
This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

GMAC: An Overlay Multicast Network for Mobile
Agent Platforms

Pablo Gotthelf1 Alejandro Zunino∗,1 Cristian Mateos1

Marcelo Campo1

ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil
(B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293) 440363. Fax.: +54 (2293)

440363

Abstract

The lack of proper support for multicast services in the Internet has hindered the widespread
use of applications that rely on group communication services such as mobile software
agents. This kind of applications, although do not require high bandwidth or heavy traffic,
need to cooperate in a scalable, fair and decentralized way.This paper presents GMAC, an
overlay network that implements all multicast related functionality, including membership
management and packet forwarding, in the end systems. GMAC introduces a new approach
for providing multicast services for mobile agent platforms in a decentralized way, where
group members cooperate in a fair way, minimizing the protocol overhead, thus achieving
great scalability. Simulations comparing GMAC with other approaches, in aspects such as
end-to-end group propagation delay, group latency, group bandwidth, protocol overhead,
resource utilization and failure recovery, show that GMAC is a scalable and robust solution
to provide multicast services in a decentralized way to mobile software agent platforms
with requirements similar to MoviLog.

Key words: Multicast networks; overlay networks; mobile software agents; P2P;
computer networks

1 Introduction

Mobile agents are software entities able to autonomously migrate their execution
to achieve their users’ goals [1]. The running state of a mobile agent can be saved,

∗ Corresponding Author.
Email address: azunino@exa.unicen.edu.ar (Alejandro Zunino).

1 Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Article published in Journal of Parallel and Distributed Computing 68 (2008) 1081–1096

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

moved to the location where a required resource is located, and be restored. As a
consequence, agent-resource interactions are local instead of remote, thus reducing
network usage. Besides efficient network usage, mobile software agents provide
advantages such as scalability, reliability and disconnected operations [2].

Special platforms are required to execute mobile agents by supplying them with the
resources and mechanisms they need. Although mobile software agents reduce net-
work load, their platforms often need to send small multicast messages to the other
platforms to coordinate themselves. For example, platforms such as MoviLog [3,4]
require multicast for providing group communication services to agents and for
managing their mobility. It is also desirable that these platforms cooperate au-
tonomously, fairly and do not rely on hierarchical or centralized components, as
they usually belong to independent organizations.

The lack of proper support for communicating a large number of distributed mobile
agent platforms in a decentralized way has been a hurdle to achieving true scala-
bility of mobile software systems in real settings. As a result, an easy deployable,
decentralized and scalable multicast service is a major requirement for the success
of mobile software agents in the Internet.

In order to support IP multicast on the Internet, the MBONE (Multicast Backbone)
has been built. The MBONE is a virtual network extended across the Internet that
supports IP multicast traffic [5]. Despite the need for multicast services, the useful-
ness of the MBONE is still limited [6]. Furthermore, the MBONE does not reach
all Internet users, since neither all routers, nor ISPs (Internet Service Providers)
support it.

An alternative for multicast communications that do not require special routers are
overlay multicast networks [7,8]. Overlay networks, instead of being supported at
the network level, are supported by user-level applications, relying only on uni-
cast as the subjacent service. In this way, neither special routers nor extra ISP in-
volvement is required. At present, many research efforts are being made to provide
multicast services through overlay networks [8,9]. Different alternatives were built
subject to the particular application requirements involved in each case.

GMAC has been developed to provide multicast services to MoviLog, taking into
consideration the following communication requirements:

• Burst transmission: Group members transmit small messages for short periods
of time (i.e. no data streaming).

• Stable groups: Members are supposed to use the service for long periods of time
(i.e. hosts do not join or leave the group very frequently).

• Solidarity among group members: Everyone in the group cooperates. Each mem-
ber is interested in other members receiving group messages, even those not sent
by it.

• Homogeneous groups and network links: Members have similar behavior and

1082

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

communication characteristics. Therefore transmission probability, connection
resources and communication demands are similar.

• Unknown Topology: In contrast with other kinds of networks, it is very difficult
to determine or take advantage of the Internet topology.

• Connection restricted clients: Multicast services to connection restricted hosts
should not be denied, though they may receive a degraded service. These un-
reachable hosts are restricted by firewalls and Network Address Translators (NATs)
that do not allow having open ports or using port-forwardingmechanisms.

Since none of the existing approaches completely meet thesecommunication re-
quirements, we have developed GMAC (Group Management AgentCast), an over-
lay multicast network for mobile agent platforms on the Internet. In particular, we
limited the scope of our research to MoviLog, a platform for mobile agents for the
WWW.

The main contribution of this work is to introduce a new approach of providing
scalable multicast services in the Internet, allowing independent entities with low
group communication requirements, such as mobile agent platforms, to cooperate
in a robust, fair and decentralized way.

The rest of the paper is structured as follows. The next section focuses on the
MoviLog platform and its multicast communication requirements. The most rele-
vant related approaches are discussed in Section 3. The GMACmodel is described
in Section 4. Group formation and recovery algorithms are described in Section 5.
In Section 6, we present implementation details and the application programming
interface of GMAC. Experimental results and comparisons with related approaches
are reported in Section 7. Finally, Section 8 presents the conclusions and future
work.

2 MoviLog

MoviLog [10] is a platform for mobile software agents based on the concept of
Reactive Mobility by Failure (RMF) [3]. RMF aims at simplifying mobile agent
development by allowing the programmer to delegate decisions on when and where
to migrate a mobile agent based on its resource requirements. The idea is that when
a mobile agent needs -at some point of its execution- a resource that is not available
at the local site, RMF acts by transferring the agent to a sitewhere the required
resource is offered. As a consequence mobility is transparent to the programmer,
agents are smaller and migrate faster [3].

MoviLog relies on servers called MARlets, which provide therun-time support
for executing mobile agents. In addition, MARlets provide services for sharing
resources such as programs, data or any other agent accessible asset. The backbone

1083

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

of the RMF run-time support is a distributed multi-agent system composed of non-
mobile agents called Protocol Name Servers (PNS). This system is in charge of
managing information about resources available at each host capable of executing
mobile agents. Each PNS can announce to others about new available resources,
resources that are no longer available and useful information for managing mobility
such as network links status, CPU and memory usage at each host, etc.

In order to manage this information, PNSs must cooperate using a multicast com-
munication mechanism. Up to now, this communication was supported through
message broadcasting, limited to local area networks or sequential unicast, hence
causing suboptimal network utilization due to excessive network traffic. These is-
sues are not easy to address because most approaches for providing multicast ser-
vices rely either on special routers, are designed for single sender media streaming,
or are unable to handle large groups, hosts behind firewalls or network address
translators (NATs) in a decentralized way. In addition, existing approaches demand
more network bandwidth for managing the overlay than the messages sent by the
PNSs. At this point it is worth noting that PNSs are stationary thus they do not
require multicast with support for mobile hosts. As a consequence, a multicast sup-
port to meet MoviLog requirements was designed and implemented. The next sec-
tion reviews the most relevant related work.

3 Related Work

Due to the problems that IP Multicast presents [6], specially its low adoption, and
the increasingly number of applications requiring multicast services on the Internet,
several alternatives have been proposed. Some of the most relevant approaches are:

• Overcast [11] provides support for diffusion of information such as video and
audio streaming, for a single sender, by disseminating servers across the Internet.

• YOID [12] and HMTP (Host Multicast Tree Protocol) [13] builddistribution
trees in order to join IP multicast islands. In YOID members must discover and
select a parent to join the group. In HMTP, UDP tunnels are used between des-
ignated members to connect IP multicast islands.

• Scattercast [14] is also broadcast oriented, but based on special application-level
proxies called SCXs spread across the Internet.

• REUNITE [9] uses recursive unicast trees to implement multicast services. RE-
UNITE uses special routing tables in its protocol. One drawback of REUNITE
is its reliance on special routers thus it is very difficult and expensive to deploy.
However, REUNITE can be incrementally deployed in the sensethat it works
even if only a subset of the routers implement it.

• ALMI [7] creates a MST (Minimum Spanning Tree) as an overlay structure
among the hosts forming a group. In order to build the MST, latency measures be-
tween hosts are taken. The main drawback of this approach is that it depends on

1084

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

a centralized component to generate and maintain the MST. Inaddition, ALMI
is restricted to small groups, since the cost of generating the MST increases ex-
ponentially as the size of the group grows.

• NARADA [8] improves ALMI by achieving decentralization, though it is still
restricted to small groups (less than 200) due to its exponential protocol overhead
costs.

• NICE [15] and LARK [16] reduce NARADA protocol overhead in order to
achieve scalability, but still focus on data streaming and suffers from long failure
recovery delays.

Each one of these alternatives offer multicast support for different communication
requirements, based on the specific nature of the multicast communications they
intend to support. Overcast and Scattercast have been created with the objective
of providing broadcast services, such as audio and video streaming. As a conse-
quence, these approaches are best suited for communications with a single sender
and multiple receivers. On the other hand, ALMI and NARADA allow all the group
members to send data.

