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Abstract

Because  of  the  increasing  availability  of  multi-core  machines,  clusters,  Grids,  and
combinations  of  these  environments,  there  is  now  plenty  of  computational  power
available  for  executing  compute  intensive  applications.  However,  because  of  the
overwhelming  and  rapid  advances  in  distributed  and  parallel  hardware  and
environments,  today’s  programmers are not  fully prepared to exploit distribution and
parallelism. In this sense, the Java language has helped in handling the heterogeneity of
such environments, but there is a lack of facilities and tools to easily distributing and
parallelizing applications. One solution to mitigate this problem and make some progress
towards producing general tools seems to be the synthesis of semi-automatic parallelism
and Parallelism as a Concern (PaaC), which allows parallelizing applications along with
as little modifications on sequential codes as possible. In this paper, we discuss a new
approach  that  aims  at  overcoming  the  drawbacks  of  current  Java-based  parallel  and
distributed development tools, which precisely exploit these new concepts.
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1 Introduction and problem statement

The existence of compute intensive applications present in a wide range of domains including the entertainment
industry, meteorology, economy, biology, physics, among others, and the rise of powerful execution environments
doubtlessly calls for new parallel and distributed programming tools. Many existing tools remain hard to use for
non-experienced programmers, and are based on the traditional conception that high performance is the utmost
goal,  ignoring  other  important  attributes  such as  code invasiveness  and  execution environment  independence.
Simple parallel programming models are essential for helping “sequential” developers to gradually move into the
parallel  programming world.  Low code invasiveness and environment neutrality are also important  since they
allow for hiding parallelism and distribution from the pure application logic of these domain-specific applications.

In  dealing  with  the  software  diversity  of  such  environments  –specially  distributed  ones–  Java  is  very
interesting as it offers platform independence and competitive performance compared to conventional languages
(Shafi, Carpenter, Baker, & Hussain, 2009) (Taboada, Ramos, Expósito, Touriño, & Doallo, 2011). However, most
Java tools have focused on running on one environment exclusively, i.e., one of multi-core machines, clusters or
Grids.  Besides,  they  often  offer  developers  APIs  for  programmatically  coordinating  subcomputations,  but  not
parallel code generation techniques. This needs knowledge on parallel/distributed programming, and output codes
are tied to the API library employed, compromising code maintainability and portability to other libraries. All in all,
parallel programming is nowadays the rule and not the exception. Hence, researchers and software vendors have
put  on  their  agenda  the  long-expected  goal  of  versatile  parallel  tools  –i.e.,  applicable  to  several  domains–
delivering minimum development effort and code intrusiveness.

To date,  several  Java tools  for  scaling out  CPU-hungry applications have been proposed in  the literature.
Regarding multi-core programming, Doug Lea’s framework (Lea, 2005) and JCilk (Danaher, Lee, & Leiserson,
2006) extend the Java runtime library with concurrency primitives. Alternatively, JAC (Haustein & Lohr, 2006)
aims at separating application logic from thread declaration and synchronization via regular Java annotations, with



a special emphasis on removing the differences between sequential and concurrent codes. Furthermore, Duarte et
al. (Duarte, Mota, & Sampaio, 2011) address the same goal by automatically deriving thread-enabled source codes
from sequential ones based on algebraic laws. Similarly, JOMP (Bull & Kambites, 2000) is compliant to OpenMP
(Chandra,  Dagum, Kohr,  Maydan,  McDonald, & Menon, 2000),  a  set  of  standard method-level/sentence-level
directives and library routines for shared memory parallel programming, which is very popular. 

