* Manuscript
This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Extending MoviLog for Supporting Web
Services

Cristian Mateos! Alejandro Zunino *! Marcelo Campo !

ISISTAN Research Institute. UNICEN University. UNCPBA. Campus
Universitario, Tandil (B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293)
440363. Fax.: +54 (2293) 440363

Abstract

Web Services enable computers to interact and exploit Web-accessible programs
without human intervention. Despite researchers agree that mobile agent technol-
ogy will obtain significant benefits from this line of research, the lack of proper
development tools hinder the widespread adoption of mobile agent technology on
the Web. This paper describes a novel programming language called WS-Log whose
goal is to provide a tight integration between mobile agents and Web Services. Ex-
amples and experimental results showing some of the advantages of WS-Log are
also reported.

Key words: Mobile agents, Logic Programming, Web Services, Intelligent Agents

1 Introduction

The development of the Web started 16 years ago as an-ambitious project
proposal [1]. The first concrete result of this project was the World Wide Web,
an abstract information space with the largest collection of documents that
has ever existed [2]. The WWW quickly became popular among developers
because it hid the diversity of software, hardware and network architectures
existing then. This information space was designed to be fully distributed and
without a central control or coordination. The mechanism for browsing Web
content was mainly designed for human use [3]: a user consults and interprets

* Corresponding Author.

Email addresses: cmateos@exa.unicen.edu.ar (Cristian Mateos),
azunino®@exa.unicen.edu.ar (Alejandro Zunino).
1 Also Comisién Nacional de Investigaciones Cientificas y Técnicas (CONICET)

Preprint submitted to Computer Languages, Systems and Structures26th January 2006

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

documents by reading HTML (Hyper Text Markup Language) pages that are
rendered by a special application called Web browser.

Few years ago, the WWW started to evolve into a global network of Web
Services [4] whose goal is to achieve automatic interoperability between ap-
plications and Web resources. A Web Service [5,6,7] is any Web-accessible
program or resource. Web Services can be seen as a set of programs interact-
ing through the WWW without human intervention. In this sense, the Web
that is coming is not only about information sharing, but also about pro-
viding programs, including intelligent agents, with an infrastructure to use
Web-accessible resources [8].

Recently, various applications that interoperate through Web Services have
been developed, at first for B2B (Business-to-Business) and e-commerce ap-
plications. For example, many popular Web sites such as Amazon?, eBay?
and Google? offer Web Services for applications that expose the same infor-
mation and functionality a user can access by using a regular Web browser.
However, there is an increasing need for automating the way programs interact
with Web information and services. Until now, this interoperation has been
handled by using hand-coded programs that interact with Web-accessible ser-
vices to get and then parse their answer, usually HI'ML data. This approach
is weak since it depends on the format of the HTML content and the interfaces
for accessing those services.

Many researchers agree that mobile agents will have a fundamental role in the
future of the Web [9,10]. A mobile agent is a computer program that represents
a user in a network, and is able to migrate from site to site to perform tasks for
the user [11]. Mobile agents have several properties that make them suitable for
exploiting the potential of the Web. Some of the most significant advantages
of mobile agents are their support, for disconnected operations, heterogeneous
systems integration, robustness and fault-tolerance [12].

Despite the number of advantages mobile agents offer [13], this technology has
shown difficulties when used for interacting with Web content [9]. Developers
are usually forced to pay attention to low-level implementation details for
invoking Web services (setting up connections, formatting data, converting
data-types, etc.) and handling complex migratory code, rather than focusing
on agents’ behavior. Undoubtedly, this fact represents a hurdle for integrating
mobile agents with Web Services. In this sense, we believe there is a need
for a mobile agent development tool for solving these problems and, at the
same time, preserving the key benefits of mobile agent technology for building
massively distributed applications.

2 Amazon Bookstore: http://www.amazon.com/gp/aws/landing.html
3 eBay: http://developer.ebay.com/DevProgram /index.asp
4 Google Search Engine: http://www.google.com/apis/

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

WS-Log is a platform for building and deploying Prolog-based intelligent mo-
bile agents for the WWW based on MoviLog [14,15]. WS-Log supports a novel
mechanism for handling resource access named RMF (Reactive Mobility by
Failure), which allows programmers to easily build mobile agents that use Web
Services without worrying about services location or invocation details.

This article is structured as follows. The next section discusses the technolog-
ical backbone of Web Services. Section 3 presents the most relevant related
work. Section 4 introduces the WS-Log programming language, focusing on
its syntax and runtime support. Section 5 briefly discusses the design and im-
plementation of WS-Log. Section 6 presents a sample application. Section 7
reports some experimental results. In section 8 concluding remarks and future
works are presented. Finally, appendix 8 introduces Prolog.

2 Web Services

Web Services are a suitable model to allow systematic interactions of Web
applications and integration of legacy platforms and environments. Web Ser-
vices model mostly relies on technologies based on XML (Extended Markup
Language) [16], a structured language that extends and formalizes HTML. In
this sense, the W3C Consortium has developed SOAP (Simple Object Access
Protocol) [17], a communication protocol based on XML. Nowadays, SOAP is
widely accepted and is included in most of the communication infrastructure
proposed for integrating applications and Web Services. In addition, languages
for describing Web Services have been developed. The most notorious example
is WSDL (Web Service Description Language) [18], an XML-based language
which allows developers to create service descriptions as a set of operations
over SOAP messages. From a WSDL specification, a program can discover the
specific services a Web site provides, and how to use and invoke these services.

As a complement to WSDL, UDDI (Universal Description, Discovery and In-
tegration) [19] has been proposed. UDDI provides mechanisms for searching
and publishing services written preferably in WSDL. With UDDI, Web Ser-
vice providers such as enterprises or organizations register information about
the services they offer, thus making this information available to potential
clients. The information stored into UDDI registries ranges from WSDL files
describing services to useful data (e-mail, Web pages, etc.) for contacting the
associated provider.

The most widely accepted conceptual architecture for Web Services is shown in
figure 1. Here, a Web Service is defined as an interface describing a collection of
operations that are network accessible through standardized XML messaging.
WSDL is used to describe the software interface to the Web Service, and all

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

[Service description|

Registry
(UDDI)

Publish

Service
Requester

Provider
(WSDL)

[Web service |

Figure 1. Web Service conceptual architecture[20]

interactions between any pair of components are supported through SOAP.

The architecture encompasses three classes of components: service providers,
service requesters and service registries. A service provider creates a WSDL
document describing its Web Service and publishes this document to a ser-
vice registry such as UDDI. A service requester can use a registry to find a
Web Service that matches its needs and retrieve the corresponding WSDL
document. Using the information provided by a WSDL document, a service
requester invokes the operations of the provider’s Web Service.

The next section surveys some tools for agent development with support for
Web Services.

3 Related Work

Web Services have motivated new research and development on agent tools.
Some of the most relevant of these tools are ConGolog{21], IG-JADE-PKSLib [22],
MWS [23] and Jinni [24].

ConGolog is an extension of Golog [25], alogic-based high-level programming
language designed to specify and execute complex plans in dynamic domains.
ConGolog lets programmers to create plan tasks using Web Services described
in DAML. DAML (Darpa Agent Markup Language) [26] is a language for Web
Services metadata annotation belonging to the family of languages proposed
for the Semantic Web [27]. Despite its benefits for automatic manipulation
of service metadata, the language has some limitations when working with
services that depend on each other. A programmer is not able to specify, for
example, the need to execute a login Web Service before executing a query
service. In addition, ConGolog does not support agent mobility.

