
This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Battery-aware centralized schedulers for CPU-bound jobs in mobile Grids

Matías Hirscha,∗, Juan Manuel Rodrigueza, Alejandro Zuninoa, Cristian Mateosa

aISISTAN-CONICET Research Institute. Campus Universitario, Tandil (B7001BBO).
Tel.: +54 (249) 4439682 ext. 35. Fax.: +54 (249) 4439681

Abstract

Given the relentless growing number of mobile devices, researchers have pointed out that distributed com-
puting environments, such as clusters or even computational Grids, could increase the available resources by
scavenging devices’ capabilities. However, this negatively impacts on their batteries. We study centralized job
schedulers that aim at exploiting clusters of mobile resources with rather stable devices in terms of connection
time. These schedulers outperform a previous centralized scheduler, finishing up to 30% more jobs with the
same amount of energy. We also show that the schedulers perform competitively compared to schedulers based
on job stealing, which are more difficult to implement and consume more network resources and hence energy.

Keywords: Mobile Devices, Mobile Grid, Job Scheduling, SEAS, Job stealing

1. Introduction

Mobile devices have evolved from simple PDAs, with restricted memory and computational capabilities, to
small computers able to handle complex computations. Current mobile devices can store several gigabytes of
information, include fast multi-core CPUs and a few gigabytes of RAM, and have GPUs capable of rendering
complex 3D graphics. In response, some studies [41, 22, 48] have proposed to use mobile devices for processing
and visualizing scientific and medical data, while doing the associated heavy computations on fixed servers.
This model is known as offloading [27]. Other studies [44, 23] have taken a step further and have proposed to
perform all the heavy processing in the mobile devices.

Nowadays, mobile devices represent one of the commonest kind of computational devices in the world.
This year the number of mobile devices exceeded the world population (7.3 billion)1. According to the Android
official Web Site, more than one million Android devices are activated each day.

As a result of their capabilities and number, there is a great deal of joint computational power in mobile
devices, mostly underused. Therefore, many researchers [12, 46, 16, 47, 30, 2, 45] have pointed out that unused
mobile device capabilities can be scavenged for performing heavy computations [44]. To this end, several
studies [47, 6, 2] have proposed developing distributed computing environments using mobile devices. This
would not only allow mobile device resources to be scavenged, but also make them able to perform computations
that a single mobile device could not handle otherwise [47, 25, 31]. In this sense, people carrying mobile
devices everywhere with computing capabilities, such as smartphones, has motivated researchers [35] to exploit
computation opportunities of local networking structures arising from the social interaction of groups of people.

In this context, two promising research lines in Mobile Computing is integrating mobile devices to tradi-
tional cluster/Grid Computing platforms or creating new platforms tailored for mobile devices [35, 47]. Al-
though this presents similar challenges to the ones found in traditional distributed computing platforms, mobile
devices pose new issues. Firstly, traditional platforms assume that computing nodes are connected to wired net-
works, which are fairly reliable, stable, and fast. In contrast, mobile devices are connected to wireless networks,
which are less reliable/stable and slower. Another major difference with traditional cluster/Grid nodes is that

∗Corresponding author.
Email address: matias.hirsch@isistan.unicen.edu.ar (Matías Hirsch)

1http://tinyurl.com/mokcut3

Preprint submitted to Pervasive and Mobile Computing September 14, 2015

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

mobile devices rely on batteries. Therefore, a heavy computation executing on a mobile device might drain its
battery if the energy consumption is not well managed. Sadly, this is not a trivial problem because accurately
estimating the energy required to execute any computation is very challenging [9] when not impossible. Fur-
thermore, in the general case, estimating how long a program would take to run implies solving the Halting
problem [59]. Another problem is that mobile devices are not dedicated to the computing environment meaning
that users might add unexpected load to the nodes [45].

Network communication itself represents another source of energy waste, which has motivated several
works, particularly for wired networks [37, 38, 60]. In wireless networks, this problem is exacerbated by the
combination of unreliable/unstable communication channels and the limited energy supply of mobile devices.
Despite being convenient for mobility, wireless communication requires large amounts of energy, and different
communication patterns have different energy consumption patterns [42]. This motivated researchers to study
energy-efficient low level [15, 14, 50] and high level [3, 54] wireless communication protocols.

Although these issues might hinder incorporating mobile devices to computational environments, par-
ticularly Grids, there are significant advances in energy-efficient wireless protocols for connecting nodes to
servers [33, 1, 56]. Besides, energy-aware programming techniques have arisen, such as battery-aware code
refactoring techniques [43]. Still, a main problem is energy optimization at a higher level, since better environment-
wide energy usage means more mobile devices up and ready to execute computations. Since different nodes
have different computational/energy characteristics, bad scheduling decisions at the platform level are likely to
produce energy waste despite intra-node optimizations. Previous works [16, 46, 30, 47, 45] have shown that tra-
ditional (energy-agnostic) schedulers are inefficient in this kind of distributed environments in regard to the rate
of computation performed per unit of energy. These works have also showed that to increase energy efficiency
levels, the schedulers should consider the inherent energy-related properties of the nodes.

In response, there are energy-efficient schedulers targeting data-intensive applications and mobility con-
cerns that exploit wireless links properties [51] or use resource sharing models driven by market rules [17, 16].
Other efforts [30, 29, 13] do not target any specific kind of application and propose utility-based frameworks
to coordinate mobile devices resources. These studies encourage mobile device owners to sell their unused
computational capabilities in a variable price market. Therefore, the aim of these approaches is at optimizing
an utility function that considers different variables, such as energy consumption, finished computation, and
economical gain. Lastly, efforts such as [44, 46, 45] aim at CPU-intensive applications, exploiting available
CPU cycles considering energy limitations.

In this paper we explore several criteria built upon energy-related and computing capability-related proper-
ties of nodes to exploit the aggregated computational resources of mobile devices. The performance of local
(cluster-level) schedulers based on the proposed criteria is measured in terms of delivered throughput per en-
ergy unit. We assume that mobile devices are intended to solve atomic and independent computations (jobs).
Furthermore, we target CPU-intensive jobs, which potentially benefits many applications [4, 57, 5, 20, 36].

This work differs from previous efforts, and particularly from [46, 45], in the following aspects:

• We introduce three battery-aware criteria for CPU-intensive applications, presented into a local central-
ized scheduling approach. These criteria aim at maximizing the amount of finished jobs using the avail-
able energy within a cluster of mobile devices.

• An enhanced version of the previously published SEAS criteria [46]. This new version features a more
accurate method to obtain estimations of available energy. In case of battery-powered devices, knowing
their available energy is necessary for exploiting resources offered by the device.

• A performance comparison of the proposed battery-aware criteria against the job stealing techniques pre-
sented in [45]. The comparison, which includes clusters with newer/more powerful hardware (Acer A100
tablet), shows that performance obtained by the centralized schedulers based on the proposed criteria is
very competitive. It is worth noting that, even when job stealing schedulers consume more energy than
centralized schedulers -due to overhead of stealing messages-, only the energy used to actually perform
computations was measured.

• A preliminary study regarding the combination of the above energy-aware criteria with job stealing tech-
niques. In [45], job stealing proved to increase the performance of a specific centralized scheduler based

2

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

on SEAS. Motivated by this, here we also evaluate whether the use of job stealing can also boost the
performance of the centralized schedulers based on the new battery-aware criteria.

The rest of this paper is organized as follows. First, in Section 2, we discuss the most relevant related efforts. In
Section 3, we describe the environment where the proposed centralized schedulers would operate and the pro-
posed energy-aware criteria for job-node assignation. Section 4 describes the simulation tool used to evaluate
our proposal, the definition of experimental scenarios and the evaluations of schedulers performance. Partic-
ularly, Section 4.2 shows the performance of centralized schedulers based on the new energy-aware criteria,
while Section 4.3 evaluates their performance when equipped with job stealing techniques. Finally, Section 5
and Section 6 present the conclusions and future research opportunities, respectively.

2. Background and related work

The role of mobile devices in distributed computing has evolved from simple monitors that allow users
to check the status of a cluster or Grid [18] to nodes that contribute to the infrastructure with computational
resources [16, 30, 47, 2, 45, 31]. The main cause of this evolution is that mobile devices capabilities have grown
exponentially in the last decade [40, 6] resulting in mobile devices able to perform complex computations [44].

Despite their computational capabilities, mobile devices rely on batteries that might become depleted as
a result of performing computations [43]. Since different devices have different battery depletion rates, job
scheduling in Grids including mobile devices -from now on mobile Grids- has a direct impact on the global
energy efficiency level [16, 46, 30, 47]. This has motivated researchers to study different approaches for job
scheduling in mobile Grids. The problem of scheduling jobs to mobile devices is in principle bound to the
distributed environment topology because the topology imposes restrictions on what information a scheduler
can know about the other nodes. Basically, the two alternatives for implementing distributed environments
arranging mobile devices are: ad-hoc networks and infrastructure-based networks.

An ad-hoc network shares similarities with P2P networks since the former are also self-organized, operated
under decentralized control and have the capability of providing connectivity in highly dynamic environments.
Furthermore, ad-hoc networks are usually wireless multi-hop networks where nodes operate as both, end hosts
and routers, forwarding packets wirelessly towards other mobile nodes that might not be within the direct trans-
mission range of the sender [10]. These networks present more complex collision and interference situations
than single-hop networks. In addition, changes in communication paths caused by mobility of nodes are very
common and turn routing protocols into a complex and energy-consuming task. However, ad-hoc networks
have been proposed as communication networks in scenarios that deal with a lack of pre-existing networking
infrastructures, e.g., in emergency operations after natural disasters, in rescue missions, in military missions as
distributed command-and-control system [49, 10, 55, 32] or as an extension of hotspots.

The other alternative to aggregate mobile devices into distributed environments is via infrastructure-based
networks, which are characterized by the existence of a fixed backbone. A proxy-based setting is an example
of such networking alternative and consists in connecting the mobile devices wirelessly to a special fixed node,
called proxy, that presents a group of mobile devices as a single virtual resource to the entire Grid [47, 28].
Unlike ad-hoc networks, infrastructure-based networks favor application scenarios which assume more stable
mobile environments in terms of devices’ owners movement.

Figure 1 depicts a proxy-based mobile Grid infrastructure composed by Fixed Virtual Resources (FVR)
and Mobile Virtual Resources (MVR) integrated by fixed computers and mobile devices, respectively. A Vir-
tual Resource is seen as a single node by the global scheduler and differs from a traditional cluster mainly
because it could be composed by rather heterogeneous hardware. Notice that an administrative domain could
offer more than one Virtual Resource. Offering local resources behind a proxy to a Grid infrastructure is a
strategy commonly adopted by traditional Grid platforms like Ibis-Satin [58], JCluster [61] and GridGain2. As
a consequence, these platforms rely on two-level schedulers, in which meta-tasks are first scheduled to prox-
ies by a global scheduler, and then these tasks are locally scheduled among nodes behind a proxy by a local

2http://www.gridgain.com

3

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Mobile Grid

WAN

Battery-aware

Local Scheduler

Mobile Virtual Resource (MVR)

Administrative domain B

Mobile Virtual Resource (MVR)

Mobile devices

wireless

link

wired

link

Fixed Virtual Resource

Administrative

domain A

Fixed Virtual Resource

wired

link

Administrative domain C

wireless

link

Traditional Local Scheduler

y

y

Figure 1: Proxy-based mobile Grid environment

–i.e., cluster-level– scheduler. Due to its simplicity, proxy-based infrastructures have been the starting point for
defining different local scheduling policies in mobile Grids [46, 16, 30, 29, 45, 31].

