This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

GMAC: An Overlay Multicast Network for Mobile
Agent Platforms

Pablo Gotthelt Alejandro Zuning*! Cristian Mateo$
Marcelo Campd
|SISTAN Research Institute. UNICEN University. Campus Universitario, Tandil

(B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293) 440363. Fax.: +54 (2293)
440363

Abstract

The lack of proper support for multicast services in therim¢has hindered the widespread
use of applications that rely on group communication sessisuch as mobile software
agents. This kind of applications, although do not requigh bbandwidth or heavy traffic,
need to cooperate in a scalable, fair and decentralized Mngypaper presents GMAC, an
overlay network that implements all multicast related fiowality, including membership
management and packet forwarding, in the end systems. GMtiatiuces a new approach
for providing multicast services for mobile agent platferin a decentralized way, where
group members cooperate in a fair way, minimizing the pmitogerhead, thus achieving
great scalability. Simulations comparing GMAC with othepeoaches, in aspects such as
end-to-end group propagation delay, group latency, grarmidth, protocol overhead,
resource utilization and failure recovery, show that GMA@ scalable and robust solution
to provide multicast services in a decentralized way to meobbftware agent platforms
with requirements similar to MoviLog.

Key words. Multicast networks; overlay networks; mobile softwarerstgeP2P;
computer networks

1 Introduction

Mobile agents are software entities able to autonomousgyate their execution
to achieve their users’ goals [1]. The running state of a heament can be saved,

* Corresponding Author.
Email address: azuni no@xa. uni cen. edu. ar (Alejandro Zunino).
1 Also Consejo Nacional de Investigaciones Cientificas y Tésn(CONICET)

Atrticle published in Journal of Parallel and Distributedn@muting 68 (2008) 1081-1096

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

moved to the location where a required resource is locatetipa restored. As a
conseqguence, agent-resource interactions are locahthefeemote, thus reducing
network usage. Besides efficient network usage, mobilevaodt agents provide
advantages such as scalability, reliability and discotatkaperations [2].

Special platforms are required to execute mobile agentajylging them with the
resources and mechanisms they need. Although mobile seftwgents reduce net-
work load, their platforms often need to send small multicasssages to the other
platforms to coordinate themselves. For example, platésuch as MovilLog [3,4]
require multicast for providing group communication seed to agents and for
managing their mobility. It is also desirable that thesefptans cooperate au-
tonomously, fairly and do not rely on hierarchical or celited components, as
they usually belong to independent organizations.

The lack of proper support for communicating a large numbdrstributed mobile
agent platforms in a decentralized way has been a hurdlehie\ang true scala-
bility of mobile software systems in real settings. As a fesn easy deployable,
decentralized and scalable multicast service is a majaninr@gent for the success
of mobile software agents in the Internet.

In order to support IP multicast on the Internet, the MBONEi(fi¢ast Backbone)

has been built. The MBONE is a virtual network extended actbs Internet that

supports IP multicast traffic [5]. Despite the need for noalst services, the useful-
ness of the MBONE is still limited [6]. Furthermore, the MB@NIoes not reach
all Internet users, since neither all routers, nor ISPs(idt Service Providers)
support it.

An alternative for multicast communications that do notuieg special routers are
overlay multicast networks [7,8]. Overlay networks, irgtef being supported at
the network level, are supported by user-level applicatioalying only on uni-
cast as the subjacent service. In this way, neither spemigrs nor extra ISP in-
volvement is required. At present, many research effoesamg made to provide
multicast services through overlay networks [8,9]. Diéietr alternatives were built
subject to the particular application requirements ingdlin each case.

GMAC has been developed to provide multicast services toiMay taking into
consideration the following communication requirements:

e Burst transmission: Group members transmit small messages for short periods
of time (i.e. no data streaming).

e Sablegroups. Members are supposed to use the service for long periodsef ti
(i.e. hosts do not join or leave the group very frequently).

e Solidarity among group members: Everyone in the group cooperates. Each mem-
ber is interested in other members receiving group messages those not sent
by it.

e Homogeneous groups and network links: Members have similar behavior and

1082

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

communication characteristics. Therefore transmissiotgbility, connection
resources and communication demands are similar.

e Unknown Topology: In contrast with other kinds of networks, it is very difficult
to determine or take advantage of the Internet topology.

e Connection restricted clients: Multicast services to connection restricted hosts
should not be denied, though they may receive a degradettsemhese un-
reachable hosts are restricted by firewalls and Network égkifranslators (NATS)
that do not allow having open ports or using port-forwardimgchanisms.

Since none of the existing approaches completely meet twsenunication re-
guirements, we have developed GMAC (Group Management AQasti), an over-
lay multicast network for mobile agent platforms on the in&t. In particular, we
limited the scope of our research to MoviLog, a platform farlite agents for the
WWW.

The main contribution of this work is to introduce a new aato of providing

scalable multicast services in the Internet, allowing petelent entities with low
group communication requirements, such as mobile agetibptss, to cooperate
in a robust, fair and decentralized way.

The rest of the paper is structured as follows. The next aedbcuses on the
MoviLog platform and its multicast communication requirems. The most rele-
vant related approaches are discussed in Section 3. The Gl is described

in Section 4. Group formation and recovery algorithms asedbed in Section 5.

In Section 6, we present implementation details and thei@gimn programming

interface of GMAC. Experimental results and comparisorib vélated approaches
are reported in Section 7. Finally, Section 8 presents tmelasions and future

work.

2 MoviLog

MoviLog [10] is a platform for mobile software agents basedtbe concept of

Reactive Mobility by Failure (RMF) [3]. RMF aims at simplifyg mobile agent

development by allowing the programmer to delegate datssim when and where
to migrate a mobile agent based on its resource requiremidmgdea is that when
a mobile agent needs -at some point of its execution- a resdhat is not available
at the local site, RMF acts by transferring the agent to aweltere the required
resource is offered. As a consequence mobility is transpaoethe programmer,
agents are smaller and migrate faster [3].

MoviLog relies on servers called MARIets, which provide thm-time support
for executing mobile agents. In addition, MARIets providawsces for sharing
resources such as programs, data or any other agent ateassiét. The backbone

1083

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

of the RMF run-time support is a distributed multi-agenttegscomposed of non-
mobile agents called Protocol Name Servers (PNS). Thiesy# in charge of
managing information about resources available at eadhcapsble of executing
mobile agents. Each PNS can announce to others about nelald@aiesources,
resources that are no longer available and useful infoom&br managing mobility
such as network links status, CPU and memory usage at eatletws

In order to manage this information, PNSs must cooperateyusimulticast com-
munication mechanism. Up to now, this communication wagetted through
message broadcasting, limited to local area networks aresgi@l unicast, hence
causing suboptimal network utilization due to excessivevagk traffic. These is-
sues are not easy to address because most approaches fdmgrowlticast ser-
vices rely either on special routers, are designed for sisghder media streaming,
or are unable to handle large groups, hosts behind firewalieetwork address
translators (NATS) in a decentralized way. In additionsérg approaches demand
more network bandwidth for managing the overlay than thesangss sent by the
PNSs. At this point it is worth noting that PNSs are statigrthus they do not
require multicast with support for mobile hosts. As a consege, a multicast sup-
port to meet MoviLog requirements was designed and impléade he next sec-
tion reviews the most relevant related work.

3 Redated Work

Due to the problems that IP Multicast presents [6], specitdllow adoption, and
the increasingly number of applications requiring mubliicservices on the Internet,
several alternatives have been proposed. Some of the nmsimeapproaches are:

e Overcast [11] provides support for diffusion of informatisuch as video and
audio streaming, for a single sender, by disseminatingesgacross the Internet.

e YOID [12] and HMTP (Host Multicast Tree Protocol) [13] buildistribution
trees in order to join IP multicast islands. In YOID membersstrdiscover and
select a parent to join the group. In HMTP, UDP tunnels arel lisween des-
ignated members to connect IP multicast islands.

e Scattercast [14] is also broadcast oriented, but basedemadapplication-level
proxies called SCXs spread across the Internet.

e REUNITE [9] uses recursive unicast trees to implement roati services. RE-
UNITE uses special routing tables in its protocol. One draskbof REUNITE
is its reliance on special routers thus it is very difficultia@xpensive to deploy.
However, REUNITE can be incrementally deployed in the sehatit works
even if only a subset of the routers implement it.

e ALMI [7] creates a MST (Minimum Spanning Tree) as an overlay&ure
among the hosts forming a group. In order to build the MS€rlay measures be-
tween hosts are taken. The main drawback of this approabhatist tdepends on

1084

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

a centralized component to generate and maintain the MSAddition, ALMI
is restricted to small groups, since the cost of generaliegMST increases ex-
ponentially as the size of the group grows.

e NARADA [8] improves ALMI by achieving decentralization, dlagh it is still
restricted to small groups (less than 200) due to its expiaadgmotocol overhead
costs.

e NICE [15] and LARK [16] reduce NARADA protocol overhead indar to
achieve scalability, but still focus on data streaming arftess from long failure
recovery delays.

Each one of these alternatives offer multicast support ifterént communication
requirements, based on the specific nature of the multicastrnications they
intend to support. Overcast and Scattercast have beeredredth the objective
of providing broadcast services, such as audio and videarsing. As a conse-
guence, these approaches are best suited for commungatitina single sender
and multiple receivers. On the other hand, ALMI and NARADMal all the group
members to send data.

YOID and HMTP achieve a logarithmic scaling behavior, hogrethey are intri-
cate and inefficient. For example YOID employs expensivecamaplex techniques
for loop detection and avoidance. In HMTP nodes are congtiaking for a bet-
ter parent, producing a considerable overhead.