YOID and HMTP achieve a logarithmic scaling behavior, however, they are intri-
cate and inefficient. For example YOID employs expensive andcomplex techniques
for loop detection and avoidance. In HMTP nodes are constantly looking for a bet-
ter parent, producing a considerable overhead.

REUNITE, Overcast and Scattercast are not well suited for multiple senders, which
is the case of MoviLog. In Addition, they depend on specific routers spread across
the Internet, therefore, they share some of the problematiccharacteristics of the
MBONE.

Though ALMI and NARADA implement diffusion groups by creating overlay net-
works, both still suffer scalability problems restrictingthem to small groups. NICE
and LARK achieve better scalability, but still suffer from high failure recovery de-
lays and protocol overhead problems.

Nowadays the notion of P2P (Peer to Peer) networks [17] is attracting the atten-
tion of the Internet community. Some of these approaches usethe TTL 2 flooding
method for spreading messages [18]. As this scheme lacks efficiency, heuristics
to avoid flooding, such as random walk [19] have been adopted.However, as mo-
bile agent platforms have specific communication requirements, for instance, in
MoviLog reaching all group members is mandatory, these unstructured approaches
are not adequate. Distributed Hash Tables (DHT) [20] are used to structure P2P
overlays forming a virtual space where nodes and content areunambiguously iden-
tified, thus messages can be forwarded through the corresponding path. Over this
P2P scheme, some alternatives were built to provide multicast services. For exam-

2 Time To Live: A message only traverses a limited number of hops before it is removed
from the network.

1085

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

ple CAN [21] still uses flooding, but in a directed way. Scribe[22] and Bayeux [23]
were built on top of Pastry [24] and Tapestry [25] respectively, building a distri-
bution tree per group. Although these approaches are scalable, they still do not
completely apply to MoviLog requirements. In CAN, despite loops are avoided,
duplicate messages are not fully avoided as the same messagemay arrive to a host
more than once. Bayeux and Scribe form distribution trees assigning an identifiable
node as the root of a group, and paths are built towards it. Their main drawback is
that they do not make a fair distribution of duties, nodes maybecome transmis-
sion bottlenecks, and even nodes that are not members of a group may participate
forwarding its messages.

Mobile agent platforms, and MoviLog in particular, rely on group communication
both for agent communication and mobility management. In MoviLog each host of
the network is able to announce available resources such as code, data or services.
MoviLog multicast messages are small and sporadic, thus in order to reduce the
network traffic, it is essential that the overlay managementdo not demand more net-
work bandwidth than the data messages themselves. In addition, MoviLog requires
services with support for multiple senders in a decentralized and easy deployable
way. Furthermore, as any mobile software agent platform, itis desirable to support
groups as large as possible.

To sum up, since none of the previous approaches provide enough scalability, ro-
bustness, deployability and failure recovery, in a fair anddecentralized way, with
support for multiple senders, we designed GMAC (Group Management Agent Cast)
to cope with the requirements imposed by MoviLog.

4 GMAC Model

GMAC [26] is an application level multicast infrastructure, based on a binary tree
as overlay structure representing a group, where each node of the tree corresponds
to a host in a group and the links between them are unicast connections.

In order to provide multicast functionality, each host in a group sends data only
to their neighbors in the binary tree. These, in turn, retransmit the received data
in the same manner, relieving the transmitting host. In thisway, every member
retransmits data to other two group members at most, and hence consuming similar
network resources. As we will explain in Section 4.2, this approach has been chosen
since GMAC provides multicast services only for group coordination purposes,
while applications running on top of it, such as mobile agentplatforms, will be the
ones using the network in an intensive manner, for example for migrating software
agents.

This data flow scheme works spreading messages over the tree.Leaf nodes do not

1086

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

2820

12

4

2 3

1

3022

14

6

2921

13

5

3123

15

7

2416

8

2517

9

2719

11

2618

10

1sec

2sec

3 sec

4sec

5sec

3sec

6sec

4sec

5 sec

5sec

6sec

6 sec

7sec

7 sec

7sec

7 sec

8 sec

8 sec

8 sec

8 sec

8sec

9 sec

9sec 9 sec 9 sec10 sec9sec 10 sec 11 sec10 sec

Fig. 1. Example of message forwarding in GMAC

retransmit messages, inner nodes retransmit messages to other two group mem-
bers (at most) and the root just forwards messages once (receives from one child
and forwards to the other child). Some properties of GMAC canbe appreciated by
comparing it with sequential unicast, where each group member has to send a copy
of the message to all the other group members. Figure 1 depicts an example where
in a group of 31 members, the node labeled 27 sends a group message. Assuming
that every message transmission between unicast links takes one second (the uni-
cast links have the same bandwidth and latency), GMAC would take 11 seconds
for every node to receive the message, while sending a message to each member
would require 30 seconds.

It is worth noting that when doubling the number of group members in the above
example, GMAC would take 14 seconds (only 3 seconds more), asit has a loga-
rithmic behavior, whereas sequential unicast would demand61 seconds to reach all
group members.

When assuming that each unicast link takes one second to transmit a message, the
total time required to send a group message with the sequential unicast approach
would ben− 1 seconds, wheren is the total number of group members. On the
other hand, the time required by GMAC behaves logarithmically with regard to the
number of group members. As GMAC uses a balanced binary tree,the worst case
arises when a leaf sends a group message. In this case, the message delivery would
encompass the longest path of the tree to reach the farthest leaves. Consequently,
the overall time (in seconds) required for the worst case is:

tw = 3(⌈log2 n⌉−1)−1 (1)

The best case would happen when the root sends a group message, thus, the time
(in seconds) required for the message to reach all the group members would be:

tb = 2(⌈log2n⌉) (2)

1087

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

root

Data Channel

Control Channel

Host behind a firewall or NAT (CRH)

Normal Host

Key:

Fig. 2. GMAC tree

, this is, twice the path to the farthest leaf, as the message must be forwarded two
times at each host.

4.1 GMAC Components

The GMAC Model is based on a binary tree where group members are nodes in
the tree. A group member is identified by its IP address and a port number, which
are used by the rest of the participants to establish their connections. As Figure 2
shows, nodes are connected by two unicast links:

• Control link: through which control messages, related to the overlay tree building
and maintenance, are transmitted.

• Data link: through which data messages are sent and forwarded. When a data
message arrives, it is immediately retransmitted to other neighbors and sent to
the application layer for processing.

Using a double-link schema greatly simplifies the implementation of the model and
improves efficiency, although using a single link is also possible.

The entire functionality of GMAC is implemented in each nodein a collaborative
and decentralized manner, as the responsibilities for message delivery, tree build-
ing and recovery are distributed among the members of a group. Ascending control
messages are used to provide this functionality in a decentralized way, as only the
information downward the tree is required in each node. Thus, each host receives
control messages from its children, updates its control state and propagates it up-
ward to its own parent. Only changes in the overlay structure, such as host arrival
and departure, will trigger these control messages. Algorithms 1 and 2 describe the
data message propagation scheme. All algorithms use Java notation with variables
denoted in italics. When a message arrives, the node forwards it before delivering
it to the application layer.

GMAC also supports hosts with connectivity restrictions. This kind of hosts are
behind firewalls or Network Address Translators (NATs) thatdo not allow hav-

1088

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

1: dataMessage=application.getMessage();
2: if connectionParent!=null then
3: connectionParent.sendData(dataMessage);
4: end if
5: if le f tChild!=null then
6: le f tChild.sendData(dataMessage);
7: end if
8: if rigthChild!=null then
9: rightle f tChild.sendData(dataMessage);

10: end if

Algorithm 1: Sending a data message

1: dataMessage=TriggeredDataConnection.receive();
2: if connectionParent!=TriggeredDataConnection andconnectionParent!=null

then
3: connectionParent.sendData(dataMessage);
4: end if
5: if le f tChild!=TriggeredDataConnection andle f tChild!=null then
6: le f tChild.sendData(dataMessage);
7: end if
8: if rightChild!=TriggeredDataConnection andrigthChild!=null then
9: rightle f tChild.sendData(dataMessage);

10: end if
11: application.arrivedDataMessage(dataMessage)

Algorithm 2: Receiving and forwarding a data message

ing open ports or using port-forwarding mechanisms. These hosts will be referred
as CRHs (Connectivity Restricted Hosts) as they are not ableto accept incoming
connections and hence are incapable of communicating between each other. GMAC
only supports CRHs as leaves of the binary tree, limiting them to at most⌊n/2⌋+1,
wheren is the total number of group members. Studies with eDonkey and Gnutella
reveal that as many as 36% of the hosts may be CRHs, claiming itas a real problem
that needs to be addressed [27]. As GMAC allows 50% of the nodes to be CRHs
this problem is correctly addressed.

There is also a component common to all groups called GMAC registry. The main
property of the GMAC registry is that it is globally accessible in the Internet, thus
works as a “meeting place” for hosts wishing to join a group, as it provides them
with the information needed to join any specific group. This information consists
of the IP address and port belonging to the current root of a group. The GMAC
registry is explained in more detail in Section 5.3.