In this sense, in [30, 29, 13], the authors discuss optimal approaches using Lagrange multipliers for schedul-
ing jobs to mobile nodes for execution. These schedulers aim at maximizing an utility function of executing
jobs using Lagrange multipliers and are designed for environments where not all jobs have the same importance
or gain. This means that nodes with high-rated capabilities and strongly dedicated might put a higher price for
executing a job than low-rated or less dedicated nodes. This might be the case in pay-per-use Grids [19]. The
schedulers proposed in [30, 29, 13] are hard to implement in real-life Grids [47] because the utility function used
requires knowing information that usually is not available, or it cannot be estimated easily. For instance, the
energy consumption rate function of a node while executing a job. Firstly, this information depends not only on
the consumption inherent to the node hardware, but also on how a job is coded because even small differences
in code cause huge differences in energy consumption [43]. Furthermore, precise models to estimate battery
consumption are based on complex differential equations [21], and solving them is a complex computational job
itself. Another information that these schedulers need to know is the time required to execute a job in a node.
Essentially, for predicting this in the general case, it would be necessary to solve the halting problem [59].

Moreover, the schedulers proposed in [17, 16] simulate a market where mobile devices buy and sell compu-
tational capabilities. Similarly to the schedulers presented in [30, 29, 13], these schedulers are designed to obtain
an optimal utility according to an utility function. This is done by simulating a negotiation process between the
proxy that submit jobs and the mobile devices. The schedulers are oriented towards minimizing the used net-
work bandwidth when transfering job information and results, which is done by means of a framework based
on LZ78 compression. Since optimizations are performed on the usage of network resources, CPU-intensive
applications would hardly benefit from the framework unless they also need to transfer a considerable amount
of data.

SEAS (Simple Energy-Aware Schedule) [46] is a local scheduler that aims at minimizing the energy con-
sumed per job executed. SEAS was designed to be easily implemented in real-life environments, using only
information available in common battery-based devices. When jobs are assigned to a proxy, it ranks all sub-
ordinated mobile devices according to which one can be allocated more jobs. For ranking a mobile device m,

4

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

SEAS uses the following estimation function: resources per jobm = estimated remaininguptimem∗benchmarkm
number jobsm+1

, where estimated remaininguptimem is the estimated remaining uptime for the mobile device with the re-
maining battery power, benchmarkm is the value obtained using some benchmark that represents the FLOPS
(Floating-point Operations Per Second) the device is able to perform, and number jobsm represents the number
of jobs allocated to that particular device. In scientific computing, the FLOPS can be estimated by means of
the well-known Linpack or SciMark 2.0 benchmarks, and [44] shows how these benchmarks can be used to
evaluate the computing capabilities of mobile devices.

As discussed above, estimating the remaining uptime is not trivial [21]. However, the original SEAS pa-
per [46] proposes a rather simple technique that was fairly accurate when using notebooks and netbooks. The
proposed estimation algorithm is based on the fact that battery APIs are event-based and the battery information
is reported as a discrete variable. Examples of this are the iOS battery discharge notification, Android battery
intents and the ACPI battery APIs. Assuming that the discharge rate is linear, for two events i− 1 and i, the
discharge rate can be calculated as dr = ci−ci−1

t i−ti−1
where, ci and ci−1 are the battery charge levels reported by the

events i and i−1, respectively. In addition, ti and ti−1 are the times when these events occurred. Therefore, the
estimated remaining uptime is ut = ci

dr . Since the discharge rate is not linear [52], the estimation heavily varies
from event to event. Thus, the SEAS battery estimator uses a modified version of the estimator that returns an
average estimated total uptime minus the current uptime instead of the previously defined remaining time. This
average is calculated using all previously estimated total uptime. The estimated total uptime is defined as the
current uptime plus the estimated remaining uptime as defined above. Furthermore, the results of [13] places
SEAS as the best algorithm in terms of energy consumption ratio. According to that study, SEAS overpasses
the second best algorithm in a range of 8.3% and 9.5% in average.

SEAS was extended in [45] by adding the possibility of rebalancing the load among devices through job
stealing techniques. The use of job stealing techniques implies that an underloaded node tries to take jobs from
overloaded nodes in an attempt to balance the workload across the nodes. Even when SEAS has acceptable
performance, it does not always make good scheduling decisions because the information used to schedule jobs
still cannot be estimated precisely. By adding job stealing and studying several stealing policies, the negative
impact of using uncertain battery information for scheduling can be minimized.

Lastly, ERRA (Energy efficient and Robust Resource Allocation) [51] aims at minimizing the energy con-
sumption in mobile ad-hoc Grids. ERRA is a two-step scheduling scheme providing an energy-aware job
allocation focused on node mobility. The first step consists in selecting nodes within an area with the highest
probability to stay connected for a longer period. Using a Markov model, the authors maintain a history of
movement patterns, which are then used to predict the next probable location of the nodes. The second step,
uses a modified kNN (k-Nearest Neighbor) search algorithm to assign weights to the nodes based on the energy
and transmission time costs of their links. Finally, the job allocation process uses the probability value of the
nodes and the weights of their links to allocate a group of nodes to a job set. Different strategies of job allo-
cations are proposed depending on the data transfer requirements and job interdependency type. All in all, the
energy-aware resource allocation technique proposed in [51] is driven by the analysis of cost and availability of
links between nodes rather than by the analisys of nodes computing capabilities. That makes the proposal more
appropriate for scheduling data-intensive jobs rather than CPU-intensive jobs.

2.1. Classification of related scheduling works
This section presents a classification of related works –including this one– based on classical Grid schedul-

ing categories plus other additional categories. The classical categories, extracted from [26], differentiate
scheduling works according to the objective to optimize –single or multi objective–, environment type -static or
dynamic-, processing mode -immediate mode or batch mode- and job interrelation -dependent or independent-.
We propose additional categories to improve the differentiation of scheduling works for mobile clusters.

On one hand, we found that all related works of Section 2, including our proposal, fall into the same classical
categories when they are classified based on their objective to optimize, environment type and processing mode,
i.e., all works propose a multi-objective scheduler for a dynamic environment with immediate processing mode.
Similarly, since all schedulers tackle at least two objectives, they are multiobjective. One of these objectives
is energy, a concern that it is always present because nodes availability in mobile Grids depends on the energy
of mobile devices batteries. This fact, in conjunction with connectivity concerns and unpredictable devices

5

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

load caused by devices’ owner usage, among other facts, is the main reason for categorizing the environment of
mobile Grid schedulers as dynamic. Moreover, the immediate mode characteristic is because in all the discussed
schedulers, scheduling decisions are triggered with every job submitted to the system, i.e., jobs are not buffered
but scheduled to nodes immediately.

Table 1 summarizes the scheduling works. The category of the first column classifies works by the type
of job interrelation that schedulers are able to handle. While most of the analyzed schedulers handle indepen-
dent jobs, i.e., bag-of-tasks applications, the scheduler proposed in [51] focuses on interdependent jobs, where
relations among jobs are typically presented as directed acyclic graphs (DAG). Nevertheless, bag-of-tasks ap-
plications are in practice popular and commonplace in several application domains [39].

The topology column refers to the underlying networking structure used to connect and transfer data among
the participant mobile devices. The pros and cons of the presented topologies, i.e., Ad-hoc network-based and
proxy-based, make them suitable for different situations. In consequence, the selection of the most appropriate
topology varies according to the characteristics of the resource allocation scenario. Most of the cited works,
including this one, assume a proxy-based topology. On the other hand, [51], the most recent one, has abundant
experimentation assuming an Ad-hoc network-based topology.

The scheduling logic column refers to how the scheduling process is managed and it has relation with the role
assigned to each node of the distributed infrastructure, i.e., administrative and/or resource provider. According
to this category, works can be classified into centralized and decentralized. The former suggests the existence
of intermediate nodes –known as proxies or mediator nodes– that concentrate information of resource providers
within a certain scope (in our proposal a mobile cluster). These intermediate or pure administrative nodes do not
contribute to the overall Grid infrastructure with their resources but they coordinate or represent actual resource
providers. In addition, worker nodes under the supervision of a proxy node do not cooperate between each
other to perform scheduling decisions. For these reasons, the scheduling logic is considered centralized. This is
the case of the works by Li & Li [30, 29, 13], where a market based model for resource allocation takes place
at the mediator component, called mobile Grid proxy. Gosh & Das’ [17, 16] proposals are also centralized
because of the existence of a central component called Job Allocator (JA). Similarly, Rodriguez et al. [46] also
advocate to centralized scheduling since the proxy makes all scheduling decisions based on the SEAS nodes
ranking. In Sayed Shah’s proposal [51], nodes of the mobile Grid could play dual roles, i.e., service broker or
service provider, and scheduling decisions are divided into two levels for alleviating the processing burden of
the scheduling criteria they propose. However, since both decision levels are performed by centralized nodes,
the whole scheduling logic is classified as centralized.

On the contrary, decentralized scheduling logic suggests that all nodes of a mobile cluster are capable of both
scheduling jobs and executing them. The effectiveness of the whole scheduling process at the cluster level arises
from the aggregation of scheduling decisions each node perform within a small node neighborhood. The process
could be summarized as follows: when a job is scheduled to one of the nodes, this latter may re-schedule the
job to a neighbor if the neighbor is more appropriate for handling the job execution. The re-scheduling process
continues until a node can not find a more appropriate neighbor. This type of scheduling logic is decentralized
because all nodes play a dual-role, i.e, as job schedulers and as resource providers. This is the case of the other
discussed work by Rodriguez et. al. [45], because the use of job stealing techniques implies that all nodes run
logic to offload jobs from overloaded nodes, and these, in turn, contain logic to let other nodes steal queued
jobs.

The scheduling goal column differentiates works by expliciting the objective to be optimized. Notice that
this category differs from the classical one presented above -objective to optimize- in that the classical takes the
arity of objectives into account rather than the objectives themselves. Moreover, we identified a correspondence
between the scheduling goal and the targeted application type of the analyzed works. For instance, there
are works targeting only data-intensive applications –[17, 16, 51]– that pursue the goal of minimizing the job
response time, while works targeting CPU-intensive applications –[46, 45] and this work– aim at maximizing the
throughput of the mobile cluster. Moreover, works whose targeted application type is not limited–[30, 29, 13]–,
have as scheduling goal maximizing an utility function that integrates several objectives, e.g. payments per
resource utilization, time and energy budgets, among others.

The column required knowledge from jobs differentiates works based on the difficulty to obtain the job
features (e.g., execution time, energy consumption, number and size of packets to be transferred, application

6

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Work Job interrela-

tion [26]

Topology Scheduling

logic

Scheduling goal Targeted

application

type

Required

knowledge

from jobs

Li & Li ([30, 29, 13]) Independent Proxy-based Centralized Maximize the utility of the

mobile Grid

Not limited High

Ghosh & Das ([17, 16]) Independent Proxy-based Centralized Maximize revenue and minimize

response time

Data-intensive High

Sayed Shah ([51]) Dependent Ad-hoc

network-

based

Centralized Minimize response time Data-intensive Low

Rodriguez et. al ([46],

this work)

Independent Proxy-based Centralized Maximize throughput CPU-intensive None

Rodriguez et. al ([45]) Independent Proxy-based Decentralized Maximize throughput CPU-intensive None

Table 1: Classification of scheduling works for mobile Grids

type, etc) required to feed the scheduling criteria. A value of high is assigned when the scheduling logic requires
at least one job feature which is hard to estimate or even impossible to determine without executing the job,
e.g., the job execution time. Moreover, a value of low is assigned when job features are circumscribed to user-
provided high level job classifications that gives the scheduler a hint on the predominant type of resource on
which job execution relies on, e.g, indicating whether a job is data-intensive or CPU-intensive. Such high level
classifications could be provided with minimum effort by a domain expert. Finally, the none value characterizes
works whose scheduling logic does not require to know any job feature.