Regarding cluster and  Grid programming, most of  the tools offer  APIs to manually create and coordinate
parallel  computations.  Some  representative  examples  of  such  tools  are  JavaSymphony (Aleem,  Prodan,  &
Fahringer,  2010),  a  platform  that  features  a  semi-automatic  execution  model  that  transparently  deals  with
migration, parallelism and load balancing of Grid applications, and allows programmers to control such features
via API calls within their parallelized codes, JCluster (Zhang, Guang-Wen, Yang, & Zheng, 2006) -which supports
the execution of task-oriented parallel applications in heterogeneous clusters. Tasks are scheduled according to the
novel transitive random stealing algorithm, JR (Chan, Gallagher,  Goundan, Au Yeung, Keen, & Olsson, 2009),
which  provides  a  rich  concurrency  model  supporting  remote  JVM  and  object  creation,  asynchronous
communication and rendezvous, and VCluster (Zhang, Lee, & Guha, 2008), a library that executes thread-based
applications on clusters.  In  VCluster,  threads migrate between nodes for load balancing purposes.  Inter-thread
communication  is  performed  through  virtual  channels,  which  isolate  threads  location.  Finally,  Satin (Van
Nieuwpoort, Wrzesinska, Jacobs, & Bal, 2010) is a library for parallelizing divide and conquer codes on LANs and
WANs that follows the semantics of JCilk. A distinctive feature of these tools compared to other Java libraries for
building classical master-worker applications such as GridGain (Systems, 2011) or JPPF (Sourceforge.net, 2009) is
that the former support complex parallel applications structures in terms of code design. All in all, tools in both
groups are designed for programming parallel codes rather than semi-automatically or automatically transforming
sequential codes to cluster and Grid-aware ones.

Irrespective of the target execution environment, according to a well-known taxonomy in the area, parallel
programming  can  be  classified  into  implicit  and  explicit (Freeh,  1996).  The  former  methodology  allows
programmers to write applications without thinking about parallelism and leaving parallel technical details on the
background,  which  are  dealt  with  automatically  by  the  runtime  system.  However,  performance  of  implicit
parallelism may be suboptimal since programmers have no control over parallel subcomputations directly. Explicit
parallelism on  the  other  hand  supplies  APIs  so  that  developers  have  more  control  over  parallel  execution  to
implement  efficient  applications,  but  the burden of  managing  parallelism falls  on them, which involves  more
programming and testing costs. From the work analyzed in this Section, it follows that although they are designed
with simplicity in mind, most of them are still  inspired by explicit  parallelism. Parallelizing applications then
requires learning parallel programming APIs. From a software engineering standpoint, parallelized codes are hard
to maintain and port to other libraries. In addition, these approaches lead to source code that contains not only
statements for managing subcomputations but also for tuning applications, i.e., exploiting certain characteristics of
the underlying computational resources. This makes such tuning logic obsolete when an application is ported for
example from a cluster to a Grid, since execution conditions are inherently different.
An alternative approach to traditional explicit parallelism is to treat parallelism as a concern (as in aspect oriented
programming - AOP), thus avoiding mixing application logic with code implementing parallel behavior. As Table
1.  Parallelism  in  Java:  Taxonomy.  Adapted  from (Mateos,  Zunino,  &  Campo,  2010) shows,  this  has  gained
momentum as reflected by Java tools that partly or entirely rely on mechanisms for separation of concerns, e.g.,
code  annotations  in  JAC (Haustein  &  Lohr,  2006),  metaobjects  in  ProActive  (Amedro,  Caromel,  Huet,  &
Bodnartchouk, 2008), and Dependency Injection in JGRIM (Mateos, Zunino, & Campo, 2010b) (Mateos, Zunino,
& Campo, 2008). Other efforts support the same idea through AOP, and skeletons, which capture recurring parallel
programming patterns such as pipes and heartbeats in an application-agnostic way. Approaches to instantiate these
skeletons include wrapping sequential  codes,  or specializing framework classes as  in (Aldinucci,  Danelutto,  &
Dazzi, 2007) (Sobral & Proença, 2007).Error: No se encuentra la fuente de referencia



Table 1. Parallelism in Java: Taxonomy. Adapted from (Mateos, Zunino, & Campo, 2010).

Current approaches pursuing PaaC fall short with respect to applicability, code intrusiveness and expertise.
Tools designed to exploit single machines are usually not applicable to clusters/Grids, and approaches designed to
exploit  these  settings  incur  in  overheads  when used  in  multi-core  machines.  Moreover,  approaches  based  on
annotations require explicit modifications to insert parallelism and application-specific optimizations that obscure
final  codes.  Metaobjects  and  specially  AOP have helped  in  coping  with  this  problem,  but  at  the  expense  of
incepting another programming paradigm that has to be learnt by programmers prior to parallelization. Lastly, tools
providing support for various parallel patterns offer good applicability in respect to the variety of applications that
can be parallelized, but require solid knowledge on parallel programming.