1089

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

4.2 Overlay Structure

To support multicast communications, most approaches use optimized overlay struc-
tures, such as a Minimum Spanning Tree (MST), based on each host connection
properties. On the other hand, GMAC uses a binary tree for thefollowing reasons:

• Scalability: Generally the cost of keeping an optimized structure, like aMini-
mum Spanning Tree, is greatly increased as the number of group members grows.
As a consequence, MSTs are usually confined to groups with a limited number
of members. Examples are ALMI and NARADA.

• Dynamism of the environment: Using an optimized structure presupposes that
members have dissimilar connection capabilities, and the overlay structure is
build based on those parameters. However if those parameters change very often,
the structure should be re-optimized frequently. Therefore an optimized structure
usually is not suitable in very dynamic environments.

• Fairness: Generally the Internet connection in a host is shared by several appli-
cations. For the case for GMAC, as other applications will beusing the network
resources in a more intensive manner, it is not possible to consider that a host
with a better connection can be used as a group retransmitter, or burdened with
extra tasks. Accordingly, GMAC guarantees that each group member will re-
transmit data to other two members at most.

• Decentralization: The computation used to build and maintain an optimized
structure generally relies on a central component, and is not easy to decentralize.
In contrast, GMAC uses a self-organizing approach, since all members have the
same responsibility and cooperate in the formation and maintenance of the tree
structure in a decentralized way.

• Fault tolerance: As GMAC does not depend on a central component, a failure
in one host will not jeopardize the group. The failure recovery cost is often high
in optimized structures, and may imply structure reorganization, which is a time
and resource consuming process.

• Protocol overhead: Optimized overlay structures often achieve better resource
utilization than unoptimized overlays. However, the generation and maintenance
of an optimized structure require performing several measurements, which also
use network resources. Considering MoviLog requirements,GMAC avoids tak-
ing these measurements because they might use more network resources than
MoviLog.

For these reasons, GMAC uses a binary tree without considering each node capa-
bilities in particular. Although having a higher tree degree may improve latency,
the overall group throughput would be reduced. In other words, to forward a mes-
sage in ak-ary tree, internal nodes would have to divide their available bandwidth
by k receivers. On the other hand, external nodes (leaves) do notact as message
forwarders, as they only transmit their own messages. Sincethe ratio between the

1090

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

number of internal and external nodes in ak-ary tree withn internal nodes is:

Internal nodes
External nodes

=
n

n(k−1)+1
≃

1
k

(3)

, the more the tree degreek, the more the load imbalance between internal and
external nodes, this is, having less internal nodes which also are more loaded for-
warding messages. It is important to notice that in a binary tree (k = 2) the number
of internal nodes is maximized, being approximately equal to the number of exter-
nal nodes:n/(n + 1). Accordingly, to achieve a logarithmic distribution behavior,
GMAC relies on a binary tree as overlay structure.

The next section describes the mechanisms for group formation and maintenance
of GMAC.

5 Group Management

The general idea to achieve decentralization is that when a node receives a join
request it incorporates the requesting node as a child. If there is no room at that
node (i.e. it already has two children), it will delegate thejoin request to its least
weighted child (i.e. the one with the smallest subtree). Therefore, a host wishing
to join a group will descend the tree until it is inserted as a leaf. As the overlay
structure is a binary tree, a host joining a group will have totraverse at most log2 n
nodes, beingn the total number of nodes in the tree.

In the following subsections a more complex join heuristic,used by GMAC to
reduce reconnections and allow connection restricted hosts (CRHs), is explained.

5.1 Improved Join Heuristic

The main idea is that each host in the tree knows where the nextconnection point
downward the tree is, so as to delegate an incoming host directly to its joining point
node.

In order to provide such functionality, a variable callednextParent, consisting in the
IP address and port of the node corresponding to the next connection point, is held
at each host. ThenextParent value in a node is determined by the control messages
received from its children.

In order to join a group, a node follows Algorithm 3. In addition, each node in the
tree follows Algorithm 4 to deal with join requests. An example of the improved

1091

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

1: rootIPandPort=GroupRegistry.getRootIPandPort(groupName,password);
2: if rootIPandPort==myIPandPort then
3: connected=true //I am the root, the GMACRegistry has published my IP and

port as the root.
4: else
5: connectionOutgoing=connectToHost(rootIPandPort, groupName,

password);
6: if connectionOutgoing.isAcceptedAsChild()==truethen
7: connected=true;
8: connectionParent=connectionOutgoing;
9: else

10: while connected==falsedo
11: nextParentIPandPort=connectionOutgoing.getNextParentIp-

AndPort(); //the nextParent of the least weighted child
12: connectionOutgoing.EndConnection();
13: connectionOutgoing=connectToHost(nextParentIPandPort,

groupName, password);
14: if connectionOutgoing.isAcceptedAsChild()==truethen
15: connected=true;
16: connectionParent=connectionOutgoing;
17: end if
18: end while
19: end if
20: end if

Algorithm 3: Joining a Group

1: ConnectionIncoming=ReceiveConnectionRequest();
2: if le f tChild==null then
3: le f tChild=ConnectionIncoming
4: le f tChild.sendConfirmationToChild();
5: else
6: if rigthChild==null then
7: rightChild=ConnectionIncoming
8: rightChild.sendConfirmationToChild();
9: else

10: ConnectionIncoming.sendConnectoToHost(this.nexparentIPandPort)
11: end if
12: end if

Algorithm 4: Attending a Joining request

heuristic is shown in Figure 3. ThenextParent values are determined in each node
as follows:

• Node 8 is a leaf of the tree, thus its own IP address and port is used as thenext-
Parent value. Node 4 does the same thing, as it has only one child (i.e. it has room

1092

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

1

2 3

4

8

6 75

TreeWeight: 1
Lweight: 0Rweight: 0

TreeWeight: 2
Lweight: 1Rweight: 0

TreeWeight: 4
Lweight: 2Rweight: 1

TreeWeight: 8
Lweight: 4Rweight: 3

Next Parent:8

Next Parent:4

Next Parent:6

Next Parent:6

Next Parent:5

Next Parent:5

Next Parent:5

Next Parent:7

TreeWeight: 1
Lweight: 0Rweight: 0

TreeWeight: 1
Lweight: 0Rweight: 0

TreeWeight: 1
Lweight: 0Rweight: 0

TreeWeight: 3
Lweight: 1Rweight: 1

Next Parent Host

9

Fig. 3. Improved Join Heuristic

for one more host). Node 2 updates itsnextParent with the information received
from its children, selecting thenextParent information from node 6 (where the
least weighted subtree is) and sends this information to itsparent (node 1).

• Node 3 sets itsnextParent with the value received from node 5 (in equal condi-
tions selects by default the value from the left) and sends itto node 1.

• Node 1 will also set itsnextParent to the one received from its least weighted
subtree, in this case, the IP address and port of node 5, (thenextParent received
from its right child). When a new host (node 9) wanting to jointhe group arrives,
it will be immediately forwarded to the node 5, which will incorporate it as a
leaf.

Each node stores thenextParent and tree weight values received from its children.
With these values, a node calculates its ownnextParent and tree weight values
and sends them to its parent. The goal of this process is to summarize the subtree
state bellow each node. When the overlay structure changes,the affected nodes
will have to recalculate their own tree weight andnextParent values and, in case
the summarizing values have changed, a chain of ascending control messages will
be triggered.

5.2 Enabling Connection Restricted Hosts (CRHs)

To allow hosts behind firewalls or NATs, a slight extension tothe previous heuristic
is required to allow them only as leaves of the overlay tree.

When all the leaves of a subtree are CRHs hosts, it will not be possible to incor-
porate more hosts of this kind. As a consequence, a new boolean variable called
allowCRHs is stored by each node to know whether a subtree is capable of accept-
ing join requests from CRHs. This information, together with thenextParent and

1093

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

co
nn

ec
treconnect

9

2

3

Join

2

3 9

4

2
3

4

1

Normal Host

Key:

CRHs

Fig. 4. Rotation of a connection restricted child

tree weight values, is packed in control messages. To keep CRHs as leaves, when
a host having both children and at least a CRH gets a connection request from a
non-CRH, it will incorporate it by performing a rotation. Asdepicted in Figure 4,
a rotation is performed as follows:

(1) It will ask its CRH leaf to connect to the new incoming host.
(2) The CRH leaf will reconnect to the new incoming host.
(3) The new host will be accepted as a child in the place where the CRH was.

As a consequence, every host having a CRH child will set itsnextParent variable
to his own address, as a non-CRH will always be incorporated via a rotation. Al-
gorithm 5 describes the full heuristic for allowing all types of hosts, including the
rotation of a CRH child by replacing it with a standard joining host.

It is worth mentioning that in GMAC groups are formed incrementally. Conse-
quently, CRHs join-requests will be refused if the current tree does not support
more CRHs. Nevertheless, the application using GMAC could implement a mech-
anism where CRHs retry to connect after a certain amount of time, waiting for a
non-CRH connection or a CRHs departure. An example of the full heuristic, allow-
ing CRHs, is shown in Figure 5:

• Hosts 4, 6, 7 and 8 are CRHs.
• Both children of Node 2 are CRHs, thus it setsallowCRHs to false (it is not

capable of accepting more CRHs).
• Node 5 setsallowCRHs to true, as it only has one child.
• Node 3 gets this information and setsallowCRHs to true, as node 5 is able to

accept join requests from CRHs. Nevertheless, it sets thenextParent value to its
own address and port, as a rotation would be needed if a normalhost wants to
join in the future.