REUNITE, Overcast and Scattercast are not well suited fdtipheisenders, which

is the case of MoviLog. In Addition, they depend on specifigtens spread across
the Internet, therefore, they share some of the problenshicacteristics of the

MBONE.

Though ALMI and NARADA implement diffusion groups by creadgi overlay net-
works, both still suffer scalability problems restrictititgem to small groups. NICE
and LARK achieve better scalability, but still suffer frorigh failure recovery de-
lays and protocol overhead problems.

Nowadays the notion of P2P (Peer to Peer) networks [17] iadiihg the atten-
tion of the Internet community. Some of these approacheshes€TL 2 flooding
method for spreading messages [18]. As this scheme lackseaffy, heuristics
to avoid flooding, such as random walk [19] have been adoptedever, as mo-
bile agent platforms have specific communication requirgs)gor instance, in
MoviLog reaching all group members is mandatory, theseruaired approaches
are not adequate. Distributed Hash Tables (DHT) [20] arel tsestructure P2P
overlays forming a virtual space where nodes and contentreambiguously iden-
tified, thus messages can be forwarded through the corrdsppath. Over this
P2P scheme, some alternatives were built to provide mattgervices. For exam-

2 Time To Live: A message only traverses a limited number ofshogfore it is removed
from the network.

1085

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

ple CAN [21] still uses flooding, but in a directed way. ScrjB2] and Bayeux [23]
were built on top of Pastry [24] and Tapestry [25] respetyivieuilding a distri-
bution tree per group. Although these approaches are seathley still do not
completely apply to MoviLog requirements. In CAN, despieps are avoided,
duplicate messages are not fully avoided as the same messggarrive to a host
more than once. Bayeux and Scribe form distribution tresigjamg an identifiable
node as the root of a group, and paths are built towards itir fiien drawback is
that they do not make a fair distribution of duties, nodes mayome transmis-
sion bottlenecks, and even nodes that are not members ofip gray participate
forwarding its messages.

Mobile agent platforms, and MoviLog in particular, rely orogp communication
both for agent communication and mobility management. lwvildaeg each host of
the network is able to announce available resources suabdas data or services.
MoviLog multicast messages are small and sporadic, thusdardo reduce the
network traffic, it is essential that the overlay managendentot demand more net-
work bandwidth than the data messages themselves. In@udvioviLog requires
services with support for multiple senders in a decenedliznd easy deployable
way. Furthermore, as any mobile software agent platform,desirable to support
groups as large as possible.

To sum up, since none of the previous approaches providegarsaalability, ro-
bustness, deployability and failure recovery, in a fair dedentralized way, with
support for multiple senders, we designed GMAC (Group Manzant Agent Cast)
to cope with the requirements imposed by MoviLog.

4 GMAC Model

GMAC [26] is an application level multicast infrastructutesed on a binary tree
as overlay structure representing a group, where each ridde tree corresponds
to a host in a group and the links between them are unicasections.

In order to provide multicast functionality, each host inraup sends data only
to their neighbors in the binary tree. These, in turn, resmaib the received data
in the same manner, relieving the transmitting host. In Way, every member
retransmits data to other two group members at most, ancleamsuming similar
network resources. As we will explain in Section 4.2, thigsraach has been chosen
since GMAC provides multicast services only for group camation purposes,
while applications running on top of it, such as mobile ag#atforms, will be the
ones using the network in an intensive manner, for examplmigrating software
agents.

This data flow scheme works spreading messages over thé é@fenodes do not

1086

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

5 sec 4 sec

6 sec sec 5 spe 3 sec

7 sec 8 sec 8 sec 9 sec 6 sec 7 sec 2 sec 4 sec

8 se 9 sec 9sec 10 sec 9 sec 10 sec 10 sec 1sec 7sec 8 sec 8 seg 9sec 3sec « 1sec 5sec 6 sec

® O ® 060 ® @ @0 ® @ @ @ @ @

Fig. 1. Example of message forwarding in GMAC

retransmit messages, inner nodes retransmit messagesetotwb group mem-
bers (at most) and the root just forwards messages oncevi@gedeom one child
and forwards to the other child). Some properties of GMAC lwamppreciated by
comparing it with sequential unicast, where each group nezrinds to send a copy
of the message to all the other group members. Figure 1 degiotxample where
in a group of 31 members, the node labeled 27 sends a grouggeegsssuming
that every message transmission between unicast links tale second (the uni-
cast links have the same bandwidth and latency), GMAC waalé L1 seconds
for every node to receive the message, while sending a nessagach member
would require 30 seconds.

It is worth noting that when doubling the number of group menrshin the above
example, GMAC would take 14 seconds (only 3 seconds more),has a loga-
rithmic behavior, whereas sequential unicast would denédrekconds to reach all
group members.

When assuming that each unicast link takes one second &niraa message, the
total time required to send a group message with the se@lemicast approach
would ben— 1 seconds, whera is the total number of group members. On the
other hand, the time required by GMAC behaves logarithryieeth regard to the
number of group members. As GMAC uses a balanced binaryttreayorst case
arises when a leaf sends a group message. In this case, thagaeelivery would
encompass the longest path of the tree to reach the fardaad. Consequently,
the overall time (in seconds) required for the worst case is:

tw=3([log,n| —1)-1 (1)

The best case would happen when the root sends a group meidaegehe time
(in seconds) required for the message to reach all the greuphbers would be:

tb=2([log,n]) (2)

1087

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

_ Control Channel
root -
% Data Channel
a e -
-«
L = Key:
e .3 w= Normal Host
PN £ >
s Host behind a firewall or NAT (CRH
-~
I B =
H—— P —
)4 X &
=== —= e |
== == =

Fig. 2. GMAC tree

, this is, twice the path to the farthest leaf, as the messag be forwarded two
times at each host.

4.1 GMAC Components

The GMAC Model is based on a binary tree where group membersi@es in
the tree. A group member is identified by its IP address andtanponber, which
are used by the rest of the participants to establish th@inections. As Figure 2
shows, nodes are connected by two unicast links:

e Control link: through which control messages, related to the overlatiudding
and maintenance, are transmitted.

e Data link: through which data messages are sent and forwarded. Whataa d
message arrives, it is immediately retransmitted to otlegghbors and sent to
the application layer for processing.

Using a double-link schema greatly simplifies the impleragan of the model and
improves efficiency, although using a single link is alsogpolge.

The entire functionality of GMAC is implemented in each nade collaborative
and decentralized manner, as the responsibilities for agesdelivery, tree build-
ing and recovery are distributed among the members of a gAagending control
messages are used to provide this functionality in a dealered way, as only the
information downward the tree is required in each node. Thaash host receives
control messages from its children, updates its controé stad propagates it up-
ward to its own parent. Only changes in the overlay structueh as host arrival
and departure, will trigger these control messages. Allgms 1 and 2 describe the
data message propagation scheme. All algorithms use J&atomowvith variables
denoted in italics. When a message arrives, the node fosntbefore delivering
it to the application layer.

GMAC also supports hosts with connectivity restrictionkisTkind of hosts are
behind firewalls or Network Address Translators (NATs) tdatnot allow hav-

1088

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

1: dataMessage=application.getMessage();
2: if connectionParent!=null then

3: connectionParent.sendDatajataMessage);
4: end if

5: if leftChild!=null then

6: leftChild.sendDatafataMessage);

7: end if

8: if rigthChild!=null then

9: rightleftChild.sendDatajataMessage);
10: end if

Algorithm 1: Sending a data message

1: dataMessage=TriggeredDataConnection.receive();

if connectionParent!=TriggeredDataConnection and connectionParent!=null

then
connectionParent.sendDatajataMessage);

end if

if leftChild!=TriggeredDataConnection andleftChild!=null then
leftChild.sendDatajataMessage);

end if

if rightChild!=TriggeredDataConnection andrigthChild!=null then
rightleftChild.sendDatafataMessage);

10: end if

11: application.arrivedDataMessadeafaMessage)

N

© o NI RW

Algorithm 2: Receiving and forwarding a data message

ing open ports or using port-forwarding mechanisms. Thesgshwill be referred
as CRHs (Connectivity Restricted Hosts) as they are nottabdecept incoming
connections and hence are incapable of communicating batesch other. GMAC
only supports CRHSs as leaves of the binary tree, limitingtheat mostn/2] +1,
wheren s the total number of group members. Studies with eDonkeyGmutella
reveal that as many as 36% of the hosts may be CRHSs, claimasgiteal problem
that needs to be addressed [27]. As GMAC allows 50% of the sxtmlee CRHs
this problem is correctly addressed.

There is also a component common to all groups called GMAGtgg The main
property of the GMAC registry is that it is globally accedsim the Internet, thus
works as a “meeting place” for hosts wishing to join a groupitgrovides them
with the information needed to join any specific group. Thiimation consists
of the IP address and port belonging to the current root ofoamrThe GMAC
registry is explained in more detail in Section 5.3.