We propose EasyFJP, a tool aimed at unexperienced developers that offers means for parallelizing compute-
intensive applications through which the difficult and intrusive nature of parallelism is mitigated. EasyFJP exploits
PaaC by adopting a base programming model providing opportunities for enabling implicit nevertheless versatile
forms of parallelism. EasyFJP also employs generative programming to build code that leverages existing parallel
libraries for various environments. Developers proficient in parallel programming can further optimize generated
codes via an  explicit, but non-invasive tuning framework. EasyFJP is an ongoing project for which encouraging
results in the context of the Satin library has been obtained (Mateos, Zunino, & Campo, 2010). In this paper, we
show the various extensions and adaptations to EasyFJP in order to support another class of libraries in general and
the well-known GridGain library in particular.

The paper is organized as follows. Section 2 introduces the concept of fork-join parallelism, the set of parallel
primitives that represents the cornerstones of our approach. After that, Section 3 overviews the EasyFJP project and
its main technical aspects regarding the materialization of the approach. Then, in Section 4 an implementation of
EasyFJP is explained in detail. An empirical validation of EasyFJP implementation with several variants is reported
in Section 5. Finally, Section 6 presents some concluding remarks.

2 An overview of Fork-join parallelism

Fork-join parallelism (FJP) is a simple but effective technique that expresses parallelism via two primitives: fork, 
which starts the execution of a method in parallel, and join, which blocks a caller until the execution of methods
finishes. Conceptually, FJP represents an alternative to threads, which have received criticism due to their inherent
complexity in terms of program testing effort. In fact, Java, which has offered threads as first-class citizens for
years, includes from version 7 an FJP framework for exploiting multi-core CPUs, which is essentially based on the
well-known Doug Lea’s framework. 



Fig. 1 Simple Fork-Join synchronization pattern

Interestingly, FJP is not circumscribed to multi-core programming, but is also applicable to any parallel or
distributed execution environments where the notions of “tasks” and “processors” exist. For instance, forked

tasks can be run on the machines of a cluster. Moreover, recently, Computational Grids, which arrange
resources from geographically dispersed sites, have emerged as another environment for parallel computing.

Then, multicore CPUs, clusters and Grids alike can execute FJP tasks, as they conceptually comprise
processing nodes (cores or individual machines) interconnected through communication “links” (a system

bus, a high-speed LAN or a WAN). This uniformity arguably allows the same FJP application to be executed
in either environment by using environment-specific execution platforms to process the associated forked
tasks. Broadly, current Java parallel libraries relying on task-oriented

execution models offer API primitives to create one parallel task or a list of tasks simultaneously, which are
firstly mapped to library-level execution units. As a complement to these primitives, these parallel libraries

also expose primitives or use models to synchronize the access to the results of finalized tasks. Hence, the
mechanism for parallelizing based on primitives to create tasks and coordinating results could be directly
mapped to a Fork-Join pattern where Fork is the way to express parallelism and Join the way to access to

the results. There are, however, operational differences among libraries concerning the primitives to
synchronize sub-computations. We have observed that there are two FJP synchronization patterns: single--

fork join (SFJ) and multi-fork join (MFJ). The former represents one-to-one relationships between fork and
join points: a programmer must block its application to wait for each task result. An example of this type of
syncronization is the Future object, whose class is included into the java.util.concurrent library. These objects
are used by GridGain and represent the result of an asynchronous computation. With MFJ, the programmer
waits for the results of the tasks launched up to a synchronization call. The Sync primitive from Satin project

is an example of MJF synchronization points. To better illustrate the idea, in the following codes, two SFJ
calls are necessary to safely access the results of task1 and task2 (

), whereas the same behavior is achieved with one MFJ call (Fig. 2).



Fig. 2 Multiple Fork-Join synchronization pattern

Examples of Java parallel libraries and their support for these patterns are Satin (MFJ), ProActive (SFJ, MFJ),
GridGain (SFJ) and JPPF (SFJ), which developers take advantage of through API calls. In general, at least in Java,
SFJ is more popular and it is implemented by most parallel libraries. However, as discussed, using libraries requires
learning an API, and ties the code to the library at hand. Even more important, managing synchronism for real-
world applications is error prone and time-consuming.