• Node 1 (the root node) will get:
· From node 2: the address and port of node 2 asnextParent, 3 as the tree weight,

and that it does not allow any more CRHs.

1094

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

1: ConnectionIncoming=ReceiveConnectionRequest();
2: if le f tChild==null then
3: le f tChild=ConnectionIncoming
4: le f tChild.sendConfirmationToChild();
5: else
6: if rigthChild==null then
7: rightChild=ConnectionIncoming;
8: rightChild.sendConfirmationToChild();
9: else

10: if !ConnectionIncoming.isCRHthen
11: if le f tChild.isCRH()then
12: le f tChild.sendConnectToHost(ConnectionIncoming.IPandPort());
13: le f tChild=ConnectionIncoming;
14: le f tChild.sendConfirmationToChild();
15: else
16: if rightChild.isCRH()then
17: rightChild.sendConnectToHost(ConnectionIncoming.IPand-

Port());
18: rightChild=ConnectionIncoming;
19: rightChild.sendConfirmationToChild();
20: else
21: ConnectionIncoming.sendConnectoToHost(this.-

nexparentIPandPort);
22: end if
23: end if
24: else
25: if this.allowCRH then
26: ConnectionIncoming.sendConnectToHost(this.next parentCRHIP-

andPort);
27: else
28: ConnectionIncoming.sendNoMoreCRHsAllowedNotificationTo-

Child();
29: end if
30: end if
31: end if
32: end if

Algorithm 5: Handling a Join request, full heuristic.

· From node 3: the address and port of node 3 asnextParent, 4 as the tree weight,
and that it allows CRHs.

Thus, when a new host (host number 9) wants to join the group, it will send to
node 1 (the root) a connection request, which will be delegated depending on
whether the new host is a CRH or not.

1095

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

Next Parent:2
AllowCRHs = false

NextParentR: 3allowCRHs = TRUE
NextParentL: 2allowCRHs = FALSE
AllowCRHs = True

Next Parent:5
AllowCRHs = true

Next Parent:5
AllowCRHs = true

Node 9 willing to Join the group.
The root will delegate it depending on if
it is aCRH or not.

TreeWeight: 1

TreeWeight: 3
Lweight: 1Rweight: 1

TreeWeight: 1

TreeWeight: 8
Lweight: 3Rweight: 4

TreeWeight: 2
Lweight: 1Rweight: 0

TreeWeight: 1

TreeWeight: 4
Lweight: 2Rweight: 1

NonCRH
CRH

TreeWeight: 1

2

4 6

8

7

3

5

91

Normal Host

Key:

CRHs

Fig. 5. Heuristic for allowing CRHs

It is important to notice that when theallowCRHs values of a node’s children differ,
for example node 3 in Figure 5, it must set itsnextParent value to its own address
and port, as it will have to decide where to delegate join requests depending on the
connectivity capabilities of the incoming host.

Even though others solutions are possible, allowing CRHs asleaves of the tree
leads to a simple, clean and convenient solution. Others possibilities, such as having
levels of intermediate CRHs (where CRHs and non-CRHs alternate) would add
extra complexity to the joining and failure recovery algorithms. In addition, this
would admit at most 66.7% CRHs, compared to 50% of having CRHsonly as
leaves. Other possible approach is NAT traversal [28–30], which enables CRHs
to connect directly to each other. However, this approach was avoided as it could
bypass local network restrictions and policies.

5.3 GMAC Registry

As explained earlier, the main requirement of the GMAC registry is that it has
to be globally accessible in the Internet, working as a bootstrap or starting place
for hosts wishing to join a certain group. The GMAC registry (Figure 6) has two
responsibilities:

• Publish the roots of the groups: sends the root address and port of a group to a
host intending to join it, provided that the correct group name and password is
given.

1096

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

Internet

Group 0

Group 1

Newhost

Group Registry

Join Group 1

EJB
Server

Fig. 6. GMAC registry

• Replace the published root: provide a mechanism for replacing a published group
root in case it fails or leaves.

This component has been materialized as a separate Web application and imple-
mented as a cluster of redundant servers, thus reliability is not compromised.

5.4 Failure Recovery

GMAC uses a fast failure recovery mechanism, rather than implementing a failure
avoidance strategy. When a node fails or leaves a group, the tree must be restruc-
tured in order to continue providing multicast support to the rest of the group. This
reorganization is done by the remaining members in a decentralized way as follows:

• The parent node, which had the failing node as a child, just closes the connections
to it, updates its state information and sends it to its own parent.

• Children nodes, which had the failing node as its parent, must reconnect to the
tree by sending a connection request to the root.

For the non-adjacent nodes downward the one that failed, reorganization is trans-
parent, as they will be reconnected along with the orphan nodes. In this way, a
node failure is handled by reconnecting its children, whichis accomplished in a
decentralized manner. In addition, tree reorganization involves at most two node
reconnections, thus the computational cost of a failure is still logarithmic over the
number of nodes. In Algorithms 6 and 7 the failure recovery algorithm is described
from the child and the parent point of view respectively. Figure 7 depicts the GMAC
failure recovery mechanism. Suppose node 3 leaves the group. The root, which had
node 3 as a child, just releases the connection. Both “orphan” nodes 5 and 7 will
reconnect to the root keeping their current children, thus actually a subtree is being
reconnected. In this case, the root first handles node’s 5 request incorporating it as

1097

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

connected=false
while rootFound==falsedo

connectionOutgoing=connectToHost(rootIPandPort,groupName,password);
if root not responding aftern retriesthen

rootIPandPort=GroupRegistry.claimToBeTheRoot(rootIPandPort,
groupName, password, myIPandPort);
if rootIPandPort==myIPandPort then

rootFound=true //claim succeded,(else other one claimed first, the new
rootIPandPort will be tried)

end if
else

rootFound=true; //the root responded
end if

end while
goto Algorithm 3 line 6.

Algorithm 6: Recovering from a parent failure

1: controlMessage=connectionChild.receiveControlMessage();
2: updateChildStateInformation(controlMessage);
3: recalculateNextParent();
4: generate and send new controlMessage to parent

Algorithm 7: Recovering from a child failure

Node 3 fails

1 2

3
4

1

Group Registry

2

6

10 14

4

8 12

16

5

9 13

17

7

11 15

3

1

2

6

10 14

4

8 12

16

5

9 13

17

7

11 15

Reconnection Request

1

2

6

10 14

4

8

16

5

9
13

17

7

11 15

1

2

6

10 14

4

8 12

16

5

9 13

17 7

11 15

Group Registry

Group Registry

Group Registry

12

EJB
Server

EJB
Server

EJB
Server

EJB
Server

Fig. 7. Failure recovery

1098

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

its right child. Next, the root accepts node 7 request by delegating the join request
to node 13.

A special case arises when the node that leaves the group is the root itself, since
orphan nodes will fail when attempting to reconnect to it. Therefore, as these nodes
notice the root is missing or not responding they will ask thegroup registry to
become the root themselves via aclaimRoot message. ThisclaimRoot message
contains the address and port of the supposed failing root inorder to let the GMAC
registry check if the received root address and port corresponds to the published
one (i.e. that it has not been previously changed). Then the GMAC registry will
verify that it is really failing, and provided this is true, it will accept the root claim
message and publish the new root address and port for the group.

Although the final tree is not completely balanced, the overall overlay performance
is not compromised. Besides, the tree will tend to recover its balance as new nodes
join the tree. The failure recovery mechanism in GMAC is fastand simple, and nei-
ther extra control links, nor extra control state information needs to be maintained
in the nodes for failure resilience purposes. As a consequence, GMAC approach
is to detect and reconnect disconnected nodes immediately,rather than avoiding
nodes disconnection by adding redundancy or complex heuristics.

A claimRoot message is rejected if the included root information does not match the
GMAC registry published root information. In such cases, a message containing the
updated root information is sent back to the claiming node. This will happen after a
root fails and both orphan children send aclaimRoot message to the group registry;
the first one to arrive will succeed, while the second will be rejected. However the
second one, when rejected, will get the updated root information, which in this
case, is the succeeding orphan address and port, i.e. the newroot for the group. For
this special case, there will be an extra recovery delay, dueto the waiting time the
non succeeding orphan node must wait until it gets the new root address.

This root substitution method could be seen as the only mechanism in GMAC not
fully decentralized, as, in order to join a group, a new node could ask for the root
address to an already connected member instead of asking thegroup registry. As a
consequence, only when both, the group registry and the rootof a group fail, the
root orphans would be unable to replace the root and the groupwould be divided
in two. Although this case in unlikely to occur, group availability must not be com-
promised. This is why the group registry is implemented as a cluster of redundant
servers.

