
EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

EasySOC: Making Web Service Outsourcing Easier1

Marco Crasso, Cristian Mateos∗, Alejandro Zunino∗, Marcelo Campo∗2

ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil (B7001BBO), Buenos3

Aires, Argentina. Tel.: +54 (2293) 439682 ext. 35. Fax.: +54(2293) 4396834

Also Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET)5

Abstract6

Service-Oriented Computing has been widely recognized as arevolutionary paradigm
for software development. Despite the important benefits this paradigm provides, cur-
rent approaches for service-enabling applications still lead to high costs for outsourcing
services with regard to two phases of the software life cycle. During the implementa-
tion phase, developers have to invest much effort into manually discovering services
and then providing code to invoke them. Mostly, the outcome of the second task is
software containing service-aware code, therefore it is more difficult to modify and to
test during the maintenance phase. This paper describes EasySOC, an approach that
aims to decrease the costs of creating and maintaining service-oriented applications.
EasySOC combines text mining, machine learning, and best practices from component-
based software development to allow developers to quickly discover and non-invasively
invoke services. We evaluated the performance of the EasySOC discovery mechanism
using 391 services. In addition, through a case study, we conducted a comparative
analysis of the software technical quality achieved by employing EasySOC versus not
using it.

Keywords: service-oriented computing, service outsourcing, text mining, machine7

learning, dependency injection8

1. Introduction9

Service-Oriented Computing (SOC) [20] is a new computing paradigm that sup-10

ports the development of distributed applications in heterogeneous environments. With11

SOC, distributed systems are built by assembling together existing functionalities, or12

services, that are published in a network. A service is a piece of software that is13

wrapped with a network-addressable interface, which exposes its capabilities to the14

outer world. From a software engineering standpoint, SOC isan interesting paradigm15

since it heavily promotes software reuse in a loosely coupled way [20].16

Mostly, the software industry has adopted SOC by using Web Service technologies.17

A Web Service is a program with a well-defined interface that can be located, pub-18

lished, and invoked by using ubiquitous Web protocols [55, 11]. Basically, the Web19

Service model encompasses three elements: service providers, service requesters, and20

service registries. Service providers use an XML-based language called WSDL [58]21

to create documents describing their Web Services, and publish these documents in22

registries, a.k.a. UDDI registries [38]. Service requesters can use the registry to find23

a Web Service that matches their needs, and then invoke its operations by using the24

corresponding WSDL document. WSDL and UDDI are standards designed to set the25

∗Corresponding author.
Email address:cmateos@exa.unicen.edu.ar (Cristian Mateos)Preprint submitted to Information Sciences January 3, 2010

Revised manuscript
Click here to view linked References

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=4929&rev=2&fileID=210235&msid={8C14058D-9923-4BD6-97C0-C308EB6C89B1}

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

basis for interoperability among clients and services in environments where many tech-26

nologies can be found.27

Despite the important benefits Web Services provide, namelyloose coupling among28

service consumers and providers, and high levels of global interoperability, Web Ser-29

vice technologies are currently not broadly used [35, 59]. Roughly, the cause of this30

fact is that current approaches to service consumption fromwithin applications require31

developers to manually look for suitable services and “glue” them in their client-side32

code afterward. This not only forces developers to invest burdensome efforts into dis-33

covering services and providing code to invoke the selectedones, but also leads to34

software containing service-aware code. We refer as service-aware code to those parts35

of a client application that are tightly coupled to the interface provided by specific36

providers. In an open world setting, where services are built by different organizations,37

it is not necessarily true that all the available implementations of an abstract service38

have the same interface [5]. Therefore, changing service providers requires changing39

the application logic as well. Thus, service-aware code is more difficult to modify and40

test. Then, the tasks of developing and maintaining a SOC application become hard.41

The problem associated with the development of service-oriented applications may42

stem from the fact that discovering services that fulfill thefunctionalexpectations of43

the client through common service registries is “as finding aneedle in a haystack” [17]44

when the number of services is large, which is the case of massively distributed envi-45

ronments like the Web. The problem associated with the maintainability of such ap-46

plications is a consequence of the approach commonly used bydevelopers to invoke a47

Web Service, which consists in obtaining the WSDL document of the service, interpret-48

ing it, and generating a client-side proxy to the remote service. Though this approach49

allows designers to separate business logic from the code for invoking services, the ap-50

plication logic mixes up with code that is subordinated to particular service interfaces.51

This fact reduces the internal quality of the resulting software, in which modifiability52

and out-of-the-box testing (i.e. outside a SOC setting) arecompromised. In particular,53

having good maintainability is essential, because software maintenance costs represent54

around 50% of the total software life-cycle cost [24].55

We claim that it is necessary to further simplify the processof service-oriented56

software development and maintenance. First, discoveringand selecting existing ser-57

vices must not be a tedious and time-consuming task for developers. Second, invoking58

services should be as non-intrusive to the application logic as possible, thus diminish-59

ing the effort of modifying and testing the client-side functionality once it has been60

implemented. This paper proposes EasySOC, an approach for making the task of out-61

sourcing functionality in service-oriented software easier, which essentially provides62

means for efficiently discovering third-party services, and enforcing minimum source63

code provision in the application logic for consuming them.64

EasySOC promotes separation of concerns between the application logic and the65

functionality related to service engagement. The approachlets developers to focus66

on implementing and testing the functional code of an application, and then “SOC--67

enable” it by discovering and loosely assembling the external functionality. To this68

end, EasySOC requires designers to specify the potential Java interface of the services69

to outsource. Then, EasySOC uses text mining techniques forautomatically pulling out70

relevant information about the desired service from the source code of the client-side71

software. EasySOC uses a Query-by-Example (QBE) approach to look for relevant72

third-party services based on this information, i.e. the example, which is supported73

by a search space reduction mechanism that uses machine learning techniques to al-74

low discoverers to promptly select a service from a wieldy list of candidates. In this75

2

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

sense, EasySOC aims to make Web Service candidate selectioneasier for humans, i.e.76

automatic service selection is not addressed here.77

After discovery, the selected services are non-invasivelyintegrated with the applica-78

tion by using the Dependency Injection (DI) [23] design pattern. With DI, external ser-79

vices are injected into application components requiring these services without affect-80

ing the components’ implementation. Furthermore, we combine DI with the Adapter81

Design Pattern to establish loose relationships between clients and service interfaces82

of specific providers. In this respect, EasySOC does not represent a new program-83

ming paradigm for SOC but an approach that exploits DI to build more maintainable84

service-oriented applications.85

The contribution of this work is a development model for building maintainable86

SOC applications. At the heart of this model is a semi-automatic service outsourc-87

ing process that allows developers to quickly find and non-invasively consume Web88

Services. Moreover, experimental results show that when using the information of the89

code of EasySOC-based applications to generate queries, our service search engine was90

more effective not only in retrieving more relevant services within a window of 10 can-91

didates but also in ranking them first in the result list, compared with the discovery92

performance resulted from generating queries from non-EasySOC code [10].93

The rest of the paper is organized as follows. The next section discusses the most94

relevant related work. Section 3 takes a deeper look at the EasySOC approach. Sec-95

tion 4 presents a detailed evaluation of the approach. Section 5 concludes the paper.96

2. Related work97

As suggested in the previous paragraphs, EasySOC represents a new development98

model for SOC applications. The model is based on an iterative approach to service99

outsourcing, where each iteration comprises three steps: (1) finding the list of candidate100

Web Services for the particularith service being outsourced, (2) select a candidate101

service from the resulting list, and (3) invoking the selected service from within the102

client-side application. Steps (1) and (3) are automatically performed by EasySOC via103

text mining and machine learning techniques, and DI, respectively, whereas step (2) is104

manually carried out by the developer.105

In this Section we position related work against theautomaticsteps of the EasySOC106

outsourcing model, namely step (1) or Web Service discovery(next Subsection) and107

step (3) or Web Service consumption (Subsection 2.2).108

2.1. Approaches to Web Service discovery109

Recently, the problem of finding proper services has been receiving much attention110

from both the academia and the industry. [17] presents a comprehensive survey of111

methods, architectures and models for discovering Web Services that discusses over 30112

proposals. Broadly, some of these efforts propose to combine Web Services and Se-113

mantic Web technologies [49], whereas others aim to take advantage of classic Infor-114

mation Retrieval (IR) techniques. Within the former group,some approaches [15, 36]115

define a meta-ontology for modeling Web Services, which allows publishers to asso-116

ciate concepts from shared ontologies with services. Similarly, WSDL-S [51] is an117

attempt to extend WSDL with semantic capabilities. This enables the use of semantic118

matching algorithms to very effectively find required services. Furthermore, by ex-119

ploiting unambiguous service definitions and semantic matching, software agents can120

automate the process of finding, invoking, and composing WebServices [39, 34].121

3

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

However, building ontologies is a costly and error-prone task [18, 50], and there is a122

lack of both widely-adopted standards for representing ontologies and publicly avail-123

able Semantic Web Services [35]. Besides, using ontologiesforces publishers and124

discoverers to be proficient in semantic technologies, and imposes modifications on125

the current, syntactic UDDI infrastructure [4].126

With respect to IR-inspired service discovery, [13, 53] adapt the Vector Space (VS)127

model for representing textual information available in Web Service descriptions and128

queries as vectors, then service look up operates by comparing such vectors. Con-129

cretely, the vector representing a query is matched againstthe vectors within the VS130

(i.e. the available services). The service whose vector maximizes the spatial nearness131

to the query vector is retrieved. Here, the number of matching operations is propor-132

tional to the number of published services. Thus, despite being suitable for Intranet133

settings, where the number of available services is usuallysmall, this approach may134

have performance problems in distributed environments, such as WANs or the Internet,135

where the number of services is large, making it unsuitable for agilely responding to136

user requests. Another shortcoming of IR-based approachesis that their effectiveness137

depends on how explanatory the words included in queries andservice descriptions138

are, because these words represent vector elements within the VS. In other words, on139

one hand it depends on publishers’ use of best practices for naming and documenting140

services, and discoverers’ ability to describe what they are looking for, on the other141

hand. Assuming that developers tend to follow best practices for naming and docu-142

menting services, so that services and their descriptions can be understood and re-used143

by other developers, the descriptiveness of queries has recently received attention from144

academia for its potential effects on discovery.145

Deriving queries to find Web Services from design-time specifications is explored146

in [29]. Under this approach, service-oriented applications are designed with the help147

of certain models that extend the UML notation. These extended models allow design-148

ers to indicate, using a very expressive query language, whether an individual class op-149

eration will be implemented in-house or delegated to a third-party service. Moreover,150

designers can specify constraints on the services/operations that will be outsourced151

(e.g. provider, the number of parameters of an operation, etc.). To compute the sim-152

ilarity between a query and the available services, a two-step process is used. Firstly,153

the services satisfying the specified constraints are retrieved. Secondly, the service op-154

erations that best match the query are determined through a similarity heuristic that155

is based on graph-matching techniques. The approach has, however, some drawbacks.156

On one hand, application designers have to learn and adopt the extended UML notation157

and the query language, and queries may be rather hard to define. On the other hand,158

designs of existent service-oriented applications must beadapted to this new notation159

so as to enable service discovery. In contrast, EasySOC derives those queries directly160

from existing application code, i.e. EasySOC uses the information already present in161

the interfaces describing outsourced services and the context in which these interfaces162

are reached. This allows developers toimplicitly state queries by using nothing but163

their preferred programming language.164

Lastly, the idea of extracting information from the client application and using it165

for creating service queries has been also promoted by SAGE [1]. SAGE proposes166

to employ a personal software agent for assisting a developer in finding Web Services167

based on the knowledge of the development environment (e.g.an IDE). Basically,168

this agent periodically monitors the developer until it detects an action that may be169

associated with requesting a service. The agent then uses any captured textual input170

and certain contextual information (e.g. the name of the project the user is working171