1089

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

4.2 Overlay Sructure

To support multicast communications, most approachespigseiaed overlay struc-
tures, such as a Minimum Spanning Tree (MST), based on eathchonection
properties. On the other hand, GMAC uses a binary tree foioll@ving reasons:

e Scalability: Generally the cost of keeping an optimized structure, likdiai-
mum Spanning Tree, is greatly increased as the number gb gnembers grows.
As a consequence, MSTs are usually confined to groups withited number
of members. Examples are ALMI and NARADA.

e Dynamism of the environment: Using an optimized structure presupposes that
members have dissimilar connection capabilities, and tleglay structure is
build based on those parameters. However if those parasrettange very often,
the structure should be re-optimized frequently. Theeefor optimized structure
usually is not suitable in very dynamic environments.

e Fairness: Generally the Internet connection in a host is shared byrakappli-
cations. For the case for GMAC, as other applications willbieag the network
resources in a more intensive manner, it is not possible nsider that a host
with a better connection can be used as a group retransnoitteurdened with
extra tasks. Accordingly, GMAC guarantees that each groember will re-
transmit data to other two members at most.

e Decentralization: The computation used to build and maintain an optimized
structure generally relies on a central component, andtisagy to decentralize.

In contrast, GMAC uses a self-organizing approach, sinaaambers have the
same responsibility and cooperate in the formation and teia@émce of the tree
structure in a decentralized way.

e Fault tolerance: As GMAC does not depend on a central component, a failure
in one host will not jeopardize the group. The failure reecg\est is often high
in optimized structures, and may imply structure reorgatian, which is a time
and resource consuming process.

e Protocol overhead: Optimized overlay structures often achieve better resourc
utilization than unoptimized overlays. However, the gatien and maintenance
of an optimized structure require performing several mesasants, which also
use network resources. Considering MoviLog requiremé&R$AC avoids tak-
ing these measurements because they might use more newsmkrees than
MoviLog.

For these reasons, GMAC uses a binary tree without consgleach node capa-
bilities in particular. Although having a higher tree degymay improve latency,
the overall group throughput would be reduced. In other wota forward a mes-
sage in &-ary tree, internal nodes would have to divide their avédddandwidth

by k receivers. On the other hand, external nodes (leaves) daah@s message
forwarders, as they only transmit their own messages. Sheceatio between the

1090

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002
number of internal and external nodes ik-ary tree withn internal nodes is:

Internalnodes_ n N } 3)
Externalnodes n(k—1)+1" k

, the more the tree degrée the more the load imbalance between internal and
external nodes, this is, having less internal nodes whish ate more loaded for-
warding messages. It is important to notice that in a binay k = 2) the number

of internal nodes is maximized, being approximately eqo&hé number of exter-
nal nodesn/(n+ 1). Accordingly, to achieve a logarithmic distribution befaay
GMAC relies on a binary tree as overlay structure.

The next section describes the mechanisms for group fosmaid maintenance
of GMAC.

5 Group Management

The general idea to achieve decentralization is that wheoda meceives a join
request it incorporates the requesting node as a childetetis no room at that
node (i.e. it already has two children), it will delegate jbim request to its least
weighted child (i.e. the one with the smallest subtree).rétoee, a host wishing
to join a group will descend the tree until it is inserted agaf.| As the overlay
structure is a binary tree, a host joining a group will haveawerse at most log
nodes, being the total number of nodes in the tree.

In the following subsections a more complex join heuristised by GMAC to
reduce reconnections and allow connection restrictedsl{@RHs), is explained.

5.1 Improved Join Heuristic

The main idea is that each host in the tree knows where thecoaxtection point
downward the tree is, so as to delegate an incoming hostlgitedts joining point
node.

In order to provide such functionality, a variable calfestParent, consisting in the

IP address and port of the node corresponding to the nexection point, is held

at each host. TheextParent value in a node is determined by the control messages
received from its children.

In order to join a group, a node follows Algorithm 3. In additi each node in the
tree follows Algorithm 4 to deal with join requests. An exdmpf the improved

1091

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

1: rootl PandPort=GroupRegistry.getRootIPandPgrgupName, password);

2: if rootl PandPort==myl PandPort then

3: connected=true //l am the root, the GMACRegistry has published my I& an
port as the root.

4: else
5. connectionOutgoing=connectToHostpot| PandPort, groupName,
password);
6: if connectionOutgoing.isAcceptedAsChild()==truthen
7 connected=true;
8: connectionParent=connectionOutgoing;
9: ¢dse
10: while connected==falsedo
11: next Parent | PandPort=connectionOutgoing.getNextParentlp-
AndPort(); //the nextParent of the least weighted child
12: connectionOutgoing.EndConnection();
13: connectionOutgoing=connectToHost{ext Parent| PandPort,
groupName, password);
14: if connectionOutgoing.isAcceptedAsChild()==trughen
15: connected=true;
16: connectionPar ent=connectionOutgoing;
17: end if
18: end while
19: endif
20: end if
Algorithm 3: Joining a Group
1: Connectionl ncoming=ReceiveConnectionRequest();
2: if leftChild==null then
3: leftChild=Connectionlncoming
4: leftChild.sendConfirmationToChild();
5: else
6: if rigthChild==nullthen
7 rightChil d=Connectionl ncoming
8: rightChild.sendConfirmationToChild();
9: ¢dse
10: Connectionincoming.sendConnecto ToHost(ti@sparent | PandPort)
11: endif
12: end if

Algorithm 4: Attending a Joining request

heuristic is shown in Figure 3. ThextParent values are determined in each node
as follows:

e Node 8 is a leaf of the tree, thus its own IP address and posed as theext-
Parent value. Node 4 does the same thing, as it has only one childk (h&s room

1092

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

Next Parent:5

T TreeWeight 8
(==L Weight: 4 Rweight : 3 ——
. S PP PRP L < AN-
- 9
Next Parent:6 .
TreeWeight: 4
L'ee. hel_thR e 1 (] , | Nextparents
weight : 2 Rweight: — K —Gk. TreeWeight: 3
." Lweight : 1 Rweight: 1
Next Parent:4 2 Next Parent Host, * & 3
TreeWeight: 2 . N\ AR v/ N\
Lweight : 1 Rweight: 0 | o~ ||_ |
p—— =—) | e NextParent7
—_— SUTEN ¢ = TreeWeight: 1
4 6 5 7 Lweight : 0 Rweight: 0
Next Parent:6 Next Parent:5
TreeWeight: 1 TreeWeight: 1
] Lweight : 0 Rweight : 0 Lweight : 0 Rweight: 0
Primiminn N
8
Next Parent:8
TreeWeight: 1

Lweight : 0 Rweight: 0

Fig. 3. Improved Join Heuristic

for one more host). Node 2 updatesnestParent with the information received
from its children, selecting theextParent information from node 6 (where the
least weighted subtree is) and sends this information feeitent (node 1).

e Node 3 sets itsmextParent with the value received from node 5 (in equal condi-
tions selects by default the value from the left) and senttsnbde 1.

e Node 1 will also set itsiextParent to the one received from its least weighted
subtree, in this case, the IP address and port of node Snéttearent received
from its right child). When a new host (node 9) wanting to jtiie group arrives,
it will be immediately forwarded to the node 5, which will imporate it as a
leaf.

Each node stores th@xtParent and tree weight values received from its children.
With these values, a node calculates its aweRtParent and tree weight values
and sends them to its parent. The goal of this process is tonguize the subtree
state bellow each node. When the overlay structure chatigesffected nodes
will have to recalculate their own tree weight anektParent values and, in case
the summarizing values have changed, a chain of ascendintigptmessages will
be triggered.

5.2 Enabling Connection Restricted Hosts (CRHS)

To allow hosts behind firewalls or NATSs, a slight extensiothi®previous heuristic
is required to allow them only as leaves of the overlay tree.

When all the leaves of a subtree are CRHs hosts, it will notdssiple to incor-
porate more hosts of this kind. As a consequence, a new bou@ble called
allowCRHSs is stored by each node to know whether a subtree is capabteepa
ing join requests from CRHSs. This information, togetherhatiie nextParent and

1093

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

-
<5 —J
[——]
|| ||
[— —
Z e
3 9
Normal Host
- X
e ——
CRHs —=

Fig. 4. Rotation of a connection restricted child

tree weight values, is packed in control messages. To keds@R leaves, when
a host having both children and at least a CRH gets a conne@guest from a
non-CRH, it will incorporate it by performing a rotation. Alepicted in Figure 4,
a rotation is performed as follows:

(1) Itwill ask its CRH leaf to connect to the new incoming host
(2) The CRH leaf will reconnect to the new incoming host.
(3) The new host will be accepted as a child in the place wher€RH was.

As a consequence, every host having a CRH child will setextParent variable
to his own address, as a non-CRH will always be incorporaigé votation. Al-
gorithm 5 describes the full heuristic for allowing all typef hosts, including the
rotation of a CRH child by replacing it with a standard joigimost.

It is worth mentioning that in GMAC groups are formed increnatly. Conse-
guently, CRHSs join-requests will be refused if the curreeetdoes not support
more CRHSs. Nevertheless, the application using GMAC cauldlément a mech-
anism where CRHSs retry to connect after a certain amountd,tivaiting for a
non-CRH connection or a CRHs departure. An example of théduwiristic, allow-
ing CRHSs, is shown in Figure 5:

e Hosts 4, 6, 7 and 8 are CRHSs.

e Both children of Node 2 are CRHs, thus it setlowCRHs to false (it is not
capable of accepting more CRHS).

e Node 5 setallowCRHsto true, as it only has one child.

e Node 3 gets this information and setsowCRHs to true, as node 5 is able to
accept join requests from CRHs. Nevertheless, it setadkt@arent value to its
own address and port, as a rotation would be needed if a ndrosalwants to
join in the future.

e Node 1 (the root node) will get:

- From node 2: the address and port of node @eaParent, 3 as the tree weight,
and that it does not allow any more CRHSs.