Every time subtrees get disconnected, current messages traversing the tree may be
lost. To solve this problem, a first attempt might be to store undelivered messages
in buffers every time an adjacent node fails. Next, the reconnected subtree sends
a multicast message to contact the nodes that were adjacent of its previous parent.
Subsequently, missing messages could be exchanged. This approach fails when a

1099

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FTConnectionServer

NodeAdministrator

ParentAdministrator

Connection

ChildAdministrator

ConnectionControl ConnectionData

GroupCast

Abstract-TreeMaintenance

ConnectionManager

TreeMaintenance TreeMaintenanceNAT

Application Level

Overlay Level

Connection Level

Fig. 8. GMAC Class Diagram

parent and a child node fail at nearly the same time. To avoid this problem the
reconnected node should ask for all undelivered messages inthe tree, generating
many replicated messages and possibly congestion. This is why message recovery
is optional in GMAC, allowing the specific applications using GMAC to decide
which approach to use depending on their communication requirements. For the
case of MoviLog, as multicast messages represent changes inthe group state, syn-
chronizing the reconnected subtree is enough.

6 Implementation

GMAC has been implemented in Java. Java has many desirable properties that ease
application development and deployment. Some of them are multi-threading, in-
heritance, object orientation, portability and a well known API, just to mention a
few. Figure 8 depicts the simplified UML class diagram of GMACimplementation.
The main responsibilities are divided in three classes:ConnectionManager,
TreeMaintenace andGroupCast. The whole design was done to favour flex-
ibility. The GroupCast class provides a number of methods for using GMAC

1100

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

services, theConnectionManager issues all TCP connections and theTree-
Maintenace is responsible for keeping the overlay structure. Inheritance was
used to distinguish standard hosts from connection restricted ones, and to keep the
possibility of adding different implementation strategies open.

TheConnectionManager class manages all connections. It has an instance of
the ConnectionServer, which listens for incoming connections on an open
port. Each time a new connection arrives, a new thread handles it and the hand-
shaking process is started. There are 4 types of connections:

• Incoming Connection: A connection a host receives.
• Outgoing Connection: A connection a host starts.
• Control Connection: The connection where ascending control messages are sent.
• Data Connection: The connection where data messages are transmitted.

The handshaking process is done as follows. TheConnectionServer listens on
the open port for incoming connections. If the joining request can be satisfied, the
incoming connection turns into a control connection, as depicted in the double link
schema in Section 4. Once this control connection is established a data connection
is created with a similar process.

TheTreeMaintenace class uses aNodeAdministrator class that, in turn,
has an instance of theParentAdministrator class and two instances of the
ChildAdministrator class, one for each child. These instances have the con-
trol and data connections for each adjacent node. Besides, they store thenextParent,
weigh andallowCRHs values for each subtree (in the case of the child instances).

GMAC has been developed as a Java library to allow developersto use GMAC
multicast services easily. For example, to join a group a programmer has to provide
GMAC with the group name, password, and the registry IP address and port. The
following code shows the steps for joining a GMAC group called GROUPNAME1:

GroupCast groupCast = new GroupCast("GROUPNAME1", "PASSWORD1", gmac.com.ar, 2000);
groupCast.startListeningInPort(3333);
groupCast.joinGroup();

Hosts behind NATs or firewalls not allowed by network administration policies to
either use port-forwarding or having an open port will be treated as CRHs. For
non-CRH, only one reachable open port in the range 1024–65535 must be pro-
vided so as not to be considered a CHR by GMAC. This port will beused by the
ConnectionServer to attend incoming connections.

Once connected, messages can be sent to the group. The following example shows
how to send String messages to the whole group:

public void sendString(String message) {
DatagramPacket dp= new DatagramPacket(message.getBytes(),message.length());
this.groupcast.send(dp);

}

1101

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

The code below shows how to receive messages from the group:

Public void run () {
DatagramPacket newPacket;
while (true) {
newPacket = this.groupcast.receive();
this.dealWithPacket(newPacket);

}
}

Java provides an API for broadcasting and multicasting messages represented as
an instance of theDatagramPacket class. Many existing applications already
use this API. As the previous examples show, in GMAC theDatagramPacket
abstraction is used for message transfers as well. However,this is only done for
easily porting to GMAC applications based on the Java API forbroadcasting and
multicasting, since TCP connections are used underneath.

The group registry is implemented as an independent application. A cluster of re-
dundant servers based on Enterprise Java Beans [31] is used to address availability.
When a node ask the registry to join a certain group given the group name and pass-
word, if the given group name does not exist, the group registry sets up a new group
with the joining node as the root. The root substitution mechanism is synchronized
at group level in other to attend only one claim root at the time, while other requests
are processed concurrently. Periodically, the group registry issues a connection to
each published group root to check if they are is still running, removing the non
responding ones.

7 Experimental Results

The alternatives described in Section 3 provide multicast support to applications
with very particular multicast requirements. Solutions involving a single sender
broadcasting media try to maximize bandwidth, while conferencing oriented appli-
cations require low latency as well, though they may allow graceful degradation.

GMAC is intended to allow large groups to communicate by sending small mul-
ticast messages. The main features of GMAC are decentralization, scalability and
low overhead, while transmission requirements are not considered critical. Never-
theless, it is desirable to analyze and evaluate GMAC performance to determine
how it meets MoviLog requirements and to have a better understanding of GMAC
behavior.

While unicast connections are usually measured only in terms of bandwidth and
latency, for GMAC group communications, the most relevant aspects to consider
are:

• End-to-end group propagation delay: is the time required for a message to reach

1102

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

the farthest group member.
• Group latency: is the maximum delay, from the application point of view, be-

tween a sender and the receivers. Within a distribution tree, latency is the longest
end-to-end delay between any pair of nodes.

• Throughput: is the maximum throughput, from the receiving applicationspoint
of view, that a group can provide. Within a distribution tree, nodes with less
bandwidth may act as bottlenecks, thus limiting the overallgroup bandwidth.

• Protocol overhead: this metric takes into account the network traffic that does
not involve application data, including control messages required to build and
maintain the overlay structure.

• Link stress: is the number of duplicate packets on the same physical link.
• Network distance: At the application level, network distance is generally related

to latency, assuming that more latency implies more cost.
• Failure recovery: the time required by the overlay to recover from failures in

nodes.

Several simulations were made in order to evaluate GMAC. GMAC was compared
with sequential unicast and two MSTs (Minimum Spanning Trees) variants, one
maximizing the bandwidth and the other minimizing latency.This could be seen
as the approaches adopted by NARADA and ALMI, respectively.It is important
to note that such MST trees are used as theoretical boundaries for the metrics they
optimize. No other overlay tree can achieve better results for a specific metric than
a MST built under that measure. Moreover, these MSTs were built within an static
environment. Note that it would be very difficult to build them in real conditions,
since it would be necessary to know the network topology and its metrics in ad-
vance, and to assume they are static, something not likely tohappen in the Internet.

As the implementations of the alternatives described in Section 3 are not always
available, or they do not support groups with similar size ranges as GMAC, the
number of possible experimental comparisons was limited. Nevertheless, some
comparisons with approaches such as NARADA, NICE and LARK were made
when data was available.

In order to generate the simulations, hosts were placed at random in a bi-dimen-
sional space. Each host was assigned a bandwidth between 15 and 70 KB/s, while
latency varied from 100 to 665 ms between any pair of them. It was assumed that
these magnitudes were symmetrical (A→B = B←A). Furthermore, it was consid-
ered that any host could transmit data messages with equal probability. It is impor-
tant to notice that knowing the topology in advance, which, besides is static, favors
the MST alternatives. Therefore this scenario is rather unfair to GMAC.

Additionally, experiments were done to evaluate GMAC with MoviLog specific
group communication requirements. To handle code mobilityefficiently, each Mo-
viLog platform needs to multicast information in the following settings:

1103

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

• Setting A: Each MoviLog platform needs to announce its new available re-
sources, as well as disposing the old ones. For this kind of information, MoviLog
sends, in average, two messages every 10 minutes. Each message has an approx-
imated size of 2KB.

• Setting B: Some specific MoviLog platform information must be shared period-
ically. This information includes MoviLog metrics and current control state in-
formation such as CPU load, number of active agents, memory usage, etc. This
type of messages are sent twice in a minute and are 150 Bytes long.

In order to avoid traffic congestion, the maximum number of participants in a group
is determined by the node with less bandwidth capacity. If the number of partici-
pants grows further, the node with lower bandwidth could actas a bottleneck, and
congestion may occur. For example, the maximum number of members supported
for the case of MoviLog, when 15KB/s is the bandwidth of a nodeacting as bottle-
neck, is:

• Setting A: 2 KB * 2 / 600 seconds = 0.0066 KB per second = 2250/2=1125
hosts.

• Setting B: 0.150 KB * 2 / 60 seconds = 0.005 KB per second = 3000/2= 1500
hosts.

• Both: 0.005+0.0066 = 0.01166 KB per second = 642 hosts.

These values provide an estimate of the feasible scalability of GMAC, where a
node limited to a bandwidth of only 15KB/s is retransmittingmessages. In addi-
tion, a typical MoviLog deployment consists of approximately 400 hosts. Note that
although GMAC does not currently address congestion control, the numbers shown
above suggests that GMAC is adequate given its scalability requirements.