From the analysis in this Section, we conclude that the present work is compatible with our previous efforts
in terms of the topology assumed. Besides, the most distinctive feature of our proposal compared to works by
other authors is that no job-related input is needed by the schedulers to operate. This feature endows our efforts
with a special practical value.

3. Battery-aware centralized schedulers: Underpinnings and scheduling criteria

As anticipated at the introduction of this work, typical mobile devices usage patterns open a number of
possibilities to exploit their underused capabilities. Moreover, it is increasingly common to see people carrying
mobile devices wherever they go, and thus the association of crowds with high computing power sources is
becoming commonplace. Crowds are present at innumerable daily life situations, but in this paper, we consider
a particular subset of such situations in which mobility and residence time of people are relaxed. Examples
of such situations occur in a library or a campus, where students and professors carrying their mobile devices
share common places at predefined times. At offices or laboratories, employees spend almost a third part of the
day. Also, recreational events are included in the set of such situations. For instance, football/tennis matches or
musical concerts bring many spectators together. In all these situations, people usually occupy bounded areas
and present motionless behavioral patterns for most of the time they stay at those places. These characteristics
allow us to assume that the existence of a fixed networking infrastructure, with wireless access points or special
fixed nodes like proxies, is viable if not the most usual form of connection for the participating mobile devices.

By taking advantage of those groups of nearby mobile devices forming different instances of Mobile Virtual
Resources, this paper proposes schedulers for local, i.e., intra-MVR scheduling of CPU-bound jobs, leaving
global, i.e., inter-MVR scheduling as future work. Within this context, the incorporation of energy concerns
in the schedulers is crucial for taking more advantage of the available computing capabilities of nodes because
CPU cycles, in mobile devices, are conditioned by batteries power. This has been the design guideline of
SEAS [46], which offers performance advantages, in terms of jobs finished per energy unit, over traditional
scheduling algorithms like random and round-robin. In a follow-up work [45], SEAS was combined with job
stealing techniques. The results of such combination showed that an initial distribution of jobs made with SEAS
can be improved by moving jobs from overloaded nodes to underloaded nodes. This load re-balancing based

7

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

on job stealing techniques proved to be a good complement to SEAS, since higher percentages of finished jobs
were obtained. However, increasing the throughput through job stealing is not a cost-free re-balancing strategy
because this decentralized technique requires more communication between nodes compared to centralized
scheduling techniques.

In this paper, we aim at achieving at minimum competitive performance against SEAS with the re-balancing
technique presented in [45], but maintaining the simplicity inherent to centralized scheduling. To this purpose,
we study new battery-aware criteria designed from combinations of benchmarks, manufacturer data and real
time information of real mobile devices. In our proposal, a battery-aware criterion is used by a scheduler for
ranking nodes and determine which device is better than other for executing a CPU-intensive job.

As stated before, according to the characteristics of the targeted scenarios, the existence of a proxy com-
ponent is typical. In such topology, proxies are components who play an administrative role solely. They do
not offer computing resources by themselves, but through the mobile devices connected to it. A proxy acts
as an intermediate between the mobile devices and the rest of the Grid. In this sense, a mobile device that
joins a proxy passes through a registration phase to let the proxy know about the new capabilities to be man-
aged [24]. During the registration phase, the proxy can obtain a feature profile associated to the device. In
Grid infrastructures the presence of heterogeneous hardware is a rule, so this feature profile helps the proxy to
identify and categorize, in terms of computing capability and battery capacity, the device that intends to join
the Grid. Our approach explores a feature profile containing a set of specific attributes of a device including
benchmarks results and manufacturer data. The former group is composed by the results obtained after running
a benchmarking software, e.g., Linpack for Android3 or SciMark 2.04, while the latter involves data about the
battery specifications declared by the device manufacturer. Same model devices are supposed to have similar
feature profiles. Therefore, instead of generating a feature profile for each device upon proxy registration, all
the devices of the same models might be represented under the same feature profile.

Table 2 shows the feature profiles (as columns) for the devices used in the simulations performed to evalu-
ate the analyzed schedulers, which are reported in Section 4.1. The first row of each feature profile shows the
device computing capability expressed in Mega FLOPS (Million Float-point Operations per Second). These
values represent the average of twenty runs obtained with Linpack for Android5. Furthermore, another unit of
computing capability is presented by including the type and quantity of a set of different well-known bench-
marks that the device could execute before the battery was depleted. This last information is summarized in
the third and fourth rows of the table by indicating the total number of benchmarks executed during profiling,
and the total elapsed time –expressed in minutes– the profiling took to be completed, respectively [44]. The
feature profile also includes information about the battery capacity as informed by the manufacturer. Finally,
the last row represents the rate of energy consumption derived from the benchmarks and the battery capacity
information.

In addition to the feature profile, the criteria proposed take into account dynamic information. This infor-
mation is part of the dynamic view of the mobile Grid and includes data reported periodically by a device, e.g.,
the remaining battery, and statistics maintained by the proxy, e.g., number of jobs assigned to a device and
average job execution time in a device. As shown in [46], the combination of static and dynamic information
as part of the criteria for scheduling decisions in the proxy-based approach is effective [13]. However, SEAS
does not consider data about the relationship between energy consumption and jobs execution, or average of
job execution time as part of the scheduling criteria. This paper aims at measuring the impact of including such
information in the scheduling process.

The rest of the section is organized as follows. Section 3.1 describes a new battery estimation model for
effectively handling tablets and smartphones that improves SEAS, which was designed for notebooks. The new
model is adopted by the scheduling criteria proposed in Section 3.2. This last section presents three scheduling
criteria that combine static feature profiles and dynamic information. These criteria are the Enhanced SEAS,
in its improved version for smartphones and tablets (Section 3.2.1), the Job Energy aware Criterion (JEC)

3https://play.google.com/store/apps/details?id=com.greenecomputing.linpack&hl=en
4http://math.nist.gov/scimark2/about.html
5https://play.google.com/store/apps/details?id=rs.pedjaapps.Linpack

8

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Samsumg

I5500

ViewSonic

ViewPad 10s

Acer Iconia

Tab A100

Mega FLOPS 7.60 17.07 61.66

Benchmark

Gaussian random generator 10 42 30

Prime checker 10 42 30

Fast Fourier Transform 11 43 30

Sieve of Eratosthenes 10 43 30

Towers of Hanoi 10 42 30

Total Executed Benchmarks 51 212 150

Battery Capacity (µAh) 1,200 3,300 1,530

Job Energy Consumption Rate 23.53 15.57 10.20

Table 2: Feature profiles of mobile devices

(Section 3.2.2) and the Future Work aware Criterion (FWC) (Section 3.2.3).

3.1. The new battery estimation model

This paper introduces a change in regards to how the Original SEAS handles battery depletion. Section 2 ex-
plains that SEAS estimation works well when handling the discharging rate of mobile devices, such as netbooks
and notebooks. However, for other types of mobile devices equipped with batteries that last longer, particularly
tablets and smartphones, this estimation method has an important weakness. Mobile device profiling carried out
in the context of this work revealed that it is necessary a considerable amount of time (several minutes or even
hours) until the estimated uptime obtained with the Original SEAS battery model [46] becomes accurate.

Since, in an unplugged device, the SOC (State Of Charge)(%) should decrease as the time passes by, the
battery model should report a higher SOC at time i than at time i+ 1. However, the SEAS estimation model
needs to reach a converging time until the model starts to predict the uptime values correctly. Then, values
reported before the converging time should be considered as spurious. When the model is applied to estimate
the uptime of netbooks or notebooks the converging time is in the order of a few seconds, a minute at the
most, but for tablets or smartphones the convergence could take up to several minutes or even hours. For this
reason, using this model for scheduling on mobile Grids composed by tablets and smartphones might result in
chaotic estimation patterns making SEAS ineffective. Therefore, the estimation model used in the present work
has been redefined so as to use the remaining percentage or SOC reported by the operating system via battery
events.

The SOC values, as reported by the OS, represent not only a more accurate and normalized form of estimat-
ing the remaining uptime, but it is also independent of the real capacity of the battery, making it applicable to
different mobile devices. Figure 2 shows the uptime curves for the Samsumg I5500, the ViewPad 10S and the
Acer A100 for different constant CPU usage levels. The figures on the left describe the estimated uptime values
using the Original SEAS estimation model, whereas the figures on the right show the values resulting from
the SOC values reported by the OS. Notice that with Original SEAS estimation model the maximum estimated
uptime is not reported until a certain timestamp, meaning that the model needs all the information occurred at
that timestamp to start reporting more accurate values. This phenomenon is not present when the SOC values
are used to estimate the remaining uptime of a battery-powered device.

3.2. Proposed criteria for centralized schedulers

This section describes the new studied criteria to schedule jobs in MVRs. Broadly, these criteria allow
to rank the devices included in a MVR based on static information provided by their feature profiles and on
dynamic information summarized by the proxy or obtained from the managed devices. The main idea is that
this rank could be used by a scheduler to select the node where a new job should execute once it arrives to the
proxy. From now on, we will use “scheduler” and “criterion” as synonyms.

We propose three criteria that based on the information previously mentioned to exploit the computing
capabilities of an MVR in an energy-aware fashion. Section 3.2.1 presents a criterion –called Enhanced SEAS–

9

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Figure 2: Original SEAS uptime model (left) and the SOC based uptime model (right) for various devices

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 M

in
u
te

s
)

Uptime (in Minutes)

Samsung I5500

0% CPU Usage
30% CPU Usage

100% CPU Usage

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 P

e
rc

e
n
ta

g
e
)

Uptime (in Minutes)

Samsung I5500

0% CPU Usage
30% CPU Usage

100% CPU Usage

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 M

in
u
te

s
)

Uptime (in Minutes)

Viewsonic ViewPad 10s

0% CPU Usage
30% CPU Usage

100% CPU Usage

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 P

e
rc

e
n
ta

g
e
)

Uptime (in Minutes)

Viewsonic ViewPad 10s

0% CPU Usage
30% CPU Usage

100% CPU Usage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 M

in
u
te

s
)

Uptime (in Minutes)

Acer A100

0% CPU Usage
30% CPU Usage

100% CPU Usage

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
e
s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 P

e
rc

e
n
ta

g
e
)

Uptime (in Minutes)

Acer A100

0% CPU Usage
30% CPU Usage

100% CPU Usage

10

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

with the SOC component is based on theSOC values. Then, Section 3.2.2 describes the JEC, which bases
its nodes ranking on a combination of a static metric of our own called Job Energy Consumption Rate and
dynamic information. Finally, Section 3.2.3 describes the FWC, which is a criterion purely based on dynamic
information. In addition to the number of assigned jobs and percentage of remaining battery, the FWC uses
historic job execution data of devices.

3.2.1. The Enhanced SEAS
The node rank proposed by the Enhanced SEAS criterion is built upon the combination of three components,

including the estimated remaining uptime of the node, the computation capabilities of the node measured in
Mega FLOPS (Mega FLOPS row in Table 2) and the jobs the node has in its jobs queue. The remaining uptime
of a node is obtained from SOC values, i.e, battery events, reported by the OS, which is more appropriate for the
type of mobile devices considered in this work. Related to this last component, as mentioned in Section 3.1, due
to the lack of accuracy in the battery estimation model of the Original SEAS when targeting hand-held devices,
the Enhanced SEAS considers the remaining battery instead of the estimated uptime:

nodeRank =
SOC ∗ f lops

allocatedJobs+1
where SOC represents the estimated percentage of remaining battery charge, f lops is equivalent to the benchmarkm
component of the Original SEAS formula and allocatedJobs refers to the old number jobsm component.

