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Abstract. Scientists and engineers are more and more faced to the need of 
computational power to satisfy the ever-increasing resource intensive nature of 
their experiments. Traditionally, they have relied on conventional computing 
infrastructures such as clusters and Grids. A recent computing paradigm that is 
gaining momentum is Cloud Computing, which offers a simpler administration 
mechanism compared to those conventional infrastructures. However, there is a 
lack of studies in the literature about the viability of using Cloud Computing to 
execute scientific and engineering applications from a performance standpoint. 
We present an empirical study on the employment of Cloud infrastructures to 
run parameter sweep experiments (PSEs), particularly studies of viscoplastic 
solids together with simulations by using the CloudSim toolkit. In general, we 
obtained very good speedups, which suggest that disciplinary users could 
benefit from Cloud Computing for executing resource intensive PSEs. 
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1 Introduction 

Parameter Sweep Experiments, or PSEs for short, is a very popular way of conducting 
simulation-based experiments among scientists and engineers through which the same 
application code is run several times with different input parameters resulting in 
different outputs [1]. From a software perspective, most PSEs are cluster friendly 
since individual inputs of an experiment can be handled by independent tasks. 
Therefore, using a software platform such as Condor [2], which is able to exploit the 
distributed nature of a computer cluster, allows these tasks to be run in parallel. In this 
way, not only PSEs execute faster, but also more computing intensive experiments 
can be computed, and hence more complex simulations can be performed. This idea 
has been systematically applied to execute PSEs on Grid Computing [3], which are 
basically infrastructures that connect clusters via wide-area connections to increase 
computational power.  

A recent distributed computing paradigm that is rapidly gaining momentum is 
Cloud Computing [4], which bases on the idea of providing an on demand computing 
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infrastructure to end users. Typically, users exploit Clouds by requesting from them 
one or more machine images, which are virtual machines running a desired operating 
system on top of several physical machines (e.g. a datacenter).  Among the benefits of 
Cloud Computing is precisely a simplified configuration and deployment model 
compared to clusters and Grids, which is extremely desirable for disciplinary users.  

In this paper, we will show the benefits of Cloud Computing for executing PSEs 
through a case study. The application domain under study involves PSEs of 
viscoplastic solids, which explore the sensitivity of solid behavior in terms of changes 
of certain model parameters (viscosity parameter η, sensitivity coefficient, and so on). 
In this sense parametric studies previously discussed for imperfections [5] are 
extended for material parameters case, which were computed on Clouds by using the 
CloudSim simulation toolkit [6]. Results show that by executing our experiments in 
our simulated Clouds, depending on the configured computational capabilities and the 
scheduling policy being used, near-to-ideal speedups can be obtained. 

The next Section provides more details on Cloud Computing and the motivation 
behind considering this distributed computing paradigm for executing PSEs. The 
Section also explains CloudSim. Section 3 describes our case study. Later, Section 4 
presents the results obtained from processing these problems on Cloud Computing. 
Finally, Section 5 concludes the paper and describes prospective future works. 

2 Background 

Running Parameter Sweep Experiments (PSE) [1] involves many independent jobs, 
since the experiments are executed under multiple initial configurations (input 
parameter values) several times, to locate a particular point in the parameter space 
that satisfies certain criteria. Interestingly, PSEs find their application in diverse 
scientific areas like Bioinformatics, Earth Sciences, High-Energy Physics, Molecular 
Science and even Social Sciences. 

When designing PSEs, it is necessary to generate all possible combinations of 
input parameters, which is a time-consuming task. Besides, it is not straightforward to 
provide a general solution, since each problem has a different number of parameters 
and each of them has its own variation interval. Another issue, which is in part a 
consequence of the first issue, relates to scheduling PSEs on distributed environments, 
which is a complex activity. Therefore, it is necessary to develop efficient scheduling 
strategies to appropriately allocate the workload and reduce the computation time. 