1094

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

1: Connectionl ncoming=ReceiveConnectionRequest();
2: if leftChild==null then
3: leftChild=Connectionl ncoming

4: leftChild.sendConfirmationToChild();
5: else
6: if rigthChild==null then
7 rightChild=Connectionl ncoming;
8: rightChild.sendConfirmationToChild();
9: ¢dse
10: if !Connectionl ncoming.isCRHthen
11: if leftChild.isCRH()then
12: leftChild.sendConnectToHos§tonnectionl ncoming.IPandPort());
13: [eftChil d=Connectionl ncoming;
14: leftChild.sendConfirmationToChild();
15: else
16: if rightChild.isCRH()then
17: rightChild.sendConnectToHogtfnnectionl ncoming.IPand-
Port());
18: rightChild=Connectionl ncoming;
19: rightChild.sendConfirmationToChild();
20: else
21: Connectionincoming.sendConnectoToHost(this.-
nexparent! PandPort);
22: end if
23: end if
24: else
25: if thisallowCRH then
26: Connectionincoming.sendConnectToHost(thest. parentCRH | P-
andPort);
27: else
28: Connectionincoming.sendNoMoreCRHsAllowedNotificafion
Child();
29: end if
30: end if
31: endif
32: end if

Algorithm 5: Handling a Join request, full heuristic.

- From node 3: the address and port of node BeaParent, 4 as the tree weight,
and that it allows CRHSs.

Thus, when a new host (host number 9) wants to join the graupillisend to
node 1 (the root) a connection request, which will be deljatepending on
whether the new host is a CRH or not.

1095

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

Node 9 willing to Join the group.
Next ParentR: 3 allowCRHs = TRUE The root will delegate it depending on if
Next ParentL: 2 allowCRHs = FALSE it is a CRHor not.
AllowCRHs = True
TreeWeight 8

Lweight: 3 Rweight: 4 H =l
- — =

.........

=N -7 . ===

L Q«'

1 _..nonC fo 9
TreeWeight: 3 g f,"
Lweight : 1 Rweight: 1 . TreeWeight 4
||_ A ||_ Lweight: 2 Rweight: 1

'E_—I Next Parent:2 =B Next Parent:5
23>, AllowCRHSs = false : :

Key:
e —
Xl |X TreeWeight 2 | === Normal Host
" . |_ Lweight: 1 Rweight: 0 | AIY
== == = === =mm CRHs
& AN < =\ - L A ‘
6 5 7

TreeWeight 1 TreeWeight: 1 Next Parent:5 TreeWeight: 1

AllowCRHs = true

I

:__-,; TreeWeight 1

8

Fig. 5. Heuristic for allowing CRHs

It is important to notice that when tlalowCRHs values of a node’s children differ,
for example node 3 in Figure 5, it must setriextParent value to its own address
and port, as it will have to decide where to delegate join estgidepending on the
connectivity capabilities of the incoming host.

Even though others solutions are possible, allowing CRHe@ages of the tree
leads to a simple, clean and convenient solution. OthesipbBes, such as having
levels of intermediate CRHs (where CRHs and non-CRHs atejrwould add
extra complexity to the joining and failure recovery algoms. In addition, this
would admit at most 66.7% CRHs, compared to 50% of having CBiig as

leaves. Other possible approach is NAT traversal [28-30]clvenables CRHs
to connect directly to each other. However, this approach avaided as it could
bypass local network restrictions and policies.

5.3 GMAC Registry

As explained earlier, the main requirement of the GMAC regiss that it has
to be globally accessible in the Internet, working as a doapsor starting place
for hosts wishing to join a certain group. The GMAC registiygure 6) has two
responsibilities:

e Publish the roots of the groups: sends the root address ahdfp@group to a
host intending to join it, provided that the correct groupnesand password is
given.

1096

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

Newhost

Fig. 6. GMAC registry

¢ Replace the published root: provide a mechanism for repdeipublished group
root in case it fails or leaves.

This component has been materialized as a separate Welbajmpliand imple-
mented as a cluster of redundant servers, thus relialslipt compromised.

5.4 Failure Recovery

GMAC uses a fast failure recovery mechanism, rather thatementing a failure
avoidance strategy. When a node fails or leaves a grouprebertust be restruc-
tured in order to continue providing multicast support te test of the group. This
reorganization is done by the remaining members in a desdezgtd way as follows:

e The parent node, which had the failing node as a child, josid the connections
to it, updates its state information and sends it to its owepa

¢ Children nodes, which had the failing node as its parentt mag®nnect to the
tree by sending a connection request to the root.

For the non-adjacent nodes downward the one that failedyaeation is trans-
parent, as they will be reconnected along with the orpharesiobh this way, a
node failure is handled by reconnecting its children, whghccomplished in a
decentralized manner. In addition, tree reorganizationlues at most two node
reconnections, thus the computational cost of a failurdilidegarithmic over the

number of nodes. In Algorithms 6 and 7 the failure recovegpathm is described
from the child and the parent point of view respectivelyfey7 depicts the GMAC
failure recovery mechanism. Suppose node 3 leaves the grbepoot, which had
node 3 as a child, just releases the connection. Both “ofphaaies 5 and 7 will

reconnect to the root keeping their current children, tlaigadly a subtree is being
reconnected. In this case, the root first handles node’siestdgncorporating it as

1097

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.

1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"
The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

connected=false

while root Found==falsedo
connectionOutgoing=connectToHostot | PandPort,groupName, password);

if root not responding afterretriesthen
root| PandPort=GroupRegistry.claimToBeTheRoobft| PandPort,

groupName, password, myl PandPort);

if rootl PandPort==myl PandPort then
rootFound=true //claim succeded,(else other one claimed first, te ne

root| PandPort will be tried)
end if
else
rootFound=true; //the root responded

end if
end while
goto Algorithm 3 line 6.

Algorithm 6: Recovering from a parent failure

1: control Message=connectionChild.receiveControlMessage();
2: updateChildStatelnformatiocgntrol Message);

3: recalculateNextParent();

4: generate and send new controlMessage to parent

Algorithm 7: Recovering from a child failure

: = 2
Group Registry
||
- : Node 3 fails
2 3
5 7
| I il [i |
3 4 —— =4 | m |} = =
B 5 5 7 7 6 = = = =
9 [E) 1 15
W o | T B o M
T e e e A aEm e e _— = =
— = o [— ———— (=
B 12 10 14 9 13) 15 /& 12 10 14 —
7
| | |
= == =
= — —
16 17 16
; | s .
2 ~—-1
= X
w 1

T~ e || V
ok Ry ha
ﬁ _ : Group Registry
= = 4 ; =

. 7. Failure recovery

Fig

1098

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

its right child. Next, the root accepts node 7 request bygigiag the join request
to node 13.

A special case arises when the node that leaves the group redh itself, since
orphan nodes will fail when attempting to reconnect to itefigiore, as these nodes
notice the root is missing or not responding they will ask g¢ineup registry to
become the root themselves viaclaimRoot message. ThislaimRoot message
contains the address and port of the supposed failing rantler to let the GMAC
registry check if the received root address and port coomrdp to the published
one (i.e. that it has not been previously changed). Then MAG registry will
verify that it is really failing, and provided this is true will accept the root claim
message and publish the new root address and port for thp.grou

Although the final tree is not completely balanced, the dexerlay performance
is not compromised. Besides, the tree will tend to recogdvaiance as new nodes
join the tree. The failure recovery mechanism in GMAC is tasd simple, and nei-
ther extra control links, nor extra control state inforroatneeds to be maintained
in the nodes for failure resilience purposes. As a consemegBMAC approach
is to detect and reconnect disconnected nodes immedisatiher than avoiding
nodes disconnection by adding redundancy or complex himstis

A claimRoot message is rejected if the included root information doésvabch the
GMAC registry published root information. In such cases ggsage containing the
updated root information is sent back to the claiming nodhes Will happen after a
root fails and both orphan children sendamRoot message to the group registry;
the first one to arrive will succeed, while the second will egcted. However the
second one, when rejected, will get the updated root infiamawhich in this
case, is the succeeding orphan address and port, i.e. theatfer the group. For
this special case, there will be an extra recovery delaytaltige waiting time the
non succeeding orphan node must wait until it gets the netvaddress.

This root substitution method could be seen as the only rmesimein GMAC not

fully decentralized, as, in order to join a group, a new noai@a ask for the root
address to an already connected member instead of askiggahge registry. As a
consequence, only when both, the group registry and theofoatgroup fail, the
root orphans would be unable to replace the root and the groud be divided

in two. Although this case in unlikely to occur, group avhildy must not be com-
promised. This is why the group registry is implemented alsister of redundant
servers.

Every time subtrees get disconnected, current messagesdsireg the tree may be
lost. To solve this problem, a first attempt might be to stordalivered messages
in buffers every time an adjacent node fails. Next, the raected subtree sends
a multicast message to contact the nodes that were adjddénpoevious parent.
Subsequently, missing messages could be exchanged. Fhsaah fails when a

1099

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

Application Level

GroupCast

Overlay Level Abstract-TreeMaintenance }‘—l

[] ' ConnectionManager

’ TreeMaintenance ' ’ TreeMaintenanceNAT '

:

l NodeAdministrator l

L,

lParentAdminisxrator] l ChildAdministrator

Connection Level

‘ ConnectionServer

’ Connection |

L |

‘ ConnectionControl I I ConnectionData

Fig. 8. GMAC Class Diagram

parent and a child node fail at nearly the same time. To avugligroblem the
reconnected node should ask for all undelivered messageés itnee, generating
many replicated messages and possibly congestion. Thisyisivessage recovery
is optional in GMAC, allowing the specific applications ugi@MAC to decide
which approach to use depending on their communicationirements. For the
case of MoviLog, as multicast messages represent changjes gnoup state, syn-
chronizing the reconnected subtree is enough.