3.2.2. The Job Energy aware Criterion (JEC)
The node rank in this criterion takes into account the relationship between the energy used and the number

of jobs finished by a device. The values of these variables are extracted from the device feature profile. Energy
used refers to the battery capacity in milliamperes as reported by the device manufacturer (Battery Capacity row
from Table 2) while finished jobs refers to the number of benchmarks from [44] that a device is able to finish
before the depletion of its battery occurs (# Total Benchmarks row from Table 2). The quotient of energy used by
finished jobs gives the rate of energy consumption per job, i.e., jobEnergyConsumptionRate = BatteryCapacity

#TotalBenchmarks .
Based on this, the ranking formula of this criterion is presented below:

nodeRank =
SOC

jobEnergyConsumptionRate
× 1

allocatedJobs+1

This criterion combines dynamic information (SOC and allocatedJobs), with static information repre-
sented by the jobEnergyConsumptionRate value. For simplicity, if two devices A and B have equal SOC
and allocatedJobs values, but device B has lesser jobEnergyConsumptionRate than device A, then the crite-
rion assigns a higher nodeRank value to device B understanding that this device will better take advantage of
its energy to execute the job.

3.2.3. The Future Work aware Criterion (FWC)
This criterion, unlike JEC, bases its decisions on dynamic data. It considers that the future computational

power of a node could be estimated by analyzing the computational power the node presented in the past. In
other words, FWC assumes that the throughput achieved by a node in the past could be maintained in the future
as well. This criterion is materialized via the formula presented below. Like the two previous criteria presented,
SOC is obtained through the battery events periodically reported by a device, and allocatedJobs is the number
of jobs the proxy has scheduled to each node of the MVR. Moreover, the averageTimeToCompleteJobs value
is calculated by the proxy and represents the average time a node takes to complete each scheduled job. All in
all, the ranking formula is as follows:

nodeRank =
SOC

averageTimeToCompleteJobs
× 1

allocatedJobs+1

11

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

The left quotient of the formula penalizes higher average job execution times, while considers remaining
battery. Since multiple job allocations could take place until the values of the left quotient are updated –because
it is information partially derived from the events reported by the nodes after a 1% battery level drop–, the
right quotient is included in the formula, which avoids overloading a particular node. When rank values are
determined using this criterion, again, supposing two devices under equal conditions of remaining battery and
assigned jobs, the one with lesser averageTimeToCompleteJobs value would be assigned a higher nodeRank
value and consequently the probability of being selected for processing a new job will be higher as well.

A singular characteristic of this criterion is the cold start effect. While schedulers based on Enhanced
SEAS and JEC can, in principle, start to operate effectively from the first allocations they do, FWC based
schedulers usually need some time to achieve effectiveness because the criterion needs historic data to calculate
the averageTimeToCompleteJobs value. In the meantime, if no jobs have finished in a node when its nodeRank
is calculated, and there is a job currently executing in the node, then the averageTimeToCompleteJobs is
approximated to twice the time the job has spent executing in the node so far. Otherwise, if no active jobs
are executing in the node, then “1” is returned as averageTimeToCompleteJobs to avoid invalidating the left
quotient of the formula by incorrectly associating the node a high rank.

4. Evaluation of the proposed scheduling criteria

To evaluate our scheduling criteria, we have simulated different instances of Mobile Virtual Resources. In
this context, simulation in distributed computing is an accepted, well-known practice [7, 8, 45] because it re-
duces evaluation times and provides repeatable experiments. This means that different scheduling techniques
can be quickly and fairly evaluated in the same environment. In Section 4.1, we present a description of the
models used to simulate Mobile Virtual Resources and the different evaluation scenarios. Then, the simulated
performance results of the proposed criteria as centralized scheduling scheme are reported in Section 4.2. Fur-
thermore, in Section 4.3, the performance of our criteria is also evaluated in the context of the scheduling
schemes explored in [45], this is, against and as part of a decentralized scheduling scheme.

4.1. Simulation conditions
We employed a software (simulator) based on a discrete event based simulation model [45]. The model

uses events to model everything that might occur in a Mobile Virtual Resource (e.g., job arrivals, CPU usage
changes, battery notifications, or job terminations). Therefore, to model nodes at different CPU usages, we
first sampled information from real mobile devices, i.e., the battery depletion events under several pre-defined
constant CPU usages. As a result, we obtained two different sets of events for each mobile device: battery
events, i.e., the exact time a battery level drop was registered, and events aimed at accurately simulating CPU
usage. To do this, we have caught CPU events at predefined times when sampling the battery consumption at
different target CPU usages. This was done to deal with built-in software, e.g., the Linux kernel or the Android
platform itself, that can prevent the CPU from keeping at a constant usage level.

Table 3 outlines the results in regard to the target CPU usage. Firstly, CPU usage is above 0, even when the
Target CPU Usage is 0%. This is since Android bundled applications can periodically perform some operations,
such as fetching e-mails or looking for software updates. On the other hand, the Android platform has a very
active role on application life-cycle, which also require CPU time. Despite these facts, the standard deviation is
acceptable in all cases, indicating that the dispersion of the measurements is small.

The simulator also required a set of jobs with their associated arrival time and floating-point operations. To
simulate the execution of a job in a mobile device, the simulator uses two usage profiles of the same mobile
device: the base usage profile –i.e., the default CPU consumption by Android itself and the mobile device
owner– and the 100% CPU usage profile. The base usage profile models the situation of a mobile device when
it is neither running any Grid job or user applications (i.e., 0%), or when the user is interacting with the device
(i.e., 30%, which is a reasonable CPU usage under normal device usage). The 100% CPU usage profile is
loaded when the mobile device is running a job. However, it does not mean the 100% of the CPU is dedicated
to perform the job since the potential user-injected usage (base usage profile) is also considered as a fraction of
this 100% CPU usage. We assume that each job is optimized and correctly coded to use as much CPU cores as
available (running a job produces a CPU usage of 100%).

12

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Device Target CPU

usage

Total Sampling Time

(hh:mm:ss)

of Samples

(events)

Average CPU

usage

Standard

deviation

Samsung I5500

0% 35:23:08.021 7,030 3.83% 1.01%

30% 15:37:12.229 3,466 30.06% 1.44%

100% 09:45:25.627 2,065 99.98% 0.04%

ViewSonic

ViewPad 10s

0% 26:55:05.166 5,469 10.24% 2.25%

30% 19:28:40.890 4,151 30.10% 2.01%

100% 13:50:03.965 2,949 99.99% 0.03%

Acer A100

0% 27:08:50.288 4,877 2.02% 1.49%

30% 13:52:21.776 2,922 30.23% 1.50%

100% 7:16:31.294 1,556 99.97% 0.06%

Table 3: CPU usage sampling results

When a simulated MVR starts up, all nodes load and synchronize their configured base usage profiles against
a central clock maintained by the simulator. This synchronization is also performed every time a node swaps
its base usage profile by its 100% usage profile and vice versa, which happens when a job starts and finishes,
respectively (Figure 3). All in all, when a job arrives, the simulator schedules it to a selected node through the
configured scheduling criterion. Then, the node proceeds with the execution of the job, which includes three
steps:

1. Calculating the time T the job will spend executing in the nodebased on the size of the job (given in
Mega FLOP – Million Float-point Operations) and the available Mega FLOPS of the node excluding the
non-available Mega FLOPS given by its base usage profile.

2. Switching the associated base usage profile to the 100% usage profile –which is maintained during T –,
and synchronize against the central clock.

3. After reaching T , raising a job finished event, and switching back to the base usage profile while synchro-
nizing against the clock again.

Moreover, to design the evaluation scenarios, we considered the variables described below and summarized in
Table 4:

• Mobile Virtual Resource (MVR) instance: the type and quantity of devices participating in the simulation.

• CPU user %: the base usage profile, or the average percentage of the CPU usage dedicated to perform
user/OS activities only.

• Job size: the computational requirement of a job measured in Mega Float point Operations (MFLOP).
Unlike the unit used to measure the computing capability of a device (Mega Float point Operations per
Second), MFLOP is hardware independent.

• Job arriving rate: the amount of work per second arriving to the proxy, which is expressed in Million
Float Operations To be Executed per Second (FLOTES).

All MVR instances contain 100 devices and combine 2 and 3 device models. The notation to indicate an MVR
instance is devicesGroup1-devicesGroup2[-devicesGroup3], where devicesGroup is numberOfDevices + De-
viceModel. For example, “30A100-70I5500” refers to an instance composed by 30 Acer Iconia Tab A100
devices plus 70 Samsung I5500 devices.

With regard to CPU_User_% variable, it takes one of two values: 0% (fully dedicated device), and 30% (the
device is able to give jobs up to a 70% of its CPU capability). To ensure a controlled experiment, all devices
integrating a MVR instance run under the same base usage profile.

The two job sizes are long jobs and short jobs, varying between 19,393.65 and 59,180.95 MFLOP and
between 3,232.27 and 9,696.82 MFLOP, respectively. Both job sets were generated following a continuous
uniform distribution in those ranges to introduce high heterogeneity in the quantity of jobs with different sizes.

13

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

98%

97%

100%

30%

C
P

U
B

a
tt

e
ry

Time
Battery Events

Figure 3: Usage profile swapping when simulating the execution of jobs in a node

Variable Values

MVR instance 30A100-70I5500 30ViewPad-70I5500 50ViewPad-50I5500 30A100-30ViewPad-40I5500

CPU User % 0 30

Job size short ([3,232.27 - 9,696.82] MFLOP) long ([19,393.65 - 59,180.95] MFLOP)

Job arriving rate

(FLOTES)

2.7x1011 1.3x1012 4x1012

Table 4: Variables and values of the simulated scenarios

Moreover, the total amount of long jobs (2,306) and short jobs (13,822) in combination with the job sizes were
chosen according to the highest computing capability among all MVR instances considered, so as to avoid
reaching a hundred percent of finished jobs in all scenarios. The total amount of MFLOP represented by long
and short jobs is approximately the same, which facilitates comparing the performance of different schedulers
according to the same total amount of computation.

In respect to the Job arriving rates, we set up a time fraction in which the whole set of short jobs or long
jobs arrives to the proxy. The time fractions were 5 minutes, 70 seconds and 20 seconds, resulting in 2.7x1011,
1.3x1012 and 4x1012 FLOTES respectively.

Finally, the scenarios simulated arise from the combinations between all values for all variables, i.e., a total
of 48 scenarios exercised for each of the schedulers in Section 3.2. These scenarios share several characteristics
with those presented in [45]. Specifically, they share a subset of the devices (Samsung I5500 and ViewSonic
ViewPad 10s), some MVR instances, the values of CPU user percentage and the idea of handling long and short
jobs. This allow us to compare the schedulers proposed in this paper with the ones introduced in [45].

4.2. Battery-aware criteria as part of a centralized scheduling

Before describing the results of the experiments, it is worth noting that we measure the scheduling per-
formance as the amount of finished jobs per energy unit. In consequence, the selected metric to compare the
schedulers was the percentage of finished jobs, so that the more finished jobs a scheduler achieves, the more
efficient the energy usage is.

14

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Long Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4 MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Short Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

 i
n

 %
 o

f
fi
n
a

liz
e

d
 j
o

b
s

Scenarios

Enhanced SEAS JEC FWC

Figure 4: Relative performance of the proposed schedulers against the Original SEAS scheduler for job arriving rate = 4x1012FLOTES

The simulation results of the proposed criteria exploited from centralized schedulers are presented using
two kinds of histograms. On one hand, the histograms of Figures 4, 5 and 8 show the relative performance of
centralized schedulers based on the battery-aware criteria proposed, contrasted with the original version of the
SEAS scheduler [46]. On the other hand, the histograms of Figures 6, 7 and 9 show the absolute performance
values achieved by all the tested scheduling criteria, including the Original SEAS, for all the scenarios. This
last type of histogram is used to show the causes of variations in the relative values.