In recent years Grid Computing [3] and even more recently Cloud Computing 
technologies [4] have been increasingly used for running such applications. PSEs are 
well suited for these environments since they are inherently parallel problems with no 
or little data transfer between nodes during computations. Since many applications 
require a great need for calculation, these applications have been initially addressed to 
dedicated High-Throughput Computing (HTC) infrastructures such as clusters or 
pools of networked machines, managed by some software such as Condor [2]. Then, 
with the advent of Grid Computing new opportunities were available to scientists, 
since Grids offered the computational power required to perform large experiments. 
Despite the widespread use of Grid technologies in scientific computing, some issues 
still make the access to this technology not easy for disciplinary users. In most cases 
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scientific Grids feature a prepackaged environment in which applications will be 
executed. Then, specific tools/APIs have to be used, and there could be limitations on 
the hosting operating systems or the services offered by the runtime environment. On 
the other hand, although Grid Computing favors dynamic resource discovery and 
provision of a wide variety of runtime environments for applications, in practice, a 
limited set of options are available for scientists, which are not in addition elastic 
enough to cover their needs. In general, applications that run on scientific Grids are 
implemented as bag of tasks applications, workflows, and MPI (Message Passing 
Interface) [7] parallel processes. Some scientific experiments could not fit into these 
models and therefore have to be redesigned to exploit a particular scientific Grid. 

2.1 Cloud Computing: Overview 

Cloud Computing [4], the current emerging trend in delivering IT services, has been 
recently proposed to address the aforementioned problems. By means of virtualization 
technologies, Cloud Computing offers to end users a variety of services covering the 
entire computing stack, from the hardware to the application level, by charging them 
on a pay per use basis. This makes the spectrum of options available to scientists, and 
particularly PSEs users, wide enough to cover any specific need from their research. 
Another important feature, from which scientists can benefit, is the ability to scale up 
and down the computing infrastructure according to the application requirements and 
the budget of users. They can have immediate access to required resources without 
any capacity planning and they are free to release resources when no longer needed.  

Central to Cloud computing is the concept of virtualization, i.e. the capability of a 
software system of emulating various operating systems. By means of this support, 
scientists can exploit Clouds by requesting from them machine images, or virtual 
machines that emulate any operating system on top of several physical machines, 
which in turn run a host operating system. Usually, Clouds are established using the 
machines of a datacenter for executing user applications while they are idle. 

Interaction with a Cloud environment is performed via Cloud services [4], which 
define the functional capabilities of a Cloud, i.e. machine image management, access 
to software/data, security, and so forth. Cloud services are commonly exposed to the 
outer world via Web Services [8], i.e. software components that can be remotely 
invoked by any application. By using these services, a user application can allocate 
machine images, upload input data, execute, and download output (result) data for 
further analysis. To offer on demand, shared access to their underlying physical 
resources, Clouds dynamically allocate and deallocate machines images. Besides, and 
also important, Clouds can co-allocate N machines images on M physical machines, 
with N ≥ M, thus concurrent user-wide resource sharing is ensured.  

A Cloud gives users the illusion of a single, powerful computer in which complex 
applications can be run. The software stack of the infrastructure can be fully adapted 
and configured according to user’s needs. This provides excellent opportunities for 
scientists and engineers to run applications that demand by nature a huge amount of 
computational power. Precisely, for parametric studies such as the one presented in 
this paper or scientific applications [9] in general, Cloud Computing has an intrinsic 
value. 
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2.2 The CloudSim Toolkit: Simulation of Cloud Computing environments 

CloudSim [6] is an extensible simulation toolkit that enables modeling, simulation 
and experimentation of Cloud Computing infrastructures and application provisioning 
environments. CloudSim supports both system and behavior modeling of Cloud 
system components such as data centers, virtual machines (VMs) and resource 
provisioning policies. A virtual machine (VM) is a software implementation of a 
machine (i.e. a computer) that executes programs like a physical machine. The core 
hardware infrastructure services related to Clouds are modeled by a Datacenter 
component for handling service requests. A Datacenter is composed by a set of hosts 
that are responsible for managing VMs during their life cycle. Host is a component 
that represents a physical computing node in a Cloud, and as such is assigned a pre-
configured processing capability, memory, storage, and scheduling policy for 
allocating processing elements (PEs) to VMs. 

CloudSim supports scheduling policies at the host level and at the VM level. At the 
host level it is possible to specify how much of the overall processing power of each 
PE in a host will be assigned to each VM. At the VM level, the VMs assign a specific 
amount of the available processing power to individual task units -called cloudlet by 
CloudSim- that are hosted within its execution engine. At each level, CloudSim 
implements the time-shared and space-shared allocation policies. When employing 
the space-shared policy only one VM can be running at a given instance of time. This 
policy takes into account how many PEs will be delegated to each VM. The same 
happens for provisioning cloudlets within a VM, since each cloudlet demands only 
one PE. If there are other cloudlets ready to run at the same time, they have to wait in 
the run queue (because one PE is used exclusively by one cloudlet). Last but not least, 
with the time-shared policy, the processing power of hosts is concurrently shared by 
the VMs. Therefore, multiple cloudlets can simultaneously multi-task within the same 
VM. With this policy, there are no queuing delays associated with cloudlets. 