3 The EasyFJP project: FJP as a concern

Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applications. This is because there is a direct
association between Fork and Join points with sequential recursive invocations and the use of recursive results re -
spectively. The EasyFJP project (Mateos, Zunino, & Campo, 2010) goals is precisely to design source code analy-
sis algorithms and code generation techniques to inject SFJ and MFJ into sequential D&C codes. EasyFJP includes
a semi-automatic process (Fig. 3) that automatically outputs library-dependent parallel codes with hooks for attach-
ing user optimizations. Moreover, for the D&C version of the Binary Search code shown in Fig. 3 that serves as in-
put of the EasyFJP parallelization process, there are two recursive calls or Fork points (lines 5 and 6) and two ac -
cesses to recursive results or Join points (line 8).

Broadly speaking, at step 1, given a sequential application, a target D&C method of this application and a
target parallel library as input, EasyFJP performs an analysis of the source code to spot the points that perform
recursive  calls  and  access  to  recursive  results.  As  a  convention  to  facilitate  the  analysis  it  is  important  that
programmers write the sequential application assigning the results of recursive calls to local variables. Depending
on the target parallel library selected, EasyFJP uses an MFJ or a SFJ-inspired algorithm to detect fork and join
points, but the algorithms themselves do not depend on the parallel library selected. For brevity, below we discuss
the SFJ algorithm, while (Mateos, Zunino, & Campo, 2010) presents its MFJ counterpart. As such, the fork-join
pattern supported by this algorithm represents the main difference between this work and (Mateos,  Zunino, &
Campo, 2010).



Fig. 3 EasyFJP: Parallelization process

Fig. 4 Output sample of step 1

The SJF-based algorithm (see Alg. 1 and Table 2) works by depth-first walking the instructions and detecting
where a local variable is defined or used. A local variable is defined, and thus becomes a parallel variable, when
the result of a recursive method is assigned to it, whereas it is used when its value is read in a statement. As input,
the algorithm operates on a tree derived from the target method source code (Fig. 4). Nodes in this tree are method
scopes, while ancestor-descendant relationships represent nested scopes. First, the procedure  IdentifyForkPoints
search for parallel variables, that are local variables placed on the left side of an assignment operation where the
right side is a recursive call. These recursive calls are the fork points. Once the list of fork points is identified, the
associated list of join points has to be built. This is done by the IdentifyJoinPoints procedure, which is invoked with
the list  of fork points as argument.  Thus, for every fork point,  the algorithm performs an examination of the
sentences looking for every use of the result of the parallel variable associated to a fork point. All the resulting
occurrences are marked as join points of the current fork point under analysis. Finally, the algorithm passes on to
step 2 the list of recursive calls and its corresponding uses of recursive results (fork and join points, Fig. 4) so that
it can map them into parallel API calls.



At step 2, based on previous identified recursive calls and uses of recursive results, EasyFJP modifies the source
code to call a library-specific fork and join primitive between the definition and use of any parallel variable, for any
possible execution path. This step involves reusing the primitives of the target parallel library plus inserting glue
code to invoke (if defined) the user’s optimizations (step 3). The former sub-step also adapts the parallel code to
the application structure prescribed by the library (e.g., subclassing certain API classes, generating extra artifacts,
etc.).

Targeting libraries supporting D&C (e.g., Satin) mostly requires source-to-source translation, because
sequential methods calls are individually and directly forked in the output code via fork library API

functions. For libraries relying on master-worker or bag-of-tasks execution models (e.g., GridGain or JPPF),
in which hierarchical relationships between parallel tasks are not present, EasyFJP somewhat “flats” the

task structure of the sequential source code. 
 shows part of the GridGain code generated by EasyFJP from the BinSearch application shown in Fig. 3.
GridGain materializes SFJ via Java futures. Lines 15-17 represent fork points while in line 19 join points have

been  translated  into  appropriate  GridGain  library  API  calls.  Instances  of  BinSearchTask perform  the
subcomputations by calling BinSearchGridGain.search(int, int[], ExecutionContext) on individual pieces of the input
array. For the sake of simplicity, this parallel code does not exploit the latest GridGain API since it is fairly more
verbose than previous versions.

