RevisEdsyaDOisavikti ng Web Servi ce Qutsourcing Easier. (M Crasso, C. Mateos, A Zunino

Click Mer€aspdaew linketmRéfcdanSesences, Special |ssue of Applications of Conputational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

EasySOC: Making Web Service Outsourcing Easier

Marco Crasso, Cristian Matep#\lejandro Zuning, Marcelo Campb

ISISTAN Research Institute. UNICEN University. Campuwéhsitario, Tandil (B7001BBO), Buenos
Aires, Argentina. Tel.: +54 (2293) 439682 ext. 35. Fax.: €2293) 439683
Also Consejo Nacional de Investigaciones Cientficas y BsniEONICET)

Abstract

Service-Oriented Computing has been widely recognizedrasautionary paradigm
for software development. Despite the important benefissghradigm provides, cur-
rent approachesfor service-enabling applications stilflito high costs for outsourcing
services with regard to two phases of the software life cyblaring the implementa-
tion phase, developers have to invest much effort into migndascovering services
and then providing code to invoke them. Mostly, the outcomthe second task is
software containing service-aware code, therefore it isenadficult to modify and to
test during the maintenance phase. This paper describgS8&s an approach that
aims to decrease the costs of creating and maintainingceeoviented applications.
EasySOC combines textmining, machine learning, and bastipes from component-
based software developmentto allow developersto quidkyoder and non-invasively
invoke services. We evaluated the performance of the EaSy@§xovery mechanism
using 391 services. In addition, through a case study, wewzierd a comparative
analysis of the software technical quality achieved by @yipg EasySOC versus not
using it.

Keywords: service-oriented computing, service outsourcing, textingi, machine
learning, dependency injection

1. Introduction

Service-Oriented Computing (SOC) _[20] is a hew computingagdigm that sup-
ports the development of distributed applications in fegeneous environments. With
SOC, distributed systems are built by assembling togetkistirg functionalities, or
services that are published in a network. A service is a piece of saftwthat is
wrapped with a network-addressable interface, which ee@dits capabilities to the
outer world. From a software engineering standpoint, SQahisteresting paradigm
since it heavily promotes software reuse in a loosely calpiay [20].

Mostly, the software industry has adopted SOC by using Webi&etechnologies.
A Web Service is a program with a well-defined interface tteat be located, pub-
lished, and invoked by using ubiquitous Web protocals! [5, Basically, the Web
Service model encompasses three elements: service preyiagevice requesters, and
service registries. Service providers use an XML-baseguage called WSDL | [58]
to create documents describing their Web Services, andgbutilese documents in
registries, a.k.a. UDDI registries_|38]. Service requesstan use the registry to find
a Web Service that matches their needs, and then invoke éstigns by using the
corresponding WSDL document. WSDL and UDDI are standardigyded to set the

*Corresponding author. | .
PrentintLH Fé%gqﬁﬂﬂpgﬂ'é‘@ﬂgnﬁf:%%u. ar (Cristian Mateos) January 3, 2010

Intelligence
Ed.: Marek

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=4929&rev=2&fileID=210235&msid={8C14058D-9923-4BD6-97C0-C308EB6C89B1}

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

» basis for interoperability among clients and services inrenments where many tech-
2 hologies can be found.

2 Despite the important benefits Web Services provide, nalnese couplingamong
2 Service consumers and providers, and high levels of glotetaperability, Web Ser-
« Vice technologies are currently not broadly used [35, 5%udhly, the cause of this
a factis that current approaches to service consumption fvdghin applications require
= developers to manually look for suitable services and “gtbhem in their client-side
= code afterward. This not only forces developers to invesidusome efforts into dis-
s covering services and providing code to invoke the seleotesk, but also leads to
s Software containing service-aware code. We refer as s=auiare code to those parts
s Of a client application that are tightly coupled to the ifdee provided by specific
s providers. In an open world setting, where services aré¢ buitlifferent organizations,
s it IS not necessarily true that all the available implemgates of an abstract service
s have the same interfade [5]. Therefore, changing servioeigers requires changing
« the application logic as well. Thus, service-aware codeasendifficult to modify and
« test. Then, thetasks of developing and maintaining a SOGcagipn become hard.

2 The problem associated with the development of servicented applications may
« _ stem from the fact that discovering services that fulfill fhectionalexpectations of
« the clientthrough common service registries is “as findingedle in a haystack! [IL7]
s Whenthe number of services is large, which is the case ofivedgslistributed envi-
« ronments like the Web. The problem associated with the ra@iability of such ap-
« plications is a consequence of the approach commonly usdd\mtopers to invoke a
s \Web Service, which consists in obtaining the WSDL documétiteservice, interpret-
« ing it, and generating a client-side proxy to the remoteiservrhough this approach
s allows designersto separate business logic from the codieviaking services, the ap-
s plication logic mixes up with code that is subordinated taipalar service interfaces.
s This fact reduces the internal quality of the resultingwafe, in which modifiability
s and out-of-the-box testing (i.e. outside'a SOC settingarepromised. In particular,
s« having good maintainability is essential, because softwaaintenance costs represent
s around 50% of the total software life-cycle cobkti[24].

56 We claim that it is necessary to further simplify the procetservice-oriented
s software development and maintenance. First, discoveinigselecting existing ser-
s Vices must not be a tedious and time-consuming task for dpees. Second, invoking
s Services should be as non-intrusive to the applicatiorclagipossible, thus diminish-
« ing the effort of modifying and testing the client-side ftinaality once it has been
« implemented. This paper proposes EasySOC, an approactaiongthe task of out-
« sourcing functionality in service-oriented software egswhich essentially provides
s Mmeans for efficiently discovering third-party servicesd amforcing minimum source
« code provision in the application logic for consuming them.

o EasySOC promotes separation of concerns between the ajpii¢ogic and the
« functionality related to service engagement. The apprdetshdevelopers to focus
& on implementing and testing the functional code of an apfibo, and then “SOC--
« enable” it by discovering and loosely assembling the esefumctionality. To this
« end, EasySOC requires designers to specify the potentialidterface of the services
o tooutsource. Then, EasySOC uses text mining techniquasifomatically pulling out
»n relevant information about the desired service from theauaode of the client-side
» software. EasySOC uses a Query-by-Example (QBE) appraaldok for relevant
s third-party services based on this information, i.e. thanegle, which is supported
« by a search space reduction mechanism that uses machinametechniques to al-
= low discoverers to promptly select a service from a wieldy &if candidates. In this

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

% sense, EasySOC aims to make Web Service candidate seleasin for humans, i.e.
7 automatic service selection is not addressed here.

7 After discovery, the selected services are non-invasimédgrated with the applica-
7 tion by using the Dependency Injection (DI)_[23] design eatt With DI, external ser-
s Vices are injected into application components requiritege services without affect-
s ing the components’ implementation. Furthermore, we comliil with the Adapter
= Design Pattern to establish loose relationships betwaentsland service interfaces
= Of specific providers. In this respect, EasySOC does noesgmt a new program-
s Mming paradigm for SOC but an approach that exploits DI todomibre maintainable
s Service-oriented applications.

8 The contribution of this work is a development model for tiry maintainable
«« SOC applications. At the heart of this model is a semi-autanservice outsourc-
= INg process that allows developers to quickly find and nmasively consume Web
s Services. Moreover, experimental results show that wharguke information of the
« code of EasySOC-based applications to generate queriesgimice search engine was
« more effective not only in retrieving more relevant sergiegthin a window of 10 can-
« didates but also in ranking them first in the result list, canggl with the discovery
« performance resulted from generating queries from nory&ag code |[10].

” The rest of the paper is organized as follows. The next sedigcusses the most
« relevant related work. Secti@h 3 takes a deeper look at tegFAC approach. Sec-
« tion[presents a detailed evaluation of the approach. @dBtconcludes the paper.

« 2. Related work

o As suggested in the previous paragraphs, EasySOC remsesaawv development
« model for SOC applications. The model is based on an iterapproach to service
0o outsourcing, where each iteration comprises three stépfin(ling the list of candidate
o Web Services for the particuld service being outsourced, (2) select a candidate
102 Service from the resulting list, and (3) invoking the setelcservice from within the
s client-side application. Steps (1) and (3) are automayigarformed by EasySOC via
s text mining and machine learning techniques, and DI, raspdyg, whereas step (2) is
s Manually carried out by the developer.

106 In this Section we position related work againstaliéomaticsteps of the EasySOC
17 outsourcing model, namely step (1) or Web Service discopmext Subsection) and
e Step (3) or Web Service consumption (Subsediioh 2.2).

e 2.1. Approaches to Web Service discovery

110 Recently, the problem of finding proper services has beeariviag much attention
u from both the academia and the industry. | [17] presents a elmepsive survey of
12 methods, architectures and models for discovering Wehi@arthat discusses over 30
us proposals. Broadly, some of these efforts propose to coardieb Services and Se-
1w mantic Web technologies _[49], whereas others aimto takaratdge of classic Infor-
us mation Retrieval (IR) techniques. Within the former grospme approaches |15,/ 36]
us define a meta-ontology for modeling Web Services, whichwadlpublishers to asso-
a7 Ciate concepts from shared ontologies with services. SitgjlWSDL-S [51] is an
us attempt to extend WSDL with semantic capabilities. Thisbéesthe use of semantic
s Mmatching algorithms to very effectively find required sees. Furthermore, by ex-
10 ploiting unambiguous service definitions and semantic magy; software agents can
21 automate the process of finding, invoking, and composing Betvices 1[39] 34].

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

22 However, building ontologies is a costly and error-prorsktd18,/50], and there is a
s lack of both widely-adopted standards for representinglogtes and publicly avail-
2« able Semantic Web Services [35]. Besides, using ontoldgiees publishers and
s discoverers to be proficient in semantic technologies, amgbses modifications on
s the current, syntactic UDDI infrastructurg! [4].