All histograms show the simulation results for all scenarios associated to a particular job arriving rate. For
clarity, different MVR instances are denoted as MVR1, MVR2, MVR3 and MVR4 indicating 30A100-70I5500,
30ViewPad-70I5500, 50ViewPad-50I5500 and 30A100-30ViewPad-40I5500, respectively. Furthermore, the
left half of each histogram contains the values related to long job scenarios while the right half the values for
short job scenarios. Additionally, scenarios for the base CPU usage of 0% are shown with a gray background,
while the ones associated to the base CPU usage around 30% are presented with a white background. From
now on, we will refer as “baseline” to the Original SEAS performance.

Regarding the collected results, Figure 4 shows the relative performance of the scheduling criteria com-
pared to the Original SEAS performance when the job arriving rate is 4x1012 FLOTES. For all scenarios, the
Enhanced SEAS outperforms the Original SEAS. Particularly, the improvement is more evident for scenarios
with 0% CPU usage than for those with 30% CPU base usage profile. The JEC scheduler is the second best
criterion. Its relative performance values are quite similar to those observed for the Enhanced SEAS except for
the scenario that combines Long Job with 0% CPU usage and MVR1, where its achieved percentage of finished
jobs is 1.4% bellow the baseline. With respect to the FWC scheduler, on one hand, it performs similar to the
Enhanced SEAS and the JEC scheduler for scenarios where the Acer A100 (the most powerful device) is not
part of the MVR instance. On the other hand, in MVR instances composed by the mentioned device (MVR1
and MVR4), the performance of FWC is not as good as the Enhanced SEAS or the JEC scheduler performance
and, in some cases, it is lower than that of the baseline. This behavior may be caused by a chain of multiple
factors. First, considering the formula on which the FWC criterion bases its scheduling decisions, the lack of
historic information, i.e., the time a node spends completing jobs (cold-start), makes the FWC scheduler ranks
all nodes with similar values. In consequence, the different processing power capabilities of nodes are ignored

15

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Long Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4 MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Short Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

 i
n

 %
 o

f
fi
n
a

liz
e

d
 j
o

b
s

Scenarios

Enhanced SEAS JEC FWC

Figure 5: Relative performance of the proposed schedulers against the Original SEAS scheduler for job arriving rate = 1.3x1012FLOTES

causing that powerful and weak nodes are allocated with very similar workloads. Thus, given a predefined
MVR instance, this consequence aggravates with higher job arriving rates and higher job sizes.

Figure 5 shows the relative performance of scheduling criteria when jobs arrive to the proxy at a slower
rate, i.e., 1.3x1012FLOTES. Again, it can be observed that the relative performance of the Enhanced SEAS
outperforms the baseline for all scenarios. Furthermore, the JEC scheduler also performs better than the baseline
in all scenarios, obtaining, in most of the cases, similar values to the Enhanced SEAS. Moreover, the behavior of
the FWC scheduler is similar to the one depicted in Figure 4. This is, FWC achieves competitive performance
values for those scenarios not including the Acer A100 device as part of the MVR instance. For the scenarios
including the Acer A100 (MVR1 and MVR4) the performance was below the average. However, in comparison
with the fastest arrival rate (4x1012 FLOTES), the performance values with this slower arrival rate represent
smaller losses (or bigger gains depending on the scenario). This reinforces our previous statement about cold
start of the FWC scheduler.

In general, the comparison of the relative performance values of Figure 5 and Figure 4 shows that the im-
provements of the proposed schedulers increase in 40 out of 48 cases. Moreover, 5 out of the remaining 8 cases
experience decrements in the relative performance, while for the rest (3 cases), variations were negligible. The
cause of these variations are explained by comparing the absolute performance values of Figure 6 and Figure 7.
Notice that improvements are mainly caused by decrements of the baseline performance values. Similarly, the
cases with decreased performance values –5 out of 6 cases of the scenario with 0% base usage profile and
MVR4 instance– are mostly caused by variations of the Original SEAS values rather than of the other sched-
ulers. A steady performance regardless the scenarios variations is desirable because this means that the criteria
are slightly affected by variations in the execution conditions, and thus their applicability is higher.

Finally, Figure 8 shows the relative performance of the schedulers when jobs arrive at 2.7x1011 FLOTES.
Despite obtaining lesser gain margins than those depicted in Figure 5 and Figure 4, the Enhanced SEAS and
JEC outperformed the baseline in 31 out of 32 cases. Moreover, the FWC scheduler maintains a competitive
relative performance for all scenarios except for most of the scenarios that include MVR1 and MVR4 instances.
However, after analyzing the scenarios including MVR1 and MVR4 ordered from faster to slower job arriving
rates presented until now, we observed that the relative performance of the FWC scheduler slightly improves as

16

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Long Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Short Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4

A
b
s
o

lu
te

 p
e
rf

o
rm

a
n
c
e

 i
n
 %

 o
f
fi
n

a
liz

e
d
 j
o
b

s

Scenarios

Original SEAS Enhanced SEAS JEC FWC

Figure 6: Absolute performance of all schedulers for job arriving rate = 4x1012 FLOTES

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Long Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Short Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 %

 o
f
fi
n
a
liz

e
d
 j
o
b
s

Scenarios

Original SEAS Enhanced SEAS JEC FWC

Figure 7: Absolute performance of all schedulers for job arriving rate = 1.3x1012 FLOTES

17

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Long Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4 MVR1 MVR2

 CPU 0%

MVR3 MVR4

 Short Jobs

MVR1 MVR2

 CPU 30%

MVR3 MVR4

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

 i
n

 %
 o

f
fi
n
a

liz
e

d
 j
o

b
s

Scenarios

Enhanced SEAS JEC FWC

Figure 8: Relative performance of the proposed schedulers against the Original SEAS scheduler for job arriving rate = 2.7x1011FLOTES

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Long Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4 MVR1 MVR2

 CPU 0%

 MVR3 MVR4

 Short Jobs

 MVR1 MVR2

 CPU 30%

 MVR3 MVR4

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 %

 o
f
fi
n
a
liz

e
d
 j
o
b
s

Scenarios

Original SEAS Enhanced SEAS JEC FWC

Figure 9: Absolute performance of all schedulers for job arriving rate = 2.7x1011 FLOTES

18

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

the rate becomes slower in 5 out of 8 cases. This evidences how the cold start affects the performance of the
scheduler and how its performance varies according to the factors mentioned in the explanation of Figure 4.

The comparison of scenarios with job arriving rates of 2.7x1011 and 1.3x1012FLOTES show that with the
slower rate the relative performance of all schedulers decreases. By analyzing the absolute performance values
we see that, again, variations are mostly influenced by bigger changes registered by the performance values
of the Original SEAS than those registered by its competitors. Unlike the last comparison of absolute values,
the changes of the Original SEAS are mainly increments on the percentage of finished jobs. However, these
increments were not enough to surpass the values achieved by its competitors for the majority of the scenarios.

All in all, the rate at which jobs arrive introduced slight variations on the percentage of finished jobs that the
schedulers could complete. Although a deeper analysis could be done by having more values of the job arriving
rate variable, we could say that the Original SEAS is more sensible to the rate at which jobs arrive to the Mobile
Virtual Resource than the new proposed schedulers, and this sensitivity behaves in an unpredictable form. In
addition, its overall performance was always surpassed by the other schedulers. More explicitly, in 97.91% of
the experimental scenarios the Enhanced SEAS and the JEC scheduler performed better than the Original SEAS,
while the FWC scheduler performed better in 68.75% of the scenarios. Table 5 discriminates the scenarios where
each scheduler outperforms the baseline. Furthermore, when analyzing the performance values we found that,
in 31 out of the 48 scenarios, the performance gain of the Enhanced SEAS is in between 3% and 30.6%. In 30
out of the 48 scenarios, the JEC scheduler performance gain is in between 3% and 29.6%. With respect to the
FWC scheduler, its performance gain is in between 3% and 14.8% in 20 out of the 48 scenarios.

4.3. Evaluation of battery-aware criteria versus/as part of decentralized scheduling
In the previous section, we evaluated the proposed battery-aware criteria and the Original SEAS, all of them,

in the context of a centralized scheduling scheme. This section presents an evaluation against a decentralized
scheduling scheme. This evaluation is divided into two parts. Section 4.3.1 compares the best battery-aware
criteria –i.e., Enhanced SEAS and JEC– in the context of a centralized scheduling scheme, against the Origi-
nal SEAS as part of a decentralized scheduling scheme, i.e., combined with job stealing techniques [45]. As
mentioned at the end of Section 2, the work in [45] proposed and successfully evaluated the combination of the
Original SEAS with different job stealing techniques to mitigate sub-optimal scheduling decisions made by the
former and produced as a consequence of uncertain battery information.

In Section 4.3.2, we appeal to the same decentralized scheduling scheme as a way of evaluating how much
the scheduling decisions made by the battery-aware schedulers can be improved. In other words, the results
described show the potential synergy between the proposed battery-aware criteria and job stealing techniques.

4.3.1. Battery-aware criteria in a centralized scheduling scheme versus the Original SEAS combined with job
stealing

Before showing the resulting performance assessment of the best battery-aware criteria used in the context
of a centralized scheduling scheme versus the schedulers in [45], we present the most relevant concepts of job
stealing and the configurations extracted from [45] that are used for the comparison. Job stealing implies that
underloaded nodes try to take jobs from overloaded nodes in an attempt to balance the workload across the nodes
of the execution environment. When a node (the stealer) attempts to take jobs from another node (the victim),
a victim selection strategy is applied. This selection is made upon a node ranking of all nodes of the mobile
environment which is built following some criterion. Besides, once the stealer selects the victim, an offloading
policy is applied to determine the number of jobs that will be stolen. In summary, a job stealing configuration
comprises a criterion to rank the nodes in the mobile environment, a strategy to select victim nodes, and an
offloading policy.

The options explored in [45] for victim selection were the Best Ranking Aware Stealing (BRAS), the Worst
Ranking Aware Stealing (WRAS) and the random strategies. The difference between BRAS and WRAS is that
the former aims at selecting the first node of the ranking, i.e., the best ranked node, while the second strategy
selects the last node of the ranking, i.e., the worst ranked node. For example, if the criterion ranks the nodes
in ascending order according to the remaining battery level, then BRAS/WRAS will select the node having
the most/least remaining battery as victim. With a random strategy, as the name indicates, the node selection
is performed randomly. Furthermore, the options explored referring to the offloading policy were Fixed and

19

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Table 5: Centralized schedulers performance outline per scenario
Job Arriving

Rate
Job Size CPU user %

MVR

instance

Original SEAS Enhanced SEAS JEC FWC

Best Best Better Best Better Best Better

4x1012

FLOTES

long

0

MVR1 % " " % % % %

MVR2 % " " % " % "

MVR3 % " " % " % "

MVR4 % " " % " % "

30

MVR1 % " " % " % %

MVR2 % " " " " % "

MVR3 % " " % " % "

MVR4 % % " " " % %

short

0

MVR1 % " " % " % %

MVR2 % % " % " " "

MVR3 % % " % " " "

MVR4 % " " % " % "

30

MVR1 % % " " " % "

MVR2 % % " % " " "

MVR3 % % " % " " "

MVR4 % % " " " % %

1.3x1012

FLOTES

long

0

MVR1 % " " % " % %

MVR2 % " " % " % "

MVR3 % % " " " % "

MVR4 % " " % " % "

30

MVR1 % " " % " % "

MVR2 % % " % " " "

MVR3 % " " % " % "

MVR4 % % " " " % %

short

0

MVR1 % " " % " % %

MVR2 % " " % " % "

MVR3 % % " " " % "

MVR4 % " " % " % "

30

MVR1 % % " " " % "

MVR2 % " " % " % "

MVR3 % % " " " % "

MVR4 % % " " " % %

2.7x1011

FLOTES

long

0%

MVR1 % " " % " % %

MVR2 % " " % " % "