4

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

on, the developer’s role, etc.) to search service repositories in background. When172

a relevant service is discovered, the agent presents the results to the user, who must173

decide what to do with the service (options are to execute it,not to execute it, or defer174

the decision). In this way, the agent gradually infers the user’s preferences with regard175

to whether a retrieved Web Service should be used or not. The uttermost goal of SAGE176

is to automatically execute or discard services in new and similar situations.177

2.2. Approaches to Web Service consumption178

To address the problem of easily invoking Web Services from within applications,179

some toolkits (e.g. JWSDP1) and frameworks (e.g. WSIF and CXF) have been built.180

Basically, they provide programming abstractions to keep the application code as clean181

as possible from Web Service implementation details. Thesesolutions follow a contract-182

first approach to service consumption. We refer as contract-first approach to those183

approaches that first obtain the interface, or contract, of the outsourced service, and184

create/modify the application components that use it afterward. A contract establishes185

the terms of engagement of an individual service, providingtechnical constraints and186

requirements (e.g. specific data-types) as well as any information the provider of the187

service makes public [14]. Thus, the application logic is inevitably dependent on spe-188

cific service contracts. This makes application testing, modifiability and adaptability189

difficult. A more flexible solution to these issues is achieved by the Dynamic Proxy190

Invocation (DPI) approach. This approach associates client-side code with abstract191

service descriptions. Then, at runtime, a Web Service whoseinterface exactly adheres192

to the abstract description is retrieved and integrated with the application through a193

proxy. Although DPI allows developers to effortlessly swapover different services that194

provide the same interface, services whose interfaces are somewhat dissimilar to the195

abstract description but they deliver the required functionality cannot be easily inte-196

grated.197

Web Services Management Layer (WSML) [7] specifically addresses the problem198

of non-invasively integrating Web Services with applications. Conceptually, WSML199

introduces a software layer that isolates applications from concrete service providers.200

Within this layer, a special component or proxy is responsible for representing a set of201

“semantically” similar Web Services yet potentially exposing different interfaces. In202

other words, the proxy hides the syntactical differences among services providing the203

same functionality. Applications invoke services throughthese proxies, which inter-204

cept, adapt and forward individual requests to concrete WebServices based on user-205

provided adapters coded in JAsCo [54]. JAsCo is an AOP language that supports206

dynamic deployment of new adapters. A limitation of WSML is that developers have207

to learn not only a new programming language but also new programming abstractions,208

because even when the syntax of JAsCo is similar to that of Java, its semantics are quite209

different. Besides, although the authors in [7] have meticulously discussed WSML, the210

soundness of the approach has not been corroborated experimentally. Finally, WSML211

provides an extensible support for proxies to tune service access. For example, a proxy212

associated withN different service providers may be configured to use the provider that213

historically has offered the best response time. A limitation of this mechanism is that,214

initially, providers have to be manually discovered.215

Similar to [7], [45] uses AOP to dynamically integrate Web Services with appli-216

cations. The implementation of any internal method can be replaced by a Web Service217

1Java Web Services Development Packhttp://java.sun.com/webservices/jwsdp/index.jsp

5

http://java.sun.com/webservices/jwsdp/index.jsp

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

operation by declaring an aspect that intercepts the execution of that method. The as-218

pect receives the WSDL document of the service, through gluecode implemented by219

the developer, and executes operations on the Web Service. Aspects are implemented220

in AspectJ [25], a language that extends Java with AOP constructs. [45] includes221

a service discovery system that allows developers to find services by specifying their222

potential inputs and outputs. Then, when a relevant serviceis found, aspect code is gen-223

erated and deployed to invoke the corresponding Web Service. Queries have the same224

structure as themessageelement of the WSDL language, which is used to describe225

service inputs/outputs in the XSD (XML Schema Definition) language. Therefore,226

building queries also requires developers to specify the expected data-types for service227

operations in XSD, which is a tedious task [9]. Finally, [45]aims at fully automat-228

ing the tasks of discovery and integration of services at runtime, which have received229

some criticism [42]. In real world scenarios, some characteristics of the Web Ser-230

vice engagement process, such as the need for establishing service-level agreements,231

performing payment or determining the provider’s reputation still clearly requires an232

active intervention from the user.233

To conclude, [37] presents a semi-automated approach to generate service repre-234

sentatives that are similar to EasySOCservice adapters, which result from combining235

DI and the Adapter design patterns. Essentially, the approach identifies structural dif-236

ferences between two service interfaces, such as parametertypes, missing/extra param-237

eters and parameter ordering, and builds amismatch tree. Then, for the mismatches that238

can be resolved automatically, adapter code is generated. The mismatches that require239

developers’ input for their resolution are conveniently presented to the user through a240

GUI. Note that this ideas may be also applied to further ease the implementation of241

EasySOC service adapters.242

EasySOC copes with the mentioned shortcomings. Firstly, since EasySOC discov-243

ery technique is based on the VS approach, it proposes a search space reduction mech-244

anism that greatly mitigates the inability of such approaches to handle large data-set in245

interactive usage scenarios, this is, those in which only the user can perform candidate246

service selection. In addition, by automatically inferring potential service descriptions247

from the information present in client-source code, EasySOC frees developers from248

generating queries. Secondly, our approach is based upon a DI-inspired programming249

model that shields application logic from not only service invocation details but also250

providers’ contracts. As a consequence, switching betweenavailable providers for an251

outsourced functionality is easier and cheaper –with regard to software modifiability252

and maintainability– than contract-first or DIP-based alternatives. Moreover, the code253

to perform contract adaptation is specified in the same programming language as the254

pure functional code, that is, there is no need to learn any new language or program-255

ming paradigm.256

3. The EasySOC approach257

Component-based software development is a branch of software engineering that258

focuses on building software in which functionality is split into a number of logical259

software components with well-defined interfaces. Components are designed to hide260

their associated implementation, to not share state, and tocommunicate with other261

components via message exchanging. Anatomically, a component can be thought as262

an object from the object-oriented (OO) paradigm, and the interface(s) to which the263

object adheres. The spirit of the component-based paradigmis that application compo-264

6

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

? QBE−based
search engine

Incorporation of the adapted
instance into the application

(semi−automatic step)
Section 2.2

?

2

3

Candidate selection
(manual step)

Third−party service specifications
(e.g. Java interfaces)

Service−oriented
application

search result =

Keys:

A concrete Web Service implementing
a required functionality.

Specification of an outsourced service.

An application component
requiring missing functionality.

selected plus
adapter

Web Service Registry

look for =

1.1

Query Generation

(automatic step)

Section 2.1.1

1.2

Service Discovery

(automatic step)

Section 2.1.2

=

Text−mining

Machine learning

Dependency
injection

Figure 1: Overview of EasySOC

nents only know each other’s interfaces, thus high levels offlexibility and reuse can be265

achieved.266

SOC has evolved from component-based notions to face the challenges of software267

development in heterogeneous distributed environments [40], where interoperability268

is a crucial issue not yet fully addressed, nevertheless it suggests unprecedented levels269

of reusability. A service-oriented application can be viewed as a component-based ap-270

plication that is created by assembling two types of components: internal, which are271

those locally embedded into the application, andexternal, which are those statically or272

dynamically bound to a service. When building a new application, a software designer273

may decide to provide an implementation for some application component, or to reuse274

an existing implementation instead. From now on, we will refer to this latter asout-275

sourcing. In this context, to outsource a componentC means to fill the hole left by the276

missing functionality with the one implemented by an existing serviceS. As there may277

be many published services that serve to this purpose, an early problem is how to allow278

developers to effectively and quickly discover candidate services. After discovering,279

a latter problem is how to allow developers to integrate outsourced services with their280

software while achieving good maintainability. Note that addressing these problems281

would minimize the impact of outsourcing on the software life cycle, in particular on282

development and maintenance.283

To address these problems we propose EasySOC (see Fig. 1). EasySOC takes as284

input an application where some of its constituent components have been implemented,285

and others are intended to be outsourced. In the figure, thesetwo types of components286

are sketched with solid and dashed lines, respectively. Based on the Java interfaces287

describing the external components, a semi-automatic process is iteratively applied to288

associate an individual service with each one of these components. Each iteration in-289

volves three steps: (1) finding the list of candidate services, (2) selecting an individual290

service from the previous list, and (3) injecting a representative or proxy to the selected291

service into the application, to enable it to invoke the service at runtime. EasySOC292

provides developers with support tools that perform steps (1) and (3) automatically and293

semi-automatically, respectively, whereas step (2) is in charge of the software devel-294

oper. For example, if a component for providing current foreign exchange rates is to be295

7

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

outsourced, ServiceObjects2 and StrikeIron3 services would be automatically discov-296

ered, one of these services selected by the developer, and a representative of the service297

integrated with the application. Overall, the discovery-selection-injection sequence is298

performed until all external components of the input application have been associated299

with a concrete service.300

Typically, when manually looking for services that fulfill acertain functionality in301

a UDDI registry, a user first seeks a category related to that functionality, and then302

exhaustively analyzes the services that belong to it [9]. Essentially, the first step in303

Fig. 1 attempts to automatically reproduce this discovery process. EasySOC employs304

a Web Service search engine [10] that is based on a QBE approach and an automatic305

classifier [9]. Given a query or example, this search engine first deduces the most re-306

lated category to the example functionality, and then looksfor relevant services within307

it. Concretely, by analyzing the interface specification ofa componentC that is to be308

outsourced, EasySOC produces the example (sub-step 1.1 in Fig. 1) and sends it to the309

search engine (sub-step 1.2 in Fig. 1). As a result, though a large number of avail-310

able services or categories may be present, a discoverer is allowed to promptly select a311

service from a wieldy list of candidates (step 2 in Fig. 1).312

In order tonon-intrusivelyintegrate a selected Web Service with the consumer’s ap-313

plication, EasySOC exploits the Dependency Injection (DI)[23] and Adapter design314

patterns. In DI terminology, when an application componentC1 needs the functional-315

ity of another componentC2, it is said thatC1 has adependencyto C2. Then, the main316

goal of DI is to abstract away the code implementing dependencies (e.g. component317

instantiation and configuration) from the pure functional code implementing compo-318

nents, and to transparently inject the dependency code intocomponents instead. By319

using DI, component code only depends on the interfaces describing components but320

not on the mechanisms by which application components communicate to each other.321

An interesting implication of DI to our work is that third-party services play the role322

of components to which internal components can depend upon,but without the need323

to explicitly provide functionality to actually invoke these services (i.e. Web Service324

APIs or frameworks). On the other hand, the implication of the Adapter design pat-325

tern is that application code neither depends on specific service contracts by adapting326

them to contracts expected by the internal components. In consequence, any internal327

component can take advantage of Web Services just like they were calling operations328

on another internal component, which makes service consumption more natural to the329

programmer, and frees the application logic from code that is tied to server-side ser-330

vice interfaces, which is semi-automatically injected andadapted by EasySOC instead331

(step 3 in Fig. 1).332

The remainder of this section will explain in detail the steps mentioned above.333

Particularly, the next subsection will focus on the first step of the outsourcing process,334

whereas Section 3.2 will concentrate on its second and thirdsteps.335

3.1. Discovering services336

From an information retrieval viewpoint, the data within aninformation system337

includes two major categories: documents and queries. The key problems are how to338

state a query and how to identify documents that match that query [28]. The distinction339

between considering a query to be a document and consideringit to be different from340

2ServiceObjectshttp://trial.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL
3StrikeIronhttp://ws.strikeiron.com/ForeignExchangeRate?WSDL

8

http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL
http://ws.strikeiron.com/ForeignExchangeRate?WSDL

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

C
u

rr
e

n
c
y

Exchange

"currency exchange"