127 With respect to IR-inspired service discovety,|[13, 53]@dhe Vector Space (VS)
2s Model for representing textual information available inb\&ervice descriptions and
e queries as vectors, then service look up operates by congparch vectors. Con-
w cretely, the vector representing a query is matched agtiastectors within the VS
= (i.e. the available services). The service whose vectoiimiags the spatial nearness
1 to the query vector is retrieved. Here, the number of matgbiperations is propor-
1 tional to the number of published services. Thus, despitegbsuitable for Intranet
= Settings, where the number of available services is ussallgll, this approach may
s have performance problems in distributed environmentd) as WANs or the Internet,
1 Where the number of services is large, making it unsuitadregilely responding to
w User requests. Another shortcoming of IR-based approastilest their effectiveness
= depends on how explanatory the words included in queriessandce descriptions
1 __are, because these words represent vector elements withwS. In other words, on
1w one hand it depends on publishers’ use of best practicesafoing and documenting
1w Services, and discoverers’ ability to describe what theylaoking for, on the other
1w hand. Assuming that developers tend to follow best pragtioe naming and docu-
s Mmenting services, so that services and their descriptiande understood and re-used
1 by other developers, the descriptiveness of queries haatlgceceived attention from
1s academiafor its potential effects on discovery.

146 Deriving queries to find Web Services from design-time djtions is explored
win [29]. Under this approach, service-oriented applicaiare designed with the help
us Of certain models that extend the UML notation. These ex@dmdodels allow design-
ue ersto indicate, using a very expressive query languagethehan individual class op-
1 eration will be implemented in-house or-delegated to a thady service. Moreover,
= designers can specify constraints on the services/opagathat will be outsourced
2 (e.g. provider, the number of parameters of an operatian). efo compute the sim-
13 ilarity between a query and the available services, a twp-ptocess is used. Firstly,
1= the services satisfying the specified constraints areskett. Secondly, the service op-
155 erations that best match the query are determined throughikarsty heuristic that
1 IS based on graph-matching techniques. The approach hasybag some drawbacks.
17 Onone hand, application designers have to learn and adopktanded UML notation
15 and the query language, and queries may be rather hard te d€fimthe other hand,
150 designs of existent service-oriented applications mustdapted to this new notation
1o SO as to enable service discovery. In contrast, EasySO@eddtiose queries directly
1 from existing application code, i.e. EasySOC uses the iinftion already present in
12 the interfaces describing outsourced services and thexidntwhich these interfaces
s are reached. This allows developergnmlicitly state queries by using nothing but
w their preferred programming language.

165 Lastly, the idea of extracting information from the cliempdication and using it
s fOr creating service queries has been also promoted by SAHJE JAGE proposes
17 t0 employ a personal software agent for assisting a deveingimding Web Services
s based on the knowledge of the development environment (@glDE). Basically,
e this agent periodically monitors the developer until ited# an action that may be
o associated with requesting a service. The agent then uyesaptured textual input
i and certain contextual information (e.g. the name of thgegtdhe user is working

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

w2 on, the developer’s role, etc.) to search service repasiton background. When
s a relevant service is discovered, the agent presents thésrés the user, who must
= decide what to do with the service (options are to executmitto execute it, or defer
s the decision). In this way, the agent gradually infers ther'agpreferences with regard
e to whether a retrieved Web Service should be used or not. ffemost goal of SAGE
7 is to automatically execute or discard services in new amdlai situations.

ws 2.2, Approaches to Web Service consumption

179 To address the problem of easily invoking Web Services frathiwapplications,
w some toolkits (e.g. JWS[E?and frameworks (e.g. WSIF and CXF) have been built.
w1 Basically, they provide programming abstractions to kéepaipplication code as clean
w2 as possible from Weh Service implementation details. Thekgions follow a contract-
s first approach to service consumption. We refer as confii@ttapproach to those
e @approaches that first obtain the interface, or contracthefdutsourced service, and
s Create/modify the application components that use it\atied. A contract establishes
s the terms of engagement of an individual service, providéuinical constraints and
v requirements (e.g. specific data-types) as well as anynrdtion the provider of the
s ~ Service makes publid_[14]. Thus, the application logic evitably dependent on spe-
s Cific service contracts. This makes application testingdifiability and adaptability
1o difficult. A more flexible solution to these issues is achiby the Dynamic Proxy
w1 Invocation (DPI) approach: This approach associatestetiele code with abstract
12 Service descriptions. Then, at runtime, a Web Service whntegace exactly adheres
s 10 the abstract description is retrieved and integrated wie application through a
1« proxy. Although DPI allows developers to effortlessly svaser different services that
s provide the same interface, services whose interfacesoanewshat dissimilar to the
16 abstract description but they deliver the required fumeality cannot be easily inte-
w7 grated.

198 Web Services Management Layer (WSML) [7] specifically addes the problem
s Of non-invasively integrating Web Services with applioas. Conceptually, WSML
20 introduces a software layer that isolates applicationsfconcrete service providers.
.1 Within this layer, a special component or proxy is respdeditr representing a set of
22 “semantically” similar Web Services yet potentially expagdifferent interfaces. In
23 Other words, the proxy hides the syntactical differencesragservices providing the
24 Same functionality. Applications invoke services throudlgbse proxies, which inter-
s Cept, adapt and forward individual requests to concrete Béatvices based on user-
26 provided adapters coded in JAsCo_|[54]. JAsCo is an AOP laggulat supports
27 dynamic deployment of new adapters. A limitation of WSMLhat developers have
25 tolearn not only a new programming language but also newrprogning abstractions,
20 because even when the syntax of JAsCo is similar to that af #avsemantics are quite
a0 different. Besides, although the authorslih. [7] have métigsly discussed WSML, the
a1 soundness of the approach has not been corroborated expéaiiy. Finally, WSML
22 provides an extensible support for proxies to tune serdcess. For example, a proxy
23 associated witlN different service providers may be configured to use theigesthat
24 historically has offered the best response time. A linitaif this mechanism is that,
a5 initially, providers have to be manually discovered.

216 Similar to [7], [4%] uses AOP to dynamically integrate Webn8ees with appli-
a7 cations. The implementation of any internal method can ploed by a Web Service

1Java Web Services Development PREKD: /7] ava. sun. com Webser Vi ces/ | wsdp/ | Ndex. | p

http://java.sun.com/webservices/jwsdp/index.jsp

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

25 Operation by declaring an aspect that intercepts the execot that method. The as-
20 pect receives the WSDL document of the service, through ghae implemented by
20 the developer, and executes operations on the Web Servigects are implemented
=1 in Aspectd |[25], a language that extends Java with AOP oattstr [45] includes
22 a service discovery system that allows developers to findees by specifying their
»s potential inputs and outputs. Then, when a relevant seisvfoeind, aspect code is gen-
»« erated and deployed to invoke the corresponding Web Ser@uaeries have the same
25 Structure as thenessagelement of the WSDL language, which is used to describe
2 Service inputs/outputs in the XSD (XML Schema Definitiomddaage. Therefore,
2» building queries also requires developers to specify tipeeted data-types for service
»s Operations in XSD, which is a tedious task [9]. Finally, |[4Bins at fully automat-
2o ing the tasks of discovery and integration of services atimay which have received
20 some criticism [[42]." In real world scenarios, some charésttes of the Web Ser-
1 Vice engagement process, such as the need for establighirigeslevel agreements,
22 performing payment or determining the provider’s repotattill clearly requires an
23 active intervention from the user.

234 To conclude, {[37] presents a semi-automated approach &ratenservice repre-
25 Sentatives that are similar to EasyS®&vice adaptersvhich result from combining
= Dland the Adapter design patterns. Essentially, the aghrakentifies structural dif-
.» ferences between two service interfaces, such as paratysr missing/extra param-
2 etersand parameter ordering, and buildismatch treeThen, for the mismatches that
20 can be resolved automatically, adapter code is generatedmismatches that require
2«0 developers’ input for their resolution are convenientlggented to the user through a
22 GUI. Note that this ideas may be also applied to further elasamplementation of
22 EasySOC service adapters.

243 EasySOC copes with the mentioned shortcomings. FirstigestasySOC discov-
24 ery technique is based on the VS approach, it proposes ehsgzace reduction mech-
«s anism that greatly mitigates the inability of such apprasdto handle large data-set in
26 interactive usage scenarios, this is, those in which ordyuker can perform candidate
2«7 Service selection. Inaddition, by automatically infegripotential service descriptions
2 from the information present in-client-source code, EaggSt@es developers from
2o generating queries. Secondly, our approach’is based uptins@red programming
=0 Mmodel that shields application logic from not only servinedcation details but also
21 providers’ contracts. As a consequence, switching betweeaitable providers for an
22 outsourced functionality is easier and cheaper —with eeg@isoftware modifiability
s and maintainability— than contract-first or DIP-basedrali¢ives. Moreover, the code
=« to perform contract adaptation is specified in the same progring language as the
s pure functional code, that is, there is no-need to learn anylaeguage or program-
6 Ming paradigm.

3. The EasySOC approach

258 Component-based software development is a branch of sefteragineering that
=0 focuses on building software in which functionality is $ptito a number of logical

0 SoOftware components with well-defined interfaces. Comptsare designed to hide
2 their associated implementation, to not share state, ambrtumunicate with other
22 COmponents via message exchanging. Anatomically, a coemtaan be thought as
23 an object from the object-oriented (OO) paradigm, and therfiace(s) to which the
¢ Object adheres. The spirit of the component-based paraditmat application compo-

EasySOC. Maki ng Wb Service Qutsourcing Easier.
I nformati on Sci ences,
and Machi ne Learning to Software Engi neering. Elsevier
2010. Article in Press.

M Canpo).

Ref or mat .

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

(M Crasso, C. Mateos,
I ssue of Applications of Conputational
Sci ence. | SSN. 0020- 0255.
doi : 10. 1016/ .ins. 2010. 01. 013

Speci al

DA :

’ Text-mining
Query Generation
(automatic step)
_____________________ Section 2.1.1 look for = D

QBE-based
search engine

’ Machine learning
Web Service Registry @

- . ;

- L

ot Service Discovery
sl i - Foati (automatic step)

ira—party service specifications .
(e.g. Java interfaces) Section 2.1.2
'search result = @
<§ Keys:
An application component

selected plus _ @ :
adapter < "

requiring missing functionality.
Figure 1: Overview of EasySOC

Service-oriented
application

Dependency
injection

Incorporation of the adapted
instance into the application
(semiéautomatic step)

ection 2.2 o o)

Candidats selection T Specification of an outsourced service.

(manual step) A concrete Web Service implementing
a required functionality.

nents only know each other’s interfaces, thus high levefieribility and reuse can be
achieved.