3 Case Study: A PSE for nonlinear solids problems 

In order to assess the effectiveness of Cloud Computing environments for executing 
PSEs, we have processed a real experiment by using different Cloud infrastructures 
simulated via CloudSim. The case study chosen is the problem proposed in [10], in 
which a plane strain plate with a central circular hole is studied. The dimensions of 
the plate are 18 x 10 m, R = 5 m. Material constants considered are E = 2.1 105 Mpa; 
ν = 0:3; σy = 240 Mpa; H = 0. A linear Perzyna viscoplastic model with m = 1 and n = 
∞ is considered. The large strain elasto/viscoplastic Finite Element code SOGDE [11] 
is used in this study. A detailed presentation of viscoplastic theory, numerical 
implementation and examples can be found in the works [12], [13]. 
We have previously studied parametric problems where a geometry parameter of 
imperfection was chosen [5]. In this case a material parameter is selected as a 
parameter. Different viscosity values of η parameter are considered: 1.104, 2.104, 
3.104, 4.104, 5.104, 7.104, 1.105, 2.105, 3.105, 4.105, 5.105, 7.105, 1.106, 2.106, 3.106, 
4.106, 5.106, 7.106, 1.107, 2.107, 3.107, 4.107, 5.107, 7.107and 1.108 Mpa. Here, a mesh 
of 1,152 elements and Q1/P0 elements was used. Imposed displacements (at y=18m) 
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are applied until a final displacement of 2000 mm is reached in 400 equals time steps 
of 0.05 mm each one. δ = 1 has been set for all the time steps. 

4 Experimental Results 

This section presents the results obtained from our experimental study, which aims to 
evaluate the viability of using Cloud Computing to perform PSEs. First, in a single 
machine we run the PSE of the previous section by varying the elasticity parameter η 
and measuring the execution time for 25 different experiments (resulting in 25 input 
files with different input configurations). The PSE were solved using the SOGDE 
solver. The characteristics of the machine on which the experiments were carried out 
are shown in Table 1. The machine model is AMD Athlon(tm) 64 X2 3600+, running 
Ubuntu 11.04 kernel version 2.6.38-8. 

The obtained real information (execution times, input/output file sizes) was then 
used to feed CloudSim. The information regarding processing power was obtained 
from the benchmarking support of Linux and as such is expressed in bogomips. 
Bogomips (from bogus and MIPS), is a metric used by Linux operating systems that 
indicates how fast a computer processor runs. After that, we performed a number of 
simulations involving executing the PSE on Cloud infrastructures by using CloudSim. 
The simulations have been carried out by taking into account the bogomips metric. 
This is, once the execution times have been obtained from the real machine, we 
calculated for each experiment the number of executed instructions by the following 
formula: NIi = bogomipsCPU* Ti, where NIi is the number of million instructions to 
be executed by or associated to a task i, bogomipsCPU is the processing power of our 
real machine measured in bogomips and Ti is the time that took to run a task i on the 
real machine. Here is an example of how to calculate the number of instructions of a 
task that took 117 seconds to be executed. The machine where the experiment was 
executed has a processing power of 4,008.64 bogomips. Then, the resulting number of 
instructions for this experiment was 469,011 MI (Million Instructions). CloudSim was 
configured as a data center composed of a single machine –or “host” in CloudSim 
terminology– with the same characteristics as the real machine where the experiments 
were performed. The characteristics of the configured host are shown in Table 2.  

Table 1. Machine used to execute the PSE Table 2. Host characteristics 

Feature Characteristic 

CPU power 4,008.64 bogoMIPS 

Number of CPUs 2 

RAM memory 2 Gbytes 

Storage size 400 Gbytes 

Bandwidth 100 Mbps 
 

Host Parameters Value 

Processing Power 4,008 

RAM  4,096 

Storage 409,600 

Bandwidth 100 

PE 2 
 

 
Processing power is expressed in MIPS (Million Instructions Per Second), RAM 

memory and Storage capacity are in MBytes, bandwidth in Mbps, and finally, PE is 
the number of processing elements (CPUs/cores) of a host. Once configured, we 
checked that the execution times obtained by the simulation coincided or were close 
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to real times for each independent task performed on the real machine. The results 
were successful in the sense that one experiment (i.e. a variation in the value of η) 
took 117 seconds to be solved in the real machine, while in the simulated machine the 
elapsed time was 117.02 seconds. Once the execution times have been validated for a 
single machine on CloudSim, a new simulation scenario was set, which consisted of 
one datacenter with 10 hosts, each with the same hardware capabilities as the real 
single machine, and 40 VMs, each with the characteristics specified in Table 3. A 
summary of this simulation scenario is shown in Table 4. 