7.1 End-to-end group propagation delay

Figures 9 and 10 show the time in seconds required by a random node to send
100KB to all the group members. A message of 100KB was used to have a better
insight of how the node bandwidth affected the overlay tree.Results concerning
MoviLog requirements will be shown subsequently. Figure 9 shows that the alter-
native of using only unicast is not viable when groups are large. Figure 10 shows in
more detail the results for GMAC average and worst case, and the two MST alter-
natives. For the worst case, each node in the longest path is formed by bottlenecks
of 15KB/s bandwidth and 665ms latency. The MST latency approach has poor per-
formance as it does not take into account bandwidth metrics.The MST Bandwidth
was built optimizing a 100KB message transmission, thus this is the best that can
be achieved in an overlay tree. In average GMAC scales well, approximating the
boundaries imposed by the MST Bandwidth. Standard deviations of about 9% can
be seen as error bars, showing that the delivery time vary only a few seconds. It

1104

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
to

 s
en

d
10

0K
B

 to
 th

e
G

ro
up

 [s
ec

]

Number of nodes

Unicast
GMAC AVG

GMAC Worst Case
MST Latency

MST Bandwidth

Fig. 9. Time (in seconds) to send a 100KB message

 0

 50

 100

 150

 200

 250

 300

 200 400 600 800 1000

T
im

e
to

 s
en

d
10

0K
B

 to
 th

e
G

ro
up

 [s
ec

]

Number of Nodes

GMAC AVG
GMAC Worst Case

MST Latency
MST Bandwidth

Fig. 10. Time (in seconds) to send a 100KB message (without unicast)

is worth noting that when the number of nodes grows, they become closer to each
other and the MST configuration impact tends to be less decisive. Results corre-
sponding to MoviLog requirements are shown in Figure 11. Thetime required until
the last node receives a 2KB message for MoviLog setting A is shown, both for the
simulation results and the model worst and best case. For themodel worst case,
15KB/s bandwidth and 665ms lantency links were assumed in equation 1, whereas
for the model best case, 70KB/s and 100ms values were used. These ranges work
as over-dimensioned boundaries for the MoviLog setting. The results show how
GMAC scales, since just a few seconds are required for a message to reach the
whole group with a logarithmic behavior.

1105

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

G
ro

up
 D

el
ay

 (
se

c)

Number of Nodes

Model Worst
Model Best

Simulation Result

Fig. 11. 2KB MoviLog data message delay

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t [

K
B

yt
es

/s
]

Number of Nodes

Unicast
GMAC

MST Latency
MST Bandwidth

Fig. 12. Maximum group throughput

7.2 Throughput

Figure 12 shows the group throughput that can be achieved with the different ap-
proaches. This metric is important for applications requiring audio/video streaming,
which is not of particular interest to GMAC. In distributiontrees, less capable nodes
act as bottlenecks, limiting the overall group to their bandwidth. In GMAC, bottle-
neck nodes may have to retransmit messages, thus the overallthroughput would be
restricted to half of the less capable host bandwidth. It is worth noting that GMAC
was developed for homogeneous groups, thus bottleneck nodes are less likely to ap-
pear. Furthermore, as mentioned earlier, GMAC is not concerned about providing
media streaming. Nevertheless, in order to scale without trouble, there is a mini-
mum bandwidth requirement in each node depending on the group transfer rate de-
sired. For the MoviLog settings, the minimum bandwidth required in each node is
depicted in Figure 13. A typical MoviLog deployment with 400hosts requires only

1106

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

B
an

dw
id

th
 U

sa
ge

 (
K

B
/s

)

Number of Nodes

GMAC
NARADA

NICE

Fig. 13. MoviLog bandwidth requirements

10KB/s in every node in order to work properly under GMAC. NICE minimizes
the control message exchanges, thus reducing the protocol overhead. Conversely,
other approaches, such as NARADA, consume too much bandwidth and network
resources for optimization purposes. In GMAC, scalabilityis not compromised, as
the required bandwidth in each node is only affected by the amount of data that
node is forwarding and, as detailed next, the protocol overhead is minimum and
not affected by the group size.

7.3 Protocol Overhead

The protocol overhead metric considers network traffic thatdoes not represent use-
ful application data. In GMAC the information required to build and maintain the
binary tree is minimal, since this information is transmitted only when a node leaves
or joins the group. In contrast, alternatives using some kind of optimization intro-
duce a considerable overhead. This is due to the fact that many measurements be-
tween hosts are required for building and maintaining the overlay structures. For
instance, NARADA introduces an exponential overhead of 2% for 64 members
and 4% for 128, with a single host streaming at 128kbps [8,32]. This overhead
tends to grow in large groups, confining optimized structures to small groups, or
restricting them to worse approximations based on complex heuristics. Nice and
LARK are application level protocols intended to reduce theexponential control
overhead of NARADA.

GMAC control overhead is only affected by the failure and joining rates. The fail-
ure rates used for NICE were 16 members in 100 seconds in a group of 128. Al-
though GMAC assumes that group members are stable, this failure rate was used
in order to get fair comparisons. Table 1 shows the protocol overhead bandwidth
produced by NARADA (with 30 seconds periodic refresh rate),NICE, LARK and

1107

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000

O
ve

rh
ea

d
(K

B
/s

)

Number of Nodes

NARADA
NICE
LARK

GMAC

Fig. 14. Protocol overhead comparison

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

O
ve

rh
ea

d
(K

B
/s

)

Number of Nodes

NICE
LARK

GMAC

Fig. 15. Protocol overhead (without NARADA)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

O
ve

rh
ea

d
(K

B
/s

)

Number of Nodes

NICE
LARK

GMAC

Fig. 16. Protocol overhead

1108

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

Table 1
Protocol overhead (in KB/s)

Nodes NARADA-30 NICE LARK GMAC

8 0.61 1.54 - 0.000818

16 2.94 0.87 - 0.001646

32 9.23 1.03 - 0.003302

64 26.20 1.20 1.42 0.006645

128 65.62 1.19 1.39 0.013190

256 96.62 1.36 1.40 0.026281

512 199.96 1.93 1.42 0.052393

1024 - 2.81 1.41 0.104827

1560 - 3.28 - 0.16154

2048 - 5.18 - 0.210454

4000 - - - 0.412099

GMAC according to different group sizes. Figure 14 shows that NARADA expo-
nential protocol overhead prevents it from scaling. In Figures 16 and 15 the same
metrics are shown with a different scale. It is worth mentioning that some values
for larger group sizes are missing since they were not available for the alternatives
compared [16,32].

While NICE and LARK reduce NARADA exponential overhead, in GMAC, as no
optimization is made, the protocol overhead is minimal, andit is only affected by
the overall joining or departure rate. In order to evaluate GMAC the failure rates
proposed by the alternatives where used, where 12.5% of the nodes from a group
fail within 100 seconds. For example for a group of 3000 nodes, 375 nodes are sup-
posed to fail in that time. The failure rates in MoviLog platforms usually are much
lower (less than 0.5% in 100 seconds). In addition, the protocol overhead presented
in the alternatives do not include failure recovery overheads. As a consequence,
GMAC probed to be the one with less protocol overhead in MoviLog settings.

7.4 Group Latency

One important metric is the group latency, which is the longest end-to-end delay
between any pair of nodes. Figure 17 shows the logarithmic behavior for GMAC
end-to-end group delay simulation results for data and control messages. The la-
tency range for the underlying unicast links varied from 100ms to 665ms, a latency
range likely to be found in the Internet. The delay was measured for the average
and worst scenario (when every node in the longest path has 665ms latency), for

1109

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(s
ec

)

Number of Nodes

Data Message Latency AVG
Data Message Latency WORST

Data Message Latency BEST

(a) Data latency (group Latency)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(s
ec

)

Number of Nodes

Control Message Latency AVG
Control Message Latency WORST

Control Message Latency BEST

(b) Control Latency

Fig. 17. Group latency

the following cases:

• Data message latency (Also known as group latency): Represents the time re-
quired to reach the farthest node from any other node in the binary tree.

• Control message latency: Represents the time for a control message to reach the
root, since control messages flow bottom-up in GMAC.

In MoviLog it is desirable that data messages reach all members quickly. The same
happens with control messages, which are sent when a node joins or leaves the over-
lay. As control messages flow bottom-up, in the worst case, a leaf control message
would have to reach the root, generating log2 n control messages.

It is worth mentioning that the standard deviations (shown as error bars) for the
average cases are far from the best and worst case boundariessince the paths delay
is counterbalanced by high and low latency links.