SOC has evolved from component-based notions to face thieicges of software
development in heterogeneous distributed environmeni§, here interoperability

A. Zuni no,

Intelligence
Ed.: Marek

is a crucial issue notyet fully'addressed, neverthelesggasts unprecedented levels
of reusability. A service-oriented application can be \éehas a component-based ap-

plication that is created by assembling two types of comptménternal, which are
those locally embedded into the application, artkrnal which are those statically or
dynamically bound to-a service. When building a new appbicaia software designer
may decide to provide an implementation for some applicat@mmponent, or to reuse
an existing implementation instead. From now on, we wilereb this latter asut-
sourcing In this context, to outsource a compon€nneans to fill the hole left by the
missing functionality with the-one implemented by an exigtserviceS. As there may
be many published services that serve to this purpose, bnpeablem is how to allow
developers to effectively and quickly discover candid&evises. After discovering,
a latter problem is how to allow developers to integrate @utsed services with their
software while achieving good maintainability. Note thdteessing these problems
would minimize the impact of outsourcing on the software bf/cle, in particular on
development and maintenance.

To address these problems we propose EasySOC (sdd Fig.sl)S@a takes as
input an application where some of its constituent comptatesve been implemented,
and others are intended to be outsourced. In the figure, thveslypes of components
are sketched with solid and dashed lines, respectivelyedBas the Java interfaces
describing the external components, a semi-automaticepsois iteratively applied to
associate an individual service with each one of these caemgs. Each iteration in-
volves three steps: (1) finding the list of candidate ser/i¢®) selecting an individual
service from the previous list, and (3) injecting a représtive or proxy to the selected
service into the application, to enable it to invoke the menat runtime. EasySOC
provides developers with support tools that perform stéparfd (3) automatically and
semi-automatically, respectively, whereas step (2) ishiarge of the software devel-
oper. For example, if a component for providing currentifgmesxchange rates is to be

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

26 OUtsourced, ServiceObjeBtand StrikelroH services would be automatically discov-
27 ered, one of these services selected by the developer, apdesentative of the service
26 integrated with the application. Overall, the discoveejestion-injection sequence is
20 performed until all external components of the input apglan have been associated
w0 With a concrete service.

301 Typically, when manually looking for services that fulfillcartain functionality in
2 a UDDI registry, a user first seeks a category related to tlmattfonality, and then
w3 exhaustively analyzes the services that belong talit [9keB8ally, the first step in
«o Fig.[attempts to automatically reproduce this discoveogess. EasySOC employs
ws @ Web Service search engine |[10] that is based on a QBE appaoacan automatic
ws Classifier [9]. Given a query or example, this search engimsedieduces the most re-
w7 lated category to the example functionality, and then Idokselevant services within
w5 it. Concretely, by analyzing the interface specificatiomafomponent that is to be
ws OUtsourced, EasySOC produces the example (sub-step lig. [l)and sends it to the
a0 Search engine (sub-step 1.2 in Hi§j. 1). As a result, thoughige Inumber of avail-
su able services or categories may be present, a discovelknigd to promptly select a
a2 Service from a wieldy list of candidates (step 2 in [Eig. 1).

a3 Inorder tonon-intrusivelyintegrate a selected Web Service with the consumer’s ap-
as - plication, EasySOC exploits the Dependency Injection ([#}] and Adapter design
as patterns. In DI terminology, when an application compor@needs the functional-
as ity of another componei,, it is said thatC; has adependencto C,. Then, the main
sz goal of Dl is to abstract away the code implementing depecider{e.g. component
a5 instantiation and configuration) from the pure functionadle implementing compo-
a0 Nents, and to transparently inject the dependency codecortponents instead. By
=20 Using DI, component code only depends on the interfacesitdesy components but
=1 hot on the mechanisms by which-application components canuate to each other.
=22 An interesting implication of DI to our work is that third-pg services play the role
=3 Of components to which internal components can depend updrwithout the need
=4 10 explicitly provide functionality to actually invoke the services (i.e. Web Service
=5 APIls or frameworks).. On the other hand, the implication & Adapter design pat-
= tern is that application code neither depends on specificGcgecontracts by adapting
= them to contracts expected by the internal components. neezpience, any internal
=s component can take advantage of Web Services just like tieeg valling operations
=0 0N another internal component, which makes service consammore natural to the
=0 programmer, and frees the application logic from code thaed to server-side ser-
s Vice interfaces, which is semi-automatically injected addpted by EasySOC instead
s (step 3in FigL).

533 The remainder of this section will explain-in detail the stepentioned above.
s Particularly, the next subsection will focus on the firspsté the outsourcing process,
= Whereas Sectidn 3.2 will concentrate on its second and sheéyak.

=6 3.1. Discovering services

57 From an information retrieval viewpoint, the data within iafiormation system
s includes two major categories: documents and queries. &h@loblems are how to
s State a query and how to identify documents that match thertyq[28]. The distinction
s between considering a query to be a document and considetmfe different from

2ServiceObjectBt T p: /7111 al . servi ceobj ects. con ce/ Curr encyExchange. asmx ?WsDL
3Strikelronht t p: /7 ws. StTi Kei ron. con For el gnexchangeRat e?WsDL

http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL
http://ws.strikeiron.com/ForeignExchangeRate?WSDL

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

Currency

document 1
[]

"currency exchange"
........ > .documenl 2

Exchange t

(a) Representation (b) Comparison

Figure 2: Vector space model

s« a document affects the manner in which the retrieval prosaseodeled. If the query
«2 IS considered to be a-document, then retrieval is a matchingegs. The backbone of
w3 OUr service discovery approach is to use the same repréiserftar both services and
s queries. Accordingly, the service discovery process isiced to a matching problem.
a4 Matching similar documents is a problem with a long histanjiriformation re-
«s trieval [28].-Methods based on linear algebra have showreteuitable alternatives
s« for correlating similar document$_[12]. These techniquap alocuments onto a vector
«s - space (VS) [46]. Broadly, VS is'an algebraic model for repntimg text documents in
s @ multidimensional vector space, where each dimensioesponds to a separate term
=0 (Usually single words). As a result, documents having sintibntents are represented
=1 as vectors located near in the space. Moreover, a queryoisegsesented as a vector.
2 IN consequence, searching related documents translatesearching nearest neigh-
s borsin aVS. For example, in Fifl 2 (a) we represent a docunmriaining the terms
s “currency” and “exchange”, whereas in Fig. 2 (b) the cosihéhe angleQ provides
sss an estimation of how similar two vectors and therefore twousoents are.

356 Essentially, our discovery technique deals with matchireginterface of an exter-
s hal component to a concrete Web Service description. Tirencédmmented source
s code of the interface of a component being outsourced standsquery, while vec-
w0 tors in the VS represent the descriptions accompanyindadlaiWWeb Services. Sec-
w0 tion [will explain:in detail how vectors from clientdsi software are generated
s and Sectio=3.T12 will describe how both spatial represiems—i.e. client-side and
w2 Server-side vectors— are matched.

s 3.1.1. Generating queries and mapping them onto the veptures

364 By automatically generating queries and narrowing theofigtotential service can-

s didates, EasySOC aims to ease the discovery task. The ileampiery generation is
s 10 extract relevant terms from the description (i.e. theadaterface) of a component
s being outsourced. In addition to the description of an exkecomponent, there are
s Other sources of relevant terms that may be considered wiiketing a query. Particu-

w0 larly, we assume that:

370 1. classes representing the parameters of an operationanggjircrelevant terms,
an 2. internal components interacting with the one being autsed may contain rel-
a2 evant terms, this is, the source code contextin which aceisiinvoked (e.g. a
a3 method) may also provide useful terms.

szu EasySOC expects good development practices from devsldpehis way, we assume
ss that, throughout their projects, developers use selfanatbry names for class proper-
s ties, methods and arguments, comment them and avoid usiagingtess names like
s “argl”, “arg2” or even the commonplace “foo”, as as usuattgurs [52]. Under these

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

e
* Converts worldwide currencies
*

™
* Allows managing personal banking
* information, accounts, deposits and

* withdraws. | public interface CurrencyExchanger {

.
* Retrieve the rate between two
* countries

* @param country0 a country
* @param country1 another country
* @return rate

public class HomeBankingApp {
Country localCountry:
CurrencyExchanger exchanger;

double foreignRate = :
exchanger.getRate(localCountry, ¢): /
setBalance(foreignRate); double getRate(Country country0,

Country country1);

1
2
3
4
5 void showBalanceln(Country c){
6
7
8

}

Internal component depending on an external one Client-side description of an external component

Figure 3: An example of relevant words within client-sidercoented source code

s assumptions, method arguments of the interfaces desgmxiernal components may
ss have meaningful terms. Moreover, the classes associatbdheise method arguments
s (€.g. the class Country in Fifll 3) may have proper names aoghgentation. In fact,
s this is expressed by the assumption number (1).

382 On the other hand, the assumption number (2) leads to exélagint terms from
ss those internal components that directly interact with the being outsourced. Fol-
s _lowing good practices when building component-based sofwesults in components
sss With strongly-related and highly-cohesive operationsl].[5Based on this fact, we
s assume that the logic of a well-designed application comynbelongs to a unique
«7 domain. For example, the right side of Hidj. 3 depicts the dumied Java interface
s describing an external component to get the currency exgEheate between two given
s countries and, on the left side, an internal component ddipgron it (line 3) and call-
w0 ing it (line 7). A Web Service for providing current foreigmahange rates might be
s1 Useful for applications belonging to the business doméie Igft side of Fig[B illus-
w2 trates a home-banking application), while it rarely mightuseful for an application
w3 in the math domain.

204 Java interfaces may contain terms-that help to indicate thectionality. We de-
w5 fine these terms as being relevant and other terms as nommelén this way, all Java
s reserved words are non-relevant (e.g. public, void, iat&f return). A Java interface
7 comprises a name and a description of its provided opemafimnmethod signatures
ws iN OO terminology). In addition, good development practipeomote developers to
= comment source code. Javaflog a tool for automatically generating APl documen-
«0 tation from comments in Java source code. With Javadoc djgged place comments
w1 Using a set of pre-established elements or tags. As a rasldija interface specifica-
w2 tion consists of a structured textual description-of itsstitment parts (optional) and
w3 the signatures of its exposed operations (mandatory).