6 Implementation

GMAC has been implemented in Java. Java has many desiralplerties that ease
application development and deployment. Some of them até-threading, in-
heritance, object orientation, portability and a well kmo#PI, just to mention a
few. Figure 8 depicts the simplified UML class diagram of GMix@plementation.
The main responsibilities are divided in three clas€gmnect i onManager,

Tr eeMai nt enace andG oupCast . The whole design was done to favour flex-
ibility. The Gr oupCast class provides a number of methods for using GMAC

1100

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

services, th&€onnect i onManager issues all TCP connections and fheee-
Mai nt enace is responsible for keeping the overlay structure. Inhecéawas
used to distinguish standard hosts from connection réstiicnes, and to keep the
possibility of adding different implementation strategapen.

TheConnect i onManager class manages all connections. It has an instance of
the Connect i onSer ver, which listens for incoming connections on an open
port. Each time a new connection arrives, a new thread hsuidénd the hand-
shaking process is started. There are 4 types of connections

Incoming Connection: A connection a host receives.

Outgoing Connection: A connection a host starts.

Control Connection: The connection where ascending cbmiessages are sent.
Data Connection: The connection where data messages asenitted.

The handshaking process is done as follows.Tdwenect i onSer ver listenson
the open port for incoming connections. If the joining resjuzan be satisfied, the
incoming connection turns into a control connection, asaleg in the double link
schema in Section 4. Once this control connection is estadyi a data connection
is created with a similar process.

TheTr eeMai nt enace class uses BodeAdni ni st r at or class that, in turn,

has an instance of théar ent Admi ni st r at or class and two instances of the
Chi | dAdm ni st r at or class, one for each child. These instances have the con-
trol and data connections for each adjacent node. Beslugsstore th@extParent,
weigh andallowCRHs values for each subtree (in the case of the child instances).

GMAC has been developed as a Java library to allow develdpeuse GMAC
multicast services easily. For example, to join a group gm@mmmer has to provide
GMAC with the group name, password, and the registry IP asddaed port. The
following code shows the steps for joining a GMAC group chiEROUPNAMEL:

GroupCast groupCast = new G oupCast (" GROUPNAMEL", "PASSWORD1", gnmc.com ar, 2000);
groupCast. startListeninglnPort(3333);
groupCast . joi nG oup();

Hosts behind NATs or firewalls not allowed by network adntiaison policies to

either use port-forwarding or having an open port will beateel as CRHs. For
non-CRH, only one reachable open port in the range 1024-5548t be pro-

vided so as not to be considered a CHR by GMAC. This port wilubed by the

Connect i onSer ver to attend incoming connections.

Once connected, messages can be sent to the group. Theifgllexample shows
how to send String messages to the whole group:
public void sendString(String nmessage) {

Dat agr anPacket dp= new Dat agr anPacket (message. get Byt es(), nessage. | ength());
t hi s. groupcast. send(dp);

1101

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

The code below shows how to receive messages from the group:

Public void run () {
Dat agr anPacket newPacket ;
while (true) {
newPacket = this.groupcast.receive();
t hi s. deal Wt hPacket (newPacket) ;

}
}

Java provides an API for broadcasting and multicasting egess represented as
an instance of th®at agr anPacket class. Many existing applications already
use this API. As the previous examples show, in GMACHa¢ agr anPacket
abstraction is used for message transfers as well. How#hweris only done for
easily porting to GMAC applications based on the Java APbfoadcasting and
multicasting, since TCP connections are used underneath.

The group registry is implemented as an independent apiplicad cluster of re-
dundant servers based on Enterprise Java Beans [31] isauaddriess availability.
When a node ask the registry to join a certain group givenitbemname and pass-
word, if the given group name does not exist, the group nggestts up a new group
with the joining node as the root. The root substitution nagtgem is synchronized
at group level in other to attend only one claim root at thestimhile other requests
are processed concurrently. Periodically, the group tggissues a connection to
each published group root to check if they are is still rugnmemoving the non
responding ones.

7 Experimental Results

The alternatives described in Section 3 provide multicappert to applications
with very particular multicast requirements. Solutiongoilving a single sender
broadcasting media try to maximize bandwidth, while cosfieing oriented appli-
cations require low latency as well, though they may alloacgful degradation.

GMAC is intended to allow large groups to communicate by sepgdmall mul-
ticast messages. The main features of GMAC are decentrahzacalability and
low overhead, while transmission requirements are notidered critical. Never-
theless, it is desirable to analyze and evaluate GMAC peidoce to determine
how it meets MoviLog requirements and to have a better utalelgng of GMAC
behavior.

While unicast connections are usually measured only in gesfrbandwidth and
latency, for GMAC group communications, the most relevapegts to consider
are:

e End-to-end group propagation delay: is the time required for a message to reach

1102

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

the farthest group member.

e Group latency: is the maximum delay, from the application point of view, be-
tween a sender and the receivers. Within a distribution la¢ency is the longest
end-to-end delay between any pair of nodes.

e Throughput: is the maximum throughput, from the receiving applicatiposit
of view, that a group can provide. Within a distribution {re@des with less
bandwidth may act as bottlenecks, thus limiting the oveyallp bandwidth.

e Protocol overhead: this metric takes into account the network traffic that does
not involve application data, including control messagaguired to build and
maintain the overlay structure.

e Link stress: is the number of duplicate packets on the same physical link.

¢ Network distance: At the application level, network distance is generallatetl
to latency, assuming that more latency implies more cost.

e Failure recovery: the time required by the overlay to recover from failures in
nodes.

Several simulations were made in order to evaluate GMAC. G\Wvas compared
with sequential unicast and two MSTs (Minimum Spanning $yeariants, one
maximizing the bandwidth and the other minimizing latentlyis could be seen
as the approaches adopted by NARADA and ALMI, respectivéig important

to note that such MST trees are used as theoretical bousdarithe metrics they
optimize. No other overlay tree can achieve better resaita specific metric than
a MST built under that measure. Moreover, these MSTs weltevernin an static

environment. Note that it would be very difficult to build then real conditions,
since it would be necessary to know the network topology édetrics in ad-
vance, and to assume they are static, something not likélggpen in the Internet.

As the implementations of the alternatives described irti@e@ are not always
available, or they do not support groups with similar sizeges as GMAC, the
number of possible experimental comparisons was limitegkelktheless, some
comparisons with approaches such as NARADA, NICE and LARKewmade

when data was available.

In order to generate the simulations, hosts were placedhdbm in a bi-dimen-
sional space. Each host was assigned a bandwidth betweeard IR &B/s, while
latency varied from 100 to 665 ms between any pair of themak assumed that
these magnitudes were symmetricaHB = B <—A). Furthermore, it was consid-
ered that any host could transmit data messages with equizdipitity. It is impor-
tant to notice that knowing the topology in advance, whi@sites is static, favors
the MST alternatives. Therefore this scenario is rathesiutd GMAC.

Additionally, experiments were done to evaluate GMAC witlowlLog specific
group communication requirements. To handle code molaftigiently, each Mo-
viLog platform needs to multicast information in the follmg settings:

1103

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

e Setting A: Each MoviLog platform needs to announce its newilalle re-
sources, as well as disposing the old ones. For this kindafrimation, MoviLog
sends, in average, two messages every 10 minutes. Eachgaé&ssaan approx-
imated size of 2KB.

e Setting B: Some specific MoviLog platform information mustshared period-
ically. This information includes MoviLog metrics and cent control state in-
formation such as CPU load, number of active agents, mensagea) etc. This
type of messages are sent twice in a minute and are 150 Bytgs lo

In order to avoid traffic congestion, the maximum number ofipi@ants in a group

is determined by the node with less bandwidth capacity.dfritbmber of partici-

pants grows further, the node with lower bandwidth couldasca bottleneck, and
congestion may occur. For example, the maximum number oflmeesrsupported
for the case of MoviLog, when 15KB/s is the bandwidth of a nading as bottle-

neck, is:

e Setting A: 2 KB * 2 / 600 seconds = 0.0066 KB per second = 2250/225
hosts.

e Setting B: 0.150 KB * 2 / 60 seconds = 0.005 KB per second = 3060500
hosts.

e Both: 0.005+0.0066 = 0.01166 KB per second = 642 hosts.

These values provide an estimate of the feasible scalabiliGMAC, where a
node limited to a bandwidth of only 15KB/s is retransmittimgssages. In addi-
tion, a typical MoviLog deployment consists of approxima#00 hosts. Note that
although GMAC does not currently address congestion chitinumbers shown
above suggests that GMAC is adequate given its scalal@gyirements.