(a) Representation

document 1

document 2

t

t

i

j

(b) Comparison

Figure 2: Vector space model

a document affects the manner in which the retrieval processis modeled. If the query341

is considered to be a document, then retrieval is a matching process. The backbone of342

our service discovery approach is to use the same representation for both services and343

queries. Accordingly, the service discovery process is reduced to a matching problem.344

Matching similar documents is a problem with a long history in information re-345

trieval [28]. Methods based on linear algebra have shown to be suitable alternatives346

for correlating similar documents [12]. These techniques map documents onto a vector347

space (VS) [46]. Broadly, VS is an algebraic model for representing text documents in348

a multidimensional vector space, where each dimension corresponds to a separate term349

(usually single words). As a result, documents having similar contents are represented350

as vectors located near in the space. Moreover, a query is also represented as a vector.351

In consequence, searching related documents translates into searching nearest neigh-352

bors in a VS. For example, in Fig. 2 (a) we represent a documentcontaining the terms353

“currency” and “exchange”, whereas in Fig. 2 (b) the cosine of the angleΩ provides354

an estimation of how similar two vectors and therefore two documents are.355

Essentially, our discovery technique deals with matching the interface of an exter-356

nal component to a concrete Web Service description. Then, the commented source357

code of the interface of a component being outsourced standsfor a query, while vec-358

tors in the VS represent the descriptions accompanying available Web Services. Sec-359

tion 3.1.1 will explain in detail how vectors from client-side software are generated360

and Section 3.1.2 will describe how both spatial representations –i.e. client-side and361

server-side vectors– are matched.362

3.1.1. Generating queries and mapping them onto the vector space363

By automatically generating queries and narrowing the listof potential service can-364

didates, EasySOC aims to ease the discovery task. The idea behind query generation is365

to extract relevant terms from the description (i.e. the Java interface) of a component366

being outsourced. In addition to the description of an external component, there are367

other sources of relevant terms that may be considered when building a query. Particu-368

larly, we assume that:369

1. classes representing the parameters of an operation may contain relevant terms,370

2. internal components interacting with the one being outsourced may contain rel-371

evant terms, this is, the source code context in which a service is invoked (e.g. a372

method) may also provide useful terms.373

EasySOC expects good development practices from developers. In this way, we assume374

that, throughout their projects, developers use self-explanatory names for class proper-375

ties, methods and arguments, comment them and avoid using meaningless names like376

“arg1”, “arg2” or even the commonplace “foo”, as as usually occurs [52]. Under these377

9

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

/**

* Converts worldwide currencies.

*/

public interface CurrencyExchanger {

 /**

 * Retrieve the rate between two

 * countries

 * @param country0 a country

 * @param country1 another country

 * @return rate

 */

 double getRate(Country country0,

 Country country1);

}

/**

* Allows managing personal banking

* information, accounts, deposits and

* withdraws.

*/

1 public class HomeBankingApp {

2 Country localCountry;

3 CurrencyExchanger exchanger;

4

5 void showBalanceIn(Country c){

6 double foreignRate =

7 exchanger.getRate(localCountry, c);

8 setBalance(foreignRate);

 ...

Internal component depending on an external one Client−side description of an external component

Figure 3: An example of relevant words within client-side commented source code

assumptions, method arguments of the interfaces describing external components may378

have meaningful terms. Moreover, the classes associated with these method arguments379

(e.g. the class Country in Fig. 3) may have proper names and documentation. In fact,380

this is expressed by the assumption number (1).381

On the other hand, the assumption number (2) leads to extractrelevant terms from382

those internal components that directly interact with the one being outsourced. Fol-383

lowing good practices when building component-based software results in components384

with strongly-related and highly-cohesive operations [57]. Based on this fact, we385

assume that the logic of a well-designed application commonly belongs to a unique386

domain. For example, the right side of Fig. 3 depicts the documented Java interface387

describing an external component to get the currency exchange rate between two given388

countries and, on the left side, an internal component depending on it (line 3) and call-389

ing it (line 7). A Web Service for providing current foreign exchange rates might be390

useful for applications belonging to the business domain (the left side of Fig. 3 illus-391

trates a home-banking application), while it rarely might be useful for an application392

in the math domain.393

Java interfaces may contain terms that help to indicate their functionality. We de-394

fine these terms as being relevant and other terms as non-relevant. In this way, all Java395

reserved words are non-relevant (e.g. public, void, interface, return). A Java interface396

comprises a name and a description of its provided operations (or method signatures397

in OO terminology). In addition, good development practices promote developers to398

comment source code. Javadoc4 is a tool for automatically generating API documen-399

tation from comments in Java source code. With Javadoc developers place comments400

using a set of pre-established elements or tags. As a result,a Java interface specifica-401

tion consists of a structured textual description of its constituent parts (optional) and402

the signatures of its exposed operations (mandatory).403

Java interfaces may contain terms that help to indicate their functionality. We de-404

fine these terms as being relevant and other terms as non-relevant. In this way, all Java405

reserved words are non-relevant (e.g. public, void, interface, return). Extracting rel-406

evant terms is very important because they may contribute tobuild accurate queries,407

which in turn may help to increase the precision of the discovery mechanism as the408

next section will show. Consequently, we have designed a text mining process for ex-409

tracting relevant terms from the client-side source code. This process comprises five410

activities. In a first activity, we pull out the name of a component and the name of its411

operations. To do this, we use the Java Reflection API5. Broadly, reflection provides412

4Javadoc Tool Homehttp://java.sun.com/j2se/javadoc
5Java Reflection API.http://java.sun.com/docs/books/tutorial/reflect/

10

http://java.sun.com/j2se/javadoc
http://java.sun.com/docs/books/tutorial/reflect/

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

the ability to examine class meta-data [56]. In a second activity, we mine developers’413

comments from Javadoc elements. At this point, we have a collection of terms. Then,414

we look for combined words within this collection and split them, because commonly415

used notation conventions (e.g. JavaBean, Hungarian) suggest to combine two or more416

words (e.g.getRate, get_rateor destCurrency) for assigning names to operations and417

parameters. Finally, we employ Stop words and Stemming, twoclassic text mining418

techniques. A stop word is a word with a low level of “usefulness” within a given419

context or usage [28]. By removing symbols and stop words we attempt to “clean”420

queries. Finally, we utilize the Porter Stemming algorithm[41] for removing the com-421

moner morphological and inflectional endings from words, reducing English words to422

their stems. As a result, the output of our text mining process is a set of stems extracted423

from the specification of the external component (e.g. the stems in bold in Fig. 3).424

Then, we use these stems for building a vector~q = (e0, ...,en), where each elementei425

represents the weight of a distinct stem for the component being outsourced.426

In [47] the authors compare different efforts that have beenmade on term weight-
ing techniques. EasySOC uses TF-IDF because this combined heuristic has shown to
be suitable for weighting terms present in Web Service descriptions [53]. TF deter-
mines that a term is important for a document if it occurs often in that document. On
the other hand, terms which occur simultaneously in many documents are rated as less
important because of their IDF value. Formally, for each term ti of a documentd,
t f id fi = t fi • id fi , with:

t fi =
ni

∑Td
j=1n j

(1)

where the numerator (ni) is the number of occurrences withind of the term being
considered, and the denominator is the number of occurrences of all terms withind
(Td), and:

id fi = log
|D|

|{d : ti εd}|
(2)

where|D| is the total number of documents in the corpus and|{d : ti εd}| is the number427

of documents where the termti appears.428

By employing this client-side text mining process on the descriptions of service429

operations and internal components, we augment the collection of terms that constitutes430

a query. In Section 4, we will evaluate how this approach impacts on the accuracy of431

the service discovery mechanism of EasySOC.432

3.1.2. Matching similar queries and available Web Services433

After generating a vector representation for a query, the next step is to match it434

against the vectors that stand for Web Services within the vector space to retrieve re-435

lated services. In [9] we described how to map Web Service descriptions onto the436

VS. Broadly, we have developed a crawler that analyzes an UDDI registry, extracting437

the category and the WSDL document associated with each available service. Then,438

a WSDL document is preprocessed for extracting relevant terms and bridging syntac-439

tic differences of service descriptions. Specifically, thepreprocessing stage for Web440

Services comprises extracting the names of the services, its operations and arguments441

along with any textual comment included in the WSDL document. Afterward, ex-442

tracted terms are further refined by removingstop-words, employing Porter’sstemming443

algorithm and bridging different WSDL message styles by mining relevant terms from444

data-type definitions. Finally, for each term we compute itst f id f -based weight and, in445

turn, the new vector is incorporated into the vector space.446

11

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

Matching a query against the whole vector space can be very inefficient when the447

number of services is large [48]. Therefore, our search engine [10] uses a space re-448

duction mechanism based on Rocchio’s classification algorithm [22]. In [9] we have449

empirically shown that by using Rocchio with TF-IDF, this search engine achieves450

better results than using K-NN, Naïve Bayes and an ensemble machine learning ap-451

proach [19] that combines Naïve Bayes and Support Vector Machine. This mechanism452

divides the vector space into sub-spaces, one for each category of services available in453

a UDDI registry. A sub-space is centered on an average vector, known ascentroid,454

which stands for the documents that belong to that category.Afterward, a query is455

compared to the centroid associated with each category in order to determine the one456

that maximizes similarity. Once a category has been selected, the search engine com-457

pares the queryonly against the vectors that belong to this sub-space. This, besides458

being more efficient than matching a query against the whole vector space, reduces459

the number of dimensions of each individual sub-space [9] because services within an460

individual domain share the same sublanguage [32]. For the purposes of this paper we461

can informally define “sublanguage” as a form of natural language used in a sufficiently462

restricted setting [27]. Typically, a sublanguage uses only a part of the structures of463

a language. For instance, in the business domain words such as “economy”, “com-464

petitive” and “currencies” occur often, while words such as“affine”, “chebyshev” and465

“commutative” seldom appear. Formally, the centroid~ci for the documents that belong466

to categoryi is computed as:467

~ci = α
∑~dεCi

~d

|Ci |
−β

∑~dεD−Ci
~d

|D−Ci|

with Ci being the sub-set of the documents from categoryi, andD the amount of doc-468

uments of the entire data-set. First, both the normalized vectors ofCi , i.e. the positive469

examples for a class, as well as those ofD−Ci , i.e. the negative examples for a class,470

are summed up. The centroid vector is then calculated as a weighted difference of the471

positive and the negative examples. The parametersα andβ adjust the relative impact472

of positive and negative training examples. As suggested by[3], we useα = 16 and473

β = 4.474

There are some different similarity calculations for finding related vectors [28].
One measure that is widely used is thecosine measure, which has shown to be better
than other similarity metrics in terms of retrieval effectiveness [26]. This measure is
derived from the cosine of the angle between two vectors. This approach assumes that
two documents with a small angle between their vector representations are related to
each other. As the angle between the vectors shortens, its cosine approaches to 1, i.e.
the vectors are closer, meaning that the similarity of whatever is represented by the
vectors increases. Formally:

cosineSimilarity(Q, S) =
Q•S
|Q||S|

=
∑T

i=1 tS,i× tQ,i
√

∑T
i=1t2

Q,i ∑T
i=1 t2

S,i

We use this measure for matching a queryQ against each serviceS, and then sort these475

results in decreasing order of cosine angles. The computational complexity of calculat-476

ing cosine similarity between two vectors takes linear timeand depends on the number477

of dimensions of the VS, i.e. the number of different termsT. In consequence, the478

12

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

1: procedure DISCOVER(~q,N) ⊲ Returns a list of candidate Web Services
2: Category[]category← CLASSIFY(~q)
3: for all ~vservice∈ category[0]do
4: doublesimilarity← COSINESIMILARITY (~q,~vservice)
5: INSERT(service,similarity,candidates)
6: end for
7: return SUBL IST(candidates,N)
8: end procedure