MVR3 % " " % " % "

MVR4 % % " " " % %

30%

MVR1 % " " % " % %

MVR2 % % " " " % "

MVR3 % " " % " % "

MVR4 % % " " " % %

short

0%

MVR1 % " " % " % %

MVR2 % % " % " " "

MVR3 % " " % " % "

MVR4 % % " " " % %

30%

MVR1 % % " " " % "

MVR2 % % % " " % "

MVR3 % % " " " % "

MVR4 % % " " " % "

of total scenarios (best scheduler) 0 25 18 6

of total scenarios (better performance than the Original SEAS) 47 47 33

20

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Scenario Centralized Decentralized
Centralized gain

Job size CPU user % MVR instance Enhanced SEAS JEC JS_BF_SEAS JS_WE_SEAS JS_WF_SEAS

long

0

MVR1 69.90 66.31 70.21 67.52 67.95 -0.30

MVR2 43.54 43.32 43.50 39.72 38.46 0.04

MVR3 54.64 54.60 54.60 51.17 51.26 0.04

MVR4 82.05 80.01 85.91 52.25 51.17 -3.86

30

MVR1 49.00 48.53 48.83 46.18 46.49 0.17

MVR2 32.48 32.48 32.22 31.53 30.92 0.26

MVR3 41.20 41.07 41.63 40.59 40.29 -0.43

MVR4 61.49 62.58 62.27 61.27 60.71 0.30

short

0

MVR1 70.27 68.71 68.56 66.72 66.88 1.71

MVR2 44.72 44.80 44.73 33.97 33.58 0.07

MVR3 55.73 55.72 55.83 47.89 47.92 -0.10

MVR4 81.62 80.58 86.78 52.52 51.48 -5.17

30

MVR1 49.54 49.80 48.57 43.64 43.79 1.22

MVR2 33.77 33.72 33.62 32.90 32.77 0.15

MVR3 42.54 42.53 42.66 39.97 39.18 -0.12

MVR4 62.81 62.96 63.03 59.51 59.72 -0.07

Table 6: Performance comparison of centralized scheduling criteria vs. Job Stealing with job arriving rate of 4x1012 FLOTES

Exponential. The steal function of the Fixed offloading policy is constant, i.e. -when possible- the same number
of jobs is offloaded from the queue of the victim node every time a steal request takes place, while the steal
function of the Exponential offloading policy attempts to steal 2n jobs at each nth steal request.

Now, we present the performance of battery-aware centralized scheduling against the Original SEAS with
job stealing techniques. In order to narrow the analysis, we concentrated on the comparison of the best two
centralized battery-aware criteria, i.e., Enhanced SEAS and JEC, and the best three job stealing configurations
evaluated in [45]. The job stealing configurations are BRAS with Fixed policy (JS_BF), WRAS with Fixed
policy (JS_WF) and WRAS with Exponential policy (JS_WE). Then, for instance, JS_BF_SEAS refers to the
job stealing configuration of BRAS with Fixed policy and the Original SEAS criterion as node ranker.

Table 6 outlines the percentage of finished jobs for all scenarios exercised in Section 4.2 when jobs arrive
to the proxy at 4x1012 FLOTES. The last column of this table shows the performance difference of the best
centralized scheduler with respect to the best job stealing configuration for a particular scenario. Notice that
at least one of the centralized schedulers is better than all job stealing configurations in 5 out of 8 scenarios
with long jobs and 4 out of 8 scenarios with short jobs. In the remaining seven scenarios, the situation is the
other way around, i.e., a job stealing configuration outperforms the percentage of finished jobs of all centralized
schedulers. By analyzing the differences for long jobs scenarios we found that, in general, the difference moves
in the range of [0.04 - 0.43] percentage of finished jobs while for short job scenarios the range is [0.07 - 0.15].
With exception of 4 out of 16 scenarios, whose differences are in the range of 5.17 and 1.22 percent, the
performance values of the centralized and decentralized scheduling schemes are very similar. With respect
to those exceptional cases, we see that in scenarios combining CPU user of 0% and the MVR4 instance, the
JS_BF_SEAS obtained a clear advantage over the centralized schedulers but this advantage does not hold for
CPU user of 30%. Being competitive in scenarios with CPU user above 0% is preferable since these scenarios
represent more real mobile devices usage contexts.

Now, we analyze the performance values from Table 7 for scenarios with job arrival rate of 1.3x1012

FLOTES. Gains in favor to centralized schedulers are presented in 5 out of 8 long job scenarios and in 6 out of
8 short job scenarios. The remaining scenarios favor job stealing. In general, the magnitude of differences have
slightly increased for long job scenarios –placed in between 0.13 and 0.95 percent– while barely decreased for
short job scenarios –placed in between 0.02 and 0.07 percent–. The odd scenarios, i.e., those with the highest
magnitude of gains, are the same to the ones presented in Table 6.

Finally, Table 8 shows the performance values for scenarios with job arrival rate of 2.7x1011 FLOTES. The

21

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Scenario Centralized Decentralized
Centralized gain

Job size CPU user % MVR instance Enhanced SEAS JEC JS_BF_SEAS JS_WE_SEAS JS_WF_SEAS

long

0

MVR1 70.64 67.82 71.03 65.57 65.44 -0.39

MVR2 44.19 44.02 43.58 35.99 34.91 0.61

MVR3 54.77 55.12 54.16 47.70 47.40 0.95

MVR4 82.26 79.92 86.95 62.84 62.14 -4.68

30

MVR1 49.39 49.35 49.26 43.32 42.97 0.13

MVR2 32.52 32.39 32.35 30.44 30.23 0.17

MVR3 41.63 41.54 41.07 37.94 37.34 0.56

MVR4 62.27 62.45 62.62 59.37 59.97 -0.17

short

0

MVR1 70.62 69.30 68.82 64.79 65.02 1.80

MVR2 45.20 45.18 45.17 34.44 34.03 0.03

MVR3 56.14 56.22 56.24 47.51 46.88 -0.02

MVR4 81.36 81.17 87.35 63.54 63.27 -5.99

30

MVR1 49.97 50.09 49.04 43.08 42.99 1.05

MVR2 34.05 33.97 33.99 30.86 30.81 0.07

MVR3 42.91 43.01 42.95 38.63 38.34 0.06

MVR4 63.25 63.41 63.38 58.76 58.82 0.03

Table 7: Performance comparison of centralized scheduling criteria vs. Job Stealing with job arriving rate of 1.3x1012 FLOTES

number of long job scenarios where centralized schedulers obtained an advantage versus job stealing is 2 out
of 8 while for short job scenarios it is 6 out of 8. Again, discarding the odd cases, in general, the differences are
not so high so as to declare a clear winner. For long jobs the magnitudes are placed in between 0.04 and 0.30
while for short jobs are in between 0.02 and 0.11 percent.

To sum up the centralized schedulers outperformed job stealing in 28 out of 48 scenarios. From the re-
maining 20 scenarios, 19 of them were in favor to job stealing and there is one scenario where both scheduling
schemes performed equal. Despite the number of scenarios in favor to one or another scheduling scheme, the
magnitudes of gains are mostly around the 0.5 percent, which makes the election of a best scheme for a general
case difficult.

4.3.2. Evaluation of battery-aware criteria combined with job stealing
Motivated by the results obtained in [45], where job stealing techniques improved sub-obtimal scheduling

decisions made by the Original SEAS, we present a third set of experiments that was designed to measure
the extent of improvement that the mentioned techniques might introduce over the proposed battery-aware
criteria. These experiments include the Enhanced SEAS criterion, the JEC criterion and the BF job stealing
configuration, i.e., the one including the BRAS selection strategy with Fixed offloading policy, which was the
most competitive job stealing configuration from the evaluation of section 4.3. The Original SEAS with BF
job stealing configuration is also included in this performance analysis and thus a comparison of all BF job
stealing performance values could be done. Since the Enhanced SEAS criterion and the JEC criterion present
competitive performance, we will refer to them as “battery-aware criteria”. As explained at the beginning of
Section 4.3, a job stealing configuration includes a criterion to rank the nodes of a mobile environment. The idea
of combining a battery-aware scheduler with job stealing is to use the former as the nodes rank criterion. This
is the reason why this third set of experiments also represents a measurement of the potential synergy between
both scheduling schemes.

After comparing simulation results of battery-aware criteria with and without job stealing, we found that the
performance improvement was not as significant as the one registered for the Original SEAS. More specifically,
the improvement introduced by the BF job stealing combined with the Enhanced SEAS with respect to the
centralized scheme is between -0.65 and 4.36 percent of finished jobs, while the corresponding JEC values are
placed between -0.53 and 5.24. In contrast with the Original SEAS values, which are placed in between 0.21
and 35.8 percent of finished jobs, those are small improvement ranges. Cases with values near 0, i.e., registering

22

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Scenario Centralized Decentralized
Centralized gain

Job size CPU user % MVR instance Enhanced SEAS JEC JS_BF_SEAS JS_WE_SEAS JS_WF_SEAS

long

0

MVR1 69.69 67.95 69.86 64.44 65.00 -0.17

MVR2 43.37 42.80 43.54 39.72 39.20 -0.17

MVR3 54.51 54.16 54.25 49.26 49.00 0.26

MVR4 80.57 80.66 85.60 79.71 79.23 -4.94

30

MVR1 48.53 48.40 48.83 45.06 45.58 -0.30

MVR2 31.79 32.05 32.09 31.35 31.44 -0.04

MVR3 40.89 40.63 40.89 38.68 39.16 0.00

MVR4 61.49 61.88 61.71 59.11 58.37 0.17

short

0

MVR1 70.24 69.81 68.96 64.37 64.25 1.29

MVR2 44.81 44.75 44.75 42.87 42.91 0.06

MVR3 55.95 55.86 55.89 50.68 50.69 0.07

MVR4 80.89 81.42 86.87 81.12 81.17 -5.45

30

MVR1 49.64 49.71 47.74 47.24 47.01 1.98

MVR2 33.68 33.86 33.74 33.69 33.75 0.11

MVR3 42.66 42.70 42.63 41.74 41.48 0.07

MVR4 62.99 63.15 63.17 59.99 60.01 -0.02

Table 8: Performance comparison of centralized scheduling criteria vs. Job Stealing with job arriving rate of 2.7x1011 FLOTES

differences under 1% are considered as tie cases. In other words, considering BF job stealing configuration as
a performance booster, i.e., as a correction mechanism for sub-optimal job allocations, the improvement ranges
of battery-aware criteria indicates that their allocation decisions are better than the Original SEAS allocation.
However, the absolute performance of job stealing combined with battery-aware criteria for all scenarios, are
very close to the values of the job stealing combined with the Original SEAS (Section 4.3.1).

In order to decide which of the combinations is the most convenient, we complement the performance
analysis by measuring steals count. Steals produce network activity that could lead to waste considerable
energy, thus achieving competitive performance with minimum steals requests is desirable. Table 9 shows,
for each scenario, the percentage of job transfers that steals represent. Job transfers comprise job transfers
initiated by the proxy and job transfers initiated by the nodes, i.e., steals. Each cell contains a percentage range
considering the steals of the three job arrival rates. For instance, the value 11.51 means that 11.51% of the job
transfers generated in the scenario were caused by steals. The JS_BF_SEAS column in Table 9 shows the range
of values for the job stealing-BRAS-Fixed Original SEAS combination, while job stealing combinations with
battery-aware schedulers are represented by JS_BF_SEASEn and JS_BF_JEC.

By comparing the JS_BF_SEAS column against the job stealing combinations with the battery-aware sched-
ulers, we see that the steal ranges of the former are considerably greater than the latter. Even more, there are
several scenarios where job stealing combined with battery-aware criteria did not generate any steal, meaning
that there were no corrections to the mappings performed by the battery-aware criteria.