7.1 End-to-end group propagation delay

Figures 9 and 10 show the time in seconds required by a randa® t© send
100KB to all the group members. A message of 100KB was usedwue &a better
insight of how the node bandwidth affected the overlay tResults concerning
MoviLog requirements will be shown subsequently. Figurd@vgs that the alter-
native of using only unicast is not viable when groups argdaFigure 10 shows in
more detail the results for GMAC average and worst case, lantito MST alter-
natives. For the worst case, each node in the longest patimnetl by bottlenecks
of 15KB/s bandwidth and 665ms latency. The MST latency aagitdas poor per-
formance as it does not take into account bandwidth meffies. MST Bandwidth
was built optimizing a 100KB message transmission, thusithihe best that can
be achieved in an overlay tree. In average GMAC scales wagtlraximating the
boundaries imposed by the MST Bandwidth. Standard devisitad about 9% can
be seen as error bars, showing that the delivery time vary @méw seconds. It

1104

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

3000

Unicast - j=
GMAC AVG ---e---

. GMAC Worst Case -—#--
2500 MST Latency %
MST Bandwidth ——

)

(]

2,

o

>

o

o

o 2000

=

© 1500 w

S

St

-

- 1000

s

2 500 rd

g =

[S UTUUUPR SO i ... ;
= | i i izt re e seles oo cecmiee aa oelesioe ee oe eis

0 100 200 300 400 500 600 700 800 900 10001100
Number of nodes

Fig. 9. Time (in seconds) to send a 100KB message

300 ‘ |
o GMAC AVG -~ -
& GMAC Worst Case --#-- . x
‘o 250 MST Latengy - | e
3 MST Bandwidth —#se""
© 200
g O L N Bt -m
e . - s
g 190 e
8 ,.,l"j-"";/]
5 ’./ '* - B T i !
8 . . i /—‘/ ~
o
[}
£
'_

200 400 600 800 1000

Number of Nodes

Fig. 10. Time (in seconds) to send a 100KB message (withdaast)

is worth noting that when the number of nodes grows, they inecdoser to each
other and the MST configuration impact tends to be less deciB®esults corre-
sponding to MoviLog requirements are shown in Figure 11.firhe required until

the last node receives a 2KB message for MoviLog setting Aasve, both for the

simulation results and the model worst and best case. Fanduel worst case,
15KB/s bandwidth and 665ms lantency links were assumeduatean 1, whereas
for the model best case, 70KB/s and 100ms values were usedeTanges work
as over-dimensioned boundaries for the MoviLog settinge Tdsults show how
GMAC scales, since just a few seconds are required for a megsareach the
whole group with a logarithmic behavior.

1105

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

R . A U
20
ek
xa& Model Worst =%
T 15 Model Best g
8 *x Simulation Result —+—
3
o *
0 10
S %
5 %’”’*’/4%’%%
5|
fl/ B B [&5 B &
=S
0
0 200 400 600 800 1000

Number of Nodes

Fig. 11. 2KB MoviLog data message delay

18 ‘ ‘ ‘ T T
\ Unicast g
GMAC -~ e |
16
\ ; ; ; MST | atency ----%--..-
2
g 12
>
s}
X 10
2 s
3 6
= f 5100 NRO R S [0S VTR O SSURRUY SR BRI SURRINS RN %
Fog
2
B
I]

100 200 300 400 500 600 700 800 900 1000
Number of Nodes

Fig. 12. Maximum group throughput

7.2 Throughput

Figure 12 shows the group throughput that can be achievddtiagt different ap-
proaches. This metric is important for applications reiggiaudio/video streaming,
which is not of particular interest to GMAC. In distributitnees, less capable nodes
act as bottlenecks, limiting the overall group to their baith. In GMAC, bottle-
neck nodes may have to retransmit messages, thus the dheoalhput would be
restricted to half of the less capable host bandwidth. Itagtivnoting that GMAC
was developed for homogeneous groups, thus bottlenecls@oedess likely to ap-
pear. Furthermore, as mentioned earlier, GMAC is not carezeabout providing
media streaming. Nevertheless, in order to scale withautble, there is a mini-
mum bandwidth requirement in each node depending on thedransfer rate de-
sired. For the MoviLog settings, the minimum bandwidth ieegiin each node is
depicted in Figure 13. A typical MoviLog deployment with 480sts requires only

1106

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

70

% GMAC —+—
NARADA - %-----
60 NICE & -

50

40

30 |

Bandwidth Usage (KB/s)

20 H

10 [

NE

500 1000 1500 2000
Number of Nodes

Fig. 13. MoviLog bandwidth requirements

10KB/s in every node in order to work properly under GMAC. B @inimizes
the control message exchanges, thus reducing the proteediead. Conversely,
other approaches, such as NARADA, consume too much banuwaiut network
resources for optimization purposes. In GMAC, scalabiityot compromised, as
the required bandwidth in each node is only affected by theusrnof data that
node is forwarding and, as detailed next, the protocol @aahis minimum and
not affected by the group size.

7.3 Protocol Overhead

The protocol overhead metric considers network traffic toets not represent use-
ful application data. In GMAC the information required tollduand maintain the
binary tree is minimal, since this information is transetbnly when a node leaves
or joins the group. In contrast, alternatives using somd kinoptimization intro-
duce a considerable overhead. This is due to the fact thag maasurements be-
tween hosts are required for building and maintaining therlay structures. For
instance, NARADA introduces an exponential overhead of %64 members
and 4% for 128, with a single host streaming at 128kbps [8,BRis overhead
tends to grow in large groups, confining optimized structucesmall groups, or
restricting them to worse approximations based on compéexistics. Nice and
LARK are application level protocols intended to reduce ¢kponential control
overhead of NARADA.

GMAC control overhead is only affected by the failure anchijog rates. The fail-
ure rates used for NICE were 16 members in 100 seconds in @ gfol28. Al-
though GMAC assumes that group members are stable, thisdadéte was used
in order to get fair comparisons. Table 1 shows the protoeetteead bandwidth
produced by NARADA (with 30 seconds periodic refresh ratd;E, LARK and

1107

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

120 : : ;
NARADA
NICE - Koo
LARK -~ e - |
100 W GMAC —+—
T 80
i)
< g
® 60
(] i
<
g
@) 40
20 |
reerrazene gt W *
0 500 1000 1500 2000 2500 3000
Number of Nodes
Fig. 14. Protocol overhead comparison
6
5 *
I
)
X
g pEs
g 3 x>
2 .
(]
g 2p
3&% PP,
1¢
-
0 ¥ e

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Nodes

Fig. 15. Protocol overhead (without NARADA)

25 GMAC —+—

15 F g

Overhead (KB/s)

0.5

0 100 200 300 400 500 600 700 800
Number of Nodes

Fig. 16. Protocol overhead

1108

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"
The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

Table 1

Protocol overhead (in KB/s)

Nodes NARADA-30 NICE LARK GMAC

8 0.61 1.54 = 0.000818
16 2.94 0.87 - 0.001646
32 9.23 1.03 - 0.003302
64 26.20 1.20 1.42 0.006645

128 65.62 1.19 1.39 0.013190
256 96.62 1.36 1.40 0.026281
512 199.96 1.93 1.42 0.052393
1024 - 2.81 1.41 0.104827
1560 - 3.28 - 0.16154
2048 - 5.18 - 0.210454
4000 - - - 0.412099

GMAC according to different group sizes. Figure 14 shows MARADA expo-
nential protocol overhead prevents it from scaling. In Fegul6 and 15 the same
metrics are shown with a different scale. It is worth mentigrthat some values
for larger group sizes are missing since they were not adaifar the alternatives
compared [16,32].

While NICE and LARK reduce NARADA exponential overhead, iM&C, as no
optimization is made, the protocol overhead is minimal, &msl only affected by
the overall joining or departure rate. In order to evaluaMA® the failure rates
proposed by the alternatives where used, where 12.5% ofatiesrfrom a group
fail within 100 seconds. For example for a group of 3000 np8@éS nodes are sup-
posed to fail in that time. The failure rates in MoviLog ptaths usually are much
lower (less than 0.5% in 100 seconds). In addition, the paltoverhead presented
in the alternatives do not include failure recovery ovedsea\s a consequence,
GMAC probed to be the one with less protocol overhead in Mogikettings.

7.4 Group Latency

One important metric is the group latency, which is the I@tgand-to-end delay
between any pair of nodes. Figure 17 shows the logarithmhender for GMAC
end-to-end group delay simulation results for data androbniessages. The la-
tency range for the underlying unicast links varied fromrb8Qo 665ms, a latency
range likely to be found in the Internet. The delay was messior the average
and worst scenario (when every node in the longest path Ham$6tency), for

1109

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

20 =
...... aa:;,
15 Bl
Data Message Latency AVG -
— @ Data Message Latency WORST -
b Data Message Latency BEST - - e --
K22 o
& 10
c
& £ N N k
g __________ X %* ------------- *
x
P Py I P P e L
0
0 500 1000 1500 2000 2500 3000 3500 4000
Number of Nodes
(a) Data latency (group Latency)
" Control Meséage La{tency AVG —+—
10 Control Message Latency WORST ---#--
Control Message Latency BEST ---0---
= e e e =
— -
[D A Rt
% /_,.l-_ L
= 6 -
(8]
c P
§C L]
S 4 .
P s
2r¥
P e Lo TR o N - BN B e
0

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Nodes

(b) Control Latency
Fig. 17. Group latency

the following cases:

e Data message latency (Also known as group latency): Represents the time re-
quired to reach the farthest node from any other node in tharpitree.

e Control message latency: Represents the time for a control message to reach the
root, since control messages flow bottom-up in GMAC.

In MoviLog it is desirable that data messages reach all mesrdpgckly. The same
happens with control messages, which are sent when a nodejdeaves the over-
lay. As control messages flow bottom-up, in the worst caseafdontrol message
would have to reach the root, generatinglogontrol messages.

It is worth mentioning that the standard deviations (showremor bars) for the
average cases are far from the best and worst case bounsladeshe paths delay
is counterbalanced by high and low latency links.

1110

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

4 T T T T T T T T
20000 links, 10000 Nodes Underlay —+—
35 | 12000 links, 6000 Nodes Underlay ---->--- |
' 18000 links, 6000 Nodes Underlay -
3
25
1]
[%]
g 2
n
15
1
0.5
0
100 200 300 400 500 600 700 800 900 1000
Group Size
Fig. 18. Link Stress
512 — ;
Unicast —+—
256 DVMRP ---->--- 4
Narada -
128 GMAC ---0--- 4

.