IG-JADE-PKSLib is a toolkit for programming cognitive agents focused on the
problem of Web Service Composition (WSC). WSC can be defined as follows:

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

given a set of Web Services and a generic (usually user-defined) goal, find a
valid composition of those services to carry out the goal. To cope with this,
IG-JADE-PKSLib uses PKS (Planning with Knowledge and Sensing) [28], a
planning algorithm based on a generalization of STRIPS [29], producing pre-
compiled plans which invoke Web Services when they are executed. From the
experiments reported in section 7 we noted that this language is not suitable
for on-the-fly composition and execution of Web Services, mainly because of
its poor performance. Besides, agent mobility is not supported.

MWS (Mobile Web Services) is a generic framework for programming and de-
ploying Web Services implemented as mobile agents. A mobile Web Service is
composed of descriptions of interaction processes with other services, resources
required to execute, and migration policies. In this way, MWS enables users to
implement a wide range of mobile services by combining different settings of
the three mentioned elements. Unfortunately, MWS lacks support for common
agent requirements such as knowledge representation, reasoning and high-level
communication.

Jinni (Java INference engine and Networked Interactor) [24] is a Prolog-based
interpreted language for programming applications in heterogeneous networks.
Jinni supports code migration only by sending a Prolog goal to another Jinni
server for remote execution. This approach limits the usefulness of mobility and
makes agent development hard. Interaction with Web Services is supported
through wrappers, which abstract the necessary low-level details (endpoints,
protocols, etc.) to contact a service. The drawback of this approach is that
programmers have to provide a new wrapper for each service they require.
Usually, these wrappers include specific low-level access code that is not only
difficult to implement, but also hard to debug and maintain.

All in all, despite some interesting advances towards the integration of agents
and Web Services have been made, current approaches have the following
problems: bad performance/scalability (IG-JADE-PKSLib), no/limited mo-
bility (IG-JADE-PKSLib, ConGolog, Jinni) and lack of support for agents
(MWS).

The next section describes WS-Log, a new language for programming mobile

agents. WS-Log aims at solving the problems mentioned before by allowing
the development of mobile agents which interact with Web Services.

4 WS-Log

WS-Log is a language for programming Prolog-based mobile agents in the
WWW. WS-Log is based on MoviLog [14], a platform for building intelligent

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

mobile agents using a strong mobility model [30], where agents execution state
is transferred transparently on migration. MoviLog is built as an extension of
JavaLog [31], a framework for agent-oriented programming based on Java and
Prolog.

Besides providing basic strong mobility primitives the most interesting as-
pect of WS-Log is the notion of Reactive Mobility by Failure (RMF) [15],
mechanism not exploited by any other tool for mobile agents. Conceptually, a
failure is defined as the impossibility of an executing agent to use some needed
resource at the current site [15].

Before going into details on the execution model of WS-Log we will briefly
explain the composition of each agent. Agents in WS-Log are called Brainlets.
Each Brainlet has Prolog code (appendix 8 introduces Prolog) that is organized
in two sections: predicates and protocols. The first section defines the agent
behavior and data. The second section declares rules that are used by the RMF
for managing mobility.Sintactically, the code of a Brainlet has the following
form:

PROTOCOLS

% Prolog facts representing protocols
CLAUSES

4 Prolog rules implementing agent behaviour

The RMF states that when a predicate declared in the protocols section of
an agent fails, WS-Log moves the Brainlet and its execution state to another
site that contains definitions for the predicate and then resumes the Brainlet
execution. Indeed, not all failures trigger mobility, but only failures caused by
predicates declared in the protocols section. The idea is that normal predicates
are evaluated with the regular Prolog semantics, but predicates for which a
protocol exists are treated by the RMF so that their failure may cause mi-
gration. To distinguish between Prolog failures with the traditional semantics
and failures handled by the RMF we will refer to the latter as m-failures.

The next example presents a simple Brainlet whose goal is to first collect
temperature values from different sites, and then calculate the average of these
values. Each measurement point is represented by a WS-Log site with a special
process that stores, at a regular basis, the last measurement 7" in the site local
database as a temperature(T) predicate. The code implementing the Brainlet
is:

PROTOCOLS
protocol(temperature, [arity (1)]).
CLAUSES
average (List, Avg):-...
getTemp (Curr, List):- temperature(T), thisSite(S),

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

M = measure(T,S),

not (member (M, Curr)),

getTemp ([M|Curr], List).
getTemp (Curr, Curr).
average (Avg):- getTemp ([], List), average(List, Avg).
?7-average (Avg) .

The idea of the program is to force the Brainlet to visit all the sites, getting
at each one the current temperature, and then computing the average of those
values. The potential activation point of the RMF is the temperature(T) pred-
icate. PROTOCOLS declares that the evaluation of temperature(T) must be
handled by the RMF. As a result, if the evaluation of this predicate fails at
a site 5, the RMF will transfer the Brainlet to a site containing definitions
for temperature/1 (predicates with functor “temperature” with one argument).
The evaluation of getTemp will end successfully once all the sites offering tem-
perature/1 have been visited.

In order to explain the execution of the program we will consider a network
composed of three WS-Log enabled sites. The idea is to trigger mobility upon
m-failures of predicates temperature/1 and hence forcing the Brainlet to visit
the three sites S, S9 and S3. Let us suppose that we launch the program
from S, by invoking ?-average(Awvg). The code behaves the same as a regular
Prolog program up to the point-when getTemp tries to evaluate temperature for
the second time. In this case, the evaluation of temperature will fail because
the temperature value stored at S; has been already collected. Considering
that temperature has been declared as a protocol, an m-failure will occur.
As a consequence, the RMF run-time will search for sites providing clauses
temperature/1 to migrate the agent and to try to reevaluate the goal there.
Note that there are two options; either S5 or S3. Let us assume that the RMF
selects So. Then, after the migration of the agent to Ss, getTemp will collect
the local temperature until no more options are available. At this point an
m-failure will occur and the RMF will select M3. After evaluating once at Ms,
temperature will fail again. In this case there will be no more options left
for migrating the agent. Then, it will be returned ®> to its origin (S;) by the
site S3. Finally, the result of ?-average(Awvg) will be the average of the values
[temperature(73), temperature(73), temperature(77)].

In the example, the agent visits all the sites containing temperature values.
This behaviour is not forced by WS-Log, but by getTemp, because it evaluates
all the temperature predicates in order to make not(member(M, Curr)) true.
In other words, when an m-failure occurs, the RMF moves the agent to one

5 After a successful evaluation of a predicate that m-failed an agent does not return
to its origin. It returns if it finishes its execution or fails (no more alternatives are
available).

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

site only, leaving remaining options as backtracking points.

It is worth noting that WS-Log does not restrict the programmer to use the
RMF for handling mobility. Instead, by declaring protocols the programmer
is able to select which predicates of a Brainlet code can trigger mobility. At
an extreme, a Brainlet may not declare any protocol. This does not imply
that mobility is not available, but mobility is in charge of the programmer as
in most tools and languages for mobile agents. Indeed, protocol declarations
allow the programmer to use the RMF and traditional proactive mobility in
the same Brainlet, depending on his requirements.