Table 3. VM characteristics Table 4. CloudSim configuration  

VM Parameters Value 

MIPS 4,008 

RAM 1,024 

Image Size 102,400 

Bandwidth 25 

PE 1 

Vmm Xen 
 

Parameter Value 

Number of Hosts 10 

Number of VMs 40 

Number of Cloudlets from 25 to 250 
 

 
With this new scenario, we performed several experiments to evaluate the 

performance of our PSE in a simulated Cloud Computing environment as we increase 
the number of tasks to be performed, i.e. 25 * i tasks with i = 1, 2, …, 10. This is, a 
base subset comprising 25 tasks was obtained by varying the value of η, while the 
extra tasks were obtained not by further varying this value but cloning the base subset. 
The reason of this was to stress the various experimental Cloud scenarios. 

Each task, called cloudlet by CloudSim, is described by its Length, required PEs, 
and Input File and Output File sizes. The Length parameter is the number of 
instructions to be executed by a cloudlet in MI (Million Instructions). PE is the 
number of processing elements required to perform a task (CPUs). Input File and 
Output File sizes are expressed in bytes. The values used in the simulation were 
between 244,127 and 469,011 (Length), 1 (PEs), 93,082 bytes (Input File size) and 
2,202,010 bytes (Output File size).  

To perform the simulation we have considered, on one hand, that PSE cloudlets 
have similar processing times. The processing times are similar because both input 
and output files have the same size. The size of the input files is equal because only 
one parameter is varied within them. One cloudlet corresponds to execute an instance 
of a PSE of viscoplastic solid. On the other hand, the goal is to assign tasks to Cloud 
hosts so that the total completion time, also known as makespan, is minimized. 
Finally, the order in which cloudlets are processed on a particular host is not relevant, 
since we assume they are completely independent and do not share data. 

In CloudSim, the amount of available hardware resources to each VM is 
constrained by the total processing power and system bandwidth available within the 
associated host. Therefore, scheduling policies must be applied in order to assign the 
VMs to the host and get a maximum use of resources. On the other hand, cloudlets 
must also be scheduled with some scheduling policy for a maximum resource 
performance and minimize the makespan. In the next subsections we report the 
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obtained results when executing the 25 experiments of our PSE using the scheduling 
policies described in subsection 2.2. In addition, we have considered two types of 
environments, i.e. homogeneous and heterogeneous, which are explained below. 

4.1  Without resource heterogeneity 

In this subsection we analyze how each scheduling policy responds when Cloud hosts 
and VMs follow the specifications described in Table 2 and 3. 

4.1.1    Space-shared provisioning 
Fig. 1a presents the provisioning scenario where the space-shared policy is applied for 
both VMs and tasks (cloudlets). Here, the makespan of the whole cloudlets is shown.  

  
(a) Makespan (b) Execution times 

Fig. 1. Space-shared: Results 

The makespan has shown a linear growth with respect to the number of cloudlets. 
After creating VMs, cloudlets were incrementally sent to VMs in groups of 25 to 
measure the makespan as we increase the workload on the VMs. The makespan rose 
from 160.25 to 1,000.86 seconds when the number of cloudlets went from 25 to 250. 
As each VM requires one PE for processing (see Table 3), with the space-shared 
policy only two VMs can actually run in a host at a given instant of time, because 
each host has two PEs as shown in Table 2. Therefore, given a scenario consisting of 
a total of 10 hosts and 40 VMs, at a given instant of time may be assigned 20 VMs to 
the hosts, i.e. one VM by each PE, and the rest of the VMs can be assigned once the 
former set complete their execution. As the number of PSEs and hence cloudlets in 
regard to the available amount of resources increases, the estimated start time of each 
cloudlet depends on the position of the cloudlet in the execution queue, since each PE 
is used exclusively by one cloudlet under the space-shared policy. Remaining 
cloudlets are queued when there are not free processing elements to use for execution. 