64 i

32 \\0\ *
16 e

of Physical Links (log—scale)

"

/N

1 2 4 8 16 32 64 128
Stress of Physical Link (log—scale)

= N A~ ©

St

Fig. 19. Link Stress distribution

7.5 Network Level Metrics

As explained in Section 4.2, GMAC does not consider the Upitheynetwork prop-
erties when building the overlay. One of the disadvantagési®approach is that
messages may be sent several times over the same phydic&igare 18 shows
the average physical link stress for several Internet tmpotonfigurations created
with the BRITE topology generator [33,34] using the waxn@yology model. The
link stress distribution of GMAC, NARADA, sequential ungtaand DVMRP are
shown in Figure 19, reproducing the waxman generated tgp¢li024 nodes, and
3072) described in [8]. The stress of any physical link isastd for DVMRP (Dis-
tance Vector Multicast Routing Protocol). In sequentiatast some physical links
have a stress above 16, while in GMAC and NARADA the distitiuis more
balanced and no physical links have a stress larger thatiS.bEfavior is under-
standable, as the approach followed by GMAC is to relief therloaded senders.

1111

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

j GMAC‘.....'
MST Latency -
MST Bandwidth —+—

% of MST latency
[]
[]
[]

100 200 300 400 500 600 700 800 900 1000
Number of Nodes

Fig. 20. Latency as network distance

From the application level perspective, as the underlyigtyvork topology infor-
mation is not always available, the latency between hosiftéa used as a metric of
distance. The MST lantency approach minimizes the oveistthdce under this as-
sumption. The relation between the MST latency, the MST tédtith and GMAC
is shown in Figure 20, where the results are normalized veipect to the MST
lantecy. ALMI relies on this metric to build its overlay tteARADA, in con-
trast, suggests that this may not be the best choice, siecshibrtest path is not
always the fastest one [8]. Furthermore, the assumptidrothtene Internet latency
represents distance is not necessarily true.

To improve the resource utilization, some efforts take adoount the underlying
network when building overlay networks [35-38]. As expkinin Section 4.2,
GMAC refrains from using optimized schemes to minimize thetqcol over-
head, ease the overlay construction, maintenance, andfadcovery mechanisms.
Other approaches such as LARK [16] also relinquishes resautilization to in-
crease robustness.

On the other hand, media streaming applications should lve oumcerned about
resource utilization. As high bandwidth traffic is trangenik, it is worthwhile to
afford measurements costs in order to reduce the overallires utilization. Con-
versely, in GMAC, as sporadic small messages are sent, ibie important to not
overload the network by exchanging metrics between nodesx the management
of an optimized structure may imply more resource util@attosts.

7.6 Failure Recovery

Another important issue is the possibility of failure of semode. Even though
the probability of a node failure may be small, when grougslarge, this starts
to be a significant matter. When a failure occurs in an ovestaycture, members

1112

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

80

LARK‘ Keeon
70 NICE -~
GMAC —+—-"*
.- 7
< 60
(7]
X
— 50
(]
3
g 40
= L]
L
o 30
£
= 20
SRR S [OOSR SRR SRR SRR *
10
0
10 20 30 40 50 60 70
percentage of failures (100 node group)
Fig. 21. Failure recovery on a 100-node group
GMAC Recovery Time -
GMAC Recovery Time (root always fails)
4
g - I & fI—
§ 3 S W A SRS S *
8 R ;jk._u.)(. W eeemnnnn B |
o
e 2
[}
£
'_
1
0

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes

Fig. 22. GMAC Failure recovery

depending on the failing host, as well as the following dejegrts in the chain,
can get disconnected. Figure 21 shows the time requirecctvee from simulta-
neous failing hosts in a group with 100 members. As explain&lbsection 5.4,
GMAC quickly recovers from node failures by reincorporgtimmediately the
orphan nodes along with their subtrees in a decentralized laaddition to the
fact that the tree is not affected when a leaf fails, whichthiea case of GMAC,
corresponds to half of the group nodes, thus reducing theasion of the failure
recovery mechanism to half the failure probability.

However, recovery in optimized overlay structures, sucAldgll, is more expen-
sive because a host failure may trigger the reoptimizaticth@ whole structure,
producing additional protocol overhead. Moreover, compieuristics may be re-
quired in order to keep the diffusion group working until anaptimization is per-
formed. This is one of the issues that has hindered scdlainilapproaches based
on optimized overlay structures. Figure 22 shows the GMARak®r for larger

1113

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

groups when 10 nodes fail. In addition to the average regawvere, the time in-
cluding forcing always a root failure is shown. For the lati@se, one of the orphan
nodes will first replace the missing root, and afterwardgikecthe reconnection
requests from the other nodes. In both cases GMAC quickiyvexs from failures
in a scalable and decentralized way.

8 Conclusions

This paper presented GMAC, an overlay multicast networknfiobile software

agent platforms. These platforms reduce network usage byatmg code, thus
working with the resources locally. Using a binary tree aartay structure, GMAC

allows group communication between platforms spread adius Internet. The
entire functionality of GMAC is implemented in each hostla application level

in a decentralized and collaborative way, thus resporitsésifor message delivery,
tree building and recovery are distributed among the groembers.

The goal of GMAC is to provide multicast services to nonicait burst transmit-
ting applications in a scalable and robust way, where theittey is that over-
loaded hosts are relieved by delegating their transmisggponsibilities to their
neighbors. In addition, GMAC can be widely deployed, beeatisioes not rely
on special routers and its application program interfacempatible with the well
known Java native multicast service. Furthermore, GMAF askumes unicast as
the subjacent service, allowing any host in the Internets® ity even those with
connectivity restrictions such as hosts behind NATSs or falésy

Experimental results based on MoviLog requirements shatv@MAC is a good
choice for providing multicast services to groups of coasithle size with small
throughput transmission requirements. In contrast, agures based on optimized
structures present a number of problems such as the conypdégienerating these
structures, management overhead and failure recoveryMAGG these problems
are not present, as the complexity of generating its strac¢tunot affected by the
size of the group. In addition, protocol overhead is miniarad failure recovery is
fast and effective. To reduce construction and maintenaosts, GMAC does not
take additional metrics for optimization purposes. Acaogty, network resource
utilization is rather poor. This is one of the main drawbaok&MAC, however
this problem is also present in most overlay based apprsache

GMAC works in a fully decentralized way, building an overlagtwork as a bi-
nary tree. Once the tree is established, internal nodesafdsvincoming mes-
sages to their neighbors. This approach is possible sireeettursive nature of
the binary tree allows the ascending control message hieutitence a parent
node receives only one control message from each child, suizimg the con-
trol state information of that entire branch. Thus the uglMandes are not over-

1114

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

loaded by control messages. In contrast, most scalableogglhizing P2P ap-
proaches [24,18,22,39,25] do not have a defined overlayanktstructure that
could instrument a similar control message scheme. Morgmvihe near future it
would be possible to design a new fully decentralized P2Play@&etwork based
on GMAC, where queries would be multicasted instead of fldo@de other com-
plex content based heuristic) and still behave in a loganithmanner.

GMAC main contribution is to provide multicast services imecentralized and
robust way, where group members cooperate among each othéair way, mini-
mizing the protocol overhead and thus achieving great bitidya

GMAC proposes a new way of providing application-level noalst services, there-
fore new possibilities of future investigation arise, adlvas optimizations and
improvements on the current implementation. Some of them ar

e End-to-end Reliability: TCP connection links in the overlay network do not en-
sure reliability [40]. When a host in the group fails, theal#twas supposed
to forward may not be delivered. The same happens on theessbthat get
temporarily disconnected. Different alternatives for sagge delivery could be
provided in the future, depending on the applications megoénts. For instance,
approaches may encompass global message ordering forsmission, token
based message transmission, etc.

e Optimization: GMAC does not implement any kind of optimization on its struc
ture. Nevertheless by making some node swaps it would belppess improve
the global service performance (e.g. to detect bottlenedies and to move them
as leaves), reduce link stress, or take into account theduyeteeity of nodes and
links, however, preserving the binary structure introduced byntbdel.

e Group Publication Policies: The actual implementation of GMAC allows every
host to register a new group. However, this task should be #dgrsome autho-
rized entity, SO as to gain more control over group creatrmhadministration.

e Security: Some security issues must be improved. GMAC trusts hostsngwn
the name and password of a group. However, hosts could bestathfp behave
in an inadequate way, affecting the normal behavior of thelevgroup.

e Evaluation with other deployments: we are evaluating GMAC by using two ap-
plications developed with MoviLog, a meeting schedulertivagent system and
a workflow engine.

Acknowledgments

This research was supported by ANPCyT (Agencia Nacionatdm&cion Cienti-
ficay Tecnoldgica). We thank the anonymous reviewers far betpful comments
and suggestions to improve the quality of the paper.

1115

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

References

[1] A. Fuggetta, G. P. Picco, G. Vigna, Understanding Codéility, IEEE Transactions
on Software Engineering 24 (5) (1998) 362—375.

[2] D. B. Lange, M. Oshima, Seven good reasons for mobile sg&ommunications of
the ACM 42 (3) (1999) 88—89.

[3] A. Zunino, C. Mateos, M. Campo, Reactive Mobility by Rai: When Fail Means
Move, Information Systems Frontiers. Special Issue on Molomputing and
Communications 7 (2) (2005) 141-154.

[4] C. Mateos, A. Zunino, M. Campo, Extending movilog for popting web services,
Computer Languages, Systems & Structures 31 (1) (2007)111-3

[5] H. Eriksson, MBONE: the multicast backbone, Commuriaad of the ACM 37 (8)
(1994) 54-60.