1110

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000

S
tr

es
s

Group Size

20000 links, 10000 Nodes Underlay
12000 links, 6000 Nodes Underlay
18000 links, 6000 Nodes Underlay

Fig. 18. Link Stress

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

of

 P
hy

si
ca

l L
in

ks
 (

lo
g−

sc
al

e)

Stress of Physical Link (log−scale)

Unicast
DVMRP
Narada
GMAC

Fig. 19. Link Stress distribution

7.5 Network Level Metrics

As explained in Section 4.2, GMAC does not consider the underlying network prop-
erties when building the overlay. One of the disadvantages of this approach is that
messages may be sent several times over the same physical link. Figure 18 shows
the average physical link stress for several Internet topology configurations created
with the BRITE topology generator [33,34] using the waxman topology model. The
link stress distribution of GMAC, NARADA, sequential unicast and DVMRP are
shown in Figure 19, reproducing the waxman generated topology (1024 nodes, and
3072) described in [8]. The stress of any physical link is at most 1 for DVMRP (Dis-
tance Vector Multicast Routing Protocol). In sequential unicast some physical links
have a stress above 16, while in GMAC and NARADA the distribution is more
balanced and no physical links have a stress larger that 9. This behavior is under-
standable, as the approach followed by GMAC is to relief the overloaded senders.

1111

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700 800 900 1000

%
 o

f M
S

T
 la

te
nc

y

Number of Nodes

GMAC
MST Latency

MST Bandwidth

Fig. 20. Latency as network distance

From the application level perspective, as the underlying network topology infor-
mation is not always available, the latency between hosts isoften used as a metric of
distance. The MST lantency approach minimizes the overall distance under this as-
sumption. The relation between the MST latency, the MST bandwidth and GMAC
is shown in Figure 20, where the results are normalized with respect to the MST
lantecy. ALMI relies on this metric to build its overlay tree. NARADA, in con-
trast, suggests that this may not be the best choice, since the shortest path is not
always the fastest one [8]. Furthermore, the assumption that on the Internet latency
represents distance is not necessarily true.

To improve the resource utilization, some efforts take intoaccount the underlying
network when building overlay networks [35–38]. As explained in Section 4.2,
GMAC refrains from using optimized schemes to minimize the protocol over-
head, ease the overlay construction, maintenance, and failure recovery mechanisms.
Other approaches such as LARK [16] also relinquishes resource utilization to in-
crease robustness.

On the other hand, media streaming applications should be more concerned about
resource utilization. As high bandwidth traffic is transmitted, it is worthwhile to
afford measurements costs in order to reduce the overall resource utilization. Con-
versely, in GMAC, as sporadic small messages are sent, it is more important to not
overload the network by exchanging metrics between nodes, since the management
of an optimized structure may imply more resource utilization costs.

7.6 Failure Recovery

Another important issue is the possibility of failure of some node. Even though
the probability of a node failure may be small, when groups are large, this starts
to be a significant matter. When a failure occurs in an overlaystructure, members

1112

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

T
im

e
to

 r
ec

ov
er

 (
se

c)

percentage of failures (100 node group)

LARK
NICE

GMAC

Fig. 21. Failure recovery on a 100-node group

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
to

 r
ec

ov
er

 (
se

c)

Number of nodes

GMAC Recovery Time
GMAC Recovery Time (root always fails)

Fig. 22. GMAC Failure recovery

depending on the failing host, as well as the following dependents in the chain,
can get disconnected. Figure 21 shows the time required to recover from simulta-
neous failing hosts in a group with 100 members. As explainedin Subsection 5.4,
GMAC quickly recovers from node failures by reincorporating immediately the
orphan nodes along with their subtrees in a decentralized way. In addition to the
fact that the tree is not affected when a leaf fails, which, inthe case of GMAC,
corresponds to half of the group nodes, thus reducing the activation of the failure
recovery mechanism to half the failure probability.

However, recovery in optimized overlay structures, such asALMI, is more expen-
sive because a host failure may trigger the reoptimization of the whole structure,
producing additional protocol overhead. Moreover, complex heuristics may be re-
quired in order to keep the diffusion group working until a new optimization is per-
formed. This is one of the issues that has hindered scalability in approaches based
on optimized overlay structures. Figure 22 shows the GMAC behavior for larger

1113

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

groups when 10 nodes fail. In addition to the average recovery time, the time in-
cluding forcing always a root failure is shown. For the latter case, one of the orphan
nodes will first replace the missing root, and afterwards receive the reconnection
requests from the other nodes. In both cases GMAC quickly recovers from failures
in a scalable and decentralized way.

8 Conclusions

This paper presented GMAC, an overlay multicast network formobile software
agent platforms. These platforms reduce network usage by migrating code, thus
working with the resources locally. Using a binary tree as overlay structure, GMAC
allows group communication between platforms spread across the Internet. The
entire functionality of GMAC is implemented in each host at the application level
in a decentralized and collaborative way, thus responsibilities for message delivery,
tree building and recovery are distributed among the group members.

The goal of GMAC is to provide multicast services to non-critical burst transmit-
ting applications in a scalable and robust way, where the keyidea is that over-
loaded hosts are relieved by delegating their transmissionresponsibilities to their
neighbors. In addition, GMAC can be widely deployed, because it does not rely
on special routers and its application program interface iscompatible with the well
known Java native multicast service. Furthermore, GMAC only assumes unicast as
the subjacent service, allowing any host in the Internet to use it, even those with
connectivity restrictions such as hosts behind NATs or firewalls.

Experimental results based on MoviLog requirements show that GMAC is a good
choice for providing multicast services to groups of considerable size with small
throughput transmission requirements. In contrast, approaches based on optimized
structures present a number of problems such as the complexity of generating these
structures, management overhead and failure recovery. In GMAC, these problems
are not present, as the complexity of generating its structure is not affected by the
size of the group. In addition, protocol overhead is minimaland failure recovery is
fast and effective. To reduce construction and maintenancecosts, GMAC does not
take additional metrics for optimization purposes. Accordingly, network resource
utilization is rather poor. This is one of the main drawbacksof GMAC, however
this problem is also present in most overlay based approaches.

GMAC works in a fully decentralized way, building an overlaynetwork as a bi-
nary tree. Once the tree is established, internal nodes forwards incoming mes-
sages to their neighbors. This approach is possible since the recursive nature of
the binary tree allows the ascending control message heuristic. Hence a parent
node receives only one control message from each child, summarizing the con-
trol state information of that entire branch. Thus the upward nodes are not over-

1114

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

loaded by control messages. In contrast, most scalable self-organizing P2P ap-
proaches [24,18,22,39,25] do not have a defined overlay network structure that
could instrument a similar control message scheme. Moreover, in the near future it
would be possible to design a new fully decentralized P2P overlay network based
on GMAC, where queries would be multicasted instead of flooded (or other com-
plex content based heuristic) and still behave in a logarithmic manner.

GMAC main contribution is to provide multicast services in adecentralized and
robust way, where group members cooperate among each other in a fair way, mini-
mizing the protocol overhead and thus achieving great scalability.

GMAC proposes a new way of providing application-level multicast services, there-
fore new possibilities of future investigation arise, as well as optimizations and
improvements on the current implementation. Some of them are:

• End-to-end Reliability: TCP connection links in the overlay network do not en-
sure reliability [40]. When a host in the group fails, the data it was supposed
to forward may not be delivered. The same happens on the subtrees that get
temporarily disconnected. Different alternatives for message delivery could be
provided in the future, depending on the applications requirements. For instance,
approaches may encompass global message ordering for retransmission, token
based message transmission, etc.

• Optimization: GMAC does not implement any kind of optimization on its struc-
ture. Nevertheless by making some node swaps it would be possible to improve
the global service performance (e.g. to detect bottleneck nodes and to move them
as leaves), reduce link stress, or take into account the heterogeneity of nodes and
links, however, preserving the binary structure introduced by themodel.

• Group Publication Policies: The actual implementation of GMAC allows every
host to register a new group. However, this task should be done by some autho-
rized entity, so as to gain more control over group creation and administration.

• Security: Some security issues must be improved. GMAC trusts hosts owning
the name and password of a group. However, hosts could be tampered to behave
in an inadequate way, affecting the normal behavior of the whole group.

• Evaluation with other deployments: we are evaluating GMAC by using two ap-
plications developed with MoviLog, a meeting scheduler multi-agent system and
a workflow engine.

Acknowledgments

This research was supported by ANPCyT (Agencia Nacional de Promoción Cientí-
fica y Tecnológica). We thank the anonymous reviewers for their helpful comments
and suggestions to improve the quality of the paper.

1115

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

References

[1] A. Fuggetta, G. P. Picco, G. Vigna, Understanding Code Mobility, IEEE Transactions
on Software Engineering 24 (5) (1998) 362–375.

[2] D. B. Lange, M. Oshima, Seven good reasons for mobile agents, Communications of
the ACM 42 (3) (1999) 88–89.

[3] A. Zunino, C. Mateos, M. Campo, Reactive Mobility by Failure: When Fail Means
Move, Information Systems Frontiers. Special Issue on Mobile Computing and
Communications 7 (2) (2005) 141–154.

[4] C. Mateos, A. Zunino, M. Campo, Extending movilog for supporting web services,
Computer Languages, Systems & Structures 31 (1) (2007) 11–31.

[5] H. Eriksson, MBONE: the multicast backbone, Communications of the ACM 37 (8)
(1994) 54–60.

[6] C. Diot, B. N. Levine, B. Lyles, H. Kassem, D. Balensiefen, Deployment issues for
the IP multicast service and architecture, IEEE Network 14 (1) (2000) 78–88.