The first version of the RMF [14] was designed to automate mobility decisions
such as when and where to move a Brainlet, there are situations where per-
formance may be bad. For example, if the size of a Brainlet is greater than
the size of a requested resource. Clearly, it is convenient to transfer a copy
of the resource from the remote site, instead of moving the Brainlet to that
site. If the requested resource is a Web Service, the proper way to use it is to
invoke the service by using SOAP, thus transferring only input arguments and
results. Finally, the interaction of an agent with a large database can be better
done by moving the agent to the remote site, and then locally interacting with
the database. In this case, database access by copy is unacceptable because it
might use too much network bandwidth.

WS-Log improves the RMF by including extra methods for accessing resources
besides agent mobility. In this sense, proper methods for interacting with Web
resources have been developed, such as remote invocation, for the case of Web
Services, and replication or copy of resources between sites, for the case of
Web pages, data and code. In addition, WS-Log extends the RMF by providing
decision mechanisms for selecting an access method based on both the resource
type and environmental conditions, such as the total free memory available at a
given site, the network transfer rate, or any user provided metric. Table 1 shows
some examples of resources and their corresponding valid access methods. In
the table an external resource refers to a resource hosted at a site that does
not support Brainlets (most public Web servers).

When an m-failure occurs, there may be more than one site offering the re-
quired resource. WS-Log is able to decide an ordering for accessing these sites
if a Brainlet requires visiting more than one of them. In addition, since de-
pending on resource type several access methods may be suitable, WS-Log
can apply different tactics to select the most convenient one. Both, ordering
sites and choosing an access method are decided by WS-Log through policies.
Policies are decision mechanisms based on system metrics such as network
traffic, distance between sites, CPU load, etc. For example, one may specify
that any access to a certain large database should be done by moving the agent
where the database is located, rather than performing a time and bandwidth-

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Table 1

Examples of resources and valid access methods
Resource Access methods
Web Service move or remote invocation
Prolog code copy, move or remote invocation
Public file or Web page COpY Or move

Large database or private file | move

External Web Service remote invocation
External Prolog code copy or remote invocation
External file'or Web page copy

consuming copy operation of the data from the remote site. Besides, WS-Log
lets the programmer to define custom policies for adapting the RMF to his
requirements.

The next subsection describes further details on the RMF in WS-Log. Then
subsection 4.2 explains the policy programming support offered by WS-Log.

4.1 Reactive Mobility by Failure in. WS-Log

As mentioned earlier, protocols are resource descriptors or, in other words,
logical pointers a Brainlet uses to reference the set of resources it could need
along its lifetime. Protocols are declared in the PROTOCOLS section of a
Brainlet code as follows:

protocol(resourceKind | [propy,props,...,prop,/, accessPolicy)
where:

o resourceKind is a literal (atom) representing the general resource category
which the resources referenced by the protocol belong to. Basically, a cate-
gory stands for any kind of resources accessible to Brainlets, such as files,
databases, Prolog clauses, code libraries, Web Services, etc.

e The second argument of the Prolog structure corresponds to the list of
properties the desired instances must match. This list permits a Brainlet
to reference different subsets from the set of resources belonging to the
resourceKind class. Each property has the format A(B), where A is the
property name, and B contains the property value.

e Finally, accessPolicy contains the identifier of the policy used by the agent to
choose an unique instance of the resource when more than one are available,
and to select the access method (remaining instances are left as backtracking

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

points). This policy must be declared in the POLICIES section, as will be
explained later. A value of “none” indicates that all access decisions over the
referenced set of resources are delegated to the RMF.

For example, a protocol for a Web Service resource includes the operation
name | its input arguments, and its output(s). The following code declares a
protocol describing a Web Service for logging on a server that requires valida-
tion through a user name and password mechanism:

protocol(web-service,
[operation-name (doLogin),
input ([user (U),pass(P)]),
output (X)] ,none)

Roughly, the previous declaration enables the RMF mechanism to act when-
ever a login service can not be found at the local site. When this occurs, the
RMF searches for published Web Services including an operation whose name
literally matches “doLogin”. Also, the search is constrained to those operations
whose input is composed of two arguments (user and password), but does not
further restrict the operation outputs (could be a boolean or a string indicat-
ing the success/failure of the login attempt). Moreover, since no access policy
has been specified for the protocol, the RMF run-time is in charge of selecting
an appropriate method for contacting services. Note that a different protocol
for logging a server with a specific user (and perhaps an user-defined access
policy) could be declared, just by replacing the variable U with the desired
username.

As the reader can see, some attributes of the Web Service such as the server
address or the transfer protocol are not specified. This information is encap-
sulated by each login service instance in its WSDL file, and is extracted and
used at runtime when a specific instance is selected. These kinds of attributes
are the hidden properties of a resource, that is, information only accessible to
the WS-Log platform and therefore not taking part in the protocol matching
process. Hidden properties and public properties (operationname, input and
output in our example) must be supplied by providers when they publish a
service or a resource.

Another example is presented next. It consists of a mobile agent for distributed
searching of text files. In particular, the Brainlet has to find the files whose
name is “ContactList.txt” containing the string “John Smith”. For simplicity,
wild cards are not considered. The code that implements the agent is:

PROTOCOLS

6 This property is mandatory, since within a WSDL definition a single Web Service
may be composed of more than one operation

10

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

protocol(file, [name(X)], none).
POLICIES
empty section
CLAUSES

searchForFiles(Text, FileName, Files):-
assert(filesFound([])),
findFiles(Text, FileName),
filesFound(Files).

findFiles(Text, FileName):-
file([name(FileName)], FileProxy),
analizeFile(Text, FileProxy), !, fail.

findFiles(_, _).

analizeFile(Text, FileProxy):-
searchText (Text , FileProxy),
send(FileProxy, ’getURL’, [], FileURL),
addNewFile(FileURL).

addNewFile(FileURL): -
filesFound(TempFiles),
retract (filesFound(_)),
assert(filesFound([FileURL | TempFiles])).

searchText(Text, FileProxy):-

?-searchForFiles("ContactList.txt","John,Smith", Result).

In this case, the agent defines only one protocol that declares the need for
accessing, at some point of its execution, one or more instances of a resource
of type file. Also, the protocol indicates that those instances must have their
name attribute as a public property. In other words, every time the agent
evaluates a rule requiring a file; the RMF will handle the request. In the
example, the programmer does not specify any rule for handling the retrieval of
the file. However, it could be convenient to select the access method according
to the file size. For example, if it exceeds a certain size, the RMF may decide
to migrate to the site where the file is located rather than transferring the
file, because this latter approach might waste network bandwidth. In the next
subsection we will show how to program these decisions by using resource
access policies programming support provided by WS-Log.

The Brainlet begins its execution by evaluating ?-searchForFiles. When a pred-
icate fails accessing a file, WS-Log asks the current site for the list of remote
resource instances matching the protocol requested. To be more exact, WS-
Log searches for those instances which have been published under the “file”
resource category with a public property “name”. As the agent does not declare
any policy for accessing the file, WS-Log chooses any instance from the list and
a proper access method, and then accesses the file. When the file predicate is
reevaluated, WS-Log uses another element of the list as the file protocol being
processed. Once all elements have been consumed, the predicate cannot be
further reevaluated, and the file searching process ends. After this, the agent

11

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

returns to the site from where it was launched.

The access to each file instance is requested through the predicate file(/name(F'ile-
Name), FileProxy), which also filters those files whose name is not the same as
FileName. As a result, the FileProxy variable is instantiated with an object
which hides the real location of the file, and provides a handler to read its
contents. From a WS-Log program, it is possible to call a Java method by
using the predicate send(Instance, Method, Args, Result). In the example, the
proxy getURL() method is called to obtain the real location of the file being
processed.