The SJF-based algorithm
procedure IdentifyForkPoints(rootScope)

forkPoints ← empty
for all sentence ∈ traverseDepthFirst(rootScope) do

varName ← getParallelVar(sentence, rootScope)
if varName ≠ empty then

addElement(forkPoints,sentence)
end if

end for
return joinPoints

end procedure

procedure IdentifyJoinPoints(rootScope,forkPoints)
for all sentence ∈ forkPoints do

varName ← getParallelVar(sentence)
currSentence ← sentence
scope ← true
repeat

useSentence← getFirstUse(varName, currSentence)
if useSentence ≠ empty then

useScope ← getScope(useSentence)
varScope ← getScope(sentence)
if checkIncluded(joinPoints,varScope) then

addElement(joinPoints, useSentence)
currSentence ← useSentence

end if
else

scope ← false
end if

until scope ≠ true
end for
return joinPoints

end procedure

Alg. 1 The SJF-based algorithm



Finally,  at  step 3,  programmers can optionally and non-invasively improve the efficiency  of  their  parallel
applications via policies, which are rules that regulate the amount of parallelism, or in other words the number of
parallel tasks executing in the environment to handle the whole application. This is the only manual step and, even
when  not  measured  yet,  the  effort  to  specify  policies is  intuitively  low as  they  capture  common and  simple
optimizations so far.

Signature Functionality
getParallelVar (aSentence,rootScope) If aSentence assigns a recursive call to a parallel 

variable, the variable name is returned, otherwise an 
empty result is returned.

getParallelVar(aSentence) Returns the name of the parallel variable defined in 
aSentence.

getFirstUse(varName,aSentence) Returns the first subsequent sentence of aSentence that 
uses varName. If no such a sentence if found, an empty 
result is returned.

getScope(aSentence) Returns the scope to which aSentence belongs.
checkIncluded
(aScope,anotherScope)

Checks whether aScope is the same scope as 
anotherScope or is a descendant of it.

Table 2 SF-based fork and join points detection: Helper functions

Fig. 5 Example of GridGain code automatically generated by EasyFJP

EasyFJP allows developers to specify policies based on the nature of both their applications (e.g., using thresholds/-
memoization) and the execution environment (e.g., avoiding many forks with large-valued parameters in a high--
latency network). Policies are associated to fork points through external configuration files and can be switched
without altering parallelized codes. For instance, BinSearch could be made forking search provided array.length is
above  an  appropriate  threshold  by  implementing  the  shouldFork(ExecutionContext),  otherwise  the  sequential
version of the method would be executed. This prevents using parallelism for small-sized arrays and falling back to



sequential execution to ensure good performance. ExecutionContext allows users to introspect execution at both the
method level,  such as accessing parameter values,  and the application level, for example obtaining the current
depth of the task hierarchy tree. In other words, this object allows developers to access certain runtime information
that refers to parallel aspects of the application under execution and use the information to specify tuning decisions.
Fig. 6 shows a possible implementation of a Threshold policy that, based on the input array size, which is part of
the  application  context,  decides  whether  or  not  to  continue  parallelizing  the  execution  of  the  target  method.
Furthermore, 
 line 9 shows the glue code to illustrate how the parallelized BinSearch code references to a user-defined threshold
policy.

 

Fig. 6 Example of a threshold policy code

3.1 Developing with EasyFJP: Considerations

Determining whether a user application will effectively benefit from using EasyFJP depends on a number of issues
that  developers  should  have  in  mind.  First,  feeding  EasyFJP with  a  properly  structured  D&C code  does  not
necessarily  ensures  increased performance and applicability.  The choice  of  parallelizing  an  application (or  an
individual method) depends on whether the method itself can inherently exploit parallelism. In other words, the
potential performance gains after parallelizing an application is subject to its computational requirements, which is
a design factor that must be first addressed by the developer since he/she knows the details of the application
domain  and  the  input  data  used.  EasyFJP automates  the  process  of  generating  a  parallel,  tunable  application
“skeletons”,  but it  does not aim at automatically determining the portions of an application suitable for being
parallelized.  Furthermore,  the  choice  of  targeting  a  specific  parallel  backend is  mostly  subject  to  availability
factors, i.e., whether an execution environment running the desired parallel library (e.g., GridGain) is available or
not. For example, a novice developer would likely target a parallel library he knows is installed on a particular
hardware or execution environment, rather than the other way around.

Likewise, the policy support discussed so far is not designed to automate application tuning, but to provide a
framework that aims at capturing common optimization patterns in FJP applications. Again, whether these patterns
benefit a particular parallelized application depends on several factors. For example, not all FJP applications can
exploit memoization techniques. More research is being done in this respect, as will be indicated later.