[7] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, ALMI: An application level
multicast infrastructure, in: Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems (USITS ’01), USENIX, San Francisco, CA, USA, 2001,
pp. 49–60.

[8] Y.-H. Chu, S. G. Rao, H. Zhang, A case for end system multicast, IEEE Journal on
Selected Areas in Communication (JSAC), Special Issue on Networking Support for
Multicast 20 (8).

[9] I. Stoica, T. S. E. Ng, H. Zhang, REUNITE: A Recursive Unicast Approach to
Multicast, in: Proceedings of the 2000 IEEE Computer and Communications Societies
Conference on Computer Communications (INFOCOM-00), IEEE, Los Alamitos,
2000, pp. 1644–1653.

[10] A. Zunino, M. Campo, C. Mateos, Simplifying Mobile Agent Development Through
Reactive Mobility by Failure, in: G. Bittencourt, G. Ramalho (Eds.), Advances in
Artificial Intelligence, Vol. 2507 of Lecture Notes in Computer Science, Springer-
Verlag, 2002, pp. 163–174.

[11] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, J. W. O’Toole, Jr.,
Overcast: Reliable Multicasting with an Overlay Network, in: Proceedings of the
Fourth USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2000), USENIX Assoc., Berkeley, CA, USA, 2000, pp. 197–212.

[12] P. Francis, Yoid: Extending the internet multicast architecture, Tech. rep., AT&T
Center for Internet Research at ICSI (ACIRI) (2000).

[13] B. Zhang, W. Wang, S. Jamin, D. Massey, L. Zhang, Universal IP multicast delivery,
Computer Networks 50 (6) (2006) 781–806.

1116

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

[14] Y. Chawathe, Scattercast: an adaptable broadcast distribution framework, Multimedia
Systems 9 (1) (2003) 104–118.

[15] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable application layer multicast,
in: SIGCOMM ’02: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications, ACM Press,
2002, pp. 205–217.

[16] S. Kandula, J.-K. Lee, J. C. Hou, LARK: a light-weight, resilient application-level
multicast protocol, in: IEEE 18th Annual Workshop on computer Communications
(CCW 2003), IEEE, 2003, pp. 201– 209.

[17] R. Steinmetz, K. Wehrle (Eds.), Peer-to-Peer Systems and Applications, Vol. 3485 of
Lecture Notes in Computer Science, Springer, 2005.

[18] M. Ripeanu, A. Iamnitchi, I. Foster, Mapping the gnutella network, IEEE Internet
Computing 6 (1) (2002) 50–57.

[19] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer networks:
algorithms and evaluation, in: P2P Computing Systems, Vol.63, Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2006, pp. 241–263.

[20] S. Androutsellis-Theotokis, D. Spinellis, A survey ofpeer-to-peer content distribution
technologies, ACM Comput. Surv. 36 (4) (2004) 335–371.

[21] S. Ratnasamy, A scalable content-addressable network, Ph.D. thesis, University of
California at Berkeley (2002).

[22] M. Castro, P. Druschel, A.-M. Kermarrec, A. I. T. Rowstron, Scribe: A large-scale
and decentralized application-level multicast infrastructure, IEEE Journal on Selected
Areas in Communications 20 (8) (2002) 1489–1499.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, J. D. Kubiatowicz, Bayeux:
an architecture for scalable and fault-tolerant wide-areadata dissemination, in:
Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, ACM, 2001, pp. 11–20.

[24] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware), Vol. 2218
of Lecture Notes In Computer Science, Springer-Verlag, 2001, pp. 329–350.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. D. Kubiatowicz,
Tapestry: A resilient global-scale overlay for service deployment, IEEE Journal on
Selected Areas in Communications 22 (1) (2004) 41–53.

[26] P. Gotthelf, M. Mendoza, A. Zunino, C. Mateos, GMAC: An Overlay Multicast
Network for Mobile Agents, in: Proc. of the VI Argentine Symposium on Computing
Technology (AST 2005 - 34 JAIIO), 2005, pp. 20–24.

[27] W. Wang, H. Chang, A. Zeitoun, S. Jamin, Characterizingguarded hosts in peer-
to-peer file sharing systems, in: In Proceedings of IEEE Global Communications
Conference, Global Internet and Next Generation Networks,2004, pp. 1539–1543.

1117

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

[28] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, STUN –Simple Traversal of User
Datagram Protocol (UDP) through Network Address Translators (NATs), Internet
Engineering Task Force: RFC 3489 (March 2003).

[29] P. Francis, Is the internet going NUTSS?, IEEE InternetComputing 7 (6) (2003) 94–
96.

[30] B. Ford, P. Srisuresh, D. Kegel, Peer-to-peer communication across network address
translators, in: USENIX Annual Technical Conference, General Track, USENIX,
2005, pp. 179–192.

[31] R. Monson-Haefel, Enterprise JavaBeans, O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1999.

[32] S. Jin, A. Bestavros, Small-World Internet Topologies: Possible Causes and
Implications on Scalability of End-System Multicast, Computer Networks 50 (6)
(2006) 648–666.

[33] A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: An approach to universal topology
generation, in: MASCOTS ’01: Proceedings of the Ninth International Symposium
in Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’01), IEEE Computer Society, Washington, DC, USA,2001, p. 346.

[34] A. Medina, I. Matta, J. Byers, On the origin of power lawsin internet topologies,
SIGCOMM Comput. Commun. Rev. 30 (2) (2000) 18–28.

[35] S. Ren, L. Guo, S. Jiang, X. Zhang, Sat-match: A self-adaptive topology matching
method to achieve low lookup latency in structured p2p overlay networks, ipdps 01
(2004) 83a.

[36] Liu, Liu, Xiao, Ni, Zhang, Location-aware topology matching in P2P systems, in:
INFOCOM: The Conference on Computer Communications, jointconference of the
IEEE Computer and Communications Societies, Vol. 4, 2004, pp. 2220–2230.

[37] S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: Proceedings of the 21st Annual Joint Conference
of the IEEE Computer and Communications Society (INFOCOM-02), Vol. 3 of
Proceedings IEEE INFOCOM 2002, IEEE Computer Society, Piscataway, NJ, USA,
2002, pp. 1190–1199.

[38] D. Zeinalipour-Yazti, V. Kalogeraki, Structuring topologically aware overlay networks
using domain names, Computer Networks 50 (16) (2006) 3064–3082.
URL http://dx.doi.org/10.1016/j.comnet.2005.12.003

[39] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
H. Balakrishnan, Chord: A scalable peer-to-peer lookup service for internet
applications, IEEE/ACM Transactions on Networking 11 (1) (2003) 17–32.

[40] Y. Amir, C. Danilov, Reliable communication in overlaynetworks, in: Proceedings of
the IEEE International Conference on Dependable Systems and Networks (DSN03),
IEEE Computer Society, Los Alamitos, CA, USA, 2003, pp. 511–520.

1118

This is a preprint of the article: "GMAC: An Overlay Multicast Network for Mobile Agent Platforms. (P. Gotthelf, A. Zunino, C. Mateos, M. Campo).
Journal of Parallel and Distributed Computing. Elsevier Science. ISSN: 0743-7315. Ed.: A. Gottlieb, K. Hwang, S. Sahni. Vol. 68, Num. 8, pp.
1081-1096. 2008. doi:10.1016/j.jpdc.2008.04.002"

The final publication is available at http://dx.doi.org/10.1016/j.jpdc.2008.04.002

D
R

A
FT

About the Authors

Pablo Gotthelf received his Systems Engineer degree from UNI-
CEN, Tandil, Argentina on February 2005. He is currently a
Ph.D. candidate in Computer Science focusing on P2P networks
to support decentralized Virtual Organizations. His main re-
search interests include P2P systems, multi-agents systems and
collaborative applications.

Alejandro Zunino received a Ph.D. degree in Computer Science
from UNICEN in 2003. He is an Adjunct Professor at the Com-
puter Science Department since April 2006 and Assistant Re-
searcher at the National Council for Scientific and Technological
Research (CONICET) since July 2005. His research is focused
on distributed computing, including Grid computing, service ori-
ented computing and mobile agents. He has published over 30
papers in journals and conferences.

Cristian Mateos received a Ph.D. degree in Computer Science
from UNICEN, Tandil, Argentina, in 2008. He is a Teaching
Assistant at the Computer Science Department of UNICEN.
His recent thesis was on solutions to ease Grid application de-
velopment and tuning through dependency injection and poli-
cies. He is mainly interested in parallel and distributed program-
ming, with a special emphasis on methods for gridifying appli-
cations, application-level parallelization, Grid middlewares and
platforms, Service-Oriented Computing and Web Services.

Marcelo Campo received a Ph.D. degree in Computer Science
from UFRGS, Porto Alegre, Brazil. He is an Associate Profes-
sor at the Computer Science Department and Head of the ISIS-
TAN. He is also a research fellow of the CONICET. His interests
include intelligent aided software engineering, softwareframe-
works and architecture, agent technology and software visualiza-
tion. He has over 70 papers published in conferences and journals
about software engineering topics.

1119

