

	1 INTRODUCTION
	2 RELATED WORK
	3 THE GRID: CONCEPTS AND ARCHITECTURE
	4 GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION
	5 GRIDIFICATION PROJECTS
	5.1 GEMLCA
	5.2 GrADS
	5.3 GRASG
	5.4 GridAspecting
	5.5 GriddLeS
	5.6 Ninf-G
	5.7 PAGIS
	5.8 Proactive
	5.9 Satin
	5.10 XCAT

	6 A TAXONOMY OF GRIDIFICATION APPROACHES
	6.1 Application reengineering
	6.2 Compitation unit modification
	6.3 Gridification granularity
	6.4 Resource harvesting

	7 DISCUSSION
	8 CONCLUSIONS