Algorithm 1: Main steps of the discovery process

space reduction mechanism reduces the time complexity of vector similarity calcula-479

tions.480

Algorithm 1 summarizes the main steps of the matching process for discovering481

relevant services. During the first step, the algorithm determines the nearest category482

of vector~q, which stands for a user’s query (line 2). Afterward, the query is compared483

against each~vservice, i.e. the vector of a service that belongs to the category returned484

by the previous step (line 4). Found services are sorted according to cosine similarity485

(line 5), this is, vectors that minimize their angle between~q are sorted first. Finally, the486

topN candidates are returned to the user (line 7).487

For example, let us suppose there are 2 services belonging toa category named488

“book” and 2 services belonging to a category named “movie”,whose corresponding489

vectors are:490

~v0 = (< book,0.92>,< searcher,0.38>)

~v1 = (< book,0.86>,< searcher,0.35>,< topic,0.35>)

~v2 = (< movie,0.92>,< topic,0.38>)

~v3 = (< movie,0.86>,< searcher,0.35>,< topic,0.35>)

Vectors~v0 and~v1 belong to category “book”, whereas the other vectors belongto491

category “movie”. Under our two-steps approach, the centroids for each category are:492

~cbook = (< book,0.93>,< searcher,0.34>,< topic,0.09>)

~cmovie = (< movie,0.93>,< topic,0.34>,< searcher,0.09>)

Now, let us suppose we want to find services for providing information about books493

covering a topic, by using “book topic” as input. Mapping thequery onto this vector494

space generates a vector~q =< book,0.92>,< topic,0.38>. Then, EasySOC com-495

pares~q against the aforementioned centroids (first step). The resulting similarities are:496

cosineSimilarity(~q,~cbook) = 0.898

cosineSimilarity(~q,~cmovie) = 0.130

The centroid associated with “book” category maximizes thesimilarity, therefore497

EasySOC will compare the query only against~v0 and~v1 (second step). As a result,498

EasySOC performed 3 vector comparisons, instead of comparing~q against the whole499

vector space. Moreover, as the reader can note the space has 4dimensions: “book”,500

13

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

“searcher”, “movie” and “topic”. However, by reducing the search space, the num-501

ber of terms was narrowed down to 3 during the second step (“book”, “searcher” and502

“topic”).503

In the next section we will focus on describing in detail how discovered services504

are integrated with consumers’ applications under EasySOC.505

3.2. Incorporating a candidate506

At step 3, after a developer selects a Web Service, EasySOC semi-automatically507

integrates the service with the application. To this end, EasySOC exploits the concept508

of Dependency Injection (DI). DI establishes a level of abstraction between application509

components via public interfaces, and achieves component decoupling by delegating510

the responsibility for component instantiation and binding to a DI container. In SOC511

terms, this represents the functionality for interpretingWSDL documents and perform-512

ing calls to service providers.513

Section 3.2.1 explains the concept of DI. Then, Section 3.2.2 describes how Easy-514

SOC builds on this notion to simplify Web Service consumption.515

3.2.1. Dependency injection: Overview516

Next, we will briefly illustrate DI through an example. Let ussuppose we have a517

Java component for listing books of a particular topic (BookLister) that calls a remote518

Web Service-wrapped repository where book information is stored. The class imple-519

menting this component invokes the service operation that returns book information,520

and then iterates the results to filter and display this information:521

pub l i c c l a s s B ookL i s te r {522

pr i va te S t r i n g e ndPo in t = " h t t p : / / example . edu : 8 0 8 0 / BookRepos i to ry " ;523

pr i va te S t r i n g ns = " h t t p : / / example . edu " ;524

pr i va te S t r i n g serv iceName = " BookRepos i to ry " ;525

pr i va te S t r i n g portName = " B ookR e pos i t o ryPo r t " ;526

527

pub l i c B ookL i s te r (. . .) { . . . }528

pub l i c vo id d i s p la yB ooks (S t r i n g t o p i c) {529

/ / Se tup a c a l l t o the Web S e r v i c e530

S e r v i c e F a c t o r y s f = S e r v i c e F a c t o r y . ne w Ins ta nc e () ;531

S e r v i c e s e r v i c e = s f . c r e a t e S e r v i c e (new QName(ns , serv iceName)) ;532

C a l l c a l l = (C a l l) s e r v i c e . c r e a t e C a l l () ;533

c a l l . s e t T a r g e t E n d p o i n tA d d r e s s (e ndPo in t) ;534

c a l l . setPortTypeName (new QName(ns , portName)) ;535

c a l l . se tOpera t ionName (new QName(ns , " queryBooks ")) ;536

c a l l . s e tR e tu rnT ype (new QName(NSCons tants . NSURI_SCHEMA_XSD , " S t r i n g [] ")) ;537

/ / C on tac t t he Web S e r v i c e . . .538

Ob je c t wsResu l t = c a l l . invoke (new Ob je c t [] { })) ;539

L i s t <Book> books = parseBooks ((S t r i n g []) wsResu l t) ;540

Enumera t ion elems = books . e le me n ts () ;541

whi le (e lems . hasMoreElements ()) {542

Book book = elems . nex tE lement () ;543

i f (book . ge tT op i c () . e q u a l s (t o p i c))544

System . ou t . p r i n t l n (book . g e t T i t l e () + " : " + book . ge tYe a r()) ;545

}546

}547

}548

For clarity reasons, exception handling has been omitted. ThedisplayBooks method549

contains two different types of instructions, namely, codeto invoke the Web Service,550

and code to filter out the books that do not match the desired topic. Now, if we551

want to use a different mechanism for storing book information such as a database552

(i.e. no longer employ a Web Service to wrap the repository),displayBooks must be553

rewritten, some lines fromBookLister discarded, and the whole component retested.554

Besides, depending on the way information is stored, a different set of configuration555

14

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

parameters could be required (e.g. database location, drivers, etc.). In such a case,556

BookLister also have to be modified to include the necessary constructors/setters.557

Basically, the cause of this problem is that the implementation does not abstract away558

the API code for accessing the repository from the application logic, that is, the second559

group of instructions.560

The DI-enabled listing component includes an interface (BookSource) by which561

BookLister accesses the repository. Classes implementing this interface represent a562

different form of accessing book information. In EasySOC terminology, such a class563

is called aservice adapter. Additionally, BookLister exposes asetSource(Book-564

Source) method so that a DI container can inject the particular retrieval component565

being used6. BookLister now contains code only for browsing and displaying book-566

related information, but the code which knows how and from where to obtain this567

information is placed on extra classes:568

/∗ ∗ The component i n t o which ano the r component i s i n j e c t e d∗ /569

pub l i c c l a s s B ookL i s te r {570

BookSource s ou rc e =n u l l ;571

572

pub l i c vo id s e t S o u r c e (BookSource s ou rc e) {t h i s . s ou rc e = s ou rc e ; }573

pub l i c vo id d i s p la yB ooks (S t r i n g t o p i c) {574

L i s t <Book> r e s u l t s = s ou rc e . ge tBooks () ;575

/ / F i l t e r and d i s p l a y r e s u l t s576

}577

}578

/∗ ∗ The i n t e r f a c e o f t he dependency∗ /579

pub l i c i n t e r f a c e BookSource{580

pub l i c L i s t <Book> getBooks () ;581

}582

/∗ ∗ The component be ing i n j e c t e d∗ /583

pub l i c c l a s s WebServiceBookSourceimplements BookSource{584

pr i va te S t r i n g e ndPo in t = " h t t p : / / example . edu : 8 0 8 0 / BookRepos i to ry " ;585

pr i va te S t r i n g ns = " h t t p : / / example . edu " ;586

pr i va te S t r i n g serv iceName = " BookRepos i to ry " ;587

pr i va te S t r i n g portName = " B ookR e pos i t o ryPo r t " ;588

589

pub l i c vo id s e t E n d P o i n t (S t r i n g e ndPo in t) {t h i s . e ndPo in t = e ndPo in t ; }590

pub l i c vo id setNS (S t r i n g ns) { t h i s . ns = ns ; }591

pub l i c vo id se tServ iceName (S t r i n g serv iceName){t h i s . se rv iceName = serv iceName ; }592

pub l i c vo id se tPor tName (S t r i n g portName){t h i s . portName = portName ; }593

pub l i c L i s t <Book> getBooks () {594

/∗ ∗595

∗ 1) Se tup a c a l l t o the Web S e r v i c e596

∗ 2) Inv ok e i t s " queryBooks " o p e r a t i o n597

∗ 3) t r ans fo r m the r e s u l t i n g a r r ay i n t o a l i s t o b j e c t598

∗ /599

}600

}601

Now, we must assemble the above components to build the wholeapplication. Partic-602

ularly, we have to indicate the DI container to use an instance of WebServiceBook-603

Source for thesource field of BookLister. This is supported in most containers by604

configuring a separate XML file, which specifies the DI-related configuration for every605

application component. From now on, we will use Spring [23] as the DI container.606

Then, the configuration file for the example is:607

<?xml ve r s i on=" 1 . 0 " encod ing ="UTF−8" ?>608

< !DOCTYPE beans PUBLIC " −//SPRING / / DTD BEAN / / EN"609

" h t t p : / /www. s p r i ng f ra me work . org / d td / s p r i ng−beans . d td ">610

< beans >611

<bean id =" myL i s te r " c l a s s =" B ookL i s te r ">612

6Many DI containers support two forms of injection:setter injection(components express dependencies
via get/set accessors) andconstructor injection(components express dependencies by means of constructor
arguments).

15

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

BookLister

Runtime system

< < c r e a t e > >
ServiceFactory

Service

Call

Application
. . .

(a) Without using DI

<<interface>>

BookSourceBookLister

Application

WebServiceBookSource

Assembler

Runtime system

DI container

ServiceFactory
< < c r e a t e > >

setsource
< < c r e a t e > >

Service

Call

. . .

(b) Using DI

Figure 4: Class diagrams for the book listing application

< p r o p e r t y name=" s ou rc e ">< r e f l o c a l =" mySource " / >< / p r o pe r t y >613

< / bean>614

<bean id =" mySource " c l a s s =" WebServiceBookSource " / >615

< p r o p e r t y name=" e ndPo in t "> h t t p : / / example . edu:8080 / BookRepos i to ry < / p r o p e r t y >616

< p r o p e r t y name=" ns "> h t t p : / / example . edu< / p r o p e r t y >617

< p r o p e r t y name=" serv iceName "> BookRepos i to ry < / p r o p e r ty >618

< p r o p e r t y name=" portName "> B ookR e pos i t o ryPo r t< / p r o p e rt y >619

< / bean>620

< / beans>621

Fig. 4 shows the class diagrams of the two versions of our booklisting application.622

In the non-DI version (left),BookLister directly uses a Web Service API. Then, the623

application logic is mixed up with code for configuring and using Web Service pro-624

tocols, thus reusability and extensibility suffer. Conversely, in the DI version (right),625

the code for contacting the service is encapsulated into a new component, and the cor-626

responding configuration parameters are placed on a separate file, which is processed627

at runtime. As shown, using DI has reduced the number of dependencies to concrete628

classes within the application logic (i.e.BookLister) and produced a better design in629

terms of cohesion and extensibility.630

Intuitively, the code implementing components is easier toreuse and to unit test,631

which in turn improves maintainability. For instance,BookLister andWebService-632

BookSource can be separately modified, tested and reused. Empirically,it has been633

shown that software using DI tend to have lower coupling thansoftware not employing634

DI [43], which has a direct impact on maintainability.635

As shown, an interesting implication of DI in SOC is that the pure application logic636

can be isolated from the configuration details for invoking services (e.g. URLs, names-637

paces, port names, etc.). In fact, the Remoting module of Spring provides a number of638

built-in components that can be injected into applicationsto easily call services. Ba-639

sically, this support makes Web Service invocation a transparent process. With this in640

mind, a developer thinks of a Web Service as any other regularcomponent providing641

a clear interface to its operations. If a developer wants to call a Web ServiceS with642

interfaceIs from within an internal componentC, an external dependency betweenC643

andS is established throughIs, causing a proxy toS to be injected intoC. This frees644

developers from explicitly using classes likeServiceFactory, Service andCall to645

invoke Web Services.646

This development practice, which can be seen as a contract-first approach to Web647