4.2 Resource access policies

Programmers can customize the way agents interact with resources to fit spe-
cific applications constraints and needs. WS-Log provides support for program-
ming complex rules for accessing resources based on system metrics. Policies
are declared in a special section of a Brainlet code named POLICIES. Each
policy has a unique identifier and code implementing its behavior. In this way,
the same rule can be referenced from more than one protocol, thus allowing
reuse of policies.

On an m-failure, WS-Log searches for the resource instances that match the
protocol of the predicate that m-failed. Then, if the protocol third argument
references an existing policy, WS-Log evaluates the policy to decide the partic-
ular resource instance that will be accessed, and the particular access method
that will be used. The programmer must specify these decisions by declaring
two separate Prolog rules, both with the same identifier, and with the following
format:

sourceFrom(Name,
[ID_Resl, Site_11],
[ID_Res2, Site_2], Result):-
accessWith(Name, [ID_Res, Site],
MethodA, MethodB, Result): -

The first rule defines the logic to select the desired resource instance from a pair
of candidates. Similarly, the second rule contains the behavior for choosing an
access method given a pair of valid access methods (MethodA and MethodB).
By wvalid we mean a method that WS-Log considers suitable for accessing a
specific resource. For example, WS-Log does not consider a copy operation
for accessing a large database. In addition, the global resource identifier is
included as a parameter of each rule. Note that this feature is useful to specify
constraints over the size, availability, owner, etc. of a resource.

12

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

We will extent the example of the file searcher Brainlet. Suppose for instance
that agent has to use the following policy for accessing files: “access the file
instance located at the nearest site. In addition, if the Brainlet size is less or
equal than the file size, access the resource by using migration®. The rules that
define these policies are:

sourceFrom(’file-policy’, [_, Site_1]1, [_, Site_2], S):-
proximity(Site_1, P_1),
proximity(Site_2, P_2),
min(P_1, P_2, Site_1, Site_2, S).
accessWith(’file-policy’, [ID_Res, Site], move, _, move):-
agentSize(BrSize),
resourceSize(ID_Res, FileSize),
BrSize <= FileSize.

In this case; the rule sourceFrom estimates the proximity between the current
agent location and each remote host, and then binds S with the address of the
host that is closest to the local site. On the other hand, accessWith selects the
move method for accessing a file provided the Brainlet size is less or equal than
the file size. It is worth noting that prozimity, agentSize and resourceSize are
built-in predicates offered by the basic WS-Log policy programming support.

4.8 Runtime support

WS-Log is based on the RMF; a generic execution model able to automate
decisions on when, how and what site to contact to satisfy agents resource
needs. This mechanism is based on the idea that an entity external to the
Brainlet helps it to find requested resources on an m-failure. In the RMF, those
entities are stationary agents called PNS (Protocol Name Servers) agents.

Each host capable of executing and hosting Brainlets has one or more PNS
agents. PNS agents are responsible for managing information about protocols
offered at each site, and for returning the list of resource instances matching
a given protocol under demand. A site offering resources registers with its
local PNSs the protocols associated with these resources. Then, PNS agents
announce the new protocols to other sites of the network by using a multicast-
based communication mechanism.

Figure 2 depicts the WS-Log runtime support.When an m-failure occurs, the
runtime support of WS-Log queries PNS agents for sites offering the needed
resource, getting a list L; of hidden properties (resource type, availability,
size, etc.) of the instances matching the agent request. As pointed out before,
hidden properties —unlike public ones— are not visible from protocols. However,
they can be accessed by programmers through WS-Log built-in predicates in

13

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. doi:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Resource instance .
and access method (iv)(a)Copy
selection (ii) ~___---="7"77"

Matching list of
resources and
valid access
methods (ii)

non-local
interactions
between

Site 1 protocol agents Site 2

Figure 2. Overview of the RMF

order to specify custom resource access policies, as shown in subsection 4.2 in
the policy for accessing files (file-policy).

Taking L; as an input, WS-Log creates a list of pairs L =< «, 3 >, where
« represents the resource instance identifier, and (are the valid methods for
accessing that instance. Based on the list L, the following tasks are performed:

(1) Instance selection: WS-Log selects from the input list the site from where
the resource will be retrieved. In other words, an element from the list of
instances is picked, leaving the remaining items as backtracking points to
ensure completeness.

(2) Access method selection:"WS-Log chooses the access strategy best suited
for the current conditions (CPU load, network traffic, etc.) or particular
requirements of the application (many or few interactions with the same
resource). If defined, custom policies defined by the programmer are eval-
uated. Finally, the platform decides a method for accessing the resource
instance.

The next section presents some details related to the design and implementa-
tion of WS-Log, focusing on the Web Service invocation support.

5 Design and implementation

The execution environment for Brainlets at a site is called a Mobile Agent
Resource (MARIlet). A MARIet is a Java servlet [32], which provides inference,
communication and authorization services to Brainlets. Also, MARIlets offer
services for supporting the RMF by extending JavaLog [31], a Prolog-based
language designed for programming stationary intelligent agents.

14

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Safe execution environment

Marlet RMI-Based JNDI
! Service Provider

App Agent
Gateway || [Manager

Comm || |Resource Access|| | Protocol —‘ JNDI | | RMI | Protocol
Manager Manager Container » Registry Database
Security— Profiler L RMF
Manager || | Manager Manager

JavalLog

JAVA Virtual Machine

Operating System

Figure 3. Architecture of the WS-Log platform

Figure 3 shows the architecture of a. WS-Log site and its components. Agent
Manager is in charge of marshaling agents into a network-transferable format,
unmarshaling received agents and resuming their execution. Security Manager
is responsible for validating agents code, and for granting access to resources
according to preestablished security policies. The Inter-Agent Communica-
tion Manager offers message-based primitives for agent communication. The
Application Gateway is a bridge between external applications and the agent-
oriented services —inference, mental attitudes representation, communication,
etc— offered by a site.

The components supporting the RMF are RMF Manager, Profiler Manager,
Resource Access Manager and Protocol Container. The first one is responsible
for managing and configuring PNS Agents, which in turn handle m-failures
and protocol registrations and deregistrations. The Profiler Manager compo-
nent estimates and maintains updated values of system execution conditions
such as CPU load, free and occupied RAM, network transfer rate, state of out-
going and incoming communication links, among others. The Resource Access
Manager checks and grants permissions when a specific method for access-
ing some resource is applied. Finally, the Protocol Container is responsible for
storing the protocols and extra information about resources published by both
the local and remotes sites.

The low-level communication with Web Services is supported by means of
Axis, an open source implementation of SOAP provided by the Apache Soft-
ware Foundation. Figure 4 shows the basic steps performed by WS-Log for ac-

15

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Prolog/WSDL AXis
WSDL P parameter |~ me | Request SOAP \Service
Document mapping | arguments
endpoint

Service
WSDL/Prolog
Call Datatype result
Mapper mapping Invocation
result

Figure 4. Web Service invocation in WS-Log

cessing Web Services. Upon an execution of a service operation operation, its
associated WSDL document is parsed in order to extract arguments datatypes
and map execution parameters from Prolog to their WSDL counterpart. Then,
a SOAP request to the endpoint specified in the WSDL file is sent. Finally,
the result(s) of the call are converted to Prolog structures and returned back
to the RMF run-time.