404 Java interfaces may contain terms that help to indicate thectionality. We de-
s fine these terms as being relevant and other terms as noamelén this way, all Java
w6 reserved words are non-relevant (e.g. public, void, iat&f return). Extracting rel-
«7 evant terms is very important because they may contribubeiild accurate queries,
s Which in turn may help to increase the precision of the discpwmechanism as the
w0 next section will show. Consequently, we have designedtamiing process for ex-
a0 tracting relevant terms from the client-side source codais Process comprises five
.1 activities. In a first activity, we pull out the name of a compat and the name of its
.2 Operations. To do this, we use the Java ReflectioﬁAIBMoadIy, reflection provides

4Javadoc Tool Homett p: /7] ava. sun. conl | 2se/ | avadoc
5Java Reflection APhttp: /7] ava. sun. conf docs/ books/ t utorial /reflect/

10

http://java.sun.com/j2se/javadoc
http://java.sun.com/docs/books/tutorial/reflect/

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

«3 the ability to examine class meta-daial[56]. In a secondifiGtive mine developers’
2« comments from Javadoc elements. At this point, we have aatah of terms. Then,
s we look for combined words within this collection and sptietn, because commonly
s USed notation conventions (e.g. JavaBean, Hungariangstiggcombine two or more
a7 words (e.g.getRateget_rateor destCurrencyfor assigning names to operations and
«s parameters. Finally, we employ Stop words and Stemming,dassic text mining
a0 techniques. A stop word is a word with a low level of “usefidgewithin a given
20 context or usagel [28]. By removing symbols and stop words tiesmgt to “clean”
= queries. Finally, we utilize the Porter Stemming algoritfdd] for removing the com-
22 moner morphological and inflectional endings from wordduieng English words to
23 their stems. As a result, the output of our text mining preéea set of stems extracted
=4 from the specification of the external component (e.g. teenstin bold in Fig[B).
s Then, we use these stems for building a vedter (ep, ...,en), where each elemest

2 represents the weight of a distinct stem for the componénglmutsourced.

In [47] the authors compare different efforts that have beade on term weight-
ing techniques. EasySOC uses TF-IDF because this comb&dstic has shown to
be suitable for weighting terms present in Web Service dasons |[53]. TF deter-
mines that a term is important for a document if it occursmftethat document. On
the other hand, terms which occur simultaneously in manyah@nts are rated as less
important because of their IDF value. Formally, for eactmtérof a documend,
tfid f; =t f; e id f;, with:

1)

where the numeratomy)-is the number of occurrences withéhof the term being
considered, and the denominator is the number of occurseofcall terms withind
(Tg), and:

DI

{dued)] @)

= Where|D| is the total number of documents-in the corpus Had tj ed}| is the number
«»s Of documents where the tertmappears.

429 By employing this client-side text mining process on thecdipsions of service
=0 Operations and internal components, we augment the dolteaftterms that constitutes
= aquery. In Sectiofl4, we will evaluate how this approach ictgpan the accuracy of
= the service discovery mechanism of EasySOC.

id fi = log

w3 3.1.2. Matching similar queries and available' Web Services

434 After generating a vector representation for a query, the seep is to match it
s against the vectors that stand for Web Services within tlegovespace to retrieve re-
= lated services. InL[9] we described how to map Web Servicergd®ns onto the
« VS. Broadly, we have developed a crawler that analyzes an IUBdistry, extracting
s the category and the WSDL document associated with eaclablaservice. Then,
= a WSDL document is preprocessed for extracting relevantdemnd bridging syntac-
o tic differences of service descriptions. Specifically, flieprocessing stage for Web
« Services comprises extracting the names of the servisespédrations and arguments
«2 along with any textual comment included in the WSDL documetterward, ex-
w3 tracted terms are further refined by removigp-wordsemploying Porter'stemming
«4 algorithm and bridging different WSDL message styles byingmelevant terms from
s data-type definitions. Finally, for each term we computefiid f-based weight and, in
s turn, the new vector is incorporated into the vector space.

11

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

a7 Matching a query against the whole vector space can be vefficient when the
«s number of services is large_|48]. Therefore, our searchrendil0)] uses a space re-
s duction mechanism based on Rocchio’s classification algari|22]. In [9] we have
= empirically shown that by using Rocchio with TF-IDF, thisaseh engine achieves
= better results than using K-NN, Naive Bayes and an ensematdime learning ap-
=2 proach [19] that combines Naive Bayes and Support Vectohiiac This mechanism
3 divides the vector space into sub-spaces, one for eachargitefiservices available in
s+« a UDDI registry. A sub-space is centered on an average vdatown ascentroid

s Which stands for the documents that belong to that categhfterward, a query is
s compared to the centroid associated with each categorydier d0 determine the one
s that maximizes similarity. Once a category has been seletite search engine com-
s pares the quergnly against the vectors that belong to this sub-space. Thisldmes
s being more efficient than matching a query against the whetdov space, reduces
w0 the number of dimensions of each individual sub-spate [8hbse services within an
« individual domain-share the same sublanguage [32]. Foruhaoges of this paper we
« caninformallydefine “sublanguage” as a form of natural lzage used in a sufficiently
w3 restricted setting L[27]. Typically, a sublanguage usey anpart of the structures of

w4 a language. For instance, in the business domain words sutdcanomy”, “com-
s petitive” and “currencies” occur often, while words sucH'affine”, “chebyshev” and
ws “CcOmmutative” seldom appear. Formally, the centr@itbr the documents that belong

« to categoryi is computed as:

zCTSCi J 6

Gl

Za’equ
DG

G=a —B

s With G being the sub-set of the documents from categoayndD the amount of doc-
w0 uments of the entire data-set. First, both the normalizetbve ofC;, i.e. the positive
w0 examples for a class, as well as thos®of C;, i.e. the negative examples for a class,
« are summed up. The centroid vector is then calculated asghteei difference of the
2 positive and the negative examples. The parametensd3 adjust the relative impact
3 Of positive and negative training examples. As suggested3pywe usea = 16 and
474 B = 4
There are some different similarity calculations for firglirelated vectors | [28].
One measure that is widely used is ttasine measuravhich has shown to be better
than other similarity metrics in terms of retrieval effeetness |[26]. This measure is
derived from the cosine of the angle between two vectorss @pproach assumes that
two documents with a small angle between their vector remtesions are related to
each other. As the angle between the vectors shortens sitsecapproaches to 1, i.e.
the vectors are closer, meaning that the similarity of wiextés represented by the
vectors increases. Formally:

o S 1tsi x tq;
cosineSimilarityQ, S) = QeS _ _Zicatsixlo

Qlls SEatdiyiatd

s \We use this measure for matching a qu@rgigainst each servic® and then sort these
s results in decreasing order of cosine angles. The compuotdttomplexity of calculat-
7 ing cosine similarity between two vectors takes linear tand depends on the number
«s Of dimensions of the VS, i.e. the number of different tefmsin consequence, the

12

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mateos, A. Zuni no
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

: procedure bISCOVER(T, N) > Returns a list of candidate Web Services
Category[Jcategory«— CLASSIFY(Q)
for all Vservice € category[O]do
doublesimilarity < COSINESIMILARITY (T, Vservice)
INSERT(servicesimilarity, candidatey
end for
return susLisT(candidatesN)
end procedure

oNogRrWNRE

Algorithm 1: Main steps of the discovery process

space reduction mechanism reduces the time complexityatbwsimilarity calcula-
tions.

Algorithm 1 summarizes the main steps of the matching psoéasdiscovering
relevant services. During the first step, the algorithm mieitees the nearest category
of vectord, which stands for a user’s query (line 2). Afterward, thergug compared
against eaclsenice i.€: the vector of a service that belongs to the categoyrmet
by the previous step (line 4). Found services are sortedrditpto cosine similarity
(line 5), this is, vectors that minimize their angle betwgeme sorted first. Finally, the
top N candidates are returned to the user (line 7).

For example, let us suppose there are 2 services belongiagabegory named
“book” and 2 services belonging to a category named “mowidipse corresponding
vectors are:

Vo = (< book0.92>,< searchey0.38>)

Vi = (< book0.86>;< searchef0.35>, < topic,0.35>)
Vv, = (< movie0.92>, <topic,0.38>)

V3 = (< movie0.86 >, < searcher0.35>, < topic,0.35>)

Vectorsvp andv; belong to category “book”, whereas the other vectors betong
category “movie”. Under our two-steps approach, the céudrfmr each category are:

Chook = (< book0.93>,< searchef0.34>, <topic,0.09>)
Cmovie = (< movie0.93>, < topic,0.34>; < searchey0.09>)

Now, let us suppose we want to find services for providingrimfation about books
covering a topic, by using “book topic” as input. Mapping tpeery onto this vector
space generates a vecpe=< book 0.92 > < topic,0.38>. Then, EasySOC com-
paresj against the aforementioned centroids (first step). Thdtiegisimilarities are:

cosineSimilarityd, Chook) = 0.898
cosineSimilarityd, Cmovie = 0.130

The centroid associated with “book” category maximizesdinglarity, therefore
EasySOC will compare the query only agaifistandv; (second step). As a result,
EasySOC performed 3 vector comparisons, instead of congp@igainst the whole
vector space. Moreover, as the reader can note the spacedimagdsions: “book”,

13

i ntelligence
Ed.: Marek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,
I nformati on Sci ences, Special |ssue of Applications of Conputational Intelligence

M Canpo).

and Machine Learning to Software Engi neering. Elsevier Science. |ISSN. 0020-0255. Ed.:

Ref or mat .

2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

549

550

551

552

553

554

555

“searcher”, “movie” and “topic”. However, by reducing theasch space, the num-
ber of terms was narrowed down to 3 during the second stemKhtsearcher” and
“topic”).

In the next section we will focus on describing in detail hoscdvered services
are integrated with consumers’ applications under EasySOC

3.2. Incorporating a candidate

At step 3, after a developer selects a Web Service, EasyS@Easgomatically
integrates the service with the application. To this endyS&C exploits the concept
of Dependency Injection (DI). DI establishes a level of edution between application
components via public interfaces, and achieves comporemtupling by delegating
the responsibility for component instantiation and birgdio a DI container. In SOC
terms, this represents the functionality for interpretid§DL documents and perform-
ing calls to service providers.