Service consumption, effectively leverages the benefits ofDI for building service-648

oriented software. However, it leads to a form of coupling through which the appli-649

cation is tied to the contracts (i.e. theIs interface) of the specific services it relies on.650

In this way, changing the provider for a service requires to adapt the client application651

to follow the new service contract. At the implementation level, this means to rewrite652

the portions of the application code that use the interface of the original service. A653

16

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

Internal
component

External
component

Adapter
injectionService

adapter

User−selected
Web Service

(client−side proxy)

Application
layer

Service Adapter
layer

Proxy
layer

Figure 5: Service adapters in EasySOC

different interface implies different operation names, and input and return data-types654

(e.g. a complex data-type array instead ofString[] for our book service), which must655

be adapted manually. All in all, the DI pattern is useful for building loosely coupled656

components. However, when using a contract-first approach to service consumption,657

DI may not be enough to ensure modifiability in the resulting software.658

3.2.2. Taking DI a step further659

To overcome this problem, EasySOC refines the idea of Web Service injection by660

introducing an intermediate layer that allows applications to non-invasively use ser-661

vices. Roughly, instead of directly injecting a raw Web Service proxy into the appli-662

cation, aservice adapteris injected (see Fig. 5). A service adapter is a specialized663

Web Service proxy, inspired by the Adapter design pattern [16], which is in charge of664

adapting the interface of the underlying service accordingto the interface (specified by665

the developer at design time) of the associated external component. Service adapters666

comprise the logic to transform the method signatures of theexternal component (i.e.667

the client-side interface used by EasySOC as a query to perform service discovery) to668

the actual interface of the Web Service selected by the developer. For instance, if a669

service operation returns multiple integers as a comma-tokenized string, but the appli-670

cation requires an integer array, the adapter would be responsible for performing the671

conversion.672

In opposition to the contract-first approach to outsourcing, in which the application673

code is made compatible with the interfaces of the services it uses, service adapters674

accommodate the interfaces of the outsourced services to the interfaces supplied by the675

developer. This approach is calledcode-first. Then, changing a service does not affect676

the code of the application, because it only requires to write a different service adapter677

for the new service. Besides reducing the coupling between internal components of an678

application and services, this approach allows developersto design, implement and test679

the application components, and then focus on the “servification” of the application.680

Furthermore, this separation may bring additional benefitsbeyond software quality and681

contribute to improve the development process itself, as these two groups of tasks can682

be performed independently by different development teams.683

To better illustrate these ideas, and to understand the responsibilities of the devel-684

oper in the tasks of incorporating a candidate service for anexternal component, let us685

come back to the DI version of the book listing application discussed above. Let us sup-686

pose our application is now composed of an internal component (BookLister) and an687

external component, whose contract is specified by theBookSource interface and for688

which we want to outsource an implementation. Based on the example (BookSource),689

17

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

EasySOC7 automatically retrieves the WSDL locations of the candidate services. Af-690

ter the developer has chosen a service from this list, EasySOC generates a proxy to the691

service, the corresponding service adapter, and the DI configuration to inject these two692

components into the application.693

The proxy to the selected Web Service is created based on its WSDL description,694

and holds the necessary logic to talk to the service. The interface of the proxy is exactly695

the same as the service contract established by the particular provider, which, under696

a code-first approach to service outsourcing, will not usually be truly compliant to697

the service contract expected by the application (in our case BookSource). Currently,698

proxy generation is based on the Web Tools Platform (WTP) project8. Then, the service699

adapter is partially generated by EasySOC. It is implemented as a class skeleton that700

bridges the interface of the client-side proxy to the service contract expected byBook-701

Lister. Since the adapter is injected intoBookLister, it realizesBookSource, that is,702

the interface of the component being outsourced. The actualcode to forward any call to703

methods from this skeleton class to the proxy must be implemented by the developer.704

For instance, let us assume that the interface of the generated proxy is:705

pub l i c i n t e r f a c e BookSource_Proxy {706

pub l i c BookInfo [] ge tS to re dB ooks () ;707

}708

, wheregetStoredBooks is an operation derived from the WSDL description of the709

Web Service. Then, the adapter must map individual calls togetBooks (application-710

level contract) to calls togetStoredBooks (server-side contract) on the proxy, thus the711

final service adapter code would be:712

pub l i c c l a s s BookSource_Adapterimplements BookSource{713

pr i va te BookSource_Proxy proxy =n u l l ;714

715

pub l i c vo id s e tP roxy (BookSource_Proxy proxy) {t h i s . proxy = proxy ; }716

pub l i c BookSource_Proxy ge tP roxy () {re turn proxy ; }717

pub l i c L i s t <Book> getBooks () {718

Vector <Book> e xpe c te d =new Vector <Book > () ;719

BookInfo [] a da p te e = ge tP roxy () . ge tS to re dB ooks () ;720

f o r (i n t i =0 ; i < a da p te e . l e n g t h ; i ++)721

e xpe c te d . addElement (new Book (a da p te e [i] . g e t T i t l e () , a da p te e [i] . ge tYe a r ())) ;722

re turn e xpe c te d ;723

}724

}725

The service adapter only implements the translation of the invoked operation name and726

its return data-type. However, the mapping task may also involve converting the input727

arguments of one or more adapter operations to the parameters of proxy operations.728

Besides, adapters are useful for including extra operationarguments that otherwise729

would be in the application code (e.g. username/password, licensing information, etc.).730

In addition, using adapters isolates the application logicfrom the code for handling731

service-related exceptions.732

Finally, EasySOC creates the DI-related configuration to wire the service proxy, the733

adapter and the internal component(s) using the Web Servicetogether by automatically734

appending the extra component definitions to the XML configuration of the applica-735

tion (see Fig. 6 (a)). The configuration tells the DI container to inject an instance of the736

generated adapter into the corresponding internal component (BookLister), and also a737

7The development of a plug-in for the Eclipse SDK providing graphical tools to simplify as much as
possible the whole outsourcing process is underway

8The Web Tools Platformhttp://www.eclipse.org/webtools

18

http://www.eclipse.org/webtools

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

...

<beans>

 <bean id="myLister" class="BookLister">

 <property name="source">

 <ref local="source_Adapter"/>

 </property>

 </bean>

 <!−− Service adapter −−>

 <bean id="source_Adapter" class="BookSource_Adapter">

 <property name="proxy">

 <ref local="source_Proxy"/>

 </property>

 </bean>

 <!−− Client−side proxy to the WebService −−>

 <bean id="source_Proxy" class="BookSource_ProxyImpl"/>

</beans>

(a) DI-related configuration

<<interface>>

BookSourceBookLister

Application

BookSource_Adapter

Assembler
DI container

setsource

< < c r e a t e > >

<<interface>>

BookSource_Proxy

BookSource_ProxyImpl

< < c r e a t e > >
setproxy

Runtime system

(b) Class diagram

Figure 6: The EasySOC book listing application

proxy to the service (BookSource_ProxyImpl) into the service adapter. The class dia-738

gram for the entire application is shown in Fig. 6 (b). In general terms, a service proxy739

can be associated with only one adapter, but the same adaptermay be indirectly used740

by more than one internal component, this is, when many implemented components741

depend on the same external component.742

4. Evaluation743

This section describes the experimental evaluation of EasySOC. The next subsec-744

tion details the evaluation of its discovery mechanism. Then, subsection 4.2 will con-745

centrate on evaluating its programming model for service consumption.746

4.1. Evaluation of the discovery mechanism747

In [9], we specifically discussed the accuracy of the classification mechanism of748

EasySOC through different tests. Therefore, we focus here on analyzing the effec-749

tiveness of the query generation phase. Concretely, we analyzed the implications of750

generating queries using terms extracted from different parts of 30 client applications751

by using theR-precision, Recall and Precision-at-n measures [28]. In addition, we752

evaluated the effort demanded in discovering services withand without the assistance753

of EasySOC.754

As we mentioned in Section 3.1.1, EasySOC extracts relevantterms from the de-755

scription of an external component that is to be outsourced.Basically, there may be four756

different sources of terms associated with a component description: (1) its functional757

interface, (2) its documentation, (3) the classes of its operation arguments, and (4) the758

classes of those components that directly interact with it.We named the first source759

“Interface”. When using this source, we just considered thename of a component760

along with the names of its operations. We did not take into account natural language761

descriptions (e.g. Javadoc comments) in the queries. In fact, we focused on measuring762

the performance of the discovery mechanism with very short descriptive queries. Con-763

versely, when incorporating the second source, we extracted terms from the Javadoc764

comments of the external component description as well. We named the combination765

of sources 1 and 2 “Documentation”. In addition, we used the third source to consider766

the name and the Javadoc comments found in the classes associated with the opera-767

tion arguments, i.e. if an argument type is non-primitive then we mined terms from its768

class. We called the combination of sources 1, 2 and 3 “Arguments”. Finally, by adding769

19

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

Table 1: Number of different stems extracted per query

1. (4,7,20,20) 6. (4,7,7,19) 11. (4,6,31,13) 16. (3,7,18,34) 21. (5,10,11,21) 26. (3,6,10,18)

2. (3,5,5,16) 7. (4,8,12,29) 12. (1,5,5,10) 17. (5,8,18,22) 22. (3,11,21,21) 27. (5,8,37,31)

3. (4,9,12,17) 8. (3,6,12,11) 13. (4,7,23,12) 18. (5,8,12,28) 23. (3,8,10,18) 28. (4,11,17,19)

4. (3,6,13,20) 9. (4,6,31,13) 14. (4,9,9,22) 19. (3,8,15,32) 24. (4,8,10,18) 29. (5,11,13,29)

5. (5,15,15,20) 10. (4,8,16,23) 15. (2,7,9,18) 20. (4,8,17,21) 25. (4,7,11,24) 30. (6,15,32,31)

source 4 to sources 1 and 2, we collected terms from the name and Javadoc comments770

associated with the classes of those internal components that directly depend on the771

one being outsourced. We called the combination of sources 1, 2 and 4 “Dependants”.772

To perform the tests and feed our discovery system, we used a publicly available773

collection of categorized Web Services [19]. The data-set comprises 391 WSDL doc-774

uments divided in 11 categories. We preprocessed each WSDL document according775

to [9], thus resulting in a vector of relevant stems per Web Service. As shown in [2],776

in general several naming tendencies take place in WSDL documents. For example, the777

authors found that a message part standing for a user’s name,is called in many syntac-778

tically different ways, e.g. “name”, “lname”, “userName” or “first_name” [2]. When779

building the vector space, our search engine deals with these tendencies. For example,780

initially there were 7548 unique words within the WSDL documents of the “financial”781

category, however there were 2954 after preprocessing the service descriptions [9].782

Moreover, we built 30 queries to use them as the evaluation-set. Each query was783

written in Java and consists of an interface describing the functional capabilities of an784

external component and an internal component that used it. We commented both the785

header and the operations of the interface. Besides, for those operations that used non-786

primitive data-types as arguments, we also commented theircorresponding classes.787

Each query is associated with a four-tuple, representing its size in terms of the number788

of stems that resulted from processing its related sources (see Table 1) . For instance,789

the 7th query, which results after preprocessing the source code showed in Fig. 3, con-790

sists of 4 stems: “countri”, “currenc”, “exchang”, “rate”,when mining terms only from791

the interface of the external component expected at the client-side (source 1). The792

query comprised 8 different stems when incorporating the stems “convert”, “retriev”,793