Fig. 1b presents the progress of execution times when we sent to execute a group 
of 150 cloudlets, i.e. a group of 150 PSEs as described in the previous section. Since, 
under this policy, each cloudlet had its own dedicated PE, the queue size (cloudlets 
waiting to be run) did not affect execution time of individual cloudlets. As shown, the 
execution times were increasing linearly approximately every 20 tasks. This is 
because as mentioned above, only 20 VMs were created with the space-shared policy, 
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so the cloudlets are sent to the VMs to run in groups of 20 until they finish their 
execution. When the first submitted group of cloudlets finishes their execution, 20 
more are sent, and so on until all cloudlets are executed. 

4.1.2    Time-shared provisioning 
In this scenario a time-shared allocation is applied. Fig. 2a shows the makespan as the 
number of cloudlets increases from 25 to 250. Here, the processing power within a 
host is concurrently shared by its associated VMs, and the PEs of each VM are 
simultaneously divided among its cloudlets. As a consequence, there are no queuing 
delays associated with cloudlets. CloudSim assumes that all the computing power of 
PEs is available for VMs and cloudlets, and it is divided equally among them. In this 
scenario, the makespan rose from 280.94 to 1,328.13 seconds when the number of 
cloudlets was increased from 25 to 250. 

  
(a) Makespan (b) Execution times 

Fig. 2. Time-shared provisioning: Results 

Fig. 2b illustrates the progress of execution times when we sent to execute a group 
of 150 cloudlets, or a group of 150 PSEs. Since using the time-shared policy in the 
hosts the processing power available is concurrently shared by VMs, here 40 VMs 
have been created in the 10 available hosts. Here, the execution times were increasing 
gradually over the first 50 cloudlets. The remaining 100 tasks took considerably 
longer than the 50 first tasks. This latter effect occurs because the VMs available for 
processing within hosts begun to be switched between their PEs, which takes time. 

4.2 With resource heterogeneity 

In this subsection we analyze how each scheduling policy responds when using a 
Cloud with heterogeneous hosts. To analyze the performance of the scheduling 
algorithms, one characteristic that is of importance in real world scenarios is how the 
algorithms perform in the presence of resource heterogeneity. In this analysis, we 
have considered hosts with a random number of PEs between 1 and 6, while the other 
specifications are the same shown in Tables 2 and 3. Until now, each VM had only 
one PE. Next, we discuss the same scenarios of the previous section, and perform a 
comparison of task assignment with respect to homogeneous and heterogeneous 
infrastructures. 
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4.2.1 Space-shared provisioning 

Fig. 3 presents a scenario where the space-shared policy is applied. After creating 
VMs with a random number of PEs, cloudlets were incrementally sent to VMs in 
groups of 25 to measure the makespan as the workload on the VMs increased. The 
number of cloudlets to be performed ranges from 25 to 250 as in the previous 
subsection. In the Figure, the allocation of cloudlets to heterogeneous resources is 
illustrated by the curve in blue. The red curve shows the same scenario that was 
discussed in subsection 4.1.1 for the case of homogeneous resources. 

 

Fig. 3. Space-shared provisioning using resource heterogeneity: Results 

Due to the fact that in this scenario the entire Cloud had more number of PEs 
available to run the experiments (between 1 and 6 per resource), the runtimes were 
reduced significantly with respect to the homogeneous scenario. The makespan of the 
first group of 25 cloudlets was very close to the makespan of the homogeneous 
scenario. This makespan was 160.25 seconds for the homogeneous scenario and 
117.12 seconds when using heterogeneous resources. The makespan is close because 
in the worst case (homogeneous scenario) the number of PEs available to execute the 
cloudlets is nearby to the number of executed cloudlets (20 VMs to execute 25 
cloudlets). Then, each cloudlet is executed in one PEs until the former finishes. For 
the following groups of cloudlets –between 50 and 250- the makespan was always 
lower when using heterogeneous resources. The makespan was 117.12, 150.24, 
231.38, 235.43, 288.54, 380.74, 454.94, 499, 563.07, and 604.22 seconds. 

4.2.2    Time-shared provisioning 
In this subsection we present the results for a heterogeneous scenario where the time-
shared policy is applied. Fig. 4 illustrates the progress curve in blue of execution 
times as the number of cloudlets increase from 25 to 250. 