Sectio:3.Z]1 explains the concept of DI. Then, Sediio3iascribes how Easy-
SOC builds on this notion to simplify Web Service consumptio

3.2.1. Dependency injection: Overview

Next, we will briefly illustrate DI through an example. Let sgppose we have a
Java.component for listing books of a particular toimokLi st er) that calls a remote
Web Service-wrapped repository where book informatioriasesl. The class imple-
menting this componentinvokes the service operation #tarms book information,
and then iterates the results to filter and display this metion:

public class BookLister{
private String endPoint = "http ://example.edu:8080/BookReposyt";
private String ns = "http :// example.edu";
private String serviceName = "BookRepository";
private String portName = "BookRepositoryPort";

public BookLister (...){...}

public void displayBooks(String topic){
/I Setup a call to the Web Service
ServiceFactory sf = ServiceFactory.newlnstance();
Service service = sf.createServiceefv QName(ns, serviceName));
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(endPoint);
call.setPortTypeNamengw QName(ns, portName));
call.setOperationNamenew QName(ns, "queryBooks™"));
call.setReturnTyperfew QName(NSConstants.NSURI_SCHEMA XSD, "String[]"));
/l Contact the Web Service ...
Object wsResult = call.invokenew Object[]{}));
List<Book> books = parseBooks ((String[]) wsResult);
Enumeration elems = books.elements ();
while (elems.hasMoreElements ()){

Book book = elems.nextElement ();
if (book.getTopic().equals(topic))
System . out. println (book. getTitle () + ":" + book.getYe@));

}

}

}

For clarity reasons, exception handling has been omitteddilspl ayBooks method
contains two different types of instructions, namely, ctaléwoke the Web Service,
and code to filter out the books that do not match the desirpit.toNow, if we
want to use a different mechanism for storing book infororasuch as a database
(i.e. no longer employ a Web Service to wrap the repositaiiygpl ayBooks must be

rewritten, some lines frorBookLi st er discarded, and the whole component retested.

Besides, depending on the way information is stored, areiffieset of configuration

14

Mar ek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,
I nformati on Sci ences, Special |ssue of Applications of Conputational Intelligence

M Canpo).

and Machine Learning to Software Engi neering. Elsevier Science. |ISSN. 0020-0255. Ed.:

Ref or mat .

2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

556

557

558

559

560

561

562

563

564

565

566

567

568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

602

603

604

605

606

607

608
609
610
611
612

parameters could be required (e.g. database locatiorerdrietc.). In such a case,
BookLi ster also have to be modified to include the necessary consteisédters.
Basically, the cause of this problem is that the impleméraioes not abstract away
the API code for accessing the repository from the appbeetgic, that is, the second
group of instructions.

The Dl-enabled listing component includes an interfagmkSour ce) by which
BookLi st er accesses the repository. Classes implementing this acterepresent a
different form of accessing book information. In EasySOfnteology, such a class
is called aservice adapter Additionally, BookLi st er exposes &et Sour ce(Book-
Sour ce) method so that a DI container can inject the particulareeali component
being usel BookLister now contains code only for browsing and dispigybook-
related information, but the code which knows how and fromesghto obtain this
information is placed on extra classes:

/x* The component into which another component is injected
public class BookLister{
BookSource source =null;

public void setSource(BookSource source)this.source = source; }
public-void displayBooks(String topic){

List<Book> results = source.getBooks();

I/ Filter and display results

}

/x* The interface of the dependency/
public interface BookSource{
public. List<Book> getBooks();

/«x The component -being injected/
public class WebServiceBookSourcamplements BookSource{
private String-endPoint = "http :// example.edu:8080/BookReposyt";
private String ns = "http ://example.edu";
private String serviceName = "BookRepository";
private String portName = "BookRepositoryPort";

public void setEndPoint(String endPoint){this.endPoint = endPoint; }
public void setNS(String ns){this.ns = ns; }
public void setServiceName (String serviceName)his.serviceName = serviceName; }
public void setPortName (String portName){his.portName = portName; }
public List<Book> getBooks (){

[%

x+ 1) Setup a call to the Web Service

x+ 2) Invoke its "queryBooks" operation

x 3) transform the resulting array into a list object

*/
}

}

Now, we must assemble the above components to build the velpplécation. Partic-
ularly, we have to indicate the DI container to use an instaofd\ébSer vi ceBook-
Sour ce for thesour ce field of BookLi st er. This is supported in most containers by
configuring a separate XML file, which specifies the DI-redatenfiguration for every
application component. From now on, we will use Spring! [23}l@e DI container.
Then, the configuration file for the example is:

<?xml version="1.0" encoding="UTF8" ?>
<I!DOCTYPE beansPUBLIC " —//SPRING//DTD BEAN//EN"
"http: //www. springframework.org/dtd/springbeans.dtd">
<beans>
<bean id="mylLister" class="BookLister">

6Many DI containers support two forms of injectiosetter injection(components express dependencies
via get/set accessors) andnstructor injectionlcomponents express dependencies by means of constructor
arguments).

15

Mar ek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

(a) Without using DI (b) Using DI

Figure 4: Class diagrams for the book listing application

613 <property name="source"><ref local="mySource"/></prpy>

614 </bean>

615 <bean id="mySource" class="WebServiceBookSource"/>

616 <property name="endPoint">http://example.edu:8080 bRRepository</property>
617 <property name="ns">http://example.edu</property>

618 <property name="serviceName">BookRepository</propert

619 <property name="portName">BookRepositoryPort</proper

620 </bean>

621 </beans>

« - Fig.[4 shows the class diagrams of the two versions of our lisbkg application.
«s In the non-DI version (left)BookLi st er directly uses a Web Service API. Then, the
«« application logic is mixed up with code for configuring andngsWeb Service pro-
es tocols, thus reusability and extensibility suffer. Corsedy, in the DI version (right),
s the code for contacting the service is encapsulated intavecoenponent, and the cor-
o responding configuration parameters are placed on a segéeatvhich is processed
«s at runtime. As shown, using DI has reduced the number of dbperies to concrete
w0 Classes within the application logic (i.BookLi st er) and produced a better design in
a0 terms of cohesion and extensibility.

631 Intuitively, the code implementing components is easiaretse and to unit test,
s Which in turn improves maintainability. For instan@apkLi st er andWebSer vi ce-

ss BookSour ce can be separately modified, tested and reused. Empiridtaligs been
ss Shown that software using DI tend to have lower coupling g@ftware not employing
e DI [43], which has a directimpact on maintainability.

636 As shown, an interesting implication of DI in SOC is that thegapplication logic
e Can be isolated from the configuration details for invokiagieces (e.g. URLS, names-
s paces, port names, etc.). In fact, the Remoting module ah@provides a number of
s0 built-in components that can be injected into applicatitmeasily call services. Ba-
«o Sically, this support makes Web Service invocation a traresgt process. With this in
«1 Mind, a developer thinks of a Web Service as any other regol@ponent providing
«2 @ Clear interface to its operations. If a developer wantsatbacWeb ServiceS with

«s interfacels from within an internal compone, an external dependency betwegn
«s andSis established throughy, causing a proxy t&to be injected intaC. This frees
«s developers from explicitly using classes liRer vi ceFactory, Servi ce andCal | to
«s INVOke Web Services.

67 This development practice, which can be seen as a contracgfiiproach to Web
«s Service consumption, effectively leverages the benefit®lofor building service-
«o Oriented software. However, it leads to a form of couplingptiyh which the appli-
eo Cation is tied to the contracts (i.e. theinterface) of the specific services it relies on.
es1 IN this way, changing the provider for a service requiresdapd the client application
2 to follow the new service contract. At the implementatiovelethis means to rewrite
es the portions of the application code that use the interfdabe original service. A

16

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

Internal External
component nent

Application
layer

i : Adapter
Service tinjection

adapter
O{'_[Service Adapter
layer

User-selected

Web Service
(client-side proxy) ﬁg%};

Figure 5: Service adapters in EasySOC

es different interface implies different operation namesj amput and return data-types
es (€.9. acomplex data-type array insteadtfi ng[] for our book service), which must
s e adapted manually. All in all, the DI pattern is useful foiling loosely coupled
7 COmponents. However, when using a contract-first appraaskervice consumption,
s DI may not be enough to ensure modifiability in the resultiofjvgare.

o 3.2.2.Taking DI a step further

660 To overcome this problem, EasySOC refines the idea of Welicgenjection by
1 introducing an intermediate layer that allows applicatiom non-invasively use ser-
«2 Vices. Roughly, instead of directly injecting a raw Web $az\proxy into the appli-
e cation, aservice adapteis injected (see Fidl5). A service adapter is a specialized
s Web Service proxy, inspired by the Adapter design pattefi, hich is in charge of
ws adapting the interface of the underlying service accortbrtfe interface (specified by
«s the developer at design time) of the associated externaponent. Service adapters
7 comprise the logic to transform the method signatures oéstternal component (i.e.
e the client-side interface used by EasySOC as a query tonpedervice discovery) to
w0 the actual interface of the Web Service selected by the dpeel For instance, if a
e0 Service operation returns multiple integers as a commertiakd string, but the appli-
e Cation requires an integer array, the adapter would be nsdiple for performing the
ez CONVersion.

673 In opposition to the contract-first approach to outsourgimgvhich the application
«s code is made compatible with the interfaces of the servicasds, service adapters
es accommodate the interfaces of the outsourced services totdrfaces supplied by the
«s developer. This approach is calledde-first Then, changing-a service does not affect
e the code of the application, because it only requires toavaidlifferent service adapter
e for the new service. Besides reducing the coupling betwetenrial components of an
eo application and services, this approach allows develdpetssign, implement and test
0 the application components, and then focus on the “sertidicaof the application.
e Furthermore, this separation may bring additional benleéiy®nd software quality and
s contribute to improve the development process itself, asatiwo groups of tasks can
s be performed independently by different developmentteams

684 To better illustrate these ideas, and to understand themsgplities of the devel-
s Oper in the tasks of incorporating a candidate service f@adsrnal component, let us
s come back to the DI version of the book listing applicatioscdissed above. Let us sup-
s POSe our application is now composed of an internal comp(iBeokLi st er) and an
s external component, whose contract is specified byBtiod Sour ce interface and for
0 Which we want to outsource an implementation. Based on thmple BookSour ce),

17

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

690 EasySOﬂ automatically retrieves the WSDL locations of the candidsgrvices. Af-
« ter the developer has chosen a service from this list, Ea€y@£Derates a proxy to the
w2 Service, the corresponding service adapter, and the Digumafion to inject these two
w3 COmMponents into the application.