[6] C. Diot, B. N. Levine, B. Lyles, H. Kassem, D. Balensiefé@deployment issues for
the IP multicast service and architecture, IEEE Network1)4Z000) 78—88.

[7] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, ALMI: An @igation level
multicast infrastructure, in: Proceedings of the 3rd USESmposium on Internet
Technologies and Systems (USITS '01), USENIX, San Franci€A, USA, 2001,
pp. 49-60.

[8] Y.-H. Chu, S. G. Rao, H. Zhang, A case for end system masticlEEE Journal on
Selected Areas in Communication (JSAC), Special Issue dawdiking Support for
Multicast 20 (8).

[9] I. Stoica, T. S. E. Ng, H. Zhang, REUNITE: A Recursive Uast Approach to
Multicast, in: Proceedings of the 2000 IEEE Computer and @amications Societies
Conference on Computer Communications (INFOCOM-00), IEE&s Alamitos,
2000, pp. 1644-1653.

[10] A. Zunino, M. Campo, C. Mateos, Simplifying Mobile AgeDevelopment Through
Reactive Mobility by Failure, in: G. Bittencourt, G. RamalliEds.), Advances in
Artificial Intelligence, Vol. 2507 of Lecture Notes in Conteu Science, Springer-
Verlag, 2002, pp. 163-174.

[11] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashpek W. O'Toole, Jr.,
Overcast: Reliable Multicasting with an Overlay Network; Proceedings of the
Fourth USENIX Symposium on Operating Systems Design andeimmgntation
(OSDI 2000), USENIX Assoc., Berkeley, CA, USA, 2000, pp. 1272.

[12] P. Francis, Yoid: Extending the internet multicasthétecture, Tech. rep., AT&T
Center for Internet Research at ICSI (ACIRI) (2000).

[13] B. Zhang, W. Wang, S. Jamin, D. Massey, L. Zhang, Uniael8 multicast delivery,
Computer Networks 50 (6) (2006) 781-806.

1116

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

[14] Y. Chawathe, Scattercast: an adaptable broadcasbdistn framework, Multimedia
Systems 9 (1) (2003) 104-118.

[15] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Soalapplication layer multicast,
in: SIGCOMM '02: Proceedings of the 2002 conference on Aggiions,
technologies, architectures, and protocols for compuiemgunications, ACM Press,
2002, pp. 205-217.

[16] S. Kandula, J.-K. Lee, J. C. Hou, LARK: a light-weighgsilient application-level
multicast protocol, in: IEEE 18 Annual Workshop on computer Communications
(CCW 2003), IEEE, 2003, pp. 201- 209.

[17] R. Steinmetz, K. Wehrle (Eds.), Peer-to-Peer SystamisApplications, Vol. 3485 of
Lecture Notes in Computer Science, Springer, 2005.

[18] M. Ripeanu, A. lamnitchi, I. Foster, Mapping the gniaehetwork, IEEE Internet
Computing 6 (1) (2002) 50-57.

[19] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in p¢epeer networks:
algorithms and evaluation, in: P2P Computing Systems, 88). Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Nethdsla2006, pp. 241-263.

[20] S. Androutsellis-Theotokis, D. Spinellis, A surveyper-to-peer content distribution
technologies, ACM Comput. Surv. 36 (4) (2004) 335-371.

[21] S. Ratnasamy, A scalable content-addressable netarlD. thesis, University of
California at Berkeley (2002).

[22] M. Castro, P. Druschel, A.-M. Kermarrec, A. I. T. Rowsty Scribe: A large-scale
and decentralized application-level multicast infrastuwe, IEEE Journal on Selected
Areas in Communications 20 (8) (2002) 1489-1499.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, J. D. idtdwicz, Bayeux:
an architecture for scalable and fault-tolerant wide-agata dissemination, in:
Proceedings of the 1M international workshop on Network and operating systems
support for digital audio and video, ACM, 2001, pp. 11-20.

[24] A. Rowstron, P. Druschel, Pastry: Scalable, deceantdl object location, and
routing for large-scale peer-to-peer systems, in: Prangsdof the 18' IFIP/ACM
International Conference on Distributed Systems Platfo¢iviiddleware), Vol. 2218
of Lecture Notes In Computer Science, Springer-Verlag,12¢p. 329-350.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdsep. D. Kubiatowicz,
Tapestry: A resilient global-scale overlay for service Idgment, IEEE Journal on
Selected Areas in Communications 22 (1) (2004) 41-53.

[26] P. Gotthelf, M. Mendoza, A. Zunino, C. Mateos, GMAC: Anvé&lay Multicast
Network for Mobile Agents, in: Proc. of the VI Argentine Syogum on Computing
Technology (AST 2005 - 34 JAIIO), 2005, pp. 20-24.

[27] W. Wang, H. Chang, A. Zeitoun, S. Jamin, Characterizingrded hosts in peer-
to-peer file sharing systems, in: In Proceedings of IEEE @ld@ommunications
Conference, Global Internet and Next Generation Netw@®@64, pp. 1539-1543.

1117

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

[28] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, ST 8\nple Traversal of User
Datagram Protocol (UDP) through Network Address Transta(®IATS), Internet
Engineering Task Force: RFC 3489 (March 2003).

[29] P. Francis, Is the internet going NUTSS?, IEEE Inte@emputing 7 (6) (2003) 94—
96.

[30] B. Ford, P. Srisuresh, D. Kegel, Peer-to-peer comnatigin across network address
translators, in; USENIX Annual Technical Conference, Gahdrack, USENIX,
2005, pp. 179-192.

[31] R. Monson-Haefel, Enterprise JavaBeans, O’'Reilly &séaates, Inc., Sebastopol,
CA, USA, 1999.

[32] S. Jin, A. Bestavros, Small-World Internet TopologigBossible Causes and
Implications on Scalability of End-System Multicast, Camgr Networks 50 (6)
(2006) 648—666.

[33] A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: An ajgaich to universal topology
generation, in: MASCOTS '01: Proceedings of the Ninth In&ional Symposium
in Modeling, Analysis and Simulation of Computer and Telaoaunication Systems
(MASCOTS'01), IEEE Computer Society, Washington, DC, U801, p. 346.

[34] A. Medina, I. Matta, J. Byers, On the origin of power laimsinternet topologies,
SIGCOMM Comput. Commun. Rev. 30 (2) (2000) 18-28.

[35] S. Ren, L. Guo, S. Jiang, X. Zhang, Sat-match: A selfstida topology matching
method to achieve low lookup latency in structured p2p @yeretworks, ipdps 01
(2004) 83a.

[36] Liu, Liu, Xiao, Ni, Zhang, Location-aware topology ncaing in P2P systems, in:
INFOCOM: The Conference on Computer Communications, joimtference of the
IEEE Computer and Communications Societies, Vol. 4, 20p42820-2230.

[37] S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker, Tagichlly-aware overlay
construction and server selection, in: Proceedings of ilse2&nnual Joint Conference
of the IEEE Computer and Communications Society (INFOCQ-0/I. 3 of
Proceedings IEEE INFOCOM 2002, IEEE Computer Society, d®éseay, NJ, USA,
2002, pp. 1190-1199.

[38] D. Zeinalipour-Yazti, V. Kalogeraki, Structuring tojmgically aware overlay networks
using domain names, Computer Networks 50 (16) (2006) 30@BR2:3
URL http://dx. doi.org/10.1016/j.comet. 2005. 12. 003

[39] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.. Kaashoek, F. Dabek,
H. Balakrishnan, Chord: A scalable peer-to-peer lookupviser for internet
applications, IEEE/ACM Transactions on Networking 11 @0@3) 17-32.

[40] Y. Amir, C. Danilov, Reliable communication in overlagtworks, in: Proceedings of
the IEEE International Conference on Dependable Systeh§Natworks (DSNO3),
IEEE Computer Society, Los Alamitos, CA, USA, 2003, pp. S8206-

1118

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

About the Authors

Pablo Gotthelf received his Systems Engineer degree from UNI-
CEN, Tandil, Argentina on February 2005. He is currently a
Ph.D. candidate in Computer Science focusing on P2P neswork
to support decentralized Virtual Organizations. His magA r
search interests include P2P systems, multi-agents sysiach
collaborative applications.

Algandro Zunino received a Ph.D. degree in Computer Science
from UNICEN in 2003. He is an Adjunct Professor at the Com-
puter Science Department since April 2006 and Assistant Re-
searcher at the National Council for Scientific and Techgickal
Research (CONICET) since July 2005. His research is focused
on distributed computing, including Grid computing, seevori-
ented computing and mobile agents. He has published over 30
papers in journals and conferences.

Cristian Mateos received a Ph.D. degree in Computer Science
from UNICEN, Tandil, Argentina, in 2008. He is a Teaching
Assistant at the Computer Science Department of UNICEN.
His recent thesis was on solutions to ease Grid applicatsn d
velopment and tuning through dependency injection and poli
cies. He is mainly interested in parallel and distributeabjpam-
ming, with a special emphasis on methods for gridifying appl
cations, application-level parallelization, Grid midabres and
platforms, Service-Oriented Computing and Web Services.

Marcelo Campo received a Ph.D. degree in Computer Science
from UFRGS, Porto Alegre, Brazil. He is an Associate Profes-
sor at the Computer Science Department and Head of the ISIS-
TAN. He is also a research fellow of the CONICET. His intesest
include intelligent aided software engineering, softwiaene-
works and architecture, agent technology and softwareliza+

tion. He has over 70 papers published in conferences anaigtsur
about software engineering topics.

1119