“tool” and “worldwid” from both sources 1 and 2. When adding “divis”, “entiti”, “geo-794

graph” and “polit” from the descriptions of its operation arguments (sources 1, 2 and 3)795

the query comprised 12 stems. When combining sources 1, 2 and4 the query consisted796

of 29 stems, incorporating the stems “bank”, “transfer”, “destini”, “origin”, “allow”,797

“balanc”, “class”, “client”, “current”, “histori”, “method”, “monei”, “mount”, “page”,798

“repres”, “transact” and “sale”. Therefore, the four-tuple for the aforementioned query799

is (4,8,12,29).800

There are some different methods for evaluating the performance of a retrieval sys-801

tem. We decided to measure the performance of our discovery mechanism in terms802

of the proportion of relevant services in the retrieved listand their positions relative to803

non-relevant ones. In this sense, we employedR-precision, Recall and Precision-at-n804

measures. An important characteristic regarding the present evaluation is the definition805

of “hit”, i.e. when a returned WSDL document is actually relevant to the user. Dur-806

ing the tests, a software developer judged the retrieved documents in response to each807

query: if he determined that the operations of a retrieved WSDL document fulfilled the808

20

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

R
-P

re
c
is

io
n

 [
%

]
(m

o
re

 i
s
 b

e
tt

e
r)

Query

Interface
Documentation

Arguments
Dependants

Figure 7:R-Precision of the experiments

expectations previously specified in the Java code, then a hit was produced. For exam-809

ple, if he expected an operation for converting from Euros toDollars, then a retrieved810

operation for converting from Francs to Euros was non-relevant, even though these op-811

erations belonged to the same category or they were stronglyrelated. In this particular812

case, only operations for converting from Euros to Dollars were relevant. Note that813

this definition of hit makes the validation of our discovery mechanism more strict than814

previous efforts.815

4.1.1. R-precision816

One of the most used measures for assessing retrieval performance isR-precision.817

Basically, given a query withR relevant documents, this measure computes the preci-818

sion at theRth position in the ranking (RetRelR). For example, if there are 10 docu-819

ments relevant to the query within the data-set and they are retrieved before the 11th
820

document, we have aR-precision of 100%, but if 5 of them are retrieved after the821

top 10 we have 50%. Formally,R precision= RetRelR
R . We obtained theR-precision for822

the above 30 queries by individually using each one its four combinations of sources823

of terms (a total of 120 experiments). Fig. 7 depicts the achievedR-Precision of each824

experiment. The averageR-precision of the Interface, Documentation, Arguments and825

Dependants combinations were 65.45%, 65.06%, 64.34% and 66.95%, respectively.826

These percentages were computed by averaging each set of results over the 30 queries.827

It is worth noting that for any query there are, at most, 8 relevant services within828

the data-set. Besides, there are 10 queries that have associated only one relevant ser-829

vice. This particularity of the data-set severely harms theprecision of our discovery830

mechanism when the first retrieved service is not relevant. For instance, the query831

number 18 had only one relevant service within the data-set,which was ranked sixth832

in the four candidate lists. Hence,R-precision of this query was 0= 0
1. In spite of the833

described situation, the overall results show that, when using the Dependants combi-834

21

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

R
e

c
a

ll
[%

]
(m

o
re

 i
s
 b

e
tt

e
r)

Query

Interface
Documentation

Arguments
Dependants

Figure 8: Recall of the experiments

nation, EasySOC included at the average 66.95% of the relevant services at the top of835

the list. This means that EasySOC included nearly 67% of the relevant services before836

non-relevant services.837

4.1.2. Recall838

Recall is a measure of how well a search engine performs in finding relevant doc-839

uments [28]. Recall is 100% when every relevant document of adata-set is retrieved.840

Formally, Recall= RetRel
R whereRetRelis the total number of relevant services in-841

cluded in the list of candidates. By blindly returning all documents in the collection842

for every query we could achieve the highest possible recall, but looking for relevant843

services in the entire collection is clearly a slow task. In addition, we want to achieve844

good Recall in a window ofonly 10 retrieved services. We have chosen this window845

size because we want to balance between the number of candidates and the number846

of relevant candidates retrieved and we believe that a developer can certainly exam-847

ine 10 Web Service descriptions without much effort. Therefore, we measured the848

Recall for each query by settingRetRel= RetRel10. Again, we computed the Re-849

call for the 120 experiments and then we averaged the results. The average Recalls850

of the Interface, Documentation, Arguments and Dependantswere 88.41%, 91.16%,851

93.41% and 88.38%, respectively. Fig. 8 depicts the achieved Recall of each experi-852

ment. Graphically, all Recall values (y-axis) are greater than 0, i.e. EasySOC included,853

at least, one relevant service for every query in the top 10 retrieved services.854

4.1.3. Precision-at-n855

Precision-at-n measure computes precision at different cut-off points [28]. For856

example, if the top 10 documents are all relevant to a query and the next 10 are all857

non-relevant, we have a precision of 100% at a cut-off of 10 documents but a preci-858

sion of 50% at a cut-off of 20 documents. Formally,Precisionat n= RetReln
n where859

22

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

 0

 20

 40

 60

 80

 100

1 2 4 6 8 10

A
v
e
ra

g
e
d
 P

re
c
is

io
n
-A

t-
n
 [
%

]
(m

o
re

 i
s
 b

e
tt
e
r)

n

Interface
Documentation

Arguments
Dependants

Figure 9: Average Precision-at-n

RetReln is the total number of relevant services retrieved in the topn. We evaluated860

Precision-at-n for each query when using the aforementioned combinations of sources861

and averaged the results. We measured by usingn = 1,2,4,6,8,10. Fig. 9 shows the862

average Precision-at-n of the experiments. Once again, the number of relevant services863

per query within this particular data–set harms the precision of our discovery approach864

asn and the amount of retrieved services increases. Nevertheless, the results show that865

80% of the services at the top of the candidate list were relevant when employing De-866

pendants. Furthermore, using Arguments, Precision-at-1 was 70%. Both Interface and867

Documentation combinations resulted in a Precision-at-1 of 76.67%.868

4.1.4. Discussion869

During a typical discovery process (i.e. without EasySOC) adiscoverer usually870

tries to deduce the category of the desired service, so as to reduce the search space.871

Afterward, the discoverer examines the services that belong to the deduced category.872

Although each category has its own service population, the most populated category873

in the data-set used in the evaluation has 65 services, and there is an average of 40874

services per category. Therefore, we estimate that discovering services with this data-875

set has a cost of 65 and 40 WSDL documents per query on the worstand average cases,876

respectively. Here, the cost associated with an individualWSDL document may be the877

time spent by the user in examining it to determine whether itis relevant.878

The achieved Recall results have shown that by using EasySOCa discoverer usu-879

ally selects a proper service from a set of only 10 WSDL documents. In fact, this set880

is an ordered list where services having a higher confidence of being relevant to the881

query are located at the top, as shown by the achievedR-precision and Precision-at-1882

results. As a consequence, the user sequentially examines,at worst, 10 WSDL doc-883

uments before finding one relevant service. We measured the average position of the884

first relevant services within the retrieved candidate services, which resulted in 1.73,885

1.7, 1.8 and 1.6 using Interface, Documentation, Argumentsand Dependants combina-886

tions, respectively. Therefore, a discoverer examines only 2 WSDL documents on the887

average case, and 10 WSDL documents on the worst case, for ourdata-set. In other888

words, EasySOC has reduced the cost of the discovery processover the data-set by 95%889

(average case) and 85% (worst case) with respect to doing thesame task without any890

assistance. Clearly, although these results can not be generalized to other data-sets,891

they are promissory.892

23

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

4.2. Case study: A personal agenda software893

In the next paragraphs we detail a comparison between the implementation of a894

service-oriented application based on both the contract-first approach to service en-895

gagement (i.e. coding the application logic comesafter knowing the contract of the896

external services to be consumed) and EasySOC. Basically, we separately used these897

two alternatives to develop a simple, service-based personal agenda software using898

some of the Web Services of the aforementioned data-set. Unlike the previous section,899

the purpose of the evaluation described in this section is not to assess the effectiveness900

of EasySOC when discovering Web Services, but quantifying the source code quality901

resulting from employing either contract-first or EasySOC for actually consuming the902

discovered services.903

After implementing the logic, incorporating the Web Services, and testing each904

version of the application, we randomly picked one service already incorporated into905

the applications and we changed its provider. Then, we took metrics on the resulting906

source codes in an attempt to have an assessment of the benefits of EasySOC for soft-907

ware maintenance with respect to the contract-first approach. For simplicity reasons,908

the analysis ignored the code implementing the GUI of the personal agenda software.909

Data collection was performed by using the Structure Analysis Tool for Java (STAN)9.910

The main responsibilities of the personal agenda software is to manage a user’s911

contact list and to notify these contacts of events related to planned meetings. The912

contact list is a collection of records, where each record keeps information about an in-913

dividual, such as name, location (city, state, country, zipcode, etc.), email address, and914

so on. Below is the list of tasks that are carried out by the application upon the creation915

of a new meeting. We assume the user provides the date, time and participants of the916

meeting, as well as the location where the meeting will take place. Also, we simplify917

the problem of coordinating a realistic meeting by assumingthat the participants being918

notified always agree with the arrangement provided by the user of the personal agenda919

software. In summary, the notification process roughly involves:920

• Getting a weather forecastfor the meeting place at the desired date and time.921

• Obtaining the routes (driving directions) that each contact participating in the922

meeting could employ to travel from their own location to themeeting place.923

• For each participant of the meeting:924

– Building an email message with an appropriate subject, and abody includ-925

ing the weather report and the corresponding route information.926

– Spell checkingthe text of the email.927

– Sending the email.928

The text in bold represent the functionalities that were outsourced to Web Services dur-929

ing the implementation of the different variants of the application. As the contract-first930

approach does not assist developers in finding services, each Web Service was discov-931

ered using our search engine along with four of the queries shown in Table 1. Specifi-932

cally, we queried the search engine for a weather forecasterservice (query #29), a route933

finder service (query #10), a spellchecker service (query #24), and an email sender ser-934

vice (query #22). We followed the text mining process described in Section 3.1.1 to935

9Structure Analysis for Javahttp://www.stan4j.com

24

http://www.stan4j.com

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

build these queries from the client-side interfaces of the EasySOC implementation of936

the personal agenda software. Once the Web Services were discovered, we used their937

corresponding WSDL documents as the outsourced services for the contract-first ap-938

plication.939

The following list summarizes the metrics that were taken onthe resulting applica-940

tion code:941

• SLOC (Source Lines Of Code)counts the total non-commented and non-blank942

lines across the entire application code10, including the code implementing the943

pure application logic, plus the code for interacting with the various Web Ser-944

vices. The smaller the SLOC value, the less the amount of source code that945

is necessary to maintain once an application has been implemented. Since the946

present evaluation specifically aims at assessing the technical quality of the source947

code of the applications, class documentation was left out of the scope of the948

analysis.949

• Ce (Efferent Coupling), indicates how much the classes and interfaces within a950

package depend upon classes and interfaces from other packages [33]. In other951

words, this metric includes all the types within the source code of the target952

package referring to the types not in the target package. In our case, as the proxy953

code does not depend upon the code implementing the application logic, Ce will954

just refer to the number of efferent couplings of the classes/interfaces that depend955

upon proxy classes/interfaces. Under this condition, the less the Ce, the less the956

dependency between the functional code of an application and the interfaces957

representing server-side service contracts. The utility of Ce in our evaluation is958

for determining what is the influence of the adapter layer of EasySOC on this959

kind of dependency.960

• CBO (Coupling Between Objects)is the amount of classes to which an individual961

class is coupled [6]. For example, if a classA is coupled to two more classesB962

andC, its CBO is two. In this sense, the less a class is coupled to other classes,963

the more the chance of reusing it. Since reusability is one ofthe components964

of maintainability [21], CBO can be used as a complementary indicator of how965

maintainable a software is.966

• RFC (Response for Class)counts the number of different methods that can be967

potentially executed when an object of a target class receives a message, includ-968

ing methods in the inheritance hierarchy of the class as wellas methods that can969

be invoked on other objects [6]. Note that if a large number ofmethods are970

invoked in response to receiving a message, testing becomesmore difficult since971

a greater level of understanding of the code is required. Since testability is also972

one of the components of maintainability [21], it is highly desirable to achieve973

low RFC values for application classes.974

Table 2 shows the resulting metrics for the four implementations of the personal agenda975

software: contract-first, EasySOC, and two additional variants in which another pro-976

vider for the weather forecaster service was chosen from theWeb Service data-set. For977

convenience, we labeled each implementation with an identifier (id column), which978