Moreover,  an  issue  that  may  affect  applicability  is  concerned  with  compatibility  and  interrelations  with
commonly-used techniques and libraries,  such as multi-threading and AOP. In a broad sense,  these techniques
literally alter the ordinary semantics of a sequential application. Particularly, multi-threading makes deterministic
sequential code non-deterministic, while AOP modifies the normal control flow of applications through the implicit
use of artifacts containing aspect-specific behavior. Therefore, when using EasyFJP to parallelize such applications,
various compatibility problems may arise depending on the backend selected for parallelization. Note that this is
not an inherent limitation of EasyFJP, but of the target backend. Thus, before parallelizing an application with
EasyFJP, a prior analysis should be carried out to determine whether the target parallel runtime is compatible with
the libraries the application relies on.



4 EasyFJP implementation

The  implementation  of  EasyFJP (http://code.google.com/p/easyfjp-imp/)  is  based  on  the  notion  of  Builder.  A
Builder is a piece of code that encapsulates knowledge on the use of a parallel library and therefore is responsible
for the entire code generation process. The more the variety of Builders that are plugged into EasyFJP, the more the
parallelization choices the tool offers to users who will use EasyFJP to write applications that take advantage of
parallelism.

From a functional point of view, a Builder performs its work by relying on three basic components: a  code
analyzer,  a  target  parallel  library and  a  code  generator.  The  code  analyzer  is  the  component  in  charge  of
identifying where to insert calls to the target parallel library. The output from this analysis is fork and joins points.
These points are required by the code generator, the component which performs the transformation of the original
code  into  its  parallelized  counterpart  by  adding  parallelization  instructions  into  the  target  method.  The
parallelization instructions to support fork and join points are highly coupled to a parallel library, since the last one
is the component that provides the parallelization support and acts during the actual execution of the application.
The abstract design of a Builder was thought as a set of combinable and exchangeable components, to facilitate the
extension of the tool. To goal is to enable EasyFJP to cover a wide range of parallel environments through the
utilization of different parallel libraries that use different Fork-Join synchronization patterns and provide different
code customizations to optimize parallel computations.

The parallelization process starts when the programmer indicates the Java class of his/her application, which
contains the D&C method to be parallelized. Currently, this operation is done by writing a simple XML file. Then,
the programmer needs to invoke a Java tool including a class called Parallelizer to start the automatic source code
transformation, which comprises: 

1. Peer Class Building: is the step in the parallelization process where fork and join points are identified
and then converted into middleware API calls. The resulting artifact is the peer class.

2. Policy  Injection:  is  the  step  where  EasyFJP adds  to  the  peer  class  the  references  to  the  policies
optionally provided by programmers with experience in parallelization concepts.

3. Peer Class Binding: is the step through which the main application is bound to the peer class (i.e., the
one built on step 1) so that every call to the sequential D&C method is forwarded to its parallelized
counterpart.

It is worth clarifying the existing relation between the previously mentioned steps and Builder-related components.
The code analyzer, which acts in the first step, is described in detail below. The code generator, instead, is present
each time the Java code is modified. Therefore, this component is needed not only to translate fork and join points
into  middleware  API  calls  but  also  when extra  logic  in  the  shape  of  policies  is  planned to  be  added to  the
parallelized code, and finally, to establish the link between the sequential portion and the parallelized code of the
application. Then, the component is used throughout the three steps. The classes that implement it are described
below. Lastly, the remaining component -the parallel library- plays a protagonic role in the first and second steps.
However,  despite  being  a  component  strongly  related  to  the  code  analyzer  and  the  code  generator,  the
implementation is not part of EasyFJP. In other words, this is why EasyFJP rely on existing parallel libraries to
delegate such functionality.

Fig. 7 shows the main classes of EasyFJP and the way they collaborate. The Parallelizer class is the entry point
to the tool. It uses three collaborator classes to perform the steps described above. The Peer Class Building step is
done by a set of classes that respond to the Gamma’s Builder creational design pattern. It  is composed by the
PeerClassDirector class and the PeerClassBuilder interface. The former defines a generic algorithm to obtain the
Peer Class as the final product. The algorithm uses the PeerClassBuilder interface to perform the steps it defines.
These are mostly part of the Code Analyzer component, although some code, the one related to inserts middleware
API calls,  belongs to  the  Code Generator component.  To support  SFJ and MFJ synchronization patterns,  the
previous  algorithm  is  refined  by  extending  the  PeerClassDirector class  and  providing  an  extension  to  the
PeerClassBuilder interface. SFJPeerClassDirector and SFJPeerClassBuilder are examples of such extensions.