604 The proxy to the selected Web Service is created based onS81\description,
es and holds the necessary logic to talk to the service. Thefawe of the proxy is exactly
ws the same as the service contract established by the partiordvider, which, under
«r @ code-first approach to service outsourcing, will not ugua¢ truly compliant to
«s the service contract expected by the application (in oue BaskSour ce). Currently,
w0 Proxy generation is based on the Web Tools Platform (WTFj)epE) Then, the service
oo adapter is partially generated by EasySOC. It is implentkagea class skeleton that
o bridges the interface of the client-side proxy to the sergiantract expected tBook-

2 Lister. Since the adapter is injected irBookLi st er, it realizesBookSour ce, that is,
s the interface of the componentbeing outsourced. The actul to forward any call to
s Methods from this skeleton class to the proxy must be impiéaaeby the developer.
s Forinstance, let us assume that the interface of the gextkpabxy is:

706 public interface BookSource_Proxy{
707 public Booklnfo[] getStoredBooks();
708 -}

0o, Whereget St or edBooks is an operation derived from the WSDL description of the
7m0 Web Service. Then, the adapter must map individual caltet®ooks (application-

w1 levelcontract) to calls tget St or edBooks (server-side contract) on the proxy, thus the
=2 final service adapter code would be:

713 public class BookSource_Adapteimplements BookSource{

714 private BookSource_Proxy proxy =null;

715

716 public void setProxy (BookSource_Proxy proxy)this.proxy = proxy; }
717 public BookSource_Proxy getProxy(){return proxy; }

718 public List<Book> getBooks(){

719 Vector <Book> expected =ew Vector<Book>();

720 BooklInfo[] adaptee = getProxy().getStoredBooks();

721 for (int i=0; i<adaptee.length; i#++)

722 expected.addElemenhéw Book(adaptee[i]. getTitle(), adaptee[i].getYear()));
723 return expected;

724 }

725}

=6 The service adapter only implements the translation ofrihelied operation name and
=2 its return data-type. However, the mapping task may alsolwevconverting the input
=s arguments of one or more adapter operations tothe parayat@roxy operations.
= Besides, adapters are useful for.including extra operaigaments that otherwise
7 would be in the application code (e.g. username/passwoethding information, etc.).
= In addition, using adapters isolates the application Idgin the code for handling
= Service-related exceptions.

733 Finally, EasySOC creates the DI-related configuration te tie service proxy, the
=« adapter and the internal component(s) using the Web Sengether by automatically
75 appending the extra component definitions to'the XML conégjan of the applica-
7 tion (see Figlp (a)). The configuration tells the DI contaboenject an instance of the
= generated adapter into the corresponding internal comm¢BmokLi st er), and also a

"The development of a plug-in for the Eclipse SDK providingygitical tools to simplify as much as
possible the whole outsourcing process is underway
8The Web Tools Platforrhi t p: /7 Wwaww. €l 1 pS€. or g/ Webt 00l S

18

http://www.eclipse.org/webtools

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

<beans>
<bean id= myLlste{ cIassT BookLister"> . s
<property name="source"> -
<ref local="source_Adapter"/> A\
</property> 4
</bean>
<l ngfe adapter ——> . . . ! !
<bean id="source_Adapter" class="BookSource_Adapter">
<property name="proxy"> setsourte
<ref local="source_Proxy"/>
</property> <create>> Application
<bean> e e T e
<l-— Client-side proxy to the WebService ——> D! container
<bean id="source_Proxy" class="BookSource_Proxylmpl"/> .
</beans> Runtime system

(a) DI-related configuration (b) Class diagram

Figure 6: The EasySOC book listing application

7= Proxy to the serviceBookSour ce_Proxyl npl) into the service adapter. The class dia-
e gram for the entire application is shown in Hij). 6 (b). In getheerms, a service proxy
#o Ccan be associated with only one adapter, but the same adapyebe indirectly used
21 < by more than one internal component, this is, when many impiged components
2 depend on the same external component.

us 4. Evaluation

744 This section describes the experimental evaluation of E2€). The next subsec-
s tion details the evaluation of its discovery mechanism.n[lsaibsectiofi]2 will con-
s centrate on evaluating its programming model for servigesamption.

«» 4.1, Evaluationof the discovery mechanism

748 In [2], we specifically discussed the accuracy of the classifin mechanism of
ue EasySOC through different tests. Therefore, we focus heranalyzing the effec-
=0 tiveness of the query generation phase. Concretely, weyzaththe implications of
= generating queries using terms extracted from differertspa 30 client applications
= by using theR-precision, Recall and Precisiondatmeasures | [28]. In addition, we
s evaluated the effort demanded in discovering services avithwithout the assistance
s Of EasySOC

755 As we mentioned in Sectidn 3.1.1, EasySOC extracts relaeamts from the de-
6 Scription of an external componentthat is to be outsourBadically, there may be four
= different sources of terms associated with a componentigésa: (1) its functional
= interface, (2) its documentation, (3) the classes of itgaten arguments, and (4) the
= Classes of those components that directly interact witWié named the first source
w0 “Interface”. When using this source, we just consideredrtame of a component
7 along with the names of its operations. We did not take intmant natural language
2 descriptions (e.g. Javadoc comments) in the queries. tnvi@cfocused on measuring
s the performance of the discovery mechanism with very stestdptive queries. Con-
7 versely, when incorporating the second source, we extiaetens from the Javadoc
s comments of the external component description as well. &viead the combination
s Of sources 1 and 2 “Documentation”. In addition, we used hiivel source to consider
7 the name and the Javadoc comments found in the classesatsdowith the opera-
s tion arguments, i.e. if an argument type is non-primitivertlive mined terms from its
w0 class. We called the combination of sources 1, 2 and 3 “ArgusieFinally, by adding

19

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mateos, A. Zuni no
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

Table 1: Number of different stems extracted per query

1.(4,7,20,20) 6. (4,7,7,19) 11.(4,6,31,13) 16.(3,748,3 21.(5,10,11,21) 26.(3,6,10,18)

2.(3,5,5,16) 7.(48,12,29) 12.(1,5510) 17.(58,18,2222.(3,11,21,21) 27.(5,8,37,31)

3.(491217) 8.(3,61211) 13.(4,7.2312) 18.(528R, 23.(3,8,10,18) 28.(4,11,17,19)

4.(36,13,20) 9.(4,6,31,13) 14.(4,9,9.22) 19.(3,825,3 24.(4,8,10,18) 29.(5,11,13,29)

5.(515,15,20) 10.(4,8,16,23) 15.(2,7.9,18) 20.(4,21yY 25.(4,7,11724) 30.(6,15,32,31)

source 4 to sources 1 and 2, we collected terms from the nathéesadoc comments
associated with the classes of those internal componeatslitectly depend on the
one being outsourced. We called the combination of sourc2sihd 4 “Dependants”.
To perform the tests and feed our discovery system, we usedblecly available
collection of categorized Web Services [[19]. The data-eetprises 391 WSDL doc-
uments divided in 11 categories. We preprocessed each W8bBlintent according
to [9], thus resulting in a vector of relevant stems per Wetvige. As shown in [[2],
in general several naming tendencies take place in WSDLrdents. For example, the
authors found that a message part standing for a user’s newaled in many syntac-
tically different ways, e.g. “name”, “Iname”, “userNamef’ irst_name” [2]. When
building the vector space, our search engine deals witlettegglencies. For example,
initially there were 7548 unique words within the WSDL docemts of the “financial”
category, however there were 2954 after preprocessingtiree descriptions! [9].
Moreover, we built 30 queries to use them as the evaluatbnEach query was
written in Java and consists-of an interface describingtinetfonal capabilities of an
external component and an internal component that usedatcahmented both the
header and the operations of the interface. Besides, feethperations that used non-
primitive data-types as arguments, we also commented toeiesponding classes.
Each query is associated with a four-tuple, representingjie in terms of the number
of stems that resulted from processingits related soussssTabl€ll) . For instance,
the 7" query, which results after preprocessing the source conleeshin Fig[B, con-
sists of 4 stems: “countri”, “currenc”, “exchang”, “ratathen mining terms only from
the interface of the external component expected-at thetedide (source 1). The
query comprised 8 different stems when incorporating teest“convert”, “retriev”,
“tool” and “worldwid” from both sources 1 and 2. When addirdjvis”, “entiti”, “geo-
graph” and “polit” from the descriptions of its operatiomaments (sources 1, 2 and 3)
the query comprised 12 stems. When combining sources 1, 2 tiredquery consisted

of 29 stems, incorporating the stems “bank”, “transfer'estni”, “origin”, “allow”,

"o«

“balanc”, “class”, “client”, “current”, “histori”, “mettod”, “monei”, “mount”, “page”,
“repres”, “transact” and “sale”. Therefore, the four-tebr the aforementioned query
is (4,8,12,29).

There are some different methods for evaluating the pedag® of a retrieval sys-
tem. We decided to measure the performance of our discovechamism in terms
of the proportion of relevant services in the retrieveddistl their positions relative to
non-relevant ones. In this sense, we emploRgatecision, Recall and Precision-at-
measures. An important characteristic regarding the ptesaluation is the definition
of “hit”, i.e. when a returned WSDL document is actually kelet to the user. Dur-
ing the tests, a software developer judged the retrievedrdeats in response to each
query: if he determined that the operations of a retrievedW&ocument fulfilled the

20

i ntelligence
Ed.: Marek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

100

80
28 60
83
20
go
oo
oy 3 40

20

1 1

12345678 9101112131415161718192021222324252627282930
Query

Interface Arguments —
Documentation s Dependants

Figure 7:R-Precision of the experiments

s0 €Xpectations previously specified in the Java code, thetvealsiproduced. For exam-
a0 ple, if he expected an operation for converting from EuroBedars, then a retrieved

su Operation for converting from Francs to Euros was non-gié\even though these op-
s erations belonged to the same category or they were stroelighgd. In this particular

sz case, only operations for converting from Euros to Dollaesewelevant. Note that

s this definition of hit makes the validation of our discovergechanism more strict than
as previous efforts.

as 4.1.1. R-precision

817 One of the most used measures for assessing retrieval perfice isR-precision.

as Basically, given a query witR relevant documents, this measure computes the preci-
2 sion at theR" position in the rankingRetRet). For example, if there are 10 docu-
=0 Mments relevant to the query within the data-set and theyedrieved before the 11

=2 document, we have R-precision of 100%, but if 5-of them are retrieved after the
sz top 10 we have 50%. FormalliR precision= @. We obtained th&-precision for

=3 the above 30 queries by individually using each one its faunlginations of sources
2o Of terms (a total of 120 experiments). Hif. 7 depicts theaadR-Precision of each

25 experiment. The averadgeprecision of the Interface, Documentation, Arguments and
=26 Dependants combinations were 65.45%, 65.06%, 64.34% a9%%6 respectively.

sz These percentages were computed by averaging each setilts mer the 30 queries.