The next section presents an application coded in WS-Log which shows how
Brainlets interact with Web Services.

6 A sample application

In this section we show an application written in WS-Log. The application
solves a constraint problem in the air travel domain [22]. Roughly, the goal of
the application is to book an airplane ticket for traveling between two given
cities according to certain domain business rules, such as for example flight
and seats availability, and user preferences, such as constrains over the ticket
cost or air companies. We assume the existence of Web Services for querying
the availability of flights, seats, and costs, and for booking a flight.

In short, four Web Services are assumed to be available:

(1) findFlight(Co, Origin, Destination, DepartureDate, ArrivalDate): Checks
the existence of a flight in a company. Co for the desired cities and dates.
The service returns the ID of the first flight matching the criteria.

(2) checkSpace(Co, flightID): Checks whether flightID has seats available.

(3) checkCost(Co, flightID): Idem (2) for the cost, of a flight.

(4) bookFlight(Co, flightID): Books a flight and returns the ticket ID back to
the client.

We consider a fixed set of companies and, in the initial state, the Brainlet
implementing the application knows these companies. This knowledge is ex-
pressed in the form of Prolog facts company(X) stored in the Brainlet knowl-
edge base. For simplicity, the universe of constraints a user may specify has
been grouped in five categories, which led to five different variations of the

16

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

main problem:

e Problem BPF (Book Preferred Flight): The Brainlet must book the flight
offered by the user’s preferred company whenever it is possible; otherwise,
the agent should book a flight in any company.

e Problem BMxF (Book Mazimum Flight): This problem involves a different
constraint: the user specifies a maximum price that he is willing to pay for
a ticket.

e Problem BPMzxF (Book Preferred Mazimum Flight): This problem consid-
ers not one but two user defined constraints, namely preferred company
and maximum price, and can be seen as a mix between the two problems
mentioned before.

e Problem BBF (Book Best Flight): This variant proposes an optimization
task where the user wants to book the cheapest flight available.

e Problem BBPF (Book Best Preferred Flight): the Brainlet must book the
cheapest flight available, but if two flights have the same price, the agent
should favor the preferred company.

The following code implements a Brainlet for solving the BBPF problem.
For space reasons, the implementations of the rest of the variants have been
omitted. Nevertheless; BBPF is the hardest problem:

PROTOCOLS
protocol(web-service, [operation-name(X),
input(X)], none).
CLAUSES
company (’United Airlines’).
company (’Air France’).

travel-info([’New,York’, ’Rome’, 2005-12-31, 2005-01-02]).
getCompaniesAndCost (I, CList):-

getCompaniesAndCost(I, [], CList).
getCompaniesAndCost (I, Temp, Result):-

company (C) ,

retract (company (C)),

web-service ([operation-name(findFlight),

input ([C|I])], FlightID),

FlightID \= -1,

web-service ([operation-name(checkSpace),

input ([C|FlightID])], true),

web-service ([operation-name(checkCost),

input ([C|FlightID])], Cost),

getCompaniesAndCost(I, [cost(C,FlightID,Cost)|Temp],

Result).

getCompaniesAndCost(_, Temp, Temp).
minCost (cost(Col ,FID,Costl), cost(_,_,Cost2),

17

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

cost(Col,FID,Costl)): -

Costl <= Cost2, !.
minCost (_, CostInfo2, CostInfo2).
findCheapest([CostInfo|Tail], Ch):-

findCheapest(Tail, CostInfo, Ch).
findCheapest([CostInfo|Tail], TempCost, Ch):-

minCost (CostInfo, TempCost, MinCost),

findCheapest(Tail, MinCost, Ch).
findCheapest([], MinCost, MinCost).
selectMinCostCompany (CList, Cheapest, Pref, Cheapest):-

not (member (cost (Pref,_,_), CList)).
selectMinCostCompany(_, PrefInfo, Pref, PrefInfo):-
PrefInfo = cost(Pref, _, _).

selectMinCostCompany(CList, Cheapest, Pref, PreflInfo):-
Cheapest = cost(_, ., Cost),
member (cost (Pref ,FID,Cost), CList),
PrefInfo = cost(Pref, FID, Cost).
?-arrangeTravel (Pref, TicketID):-
travelInfo(I),
getCompaniesAndCost (I, CList),
findCheapest(CList , Cheapest),
selectMinCostCompany(CList, Cheapest, Pref, Result),
Result = cost(Co, FID, _),
web-service ([operation-name (bookFlight),
input ([Co,FID])], TicketID).

The code contains one protocol for using a Web Service. As the reader can
see, the only protocol specified does not define any special access policy, as
indicated by the reserved word “none”. Furthermore, the section CLAUSES
defines the clauses which implement the algorithm for finding a ticket satisfy-
ing the preferences and constraints imposed by BBPF. The algorithm works
as follows:

(1) First, it finds the company offering the cheapest flight.

(2) If the obtained company is equal to the one preferred by the user, the
Brainlet books a ticket for that flight, and the execution finishes. After
this, the agent returns to its origin if necessary.

(3) Similarly, if the company obtained from step (1) offers the same cost than
the (later computed) preferred company, a ticket from this latter one is
booked. Then, the Brainlet finishes its execution.

(4) Otherwise, the Brainlet books a seat for the resulting flight from step (1).

The potential points of activation of the RMF are the predicates whose functor
is web-service. As these predicates first argument —with its functor— match a
protocol definition, they do not represent a conventional Prolog call, but a Web
Service access request. Therefore, the RMF will handle the evaluation of these

18

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

predicates whenever the service cannot be obtained at the local host.When a
proper Web Service instance is located, the RMF contacts it by means of an
Axis request that is built based on the WSDL document describing the service
and the invocation parameters given by the agent. The following XML code
shows a portion of the WSDL document used in the example:

<?xml version="1.0" encoding="is0-8859-1"7>
<definitions name="ExampleServiceServer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://server:port/example/FlightWS.wsdl"
xmlns:tns="http://server:port/example/FlightWS.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<message name="findFlightResponse">
<part name="findFlightResult" type="xsd:int"/>
</message>
<message name="findFlightRequest">
<part name="company" type="xsd:string"/>
<part name="origin" type="xsd:string"/>
<part name="destination" type="xsd:string"/>
<part name="departureDate" type="xsd:date"/>
<part name="arrivalDate" type="xsd:date"/>
</message>

<portType name="ServerPortType">
<operation name="findFlight">
<input message="tns:findFlightRequest"/>
<output message="tns:findFlightResponse"/>
</operation>

</portType>
<binding name="ServerSoapBinding" type="tns:ServerPortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="findFlight">
<soap:operation style="rpc"/>
<input>
<soap:body use="literal"
namespace="urn:ExampleServiceServer"/>
</input>
<output>
<soap:body use="literal"
namespace="urn:ExampleServiceServer"/>
</output>
</operation>

</binding>

19

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

<service name="FlightBookingService">
<port name="ServerPort" binding="tns:ServerSoapBinding">
<soap:address
location="http://server:port/axis/FlightBooking"/>
</port>
</service>
</definitions>

It is worth noting that the application described so far is based on the idea
of utilizing Web Services. As explained, upon a client request, a mobile agent
is asked to find a composition of stationary services which fulfills domain
and user constraints. However, in some cases, the approach of having mobile
agents providing mobile Web Services” is also interesting, since it permits
mobile agents and Web Services to complement each other [23].