10As defined in the COCOMO cost estimation model

25

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

Table 2: Personal agenda software: source code metrics

Variant Id SLOC Ce CBO RFC

Initial Web Contract-first C1 242 7 4.50 30.00

Service providers EasySOC E1 309 7 1.70 7.20

Alternative Web Contract-first C2 246 10 4.67 22.67

Service providers EasySOC E2 327 10 2.00 7.45

will be used through the rest of the paragraphs of this section. To perform a fair com-979

parison, the following tasks were carried out on the final implementation code:980

• The source code was transformed to a common formatting standard, so that sen-981

tence layout was uniform across the different implementations of the application.982

This, together with the fact that only one person was involved in the implemen-983

tation of the applications, minimizes the impact of different coding conventions984

that may bias the values of the metrics that depend on the number of lines of985

source code.986

• Java import statements within compilation units were optimized by using the987

source code optimizing tool of the Eclipse SDK. Basically, this tool automati-988

cally resolves import statements, thus leaving in the application code only those989

classes which are actually referenced by the application.990

• In every implementation of the application the client-sideproxies to the Web Ser-991

vices were exactly the same (generated through Eclipse WTP). Consequently,992

their associated source code was not considered for computing the aforemen-993

tioned metrics.994

4.2.1. Discussion995

From Table 2, it can be seen that the variants using the same set of service providers996

resulted in equivalent Ce values: 7 forC1 andE1, and 10 forC2 andE2. This means that997

the variants relying on EasySOC (Ex), did not incur in extra efferent couplings with re-998

spect to the variants implemented according to the contract-first approach (Cx). Further-999

more, if we do not consider the corresponding service adapters, Ce for the EasySOC1000

variants drops down to zero, because EasySOC effectively pushes the code that de-1001

pends on service contracts out of the application logic.1002

Fig. 10 shows the resulting SLOC. As the reader can see, changing the provider for1003

the weather forecaster service caused the modified versionsof the application to incur1004

in a little code overhead with respect to the original versions. Nevertheless, the non-1005

adapter classes implemented byE1 were not altered byE2 at all, whereas in the case1006

of the contract-first approach, the incorporation of the newservice provider caused the1007

modification of 17 lines fromC1 (more than 7% of its code).1008

Note that the variants coded under EasySOC had an SLOC greater than that of the1009

variants based on the contract-first approach. However, this difference was caused by1010

the code implementing service adapters. In fact, the non-adapter code was smaller,1011

cleaner and more compact because, unlike its contract-firstcounterpart, it did not in-1012

clude statements related to importing and instantiating proxy classes and handling Web1013

Service-specific exceptions. Additionally, there are positive aspects concerning service1014

26

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

 0

 50

 100

 150

 200

 250

 300

 350

Contract-first
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Contract-first
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

S
L
O

C
(l
e
s
s
 i
s
 b

e
tt
e
r)

Variant

Service adapter code
Non-adapter code

Figure 10: Source Lines of Code (SLOC) of the different applications

 0

 1

 2

 3

 4

 5

Contract-first
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Contract-first
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

C
B

O
(l
e

s
s
 i
s
 b

e
tt

e
r)

Variant

(a) CBO

 0

 5

 10

 15

 20

 25

 30

 35

Contract-first
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Contract-first
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

R
F

C
(l
e

s
s
 i
s
 b

e
tt

e
r)

Variant

(b) RFC

Figure 11: Coupling Between Objects (CBO) and Response for Class (RFC) of the
different applications

adapters and SLOC. On one hand, a large percentage of the service adapter code was1015

generated automatically, which means programming effort was not required. On the1016

other hand, changing the provider for the weather forecaster triggered the automatic1017

generation of a new adapter skeleton, kept the application logic unmodified, and more1018

importantly, allowed the programmer to focus on supportingthe alternative service1019

contract only in the newly generated adapter class. Conversely, replacing the forecaster1020

service inC1 involved the modification of the classes from which the service was ac-1021

cessed (i.e. statements calling methods or data-types defined in the service interface),1022

thus forcing the programmer to browse and modify much more code. In addition, this1023

practice might have introduced more bugs into the already tested application.1024

As mentioned earlier, CBO and RFC metrics were also computed(Fig. 11). Par-1025

ticularly, high CBO is extremely undesirable, because it negatively affects modularity1026

and prevents reuse. The larger the coupling between classes, the higher the sensitivity1027

of a single change in other parts of the application, and therefore maintenance is more1028

difficult. Hence, inter-class coupling, and specially couplings to classes representing1029

(change-prone) service contracts, should be kept to a minimum. Similarly, low RFC1030

implies better testability and debuggability. In concordance with Ce, which resulted in1031

greater values for the modified variants of the application,CBO for both EasySOC and1032

contract-first exhibited increased values when changing the provider for the forecaster1033

service. On the other hand, RFC presented a less uniform behavior.1034

27

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

As reported by the Ce metric, EasySOC did not reduce the amount of efferent cou-1035

plings from the package implementing the application logic. Naturally, the reason of1036

this fact is that the service contracts adhered byEx are exactly the same asCx. However,1037

the EasySOC applications reduced the CBO with respect to thecontract-first imple-1038

mentations, because the access to the various services utilized by the application, and1039

therefore their associated data-types, is performed within several cohesive compilation1040

units (i.e. adapters) rather than within few, more general classes. This approach im-1041

proves reusability and testability, since application logic classes do not directly depend1042

on services.1043

As depicted in Fig. 11 (b), this separation also helped in achieving better average1044

RFC. Moreover, although the plain sum of the RFC values of theEx were greater com-1045

pared toCx, the total RFC of the classes implementing application logic (i.e. without1046

taking into account adapter classes) were both smaller. This suggests that the pure ap-1047

plication logic ofE1 andE2 is easier to understand thanC1 andC2. In large projects,1048

we reasonably may expect that much of the source code of EasySOC applications will1049

be part of the application logic instead of service adapters. Therefore, preserving the1050

understandability of this kind of code is crucial.1051

5. Conclusions1052

We have presented EasySOC, a new approach to simplify the development of1053

service-oriented applications. Among the strengths of EasySOC is its novel mecha-1054

nism for accurately and efficiently discovering existing Web Services based on machine1055

learning techniques, and a convenient programming model based upon the concept of1056

Dependency Injection that allows developers to non-invasively consume external ser-1057

vices. Concretely, the aim of EasySOC is to exploit the information present in client-1058

side source code to ease the task of discovering services, and at the same time let1059

programmers to separate the application logic from service-related concerns in order1060

to increase the maintainability of the resulting software.1061

We have shown the benefits of EasySOC for building Web Service-based applica-1062

tions through a number of experiments. Specifically, we evaluated the retrieval effec-1063

tiveness of its discovery mechanism by comparing four different heuristics for auto-1064

matic query generation from source code on a data-set of 391 Web Services. More-1065

over, we assessed the advantages of EasySOC with regard to software maintainability1066

through several applications that consumed services from this data-set and source code1067

metrics. Our preliminary findings are very encouraging. With respect to service dis-1068

covery, all heuristics achieved a recall in the range of 88-94%, which means that a high1069

percentage of relevant services are retrieved. Furthermore, for some heuristics, we ob-1070

tained a precision-at-1 (i.e. the first retrieved service is always relevant) of around 75-1071

80% at the average. We also showed that using different portions of the client-side code1072

for generating queries can help in improving the performance of our discovery mech-1073

anism. With respect to service consumption, we found that, at least for the analyzed1074

applications, using EasySOC led to software whose functionality was fully isolated1075

from common service-related concerns, such as interfaces,data-type conventions, pro-1076

tocols, etc. For the discussed applications, as reported bythe well-established CBO1077

and RFC metrics, the EasySOC implementations also achievedbetter coupling and1078

cohesiveness than the software built under the contract-first approach.1079

However, despite the above results, we will conduct more experiments to further1080

validate EasySOC. We will evaluate the performance of our discovery mechanism with1081

other data-sets. As a starting point, we will use a recently published collection of1082

28

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

real Web Services11. Second, we are also planning to use EasySOC for developing1083

larger applications. Note that this might enable the use of metrics specially designed to1084

quantify software quality and maintainability in large projects like the Maintainability1085

Index [8] or the metrics suite proposed in [30]. In addition,we could employ different1086

development teams so as to consider human factors in the assessment as well.1087

EasySOC is a technology-agnostic approach to Web Service discovery and con-1088

sumption. In fact, many of the technological details discussed throughout this pa-1089

per should be thought as being part of just one materialization of EasySOC out of1090

many alternatives. On one hand, the first step of our outsourcing process (i.e. service1091

lookup) can be extended to support different service description language (e.g. WSDL,1092

CORBA-like IDLs, etc.), many registry infrastructures (e.g. UDDI, CORBA), different1093

intermediate representations when extracting terms from source code (e.g. reflection,1094

syntax tree, etc.) and various programming languages. Similarly, the third step of this1095

process (service engagement) can be implemented for any programming language that1096

has support for DI and Web Service proxying. Currently, several DI and Web Service1097

frameworks for a variety of languages already exist (C++, Python, Ruby, etc.).1098

This work will be extended in several directions. With respect to our search engine,1099

we will experiment with other weighting schemes. Specifically, term distributions [31]1100

and TF-ICF [44] have shown promissory results, but they havenot been used in the1101

context of Web Services yet, at least, to the best of our knowledge. Another line of re-1102

search involves the provision of some assistance to developers for programming service1103

adapters. As mentioned before, we could use a technique similar to [37] to partially1104

automate the task of bridging the signatures of the methods declared by an adapter and1105

the operations of its associated Web Service. Another interesting work is concerned1106

with taking into account some of the runtime aspects of Web Services in the outsourc-1107

ing process. For instance, unpredictable runtime conditions (e.g. network or software1108

failures) can degrade the performance of Web Services or even cause them to become1109

unavailable, which in turn affect the execution of those EasySOC applications that rely1110

on failing services. To overcome this problem, we will enhance service adapters to sup-1111

port “hot-swapping” of services alternatives. Specifically, rather than representing only1112

one Web Service, individual adapters will maintain a list ofcandidate services. There-1113

fore, at runtime an adapter will be able to choose between different service implemen-1114

tations according to different criteria (availability, performance, throughput, etc). Of1115

course, this solution increases the cost of writing adapters, since more code to accom-1116

modate adapter method signatures and Web Service operations have to be provided. In1117

this sense, assisting developers in this task will be crucial.1118

Acknowledgments1119

We deeply thank the anonymous reviewers for their helpful comments and sug-1120

gestions to improve the quality of the paper. We acknowledgethe financial support1121

provided by ANPCyT through grants PAE-PICT 2007-02311 and PAE-PICT 2007-1122

02312.1123

11The QWS Datasethttp://www.uoguelph.ca/~qmahmoud/qws/index.html

29

http://www.uoguelph.ca/~qmahmoud/qws/index.html

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

References1124

[1] M. B. Blake, D. R. Kahan, M. F. Nowlan, Context-aware agents for user-oriented1125