828 It is worth noting that for any query there are, at most, 8vahé services within

20 the data-set. Besides, there are 10 queries that have @ssbonly one relevant ser-
s0 Vice. This particularity of the data-set severely harmsprezision of our discovery

s Mechanism when the first retrieved service is not relevawt. ifiStance, the query
=2 number 18 had only one relevant service within the datavdgith was ranked sixth

s in the four candidate lists. Hendg;precision of this query was £ % In spite of the

s described situation, the overall results show that, whémguthe Dependants combi-

21

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mateos, A. Zuni no
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

10

o

8

o

6

o

Recall [%]
(more is better)

4

o

2

o

o

12345678 9101112131415161718192021222324252627282930
Query

Interface Arguments —
Documentation s Dependants

Figure 8: Recall of the experiments

nation, EasySOC included at the average 66.95% of the r&leeavices at the top of
the list. This means that EasySOC included nearly 67% ofdlevant services before
non-relevant services.

4.1.2. Recall

Recall is a measure of how well a search engine performs imfinelevant doc-
uments [[28]. Recall is 100% when every relevant documentdafta-set is retrieved.
Formally, Recall= RLRRe' whereRetRelis the total number of relevant services in-
cluded in the list of candidates. By blindly returning alladonents in the collection
for every query we could achieve the highest possible reloatllooking for relevant

services in the entire collection is clearly a slow task. ddiion, we want to achieve

i ntelligence
Ed.: Marek

good Recall in a window obnly 10 retrieved services. We have chosen this window

size because we want to balance between the number of cteslamad the number
of relevant candidates retrieved and-we believe that a dpeelcan certainly exam-
ine 10 Web Service descriptions without much effort. Theref we measured the
Recall for each query by settingetRel= RetRejp. Again, we computed the Re-
call for the 120 experiments and then we averaged the resliite average Recalls
of the Interface, Documentation, Arguments and Dependaete 88.41%, 91.16%,
93.41% and 88.38%, respectively. Hij. 8 depicts the acHi®ezall of each experi-

ment. Graphically, all Recall valueg-axis) are greater than 0, i.e. EasySOC included,

at least, one relevant service for every query in the top treved services.

4.1.3. Precision-at
Precision-ata measure computes precision at different cut-off poirits|].[Z8or
example, if the top 10 documents are all relevant to a quedyth@e next 10 are all
non-relevant, we have a precision of 100% at a cut-off of 1OJduJentRs t%‘éf a preci-
(S

sion of 50% at a cut-off of 20 documents. FormaRyecisionatn= ~~—" where

22

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

100

Interface
Documentation s
Arguments m—'
Dependants s

Averaged Precision-At-n [%]
(more is better)

Figure 9: Average Precision-at-

RetRel is the total number of relevant services retrieved in thertopVe evaluated
Precision-an for each query when using the aforementioned combinatibssuoces
and averaged the results. We measured by usiadl, 2,4,6,8,10. Fig.[d shows the
average Precision-atof the experiments. Once again, the number of relevantcasvi
per query within this particular data—set harms the preoisf our discovery approach
asn and the amount of retrieved services increases. Nevesthehe results show that
80% of the services at the top of the candidate list were agliewhen employing De-
pendants. Furthermore, using Arguments, Precisiahveds 70%. Both Interface and
Documentation.combinations resulted in a Precisiof-ait76.67%.

4.1.4. Discussion
During a typical discovery process (i.e. without EasySO@)szoverer usually

tries to deduce the category of the desired service, so adtece the search space.

Afterward, the discoverer examines the services that lgeforthe deduced category.
Although each category has its own service population, thetmpopulated category
in the data-set used in the evaluation has 65 services, @ne ih an average of 40
services per category. Therefore, we estimate that disicmyservices with this data-
set has a cost of 65 and 40 WSDL documents per query on theavatstverage cases,
respectively. Here, the cost associated with an indiviti@DL document may be the
time spent by the user in examining it to determine whethisrrizlevant.

The achieved Recall results have shown that by using Easys@€toverer usu-
ally selects a proper service from a set of only 10 WSDL doaumeln fact, this set
is an ordered list where services having a higher confidehbeiag relevant to the
query are located at the top, as shown by the achi®&prkcision and Precision-at-
results. As a consequence, the user sequentially exanainesrst, 10 WSDL doc-
uments before finding one relevant service. We -measuredvdrage position of the
first relevant services within the retrieved candidate ises; which resulted in 1.73,
1.7, 1.8 and 1.6 using Interface, Documentation, ArgumamtsDependants combina-
tions, respectively. Therefore, a discoverer examineg ®WSDL documents on the
average case, and 10 WSDL documents on the worst case, fdatatset. In other
words, EasySOC has reduced the cost of the discovery procesthe data-set by 95%
(average case) and 85% (worst case) with respect to doingathe task without any
assistance. Clearly, although these results can not baajzed to other data-sets,
they are promissory.

23

Intelligence
Ed.: Marek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

w3 4.2, Case study: A personal agenda software

894 In the next paragraphs we detail a comparison between thieingmtation of a
s Service-oriented application based on both the contresttdpproach to service en-
ss gagement (i.e. coding the application logic cora#ier knowing the contract of the
s external services to be consumed) and EasySOC. Basicalgeparately used these
ss WO alternatives to develop a simple, service-based patsagenda software using
w0 Some of the Web Services of the aforementioned data-seikd thle previous section,
w0 the purpose of the evaluation described in this sectiontisonassess the effectiveness
« Of EasySOC when discovering Web Services, but quantifyiegsburce code quality
«2 resulting from employing either contract-first or EasyS@€dctually consuming the
«s discovered services.

s04 After implementing the logic, incorporating the Web Seesdcand testing each
«s version of the application, we randomly picked one serviceaaly incorporated into
«s the applications and we changed its provider. Then, we toekios on the resulting
w7 SOuUrce codes in an attempt to have an assessment of the $eh&#sySOC for soft-
s Ware maintenance with respect to the contract-first approkor simplicity reasons,
w0 the analysis ignored the code implementing the GUI of the@wal agenda software.
a0 ~ Datacollection was performed by using the Structure Analisol for Java (STANH.

o1 The main responsibilities of the personal agenda softwaite manage a user’s
a2 coONtact list and to notify these contacts of events reladeplanned meetings. The
a3 contact listis a collection of records, where each recoapkénformation about an in-
«s dividual, such as name, location (city, state, countrycrige, etc.), email address, and
as SO on. Below is the list of tasks that are carried out by thdiegiion upon the creation
as Of a new meeting. We assume the user provides the date, tichpaaticipants of the
a7 Meeting, as well as the location where the meeting will tdkeg Also, we simplify
as the problem of coordinating a realistic meeting by assurttiag the participants being
a0 Notified always agree with the arrangement provided by teeafthe personal agenda
«0 SOftware. In summary, the naotification-process roughly ives:

021 e Getting a weather forecastfor the meeting place at the desired date and time.
022 e Obtaining the routes (driving directions) that each contact participating ie th
023 meeting could employ to travel from their own location to theeting place.

024 e For each participant of the meeting:

025 — Building an email message with an appropriate subject, dratlg includ-

026 ing the weather report and the corresponding route infaomat

027 — Spell checkingthe text of the email.

028 — Sending the email

20 Thetextin bold represent the functionalities that weresoutced to Web Services dur-
w0 iNng the implementation of the different variants of the aqadion. As the contract-first
= approach does not assist developers in finding servicels Wab Service was discov-
«2 ered using our search engine along with four of the queriewstin Tabldl. Specifi-
«s cally, we queried the search engine for a weather forecssteice (query #29), a route
« finder service (query #10), a spellchecker service (quedy #hd an email sender ser-
s Vice (query #22). We followed the text mining process désmiin Sectiod 3711 to

9Structure Analysis for Ja T p: /7 Wiw. St an4| . con)

24

http://www.stan4j.com

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

«6 build these queries from the client-side interfaces of taeyi5OC implementation of
«» the personal agenda software. Once the Web Services wemvdisd, we used their
s corresponding WSDL documents as the outsourced servicekdaontract-first ap-

«e plication.

040 The following list summarizes the metrics that were taketh@resulting applica-
w1 tion code:

o2 e SLOC (Source Lines Of Codedunts the total non-commented and non-blank
043 lines across the entire application cEﬂjdncIuding the code implementing the
o4s pure application logic, plus the code for interacting witle tvarious Web Ser-
oas vices. The smaller the SLOC value, the less the amount oftsotwde that
046 is necessary to maintain once an application has been ineplerh. Since the
o7 present evaluation specifically aims at assessing theitsdlguality of the source
04 code of the applications, class documentation was left bthe scope of the
04 analysis.

050 e Ce (Efferent Coupling)indicates how much the classes and interfaces within a
051 package depend upon classes and interfaces from othergeeclka3]. In other
952 words; this metric includes all the types within the sourode of the target
053 package referring to the types not in the target packageuroase, as the proxy
054 code does not depend upon the code implementing the appfidagic, Ce will

055 just refer to the number of efferent couplings of the clafstesfaces that depend
056 upon proxy classesl/interfaces. Under this condition, ks the Ce, the less the
057 dependency between the functional code of an applicatiantla® interfaces
058 representing server-side service contracts. The utifi@ein our evaluation is
050 for determining what is-the influence of the adapter layer afy(SOC on this
960 kind of dependency.

061 e CBO (Coupling Between Objecis)the amount of classes to which an individual
%62 class is coupledl[6]. For example, if a classs coupled to two more class8s

063 andC, its CBOis two. In this sense, the less a class is coupledier aiasses,
064 the more the chance of reusing it. Since reusability is onth@fcomponents
965 of maintainability [21], CBO can be used as a complementadicator of how

066 maintainable a softwareis.