The job stealing scheme inherently involves costs referring to the energy consumed by message exchanges
for making steal requests, eventually moving jobs from one node to another and updating internal structures
of nodes. Thus, achieving low percentages of steals is desirable because it contributes to using less energy in
scheduling duties and in consequence more energy is available to perform jobs or user-related activities.

5. Conclusions

The results of the set of tests performed in this work allow us to make several conclusions. Firstly, the ex-
perimental results from the Enhanced SEAS based centralized scheduler showed that the usage of the criterion
presents advantages in performance and predictable behavior when compared with the Original SEAS. More
explicitly, the performance of the Enhanced SEAS was better than that of the Original SEAS criterion in 97.91%

23

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Scenario Percentage of jobs transfers represented by steals

Job size CPU user % MVR instance JS_BF_SEAS JS_BF_SEASEn JS_BF_JEC

long

0

MVR1 [24.39 - 27.80] [2.25 - 13.92] [7.13 - 13.67]

MVR2 [23.29 - 28.96] 0.00 0.00

MVR3 [19.40 - 26.70] 0.00 0.00

MVR4 [37.51 - 47.39] [11.51 - 17.85] [17.64 - 23.97]

30

MVR1 [22.77 - 33.45] [0.00 - 2.58] 0.00

MVR2 [16.27 - 24.32] 0.00 0.00

MVR3 [16.30 - 25.13] 0.00 0.00

MVR4 [17.02 - 26.42] [3.43 - 4.67] 0.00

short

0

MVR1 [4.15 - 6.92] [0.21 - 0.35] [2.70 - 6.52]

MVR2 [5.02 - 13.03] 0.00 0.00

MVR3 [7.00 - 11.18] 0.00 0.00

MVR4 [7.93 - 28.43] [2.09 - 2.57] [7.40 - 9.61]

30

MVR1 [2.59 - 9.02] 0.00 0.00

MVR2 [0.00 - 6.11] 0.00 0.00

MVR3 [3.42 - 6.68] 0.00 0.00

MVR4 [4.95 - 6.62] [0.37 - 1.47] 0.00

Table 9: Job transfers percentages represented by steals for battery-aware and Original SEAS combined with BRAS Fixed job stealing

of the exercised tests, and these performance values were not as fluctuating as the values obtained by the Orig-
inal SEAS. Besides, the Enhanced SEAS based scheduler outperformed the rest of centralized battery-aware
schedulers in the majority of scenarios, and, for this reason, it qualifies as the best battery-aware criterion.

With regard to the JEC based centralized scheduler, its performance is very competitive w.r.t. the Enhanced
SEAS based scheduler, being slightly better in 37.5% of the scenarios and slightly worse or equal for the rest
of the scenarios. These results position the JEC based scheduler as the second best battery-aware centralized
scheduler. The JEC criterion exploits an alternative way of rating the computing capability of mobile devices,
different than FLOPS, which synthesizes completed benchmarks tests with energy consumed into a single value
called job energy consumption rate. In practice, the calculation of that rate involves collecting benchmarking
information from a device, starting with a full charged battery until its depletion. That procedure could be
regarded as the main weakness of the criterion, but it can be seen as a good stronghold because periodic calcu-
lation contemplates the operation time reduction of battery powered devices caused by the known deterioration
problem in Li-ion batteries [53, 11]. More specifically, when rating the computing capability of a mobile device,
e.g., through FLOPS, a value independent of the battery lifetime period is obtained. However, rating a mobile
device based on its job energy consumption rate offers an up to date value of its real computing capability be-
cause potential reductions in its operation time could be reflected through a periodic recalculation of the rate
value. It is worth mentioning that for the calculation of the job energy consumption rate of a mobile device, we
run as many benchmarking tests as its battery could execute, i.e., from full charge to total depletion. However,
an equivalent job energy consumption rate could be calculated by counting the number of benchmarking tests
executed within a smaller time window, increasing practicality at the expense of losing accuracy. Since the
performance of the JEC based centralized scheduler is barely inferior to the Enhanced SEAS based centralized
scheduler, the qualitative feature described previously leads to a trade-off.

Regarding the FWC scheduler, the cold-start effect proved to be rather harmful in highly heterogeneous
MVR instances such as those used in the experiments. However, after studying the performance evolution of
such scenarios, it was observed that its performance slowly increases as the job arriving rate becomes slower.
In any case, given the considerable less overall performance in comparison with the Enhanced SEAS and JEC
based schedulers, and its major disadvantage given by the cold-start effect, the FWC scheduler obtained the
third position in the rank of the proposed battery-aware centralized schedulers.

Moreover, the performance of the proposed centralized schedulers was compared against different configu-
rations of a decentralized scheduling scheme. The results reveal that the Enhanced SEAS and the JEC criteria

24

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

together with a centralized scheduling scheme are very competitive with respect to the best job stealing configu-
rations explored in [45]. In most cases, the absolute values in the percentage of finished jobs differences between
both scheduling schemes are in average 0.19 with standard deviation of 0.20. There is a minority of twelve cases
with a slight accentuated percentage of finished jobs, i.e., with performance differences between 1% and 6%
of finished jobs. Six out of 12 cases were in favor to the centralized schedulers, whereas the remaining cases
favored the decentralized scheduling schemes. However, it is worth noting that the only three slight accentuated
cases corresponding to scenarios with CPU user of 30% were in favor to centralized schedulers. These cases
represent more realistic situations of mobile devices than those representing a dedicated usage, i.e., with a CPU
user of 0%.

In a third set of experiments, given the improvements that job stealing techniques introduced to the Original
SEAS centralized scheduler [45], we explored the performance achieved from the combination of the best
proposed battery-aware criteria with the best job stealing configuration from Section 4.3.1. The results showed
that a maximum performance threshold seems to be achieved because values are very similar to those obtained
by the job stealing combined with the Original SEAS. However, by analyzing the amount of steals generated by
either job stealing combinations, it could be concluded that those including the proposed battery-aware criteria
are more efficient since, with considerable less steals than the decentralized scheduler based on the Original
SEAS criterion, similar performance values are achieved.

Given the equated performance of battery-aware criteria in the context of centralized and decentralized
scheduling, the most convenient option could be selected by considering qualitative features. Specifically,
by using job stealing the scheduling logic is spread out in all the nodes of the mobile environment. This
involves logic to perform stealing requests, to discover and maintain the connections between nodes, among
other activities. This means extra usage of processor and network resources than when adopting a centralized
scheme. In centralized scheduling, the scheduling logic is not only simpler, because of the lack of stealing logic,
but also could be concentrated in a single fixed node of the mobile cluster, i.e., the proxy which does not rely
on battery power to run.

6. Future works

We are extending this work in several directions. Despite the job stealing technique has not introduced a no-
table performance boost to the scheduling decisions made by the proposed battery-aware centralized schedulers,
we plan to evaluate the synergy in the context of other experimental conditions. Some examples are designing
scenarios with different and mixed mobile usage patterns, introducing more heterogeneous jobs requirements
and including networking activity as a battery consumption factor. With respect to the latter, currently, the sim-
ulator [45] assumes that transferring a job from one device to another does not consume energy, which is not
the case in real devices. The reason of assuming this in this paper is to move forward towards evaluating the
feasibility of centralized job scheduling in Mobile Virtual Resources by considering jobs with rather high CPU
processing times but very little bandwidth requirements, which make our results significant, and to fairly com-
pare our work against job scheduling based on stealing. Nevertheless, an accurate network modeling will allow
us to study data intensive applications such as sequence alignment or ray tracing [34], that pose new challenges
to mobile cluster scheduling systems that must be addressed so as to achieve good energy efficiency.

Another possible extension to this work could be studying new criteria to contemplate not only the maxi-
mization of the system throughput but at the same time the minimization of other objectives, such as the response
time. Given the benefits of including energy rates derived from benchmarking, this could be done by combining
the number of jobs executed with the time employed to execute these jobs. In this way, schedulers focused on
improving the response time along with the throughput of the system could be developed. Throughput mea-
surement quantifies the amount of computation a system finishes within a time window, while response time
indicates the total accumulated time that a set of jobs spend in a system. This metric, also known as flowtime,
is the sum of the finish time minus the start time of each job. While the goal of throughput-oriented schedulers
is to maximize finished jobs, flowtime-oriented schedulers aim at minimizing job finish time. Complementary
to developing flowtime-oriented schedulers, the simulator used in the experiments will be configured to log
timestamps of every state each job passes through, thereby disaggregated information is available to perform a
detailed analysis of the data generated in each experiment.

25

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

Another possible future work is to adapt the proposed local or intra-MVR scheduling criteria for their use in
global scheduling criteria, i.e., at inter-MVR level. While local scheduling criteria are based on single devices
capabilities for taking scheduling decisions, global scheduler criteria, instead, would employ MVR capabilities
for making the corresponding meta-scheduling decisions. The hypothesis is that considering battery-aware
scheduling decisions in global schedulers could help to better exploit Grid environments composed by multiple
MVRs. However, this does not mean that the schedulers proposed in this paper can not be readily applicable to
real mobile Grids, since as a starting point meta-schedulers combining traditional Grid schedulers at the global
level and of our centralized mobile schedulers at the local level could be used.

We also plan to expand and automate the software we use to perform profiles capturing of real mobile
devices. Currently, this software collects battery depletion from CPU usage, and is launched and configured
manually for each mobile device. The main idea is to profile the energy consumption of other activities such as
data transferring and to further automate its configuration and launching. Then, by encouraging colleagues to
run that automated software on their mobile devices, we will be able to create and maintain an up to date bank
of profiles of different mobile devices not only for advancing on this and other research lines but also to share it
with the research community.

To further evaluate our proposal in a real-life environment, we plan to design an evaluation that involves
a middleware prototype for running CPU-intensive applications into real clusters of Android mobile devices.
For the communication between proxies and mobile devices we plan to employ the push notification mechanism
where requests for a given transaction are initiated by a server instead of by the receiver as in the pull mechanism.
An alternative for materializing push notifications is through Google Cloud Messaging (GCM) 6. We will also
take into account common issues related to middleware design such as security and fault-tolerance (e.g., use
proxy replicas).

Acknowledgments

We thank the reviewers for their comments to improve the paper. We acknowledge the financial support by
ANPCyT through grant PICT-2012-0045. The first author acknowledges his Ph.D. fellowship granted by the
CONICET.

[1] A. Amokrane, R. Langar, R. Boutaba, G. Pujolle, Energy efficient management framework for multihop
tdma-based wireless networks, Computer Networks 62 (0) (2014) 29 – 42.

[2] J. Aron, Harness unused smartphone power for a computing boost, New Scientist 215 (2880) (2012) 18.

[3] M. Arroqui, C. Mateos, C. Machado, A. Zunino, RESTful web services improve the efficiency of data
transfer of a whole-farm simulator accessed by android smartphones, Computers and Electronics in Agri-
culture 87 (0) (2012) 14 – 18.

[4] A. Barisone, F. Bellotti, R. Berta, A. De Gloria, Jsbricks: a suite of microbenchmarks for the evaluation
of java as a scientific execution environment, Future Generation Computer Systems 18 (2001) 293–306.

[5] R. Baron, O. Lioubashevski, E. Katz, T. Niazov, I. Willner, Elementary arithmetic operations by enzymes:
A model for metabolic pathway based computing, Angewandte Chemie International Edition 45 (2006)
1572–1576.

[6] F. Busching, S. Schildt, L. Wolf, Droidcluster: Towards smartphone cluster computing – the streets are
paved with potential computer clusters, in: Distributed Computing Systems Workshops (ICDCSW), 2012
32nd International Conference on, 2012, pp. 114–117.