Web Services discovery and execution, Distributed and Parallel Databases 21 (1)1126

(2007) 39–58.1127

[2] M. B. Blake, M. F. Nowlan, Taming web services from the wild, IEEE Internet1128

Computing 12 (5) (2008) 62–69.1129

[3] C. Buckley, G. Salton, J. Allan, The effect of adding relevance information in1130

a relevance feedback environment, in: 17th Annual International ACM SIGIR1131

Conference on Research and Development in Information Retrieval (SIGIR ’94),1132

Dublin, Ireland, Springer-Verlag, New York, NY, USA, 1994.1133

[4] M. Burstein, C. Bussler, M. Zaremba, T. Finin, M. N. Huhns, M. Paolucci, A. P.1134

Sheth, S. Williams, A semantic Web Services architecture, IEEE Internet Com-1135

puting 9 (5) (2005) 72–81.1136

[5] L. Cavallaro, E. Di Nitto, An approach to adapt service requests to actual service1137

interfaces, in: 2008 International Workshop on Software Engineering for Adap-1138

tive and Self-Managing Systems (SEAMS’08), Leipzig, Germany, ACM Press,1139

New York, NY, USA, 2008.1140

[6] S. R. Chidamber, C. F. Kemerer, A Metrics Suite for ObjectOriented Design,1141

IEEE Transactions on Software Engineering 20 (6) (1994) 476–493.1142

[7] M. A. Cibrán, B. Verheecke, W. Vanderperren, D. Suvée, V.Jonckers, Aspect-1143

oriented programming for dynamic Web Service selection, integration and man-1144

agement, World Wide Web 10 (3) (2007) 211–242.1145

[8] D. Coleman, D. Ash, B. Lowther, P. Oman, Using metrics to evaluate software1146

system maintainability, Computer 27 (8) (1994) 44–49.1147

[9] M. Crasso, A. Zunino, M. Campo, AWSC: An approach to Web Service clas-1148

sification based on machine learning techniques, Inteligencia Artificial, Revista1149

Iberoamericana de IA 12 (37) (2008) 25–36.1150

[10] M. Crasso, A. Zunino, M. Campo, Query by example for Web Services, in: 20081151

ACM Symposium on Applied Computing (SAC ’08), Fortaleza, Ceara, Brazil,1152

ACM Press, New York, NY, USA, 2008.1153

[11] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana,The next step in Web1154

Services, Communications of the ACM 46 (10) (2003) 29–34.1155

[12] S. Deerwester, S. T. Dumais, G. W. Furnas, T. Landauer, R. Harshman, Index-1156

ing by latent semantic analysis, Journal of the American Society for Information1157

Science 41 (6) (1990) 391–407.1158

[13] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, J. Zhang, Similarity search1159

for Web Services, in: 30th International Conference on VeryLarge Data Bases,1160

Toronto, Canada, Morgan Kaufmann, 2004.1161

[14] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and Design,1162

Prentice Hall, Upper Saddle River, NJ, USA, 2005.1163

30

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

[15] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, A. Polleres, Enabling1164

Semantic Web Services: The Web Service Modelling Ontology,Springer-Verlag,1165

Secaucus, NJ, USA, 2006.1166

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of1167

Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, USA, 1995.1168

[17] J. D. Garofalakis, Y. Panagis, E. Sakkopoulos, A. K. Tsakalidis, Contemporary1169

Web Service discovery mechanisms, Journal of Web Engineering 5 (3) (2006)1170

265–290.1171

[18] A. Gomez-Perez, O. Corcho-Garcia, M. Fernandez-Lopez, Ontological Engineer-1172

ing, Springer-Verlag, Secaucus, NJ, USA, 2003.1173

[19] A. Heß, E. Johnston, N. Kushmerick, Assam: A tool for semi-automatically an-1174

notating semantic Web Services, in: 3rd International Semantic Web Conference1175

(ISWC2004), Hiroshima, Japan, vol. 3298 of Lecture Notes inComputer Science,1176

Springer, 2004.1177

[20] M. N. Huhns, M. P. Singh, Service-Oriented Computing: Key concepts and prin-1178

ciples, IEEE Internet Computing 9 (1) (2005) 75–81.1179

[21] International Organization for Standardization, Software engineering - product1180

quality - part 1: Quality model, ISO 9126.1181

[22] T. Joachims, A probabilistic analysis of the Rocchio algorithm with TFIDF1182

for text categorization, in: 14th International Conference on Machine Learning1183

(ICML 1997), Nashville, Tennessee, USA, Morgan Kaufmann, 1997.1184

[23] R. Johnson, J2EE development frameworks, Computer 38 (1) (2005) 107–110.1185

[24] T. C. Jones, Estimating Software Costs, McGraw-Hill Inc., Hightstown, NJ, USA,1186

1998.1187

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting1188

started with ASPECTJ, Communications of the ACM 44 (10) (2001) 59–65.1189

[26] M.-C. Kim, K.-S. Choi, A comparison of collocation-based similarity measures1190

in query expansion, Information Processing & Management 35(1) (1999) 19–30.1191

[27] R. Kittredge, Sublanguages, American Journal of Computational Linguistics 8 (2)1192

(1982) 79–84.1193

[28] R. R. Korfhage, Information Storage and Retrieval, John Wiley & Sons, Inc., New1194

York, NY, USA, 1997.1195

[29] A. Kozlenkov, G. Spanoudakis, A. Zisman, V. Fasoulas, F. S. Cid, Architecture-1196

driven service discovery for service centric systems, International Journal of Web1197

Services research 4 (2) (2007) 82–113.1198

[30] V. Lakshmi Narasimhan, B. Hendradjaya, Some theoretical considerations for a1199

suite of metrics for the integration of software components, Information Sciences1200

17 (3) (2007) 844–864.1201

[31] V. Lertnattee, T. Theeramunkong, Effect of term distributions on centroid-based1202

text categorization, Information Sciences 158 (2004) 89–115.1203

31

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

[32] R. M. Losee, Sublanguage terms: Dictionaries, usage, and automatic classifi-1204

cation, Journal of the American Society for Information Science 46 (7) (1995)1205

519–529.1206

[33] R. C. Martin, Object-Oriented Design Quality Metrics:An Analysis of Depen-1207

dencies, Report on Object Analysis and Design 2 (3).1208

[34] C. Mateos, M. Crasso, A. Zunino, M. Campo, Supporting ontology-based seman-1209

tic matching of Web Services in MoviLog, in: Advances in Artificial Intelligence,1210

2nd International Joint Conference: 10th Ibero-American Conference on AI, 18th1211

Brazilian AI Symposium (IBERAMIA-SBIA 2006), vol. 4140 of Lecture Notes1212

in Artificial Intelligence, Springer-Verlag, 2006.1213

[35] R. McCool, Rethinking the Semantic Web. Part I, IEEE Internet Computing 9 (6)1214

(2005) 88, 86–87.1215

[36] S. A. McIlraith, D. L. Martin, Bringing Semantics to WebServices, IEEE Intelli-1216

gent Systems 18 (1) (2003) 90–93.1217

[37] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, F. Casati, Semi-1218

automated adaptation of service interactions, in: 16th international conference1219

on World Wide Web (WWW ’07), Banff, Alberta, Canada, ACM Press, New1220

York, NY, USA, 2007.1221

[38] OASIS Consortium, UDDI Version 3.0.2, UDDI Spec Technical Committee1222

Draft, http://uddi.org/pubs/uddi_v3.htm (Oct. 2004).1223

[39] M. Paolucci, K. Sycara, Autonomous semantic Web Services, IEEE Internet1224

Computing 7 (5) (2003) 34–41.1225

[40] M. P. Papazoglou, W.-J. Heuvel, Service Oriented Architectures: Approaches,1226

Technologies and Research Issues, The VLDB Journal 16 (3) (2007) 389–415.1227

[41] M. F. Porter, An algorithm for suffix stripping, Readings in Information Retrieval1228

(1997) 313–316.1229

[42] S. Ran, A model for Web Services discovery with QoS, SIGecom Exchanges1230

4 (1) (2003) 1–10.1231

[43] E. Razina, D. Janzen, Effects of Dependency Injection on Maintainability, in:1232

11th IASTED International Conference on Software Engineering and Applica-1233

tions (SEA ’07), Cambridge, MA, USA, ACTA Press, Calgary, AB, Canada,1234

2007.1235

[44] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. Elmore,A. R. Hurson, TF-1236

ICF: A new term weighting scheme for clustering dynamic datastreams, in: 5th1237

International Conference on Machine Learning and Applications (ICMLA ’06),1238

Orlando, Florida, USA, IEEE Computer Society, Washington,DC, USA, 2006.1239

[45] M. P. Reséndiz, J. O. O. Aguirre, Dynamic invocation of Web Services by us-1240

ing aspect-oriented programming, 2nd International Conference on Electrical and1241

Electronics Engineering, Mexico City, Mexico (2005) 48–51.1242

[46] G. Salton, A.Wong, C. S. Yang, A vector space model for automatic indexing,1243

Communications of the ACM 18 (11) (1975) 613–620.1244

32

http://uddi.org/pubs/uddi_v3.htm

EasySOC: Making Web Service Outsourcing Easier. (M. Crasso, C. Mateos, A. Zunino,
M. Campo). Information Sciences, Special Issue of Applications of Computational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. ISSN: 0020-0255. Ed.: Marek
Reformat. 2010. Article in Press. DOI: doi:10.1016/j.ins.2010.01.013

[47] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval,1245

Information Processing & Management 24 (5) (1988) 513–523.1246

[48] C. Schmidt, M. Parashar, A peer-to-peer approach to WebService discovery,1247

World Wide Web 7 (2) (2004) 211–229.1248

[49] N. Shadbolt, T. Berners-Lee, W. Hall, The semantic web revisited, IEEE Intelli-1249

gent Systems 21 (3) (2006) 96–101.1250

[50] M. Shamsfard, A. A. Barforoush, Learning ontologies from natural language1251

texts, International Journal of Human-Computer Studies 60(2004) 17–63.1252

[51] K. Sivashanmugam, K. Verma, A. P. Sheth, J. A. Miller, Adding semantics to1253

Web Services standards, in: L.-J. Zhang (ed.), 2003 International Conference on1254

Web Services (ICWS’03), Las Vegas, NV, USA, CSREA Press, 2003.1255

[52] D. Spinellis, The way we program, IEEE Software 25 (4) (2008) 89–91.1256

[53] E. Stroulia, Y. Wang, Structural and semantic matchingfor assessing Web Ser-1257

vice similarity, International Journal of Cooperative Information Systems 14 (4)1258

(2005) 407–438.1259

[54] D. Suvée, W. Vanderperren, V. Jonckers, Jasco: an aspect-oriented approach tai-1260

lored for component based software development, in: 2nd International Confer-1261

ence on Aspect-oriented Software Development (AOSD ’03), Boston, MA, USA,1262

ACM Press, New York, NY, USA, 2003.1263

[55] S. J. Vaughan-Nichols, Web Services: Beyond the hype, Computer 35 (2) (2002)1264

18–21.1265

[56] S. Vinoski, A time for reflection [software reflection],Internet Computing 9 (1)1266

(2005) 86–89.1267

[57] P. Vitharana, H. Jain, F. Zahedi, Strategy-based design of reusable business com-1268

ponents, IEEE Transactions on Systems, Man, and Cybernetics 34 (4) (2004)1269

460–474.1270

[58] W3C Consortium, WSDL Version 2.0 Part 1: Core Language,W3C Candidate1271

Recommendation,http://www.w3.org/TR/wsdl20 (Jun. 2007).1272

[59] H. Wang, J. Z. Huang, Y. Qu, J. Xie, Web Services: Problems and Future Direc-1273

tions, Journal of Web Semantics 1 (3) (2004) 309–320.1274

33

http://www.w3.org/TR/wsdl20