Note that a MWS-like [23] deployment of WS-Log agents is very simple. Each
variant of the application shown could be thought as a separate Web Service
which is in charge of the whole booking process. Furthermore, user preferences
for each problem are mapped into input arguments for invoking these services.
The logic for booking is implemented in WS-Log, since concrete implementa-
tions of services (i.e. their WSDL binding) must create, configure and launch a
mobile agent in order to find and compose other services to solve the problem.
Also, resource access policies for efficient interaction with services could be
considered when creating those agents.

The final step in deploying our MWSs is publication. From a client agent
or an external application perspective, a WSDL describing each service must
be supplied, along with the proper bindings to mobile agents implementing
application logic. From the WS-Log platform point of view, a protocol have
to be created and announced so that others sites are aware of the service.
This announcement is done by the platform right after a new Web Service is
installed on a WS-Log site.

The following code represents a portion of the WSDL-document describing our
MWS. In this case, the binding denoted by urn:BrFlightBookingServer points
to a JAVA class where each method corresponds to a specific WSDL operation
(i.e. a booking variant). Within those methods, WS-Log agents are launched
locally in order to solve the particular variant of the booking process based on
the (possibly remote) simpler WSDL operations presented at the beginning of
this section. In summary, our MWS would be composed of:

e a stationary part, given by the WSDL document describing the interface
of the service’s operations, and the JAVA binding, which acts as a bridge

7 A mobile Web Service is a service with migration capabilities

20

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. doi:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

between WSDL code and WS-Log mobile agents.
e a mobile part, consisting of various booking agents which potentially move
to other sites in order to find and locally missing WSDL operations.

<?7xml version="1.0" encoding="is0-8859-1"7>
<definitions name="BrFlightBookingServer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://server/example/BookingBrWS.wsdl"
xmlns:tns="http://server/example/BrFlightBookingWS.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<message name="BBPF-BookingResponse">
<part name="BBPF-BookingResult" type="xsd:int"/>
</message>
<message name="BBPF-BookingRequest">
<part name="preferredCompany" type="xsd:string"/>
<part name="origin" type="xsd:string"/>
<part name="destination" type="xsd:string"/>
<part name="departureDate" type="xsd:date"/>
<part name="arrivalDate" type="xsd:date"/>
</message>

<portType name="ServerPortType">
<operation mname="BBPF-Booking">
<input message="tns:BBPF-BookingRequest"/>
<output message="tns:BBPF-BookingResponse"/>
</operation>

</portType>
<binding name="ServerSoapBinding"
type="tns:ServerPortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="BBPF-Booking">
<soap:operation style="rpc"/>
<input>
<soap:body use="literal"
namespace="urn:BrFlightBookingServer"/>
</input>
<output>
<soap:body use="literal"
namespace="urn:BrFlightBookingServer"/>
</output>
</operation>

</binding>
<service name="BrFlightBookingService">

21

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

<port name="ServerPort"
binding="tns:ServerSoapBinding">
<soap:address
location="http://server/axis/BrFlightBooking"/>
</port>
</service>
</definitions>

As one might expect, the client code for requesting a BBPF-like booking re-
duces significantly, since all logic for solving the BBPF problem is encapsulated
on server-side Brainlets:

PROTOCOLS
protocol(web-service, [operation-name(X), input(X)],
none).
CLAUSES
travel-info([’New,York’, ’Rome’, 2005-12-31,
2005-01-021).
?-arrangeTravel (Pref, TicketID):-
travelInfo(I),
Input = input ([Pref|I])
web-service ([operation-name (BBPF-Booking), Input],
TicketID).

7 Experimental Results

In this section we report some results obtained from the experimentation with
the application presented in the previous section. We compared the WS-Log
solution to the air ticket problem with an implementation using IG-Jade-
PKSLib [22], a toolkit for the development of multiagent systems for Web
Service composition and provisioning.

The results of the IG-Jade-PKSLib implementation for the different variants of
the flight booking problem are shown in table 2. These results were extracted
from [33]. The experiments were performed on a XEON 3.0 Ghz with 4 Gb
RAM, under Linux 2.4.22. The table shows the average execution time for
five runs of each variant of the problem with a different number of companies
varying from 2 to 10. All times are expressed in seconds, and t,,,, = 300.

In terms of performance, IG-JADE-PKSLib behaves reasonably well in BPF,
BMxF and BPMxF, as solutions are generated in less than five seconds for
five or less air companies. However, the implementation does not scale well for
ten or more companies, as shown in figure 5. However, BBF and BBPF were

22

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Table 2
Average execution time of IG-Jade-PKSLib

#Co | BPF | BMxF | BPMxF | BBF | BBPF

2 0.17 0.21 0.37 1.27 8.42

3 0.58 0.72 1.20 24.02 | 109.33
4 1.45 2.20 3.71 > tmaz | > tmaz
5 3.76 4.33 4.65 > tmaz | > tmax

10 80.60 | 96.45 105.49 > tmaz | > tmaz

120

100

0]
o

Time [seconds]
(o}
o

N
o

N
o

Number of Companies

Figure 5. Performance of BPF, BMxF and BPMxF (IG-Jade-PKSLib)

too slow in the tests.

Table 3 summarizes the results for WS-Log. Figures 6 and 7 show the average
execution time for each variant of the problem. In this case, the tests were
conducted on a Pentium 4 2.2 Ghz with 1 Gb RAM, under Linux 2.6.8. The
Web Services were deployed on the Apache Tomcat web server (version 4.1),
running on a second machine under JDK 1.4.2 (build 05).

As the reader can see, WS-Log performed excellent, even when running on less
powerful hardware. Unlike IG-JADE-PKSLib, all the solutions scaled well. As
expected, the worst execution times were obtained from BBF and BBPF vari-
ants, because they are the most computationally demanding problems. Specif-
ically, the Brainlet must find out the company that offers the least expensive
ticket, which in turn requires checking prices in every company.

23

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Table 3
Average execution time of WS-Log
#Co | BPF | BMxF | BPMxF | BBF | BBPF
2 0.38 0.44 0.47 0.49 0.53
3 0.43 0.49 0.48 0.58 0.62
4 0.43 0.50 0.52 0.65 0.63
5 0.45 0.51 0.55 0.67 0.81
10 0.48 0.61 0.72 0.84 1.02
20 0.69 1.05 0.99 1.40 1.39
50 1.11 1.78 2.01 2.38 2.70
100 1.45 3.22 3.60 3.75 4.01
4
3.5
3
‘0
2 25
o]
o
3 2 o
2 s e
= : P ////'
l ’L)S-_:-"M /"}//
o ..»::”"“ //
05 g
0

0O 10 20 30 40 50 60 70 80 90 100
Number of Companies
Figure 6. Performance of BPF, BMxF and BPMxF (WS-Log)

8 Conclusions

The WWW is increasingly evolving into an open medium that is not only a
huge repository of Web pages and data, but also of services accessible through
standard communication protocols. This represents a big step towards the re-
alization of a new Web where applications use and share services and resources
in a fully automated way.

In this computational environment, intelligent mobile agents will play a fun-

24

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

4.5 —
BBF —+—
4 BPBF -
3.5 b /-
o - /
3

.
2 5 =
. ~° /
-
-
-
.