[7] R. Buyya, M. Murshed, GridSim: A toolkit for the modeling and simulation of distributed resource man-
agement and scheduling for grid computing, Concurrency and Computation: Practice and Experience
14 (13) (2002) 1175–1220.

6https://developers.google.com/cloud-messaging/

26

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, Cloudsim: a toolkit for model-
ing and simulation of cloud computing environments and evaluation of resource provisioning algorithms,
Software: Practice and Experience 41 (1) (2011) 23–50.

[9] G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo, P. Cunha, Energy consumption and
execution time estimation of embedded system applications, Microprocessors and Microsystems 35 (4)
(2011) 426 – 440.

[10] M. C. Castro, A. J. Kassler, C.-F. Chiasserini, C. Casetti, I. Korpeoglu, Peer-to-peer overlay in mobile
ad-hoc networks, in: Handbook of Peer-to-Peer networking, Springer, 2010, pp. 1045–1080.

[11] S. S. Choi, H. S. Lim, Factors that affect cycle-life and possible degradation mechanisms of a li-ion cell
based on licoo2, Journal of Power Sources 111 (1) (2002) 130 – 136.

[12] D. C. Chu, M. Humphrey, Mobile ogsi.net: Grid computing on mobile devices, in: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, GRID ’04, IEEE Computer Society, Washington,
DC, USA, 2004, pp. 182–191.

[13] L. Chunlin, L. Layuan, Exploiting composition of mobile devices for maximizing user qos under energy
constraints in mobile grid, Information Sciences 279 (0) (2014) 654 – 670.

[14] D. Costa, L. Guedes, F. Vasques, P. Portugal, Effect of frame size on energy consumption in wireless
image sensor networks, in: Imaging Systems and Techniques (IST), 2012 IEEE International Conference
on, 2012, pp. 239–244.

[15] S. Deng, H. Balakrishnan, Traffic-aware techniques to reduce 3g/lte wireless energy consumption, in:
Proceedings of the 8th international conference on Emerging networking experiments and technologies,
CoNEXT ’12, ACM, New York, NY, USA, 2012, pp. 181–192.

[16] P. Ghosh, S. K. Das, Mobility-aware cost-efficient job scheduling for single-class grid jobs in a generic
mobile grid architecture, Future Generation Computer Systems 26 (8) (2010) 1356 – 1367.

[17] P. Ghosh, N. Roy, S. Das, Mobility-aware efficient job scheduling in mobile grids, in: Cluster Computing
and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, 2007, pp. 701–706.

[18] F. J. González-Castaño, J. Vales-Alonso, M. Livny, E. Costa-Montenegro, L. Anido-Rifón, Condor grid
computing from mobile handheld devices, SIGMOBILE Mobile Computing and Communications Review
7 (1) (2003) 117–126.

[19] J. Gray, Distributed computing economics, Queue 6 (3) (2008) 63–68.

[20] D. Hermelin, D. Rawitz, R. Rizzi, S. Vialette, The minimum substring cover problem, Information and
Computation/information and Control - IANDC 206 (2008) 1303–1312.

[21] Y. Hu, S. Yurkovich, Battery cell state-of-charge estimation using linear parameter varying system tech-
niques, Journal of Power Sources 198 (0) (2012) 338–350.

[22] D. Huynh, D. Knezevic, J. Peterson, A. Patera, High-fidelity real-time simulation on deployed platforms,
Computers & Fluids 43 (1) (2011) 74 – 81.

[23] O. Karan, C. Bayraktar, H. Gümüşkaya, B. Karlık, Diagnosing diabetes using neural networks on small
mobile devices, Expert Systems with Applications 39 (1) (2012) 54 – 60.

[24] A. Khalaj, H. Lutfiyya, M. Perry, The proxy-based mobile grid, in: Y. Cai, T. Magedanz, M. Li, J. Xia,
C. Giannelli (eds.), Mobile Wireless Middleware, Operating Systems, and Applications, vol. 48 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
Springer Berlin Heidelberg, 2010, pp. 59–69.

27

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

[25] M. Kim, S. Park, Trust management on user behavioral patterns for a mobile cloud computing, Cluster
Computing 16 (4) (2013) 725–731.

[26] J. Kołodziej, S. U. Khan, L. Wang, M. Kisiel-Dorohinicki, S. Madani, E. Niewiadomska-Szynkiewicz,
A. Zomaya, C.-Z. Xu, Security, energy, and performance-aware resource allocation mechanisms for com-
putational grids, Future Generation Computer Systems 31 (2014) 77–92.

[27] K. Kumar, Y.-H. Lu, Cloud Computing for mobile users: Can offloading computation save energy?, Com-
puter 43 (2010) 51–56.

[28] D. Lee, H. Lee, D. Park, Y.-S. Jeong, Proxy based seamless connection management method in mobile
cloud computing, Cluster Computing 16 (4) (2013) 733–744.

[29] C. Li, L. Li, A multi-agent-based model for service-oriented interaction in a mobile grid computing envi-
ronment, Pervasive and Mobile Computing 7 (2) (2011) 270 – 284.

[30] C. Li, L. Li, Tradeoffs between energy consumption and qos in mobile grid, The Journal of Supercomput-
ing 55 (2011) 367–399.

[31] W. Li, J. Wu, Q. Zhang, K. Hu, J. Li, Trust-driven and qos demand clustering analysis based cloud work-
flow scheduling strategies, Cluster Computing (2014) 1–18.

[32] D. Macone, G. Oddi, A. Pietrabissa, Mq-routing: Mobility-, gps- and energy-aware routing protocol in
{MANETs} for disaster relief scenarios, Ad Hoc Networks 11 (3) (2013) 861 – 878.

[33] R. Mahapatra, A. D. Domenico, R. Gupta, E. C. Strinati, Green framework for future heterogeneous
wireless networks, Computer Networks 57 (6) (2013) 1518 – 1528.

[34] C. Mateos, A. Zunino, M. Hirsch, M. Fernández, M. Campo, A software tool for semi-automatic grid-
ification of resource-intensive java bytecodes and its application to ray tracing and sequence alignment,
Advances in Engineering Software 42 (4) (2011) 172–186.

[35] D. G. Murray, E. Yoneki, J. Crowcroft, S. Hand, The case for crowd computing, in: Proceedings of the
Second ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds,
MobiHeld ’10, ACM, New York, NY, USA, 2010, pp. 39–44.

[36] A. Nicolaos, K. Vasileios, A. George, M. Harris, K. Angeliki, G. Costas, A data locality methodology for
matrix-matrix multiplication algorithm, Journal of Supercomputing 59 (2012) 830–851.

[37] E. Niewiadomska-Szynkiewicz, A. Sikora, P. Arabas, M. Kamola, M. Mincer, J. Kołodziej, Dynamic
power management in energy-aware computer networks and data intensive computing systems, Future
Generation Computer Systems 37 (2014) 284–296.

[38] E. Niewiadomska-Szynkiewicz, A. Sikora, P. Arabas, J. Kołodziej, Control system for reducing energy
consumption in backbone computer network, Concurrency and Computation: Practice and Experience
25 (12) (2013) 1738–1754.

[39] E. Pacini, C. Mateos, C. G. Garino, Distributed job scheduling based on swarm intelligence: A survey,
Computers & Electrical Engineering 40 (1) (2014) 252–269.

[40] J. A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Com-
puting 4 (1) (2005) 18–27.

[41] S. Park, W. Kim, I. Ihm, Mobile collaborative medical display system, Computer Methods and Programs
in Biomedicine 89 (3) (2008) 248 – 260.

[42] A. Rice, S. Hay, Measuring Mobile Phone Energy Consumption for 802.11 Wireless Networking, Perva-
sive and Mobile Computing 6 (6) (2010) 593–606.

28

This is a preprint of the article: "M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos: "Battery-aware Centralized Schedulers for CPU-bound Jobs in
Mobile Grids". Pervasive and Mobile Computing. Elsevier. 2015. ISSN 1574-1192."

The final publication is available at http://dx.doi.org/10.1016/j.pmcj.2015.08.003

[43] A. V. Rodriguez, C. Mateos, A. Zunino, Mobile devices-aware refactorings for scientific computational
kernels, in: 13th Argentine Symposium on Technology, AST2012. 41th JAIIO, 2012.

[44] J. Rodriguez, C. Mateos, A. Zunino, Are smartphones really useful for scientific computing?, Lecture
Notes In Computer Science 7547 (2012) 38–47.

[45] J. Rodriguez, C. Mateos, A. Zunino, Energy-efficient job stealing for cpu-intensive processing in mobile
devices, Computing (2012) 1–31.

[46] J. M. Rodriguez, A. Zunino, M. Campo, Mobile grid seas: Simple energy-aware scheduler, in: 3rd High-
Performance Computing Symposium. 39th JAIIO, 2010.

[47] J. M. Rodriguez, A. Zunino, M. Campo, Introducing mobile devices into grid systems: a survey, Interna-
tional Journal of Web and Grid Services 7 (1) (2011) 1–40.

[48] K. Ryabinin, S. Chuprina, Adaptive scientific visualization system for desktop computers and mobile
devices, Procedia Computer Science 18 (0) (2013) 722 – 731.

[49] T. Samad, J. S. Bay, D. Godbole, Network-centric systems for military operations in urban terrain: the role
of uavs, Proceedings of the IEEE 95 (1) (2007) 92–107.

[50] P. Serrano, A. de la Oliva, P. Patras, V. Mancuso, A. Banchs, Greening wireless communications: Status
and future directions, Computer Communications 35 (14) (2012) 1651 – 1661.

[51] S. C. Shah, Energy efficient and robust allocation of interdependent tasks on mobile ad hoc computational
grid, Concurrency and Computation: Practice and Experience.

[52] W. X. Shen, C. C. Chan, E. W. C. Lo, K. T. Chau, Estimation of battery available capacity under variable
discharge currents, Journal of Power Sources 103 (2) (2002) 180 – 187.

[53] K. Takeno, M. Ichimura, K. Takano, J. Yamaki, Influence of cycle capacity deterioration and storage
capacity deterioration on li-ion batteries used in mobile phones, Journal of Power Sources 142 (1-2) (2005)
298–305.

[54] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, J. P. Singh, Who killed my battery?: analyzing
mobile browser energy consumption, in: Proceedings of the 21st international conference on World Wide
Web, WWW ’12, ACM, New York, NY, USA, 2012, pp. 41–50.

[55] R. Torres, L. Mengual, O. Marban, S. Eibe, E. Menasalvas, B. Maza, A management ad hoc networks
model for rescue and emergency scenarios, Expert Systems with Applications 39 (10) (2012) 9554 –
9563.

[56] M. F. Tuysuz, An energy-efficient qos-based network selection scheme over heterogeneous wlan - 3g
networks, Computer Networks 75, Part A (0) (2014) 113 – 133.

[57] P. M. Vaidya, An algorithm for linear programming which requires o(((m+ n)n2 +(m+ n)1.5n)l) arith-
metic operations, Mathematical Programming 47 (1990) 175–201.

[58] R. van Nieuwpoort, G. Wrzesinska, C. J. H. Jacobs, H. E. Bal, Satin: A high-level and efficient grid
programming model, ACM Trans. Program. Lang. Syst. 32 (3).

[59] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström, The worst-case
execution-time problem – overview of methods and survey of tools, ACM Trans. Embed. Comput. Syst.
7 (3) (2008) 36:1–36:53.

[60] M. Xu, Y. Shang, D. Li, X. Wang, Greening data center networks with throughput-guaranteed power-aware
routing, Computer Networks 57 (15) (2013) 2880–2899.

[61] B.-Y. Zhang, Z. Mo, G. Yang, W. Zheng, Dynamic load balancing efficiently in a large-scale cluster,
International Journal of High Performance Computing and Networking 6 (2) (2009) 100–105.

29