In this heterogeneous scenario, the makespan was 146.37 seconds and 677.64 
seconds when the number of cloudlets was equal to 25 and 250, respectively. In the 
figure, we have performed the comparison with the scenario composed of 
homogeneous resources (curve in red). Overall, we obtained that, with this 
heterogeneous scenario, the makespan for the entire set of cloudlets was significantly 
reduced. 
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Fig. 4. Time-shared provisioning using resource heterogeneity. Results 

4.3 Summary and discussion 

In the previous sections we have reported the results obtained from executing our PSE 
on a simulated Cloud under two different scenarios and also taking into account 
whether the resources are homogeneous or heterogeneous. When the space-shared 
policy is used to assign VMs to hosts, the scheduler assigns as many VMs as PEs 
have available on the hosts (20 VMs in the proposed scenario). Instead, when time-
shared policy is used, the PEs share their time slots among all VMs to be created (40 
VMs). On the other hand, the cloudlets are sent to be executed something similar 
happens. When using the space-shared policy each cloudlet is assigned to a VM until 
it completes its execution. With the time-sharing policy processing power must be 
shared among several cloudlets, generating a lot of exchanges for completing their 
execution, which makes each cloudlet to take longer to finish. 

The better performance obtained by the space-shared policy is mainly because each 
VM can allocate and get all the processing power that needs to execute assigned 
cloudlets from the host where the VM executes. Instead, with the time-shared policy, 
each VM receives a time slice on each processing element, and then distributes the 
slices among the PSEs to be executed. Due to the fact that the VMs have less 
processing power (time slices) the experiments took longer to complete. As a result, 
the space-shared policy was more appropriate to this type of PSEs.  

Then, we performed the analysis of the same scenarios, but in a heterogeneous 
environment. The behavior of the different combinations of scheduling techniques 
was exactly the same as the case of homogeneous resources. Although the scheduling 
criteria to assign VMs to hosts and cloudlets to VMs were the same, the makespan 
was reduced for all scenarios. This improvement was because in the heterogeneous 
environment as many PEs as needed to run experiments were available. 

Finally, we performed a speedup analysis to measure the performance of each 
technique (space-shared and time-shared) to execute the PSEs on the Cloud with 
respect to the sequential execution on a single machine (see Fig. 5). 

The speedup is calculated as Sp = T1 / Tp, where p is the number of processing 
elements, T1 is the completion time of the sequential execution in a single machine, 
and Tp is the completion time of the parallel execution with p processing elements. 
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(a) Without resource heterogeneity 

 

(b) With resource heterogeneity 

Fig. 5. Speedup achieved by space-shared and time-shared policies: Results 

We conclude that a scenario in which the space-sharing policy is used for the VMs 
allocation to hosts enables a better speedup than the time-sharing policy in both 
scenarios (homogeneous and heterogeneous). While for the experiments we have 
conducted in this paper a space-share policy for the allocation of VMs to hosts yields 
better results, due to the fact that the employed cloudlets are sequential –i.e. they have 
no inner parallelism to exploit–, a time-share policy to assign the VMs to hosts would 
be more appropriate for other types of applications (not batch or sequential) and also 
could be good to improve not only the makespan but also the perceptible response 
time to the user, since incoming tasks could be periodically scheduled and then 
executed in small groups, thus giving sign of progress. 

5 Conclusions 

Cloud Computing is a new paradigm that offers the means for building the next 
generation parallel computing infrastructures. Although the use of Clouds finds its 
roots in IT environments, the idea is gradually entering scientific and academic ones. 
Even when Cloud Computing is popular, little research has been done with respect to 
evaluating the benefits of the paradigm for scheduling and executing resource 
intensive scientific applications. Through a real case study and simulations, we have 
reported on the speedups obtained when running PSEs on Clouds. Results are quite 
encouraging and support the idea of using Clouds in the academia. 

We are extending this work in several directions. First, we are conducting studies 
with other kind of PSEs, such as tension tests in metals [13], to further support our 
claims. Second, one of the key points to achieve good performance when using 
Clouds concerns task scheduling. In particular, there is an important amount of work 
in this respect in the area of Cloud Computing and distributed systems in general that 
aim at building schedulers by borrowing notions from Swarm Intelligence (SI), a 
branch of Artificial Intelligence that comprise models that resemble the collective 
behavior of decentralized, self-organized systems like ants, bees or birds. Moreover, a 
recent survey of our own [14] shows that there is little work regarding SI-based 
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schedulers for Cloud Computing. Therefore, we aim at designing a new SI-based 
scheduler that is capable of efficiently run PSEs. We are also planning to embed the 
resulting scheduler into CloudSim in order to provide empirical evidence of its 
effectiveness. Eventually, we could implement the scheduler on top of a real (not 
simulated) Cloud platform, such as Eucalyptus (http://www.eucalyptus.com). 
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