15 /
1
x A
0.5 r e

0

Time [seconds]

0O 10 20 30 40 50 60 70 80 90 100

Number of Companies

Figure 7. Performance of BBF and BBPF (WS-Log)

damental role because of their ability to infer, learn, act and move. In this
sense, our research aims at providing languages and tools for building agents
that interact with Web resources. We have developed WS-Log, a language
for programming Prolog-based mobile agents integrated with Web Services.
The main difference between WS-Log and other platforms for mobile agents
is its support for reactive mobility by failure, which reduces development ef-
fort by automatizing mobility and resource access decisions. In addition, by
using WS-Log it is easy to build agents that locate and invoke Web Services
published across the WWW.

We have shown the practical usefulness of WS-Log through experiments. As
reported, WS-Log performs very well with respect to related approaches.

The weak point of the approach for integrating WS-Log agents and Web Ser-
vices is that it does not take into account the semantics of service operations.
Currently, agents request operations by their name and the format of their
input/output arguments. As a consequence, an agent is not able to obtain,
for example, the complete list of operations for car rental if they have been
published under a name different from the one supplied by the agent. Fur-
thermore, significant programming effort must be done to process the output
of operations whose functionality is the same, but their output format dif-
fers. We are exploring solutions to these problems in order to achieve a truly
interoperability between WS-Log agents and Web Services. One approach to
solve these limitations is the usage of machine understandable descriptions of
the concepts involved in services. In this way, we are enriching WS-Log pro-

25

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

tocols and service discovery mechanisms with ontology support based on the
technologies of the Semantic Web [27] and Semantic Web Services [3].

The current version of WS-Log has been tested with small applications. At
present, we are implementing a workflow engine for document management
based on mobile agents and Web Services. Also, we are building a paper sub-
mission and reviewing system with WS-Log agents and Semantic Web Services.

References

[1] T. Berners-Lee, Information management: A proposal, http://www.w3.org/
History/1989/proposal.html (1989).

[2] W. Theilmann, K. Rothermel, Domain experts for information retrieval in the
world wide web, in: CIA "98: Proceedings of the Second International Workshop
on Cooperative Information Agents II, Learning, Mobility and Electronic
Commerce for Information Discovery on the Internet, Springer-Verlag, London,
UK, 1998, pp. 216-227.

[3] S. A. Mcllraith, T. C. Son, H. Zeng, Semantic web services, IEEE Intelligent
Systems (Special Issue on the Semantic Web) 16 (2) (2001) 46-53.

[4] T. Berners-Lee, M. Fischetti, Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web, Harper San Francisco, 1999.

[6] F. Curbera, W. A. Nagy, S. Weerawarana, Web services: Why and how, in:
Proceedings of OOPSLA 2001 Workshop on Object-Oriented Web Services,
Tampa, Florida, USA, 2001.

[6] J. Martin, Web services: The next big thing, XML Journal 2 (5).

[7] S. J. Vaughan-Nichols, Web services: Beyond the hype, IEEE Computer 35 (2)
(2002) 18-21.

[8] B. Burg, Agents in the world of active web-services, in: Lecture Notes In
Computer Science. Revised Papers from the Second Kyoto Workshop on Digital
Cities II, Computational and Sociological Approaches, Springer-Verlag, 2002,
pp- 343-356.

[9] J. Hendler, Agents and the semantic web, IEEE Intelligent Systems Journal
16 (2) (2001) 30-36.

[10] M. N. Huhns, Software agents: The future of web services, in: Agent Technology
Workshops 2002, Vol. 2592 of Lecture Notes in Artificial Intelligence, 2003, pp.
1-18.

[11] A. R. Tripathi, N. M. Karnik, T. Ahmed, R. D. Singh, A. Prakash, V. Kakani,
M. K. Vora, M. Pathak, Design of the ajanta system for mobile agent
programming., Journal of Systems and Software 62 (2) (2002) 123-140.

26

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

[12] D. B. Lange, M. Oshima, Seven good reasons for mobile agents,
Communications of the ACM 42 (3) (1999) 88-89.

[13] D. Kotz, R. S. Gray, Mobile agents and the future of the Internet, ACM
Operating Systems Review 33 (3) (1999) 7-13.

[14] A. Zunino, M. Campo, C. Mateos, Simplifying mobile agent development
through reactive mobility by failure, in: G. Bittencourt, G. Ramalho (Eds.),
Advances in Artificial Intelligence, Vol. 2507 of Lecture Notes in Computer
Science, Springer-Verlag, 2002, pp. 163—-174.

[15] A. Zunino, C. Mateos, M. Campo, Reactive mobility by failure: When fail means
move, Information Systems Frontiers. Special Issue on Mobile Computing and
Communications 7 (2) (2005) 141-154, ISSN 1387-3326.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, Extensible markup
language (xml) 1.0 (second edition) w3c recommendation, http://www.w3.org/
TR/REC-xml (Oct. 2000).

[17] W3C Consortium, Simple object access protocol (soap) 1.1 specification, http:
//www.w3.org/TR/SOAP/ (May 2000).

[18] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web services
description language (wsdl) 1.1, W3C Note, World Wide Web Consortium .
URL http://wuw.w3.org/TR/wsdl

[19] W3C Consortium; Uddi technical white paper, http://www.uddi.org (Sep.
2001).

[20] H. Kreger, Web services conceptual architecture (WSCA 1.0), Tech. rep., IBM
Corporation (may 2001).

[21] S. A. Mcllraith, T. C. Son, Adapting golog for programming the semantic
web, in: Proceedings of the Fifth Symposium on Logical Formalizations of
Commonsense Reasoning (CommonSense-01), New York, NY, 2001, pp. 195
202.

[22] E. Martinez, Y. Lespérance, IG-JADE-PKSlib: An Agent-Based Framework
for Advanced Web Service Composition and Provisioning, in: Proceedings of
the AAMAS-2004 Workshop on Web Services and Agent-Based Engineering,
Morgan Kaufmann Publishers, New York, NY, 2004, pp. 2-10.

[23] F. Ishikawa, N. Yoshioka, Y. Tahara, S. Honiden, Towards synthesis of
web services and mobile agents, in: Z. Maamar, C. Lawrence, D. Martin,
B. Benatallah, K. Sycara, T. Finin (Eds.), Workshop on Web Services and
Agent-Based Engineering (WSABE) (AAMAS’2004), New York, NY, USA,
2004.

[24] P. Tarau, Jinni: a lightweight java-based logic engine for internet programming,
in: K. Sagonas (Ed.), Proceedings of JICSLP’98 Implementation of LP
languages Workshop, Manchester, U.K., 1998, invited talk.

27

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

[25] H. J. Levesque, R. Reiter, I. Lespérance, F. Lin, R. B. Scherl, GOLOG: A logic
programming language for dynamic domains, Journal of Logic Programming
31 (1-3) (1997) 59-83.

[26] I. Horrocks, DAML~+OIL: a description logic for the semantic web, Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering 25 (1)
(2002) 4-9.

[27] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American
284 (5).

[28] R. P. Petrick, F. Bacchus, A knowledge-based approach to planning with
incomplete information and sensing, in: A. Press (Ed.), Sixth International
Conference on Artificial Intelligence Planning and Scheduling (AIPS-2002),
Menlo Park, CA, USA, 2002, pp. 212-221.

[29] R. E. Fikes, N. J. Nilsson, Strips: A new approach to the application of theorem
proving to problem solving, Artificial Intelligence 2 (1971) 189-208.

[30] A. Fuggetta, G. P. Picco, G. Vigna, Understanding code mobility, IEEE
Transactions on Software Engineering 24 (5) (1998) 342-361.