In addition, the code generator component is also present in the PolicyManager and BindingManager classes.
Both define generic procedures to achieve their purposes, i.e., the Policy Injection and the Peer Class Binding
steps, respectively. These generic algorithms and procedures mentioned allows us to contemplate the peculiarities
of the target parallel library (i.e., execution environment initialization), and also the library used to manipulate the
input Java code.



Fig. 7 EasyFJP main classes of the workflow package

5 Experimental evaluation

The practical implications of using EasyFJP are determined by two main aspects. One aspect is how competitive is
implicitly supporting FJP synchronization patterns in D&C codes compared to explicit parallelism and classical
parallel programming models. Another fundamental aspect is whether policies are effective to tune parallelized
applications or not. Hence, we have conducted in the past experiments in the context of the MFJ synchronization
pattern  in (Mateos,  Zunino,  &  Campo,  2010).  Furthermore,  for  the  sake  of  completeness,  next  we  report
experiments  with SFJ through our new bindings to GridGain to  further  analyzing the trade-offs  behind using
EasyFJP.

As a testbed, we used 15 machines connected through a LAN with similar CPU capabilities running Ubuntu
11.04, Java 6 and GridGain 3.2.1. With the purpuse of simulates a more real Grid environment, where latency in
the communication channels is greater than in a LAN network, the nodes were grouped into three-clusters. While
the intra-cluster  communication remained under the LAN conditions (100 Mbps),  the communication between
nodes placed in differents clusters (inter-cluster) were emulated with common WAN conditions. This means that
for  this type of links,  and with the help of the software WANem 2.21,  it  was emulated a T1 connection type
(bandwidth of 1,544 Mbps) with a round trip lattency of 160 ms and a jitter of 10 ms, resulting in inter-cluster
communication latencies between 150-170 ms. 

Regarding the application codes tested, it was used a ray tracing and a gene sequence alignment applications,
whose  parallel  versions  were  obtained  from  sequential  D&C  codes  from  the  Satin  project.  Apart  from  the
challenging  nature  of  the  environment,  the  applications  had  high  cyclomatic  complexity,  so  they  were
representative to stress our code analysis mechanisms. 

Ray tracing (http://en.wikipedia.org/wiki/Ray_tracing_(graphics)) is a technique for generating an image by
tracing the path of light through pixels in an image plane and simulating the effects of its encounters with virtual
objects. The technique is capable of producing a very high degree of visual realism, usually higher than that of
typical scanline rendering methods, but at  a greater computational cost. Moreover,  in bioinformatics, sequence
alignment (http://en.wikipedia.org/wiki/Sequence_alignment) refers to a way of arranging the sequences of DNA,
RNA or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary
relationships between the sequences.  Sequence alignments are also used for non-biological  sequences,  such as
those present in natural language or in financial data.

1 WANem (http://wanem.sourceforge.net/) is a software for emulating WAN conditions over a LAN

http://en.wikipedia.org/wiki/Ray_tracing_(graphics))
http://wanem.sourceforge.net/


Fig. 8 Variables and values of SJF scenarios

We fed the applications with various 3D scenes and real gene sequence databases from the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov). As Fig. 8 shows, for ray tracing we used two scenes
with two resolutions (1024x1024 and 2048x2048) that represent four different inputs of the application. In addition,
three  task  granularities  were  used:  fine,  medium and  coarse,  i.e.,  about  17,  2  and  1 parallel  tasks  per  node,
respectively. By “granularity” we refer to the amount of cooperative tasks in which a larger computation is split for
execution. More tasks means finer granularities. Furthermore, for sequence alignment, five databases with real
disease  information represented  the  application inputs  and  we also  employed three  granularities,  each  with a
number of tasks that depended on the size of the input database for efficiency purposes. For either application, we
implemented two EasyFJP variants by using a threshold policy to regulate task granularity and another policy
additionally exploiting data locality, a feature of EasyFJP to place tasks processing near parts of the input data in
the same cluster. We developed hand-coded GridGain variants through its parallel annotations and its support for
Google’s MapReduce (Lämmel, 2007). Hence, an escenario is represented by the four variables shown as columns
in  Fig.  8. The combinations of the values for each variable resulted in a total  of 108 exercised scenarios (48
scenarios for ray tracing and 60 scenarios for the sequence alignment application).