[31] A. Amandi, M. Campo, A. Zunino, JavalLog: A framework-based integration
of Java and Prolog for agent-oriented programming, Computer Languages,
Systems and Structures 31 (1) (2005) 17-33, iSSN 1477-8424.

[32] J. Hunter, W. Crawford, Java Servlet Programming, O’Reilly & Associates,
Inc., 1998.

[33] E. Martinez, Y. Lespérance, Web service composition as a planning task:
Experiments using knowledge-based planning, in: Proceedings of the ICAPS-
2004 Workshop on Planning and Scheduling for Web and Grid Services, Morgan
Kaufmann Publishers, Whistler, British - Columbia, Canada, 2004, pp. 62—69.

Appendix A: Prolog

Prolog is a logic language that is particularly suited to programs that involve
symbolic or non-numeric computation. For this reason it is a frequently used
language in Artificial Intelligence where manipulation of symbols and inference
about them is a common task.

Prolog, which stands for PROgramming in LOGic, is the most widely available
language in the logic programming paradigm. Logic and therefore Prolog is
based on the mathematical notions of relations and logical inference. Prolog is
a declarative language meaning that rather than describing how to compute
a solution, a program consists of a database of facts and logical relationships
(rules) which describe the relationships which hold for the given application.

28

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

Rather than running a program to obtain a solution, the user asks a question.
When asked a question, the run time system searches through the database
of facts and rules to determine, by logical deduction, the answer.

Among the features of Prolog are logical variables meaning that they behave
like mathematical variables, a powerful pattern-matching facility called unifi-
cation, a backtracking strategy to search for proofs, uniform data structures,
and interchangeable input/output.

Facts

In Prolog we can make some statements by using facts. Facts either consist of
a particular item or a relation between items. For example we can represent
the fact that it is sunny by writing the program:

sunny.

Facts can have arbitrary number of arguments from zero upwards. A general
model is shown below:

relation(<argumentl>, <argument2>,, <argumentN>).

Relation names must begin with a lowercase letter. For example, the following
fact says that a relationship likes links john and mary:

likes(john,mary) .

It is worth noting that names of relations are defined by the programmer.
With the exception of a few relations that are built-in, the system only knows
about relations that programmers define.

We can now ask a query by asking, for example, does john like mary?:
?7- likes(john,mary)

To this query Prolog will answer “yes” because Prolog matches likes(john,mary)
in its database.

Variables
How do we say something like What does Fred eat? Suppose we had the fol-

lowing fact in our database:

eats(fred,apples).

29

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

To ask what Fred eats, we could type in something like:
?- eats(fred,what).

However Prolog will say “no”. The reason for this is that what does not match
with apples. In order to match arguments in this way we must use a Variable.
The process of matching items with variables is known as unification. Variables
are distinguished by starting with a capital letter. Thus we can find out what
fred eats by typing:

?- eats(fred,What).

Prolog will answer “yes; What=apples”.

Rules

Rules allow us to make conditional statements about our world. Each rule can
have several variations, called clauses. These clauses give us different choices
about how to perform inference about our world. Let us show an example to
make things clearer. Consider the statement All humans are mortal. We can
express this as the following Prolog rule:

mortal (X) :- human(X).

The clause can be read as For a giwven X, X is mortal if X is human. To
continue let us define a fact fred is human:

human (fred) .

If we now pose the question to Prolog ?- mortal(fred). The Prolog interpreter
would respond “yes”.

In order to solve the query ?- mortal(fred).; we used the rule we defined previ-
ously. This said that in order to prove someone mortal, we had to prove them
to be human. Thus from the goal Prolog generates the subgoal of showing
human(fred). Then Prolog matched human(fred) against the database. In Prolog
we say that the subgoal succeeded, and as a result the overall goal succeeded.
We know when this happens because Prolog prints “yes.”

Backtracking

Suppose that we have the following database:

30

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

eats(fred,oranges) .
eats(fred,meat).
eats(fred,apples).

Suppose that we wish to answer the question What are all the things that fred
eats?. To answer this we can use variables again. Thus we can type in the

query:
?- eats(fred, Food).

Prolog will answer “Food=oranges”. At this point Prolog allows us to ask
if there are other possible solutions. When we do so we get the following:
“Food=meat”. Then, if we ask for another solution Prolog will give us: “Food
=apples”.

If we ask for further solutions, Prolog will answer “no”, since there are only
three ways to prove fred eats something. The mechanism for finding multiple
solution is called backtracking. This is an essential mechanism in Prolog.

We can also have backtracking in rules. For example consider the following
program.

likes (Personl,Person2):-

hobby (Personl,Hobby) , hobby(Person2,Hobby) .
hobby (john,tennis) .

hobby(tim,sailing) .

hobby (helen,tennis).

hobby(simon,sailing) .

If we now pose the query:
?7- likes(X,Y).

Prolog will answer “X=john, Y=helen”. Then next solution that Prolog finds
is “X=tim, Y=simon”.

Lists

Lists always start and end with square brackets, and the items they contain
are separated by commas. Here is a simple list [a,simon,A_Variable,apple].

Prolog also has a special facility to split the first part of the list, called the
head, away from the rest of the list, known as the tail. We can place a special
symbol | (pronounced ’bar’) in the list to distinguish between the first item in
the list and the remaining list. For example, consider the following;:

31

This is a preprint of the article: "Extending MoviLog for Supporting Web Services. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley. Vol 33, Num. 1. pp 11-31. 2007. d0i:10.1016/j.cl.2006.02.001"

The final publication is available at http://dx.doi.org/10.1016/j.cl.2006.02.001

[first,second,third] = [A|B]

where A=first and B=[second,third]. The unification here succeeds. A is bound
to the first item in the list, and B to the remaining list.

Cristian Mateos is a Ph.D. candidate at the Universidad Nacional del Cen-
tro, working under the supervision of Marcelo Campo and Alejandro Zunino.
He holds a System Engineer degree from UNICEN. He has implemented part
of the runtime support for reactive mobility by failure in MoviLog. He is in-
vestigating the relationships between Web Services and mobile agents using
reactive mobility by failure.

Alejandro Zunino received a Ph.D. degree in Computer Science from the
Universidad Nacional del Centro (UNICEN), Tandil, Argentina, in 2003,
his M.Sc. in Systems Engineering in 2000 and the Systems Engineer de-
gree in-1998. He is a research fellow of the National Council for Scien-
tific and Technical Research of Argentina (CONICET). He has published
over 15 papers in journals and conferences. The main contributions of his
Ph.D. dissertation are reactive mobility by failure and Movilog. His cur-
rent research interests include development tools for mobile agents, intelli-
gent agents, and logic programming. He was the chair of the VI Argentine
Symposium on Artificial Intelligence (ASAI). More info can be found at
http: //www. exa.unicen.edu.ar/~azunino.

Marcelo Campo received a Ph.D. degree in Computer Science from the
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, in 1997
and the Systems Engineer degree from the Universidad Nacional del Centro
(UNICEN), Tandil, Argentina, in 1988. Currently he is an Associate Profes-
sor at Computer Science Department and Head of the ISISTAN Research
Institute of UNICEN. He is also a research fellow of the National Council for
Scientific and Technical Research of Argentina (CONICET). He has over 60
papers published in conferences and journals-about software engineering top-
ics. His research interests include intelligent aided software engineering, soft-
ware architectures and frameworks, agent technology and software visual-
ization. More info can be found at http://www.exa.unicen.edu.ar/ " mecampo.

32