Fig. 9 and  Fig. 10 illustrate the average running time (40 executions) of the ray tracing and the sequence
alignment  applications,  respectively.  For  ray  tracing,  the  execution  times  uniformly  increased  as  granularity
became finer for all tests, which shows a good overall correlation of the different variants. For fine and medium
granularities,  EasyFJP was able  to  outperform their  competitors  since  SFJ in  conjunction with either  policies
achieved performance gains of up to 29%. For coarse granularities, however, the best EasyFJP variants introduced
overheads of 1-9% with respect to the most efficient GridGain implementations. As expected, data locality turned
out counterproductive, because the performance benefits of placing a set of related tasks (in this case those that
process near regions of the input scene) in the same physical cluster scene becomes negligible for coarse-grained
tasks.  Again,  the most  efficient  granularities  were fine  and medium in the  sense they  delivered  the  best  data
communication  over  processor  usage  ratio.  For  sequence  alignment,  the  running  times  were  smaller  as  the
granularity  increased.  Interestingly,  like  the  case  of  the  ray  tracing  application,  EasyFJP  obtained  better
performance for the fine granularity, and performed very competitively for the medium granularity. However, the
GridGain variants were slightly more efficient when using coarse-grained tasks. In general, data locality did not
help in reducing execution time because, unlike ray tracing, parallel tasks had a higher degree of independence.
This does not imply that data locality policies are not effective but their usage should be decided depending on the
nature of parallelized applications, which enforces similar previous findings (Mateos, Zunino, & Campo, 2010). 



Fig. 9 Ray tracing application: Average execution time

Fig. 10 Sequence alignment application: Average execution time



6 Conclusions

EasyFJP offers another balance to the dimensions of applicability, code intrusiveness and expertise that concern
parallel  programming tools.  Good  applicability  is  achieved  by  targeting  Java,  FJP and  D&C,  and  leveraging
primitives of existing parallel libraries. Low code intrusiveness is ensured by using mechanisms to translate from
sequential to parallel  code while keeping tuning logic away from the latter.  This separation, together with the
simplicity of FJP and D&C, makes EasyFJP suitable for gradually introducing sequential programmers into parallel
programming.

The  experimental  results  shown  in  this  paper  and  the  ones  reported  in (Mateos,  Zunino,  &  Campo,  An
Approach  for  Non-Intrusively  Adding  Malleable  Fork/Join  Parallelism  into  Ordinary  JavaBean  Compliant
Applications, 2010) confirm that FJP-based implicit parallelism and policy-oriented explicit tuning, glued together
via generative programming, are a viable approach to PaaC. Encouraging results were obtained for both fork-join
synchronization patterns.  We are however performing more experiments  with more SFJ-based and MFJ-based
parallel libraries to better ensure results validity, which is at present our main treat to validity, since only two
parallel libraries (one supporting MFJ and another implementing SFJ) have been used. Moreover, EasyFJP has the
potentiality to offer a better balance to the “ease of use and versatility versus performance” trade-off inherent to
parallel  programming tools for fine and medium-grained parallelism, plus the flexibility of generating code to
exploit  various  parallel  libraries.  Up  to  now,  EasyFJP deals  with  two  broad  parallel  concerns,  namely  task
synchronization  and  application  tuning.  We  are  adding  other  common  parallel  concerns  such  as  inter-task
communication, and adapting our ideas to newer parallel environments such as Clouds, which are a new execution
environment  characterized  by  computing  resources  simultaneously  supporting  high-levels  of  platform
heterogeneity through virtualization technologies.

There is a recent trend that encourages researchers to create programming tools that simplify parallel software
development by reducing the analysis and transformation burden when parallelizing sequential programs, which is
known to improve programmer’s productivity (Dig, 2011). We are therefore building an IDE support to simplify
the adoption and use of EasyFJP based on the Eclipse IDE for Java. Finally, we have produced a prototype to
support the development of parallel applications within pure engineering communities, where scripting languages
such  as  Python and  Groovy are  the  common choice  (Mateos,  Zunino,  Hirsch,  & Fernández,  2012)  and  Java
popularity is not that high compared to this scripting languages. At present, we have redesigned the EasyFJP policy
API and its associated runtime support to allow users to code policies in Python and Groovy. Evaluating important
aspect such as overhead (due to the inherent expensive nature of scripting languages) and usability is subject to
further research.
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