067 e RFC (Response for Classpunts the number of different methods that can be
06 potentially executed when an object of a target class res@vnessage, includ-
069 ing methods in the inheritance hierarchy of the class asagathethods that can
o0 be invoked on other objects |[6]. Note that if a large numbemethods are
on1 invoked in response to receiving a message, testing becmaesdifficult since

o2 a greater level of understanding of the code is requiredceStiastability is also
o3 one of the components of maintainability [21],-it is highlgsirable to achieve
o4 low RFC values for application classes.

o5 Tabld2 shows the resulting metrics for the fourimplemeéaatof the personal agenda
o SOftware: contract-first, EasySOC, and two additionalarss in which another pro-

o Vider for the weather forecaster service was chosen froréte Service data-set. For
os CONvenience, we labeled each implementation with an ifilentid column), which

10As defined in the COCOMO cost estimation model

25

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

Table 2: Personal agenda software: source code metrics

Variant Id SLOC Ce CBO RFC

Initial Web Contract-first Cy 242 7 450 30.00

Service providers EasySOC E; 309 7 1.70 7.20

Alternative Web Contract-first C, 246 10 4.67 22.67

Service providers EasySOC E, 327 10 2.00 7.45

oo Will be used through the rest of the paragraphs of this secfio perform a fair com-
0 parison, the following tasks were carried out on the finalleamgentation code:

081 e The source code was transformed to a common formattingatdnsb that sen-
082 tence layout was uniform across the different implemeniatof the application.
o83 This, together with the fact that only one person was invibivethe implemen-
084 tation of the applications, minimizes the impact of differeoding conventions
085 that may bias the values of the metrics that depend on the euofbines of
086 source code.

087 e Java import statements within compilation units were oféd by using the
o8 source code optimizing tool of the Eclipse SDK. Basicalhjs ttool automati-
089 cally resolves import statements, thus leaving in the appbin code only those
000 classes which are actually referenced by the application.

001 ¢ In every implementation of the application the client-gadexies to the Web Ser-
002 vices were exactly the same (generated through Eclipse Wadt)sequently,
003 their associated source code was not considered for congptite aforemen-
004 tioned metrics.

ws 4.2.1. Discussion

096 From TabldR, it can be seen that the variants using the sarogssavice providers
w7 resulted in equivalent Ce values: 7 @randE;, and 10 foiC; andE;. This means that
«s the variants relying on EasySOE,), did not incur in extra efferent couplings with re-
w0 Specttothe variants implemented according to the confimtapproachdy). Further-
oo More, if we do not consider the corresponding service adapBe for the EasySOC
oo Variants drops down to zero, because EasySOC effectiveligsuthe code that de-
w002 Pends on service contracts out of the applicationlogic.

1003 Fig.[I0 shows the resulting SLOC. As the reader can see, ofatige provider for
0. the weather forecaster service caused the modified versfdahe application to incur
s IN a little code overhead with respect to the original varsioNevertheless, the non-
o adapter classes implementedBywere not altered by, at all, whereas in the case
w7 Of the contract-first approach, the incorporation of the sewice provider caused the
s Modification of 17 lines fronC; (more than 7% of its code).

1000 Note that the variants coded under EasySOC had an SLOC gteeatethat of the
0w Variants based on the contract-first approach. Howeverdifference was caused by
ou the code implementing service adapters. In fact, the napted code was smaller,
o2 Cleaner and more compact because, unlike its contractbitsiterpart, it did not in-
s clude statements related to importing and instantiatiogyclasses and handling Web
e Service-specific exceptions. Additionally, there are fisaspects concerning service

26

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

350 | Service adapter code =
Non-adapter code mmmmm

300 [
250 |
200 |
150 |
100 |
50
0

Contract-first Contract-first EasySOC
(Initial Web Service Inma\ Web Servlce (Alternative Web Ahematlve Web
providers) providers) Servlce providers) Servlce providers)

Variant

SLOC
(less is better)

Figure 10: Source Lines of Code (SLOC) of the different aggilons

")

RFC
is better

(a) CBO (b) RFC

Figure 11: Coupling Between Objects (CBO) and Response lmssQRFC) of the
different applications

adapters and SLOC. On one hand, a large percentage of theesadapter code was
generated automatically, which-means programming effag not required. On the
other hand, changing the provider for the weather forecastgered the automatic
generation of a new adapter skeleton, keptthe applicatigic Lnmodified, and more
importantly, allowed the programmer to focus on supportimg alternative service
contract only in the newly generated adapter class. Coelersplacing the forecaster
service inC; involved the modification of the classes from which the ssrwas ac-
cessed (i.e. statements calling methods or data-typesdaefirthe service interface),
thus forcing the programmer to browse and modify much modecén addition, this
practice might have introduced more bugs into the alreastgdeapplication.

As mentioned earlier, CBO and RFC metrics were also comp(itied[I1). Par-
ticularly, high CBO is extremely undesirable, because gatigely affects modularity
and prevents reuse. The larger the coupling between clabsdsigher the sensitivity
of a single change in other parts of the application, andefoee maintenance is more
difficult. Hence, inter-class coupling, and specially clings to classes representing
(change-prone) service contracts, should be kept to a miminSimilarly, low RFC
implies better testability and debuggability. In concardawith Ce, which resulted in
greater values for the modified variants of the applicat@®Q for both EasySOC and
contract-first exhibited increased values when changiagtbvider for the forecaster
service. On the other hand, RFC presented a less unifornvioeha

27

Intelligence
Ed.: Marek

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

1035 As reported by the Ce metric, EasySOC did not reduce the anebefferent cou-
s plings from the package implementing the application logiaturally, the reason of
i this factis that the service contracts adhereétpgre exactly the same &g. However,
s the EasySOC applications reduced the CBO with respect tedh&act-first imple-
w0 Mentations, because the access to the various servideeditily the application, and
o therefore their associated data-types, is performednviteveral cohesive compilation
wa UNits (i.e. adapters) rather than within few, more gendesses. This approach im-
0z proves reusability and testability, since applicationdadasses do not directly depend
103 ON SErvices.

100 As depicted in FiglI1 (b), this separation also helped iriexitng better average
ws RFC. Moreover, although the plain sum of the RFC values oEthsere greater com-
s pared taCy, the total RFC of the classes implementing applicationdde. without
e taking into account adapter classes) were both smalles Stggests that the pure ap-
s plication logic ofE; andE; is easier to understand th&a andC,. In large projects,
s We reasonably may expect that much of the source code of B3 @pplications will
w0 De part of the-application logic instead of service adapt€rerefore, preserving the
s understandability of this kind of code is crucial.

w2 5. Conclusions

1053 We have presented EasySOC, a new approach to simplify thelogexent of
s Service-oriented applications. Among the strengths ofyG&C is its novel mecha-
s hism for accurately and efficiently discovering existingt/@&ervices based on machine
s learning techniques, and a convenient programming modaelcdbapon the concept of
w7 Dependency Injection that allows developers to non-imedgiconsume external ser-
s Vices. Concretely, the aim-of EasySOC is to exploit the imfation present in client-
w05 Side source code to ease the task of discovering servicdsatatine same time let
o programmers to separate the application logic from semetated concerns in order
s tO increase the maintainability of the resulting software.

1062 We have shown the benefits of EasySOC for building Web Sehésed applica-
wss tions through a number of experiments. Specifically, weueatald the retrieval effec-
wee tiveness of its discovery mechanism by comparing four ckffié heuristics for auto-
s Matic query generation from source code on-a data-set of 38 $¥rvices. More-
s OvVer, we assessed the advantages of EasySOC with regarivtarsomaintainability
sz through several applications that consumed services fin@lata-set and source code
wes Metrics. Our preliminary findings are very encouraging. Wvespect to service dis-
s CoOvery, all heuristics achieved a recall in the range of 889which means that a high
oo percentage of relevant services are retrieved. Furthermfmrsome heuristics, we ob-
o tained a precision-ati.e. the first retrieved service is always relevant) of abid5-
o2 80% at the average. We also showed that using differentgpartif the client-side code
ws for generating queries can help in improving the perforneaasfoour discovery mech-
e @nism. With respect to service consumption, we found thdgasst for the analyzed
s applications, using EasySOC led to software whose funatignwas fully isolated
s from common service-related concerns, such as interfde¢s;type conventions, pro-
o7 tocols, etc. For the discussed applications, as reportetidoyell-established CBO
o and RFC metrics, the EasySOC implementations also achieetdr coupling and
e COhesiveness than the software built under the contratiafiproach.

1080 However, despite the above results, we will conduct moregrgents to further
s Validate EasySOC. We will evaluate the performance of asraliery mechanism with
v Other data-sets. As a starting point, we will use a recentlylished collection of

28

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mateos, A. Zuni no
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

i ntelligence
Ed.: Marek

real Web Servicéd. Second, we are also planning to use EasySOC for developing

larger applications. Note that this might enable the useeifios specially designed to
guantify software quality and maintainability in large jacts like the Maintainability

Index [8] or the metrics suite proposed in_[30]. In additiase, could employ different

development teams so as to consider human factors in thesasset as well.

EasySOC is a technology-agnostic approach to Web Serveoewkry and con-
sumption. In fact, many of the technological details diseasthroughout this pa-
per should be thought as being part of just one materiatizati EasySOC out of
many alternatives. On one hand, the first step of our outgmyiprocess (i.e. service
lookup) can be extended to support different service detson language (e.g. WSDL,
CORBA-like IDLs, etc.), many registry infrastructuresyeUDDI, CORBA), different
intermediate representations when extracting terms fraunce code (e.g. reflection,
syntax tree, etc.) and various programming languages.@lmithe third step of this
process (service engagement) can be implemented for agygmming language that
has support for DI'and Web Service proxying. Currently, sgv@l and Web Service
frameworks for a variety of languages already exist (C++th&y, Ruby, etc.).

This work will be extended in several directions. With resie our search engine,
we will experiment with other weighting schemes. Specificakrm distributions|[31]
and TF-ICF [44] have shown promissory results, but they heotebeen used in the
context of Web Services yet, at least, to the best of our kedgé. Another line of re-
search involves the provision of some assistance to deseddpr programming service
adapters. As mentioned before, we could use a techniquiasitmi |[37] to partially
automate the task of bridging the signatures of the methedsued by an adapter and
the operations of its associated Web Service. Anotherasterg work is concerned
with taking into account some of the runtime aspects of WabiSes in the outsourc-
ing process. For instance, unpredictable runtime condit{e.g. network or software
failures) can degrade the performance of Web Services or @gse them to become
unavailable, which-in turn-affect the execution of thoseyiS43C applications that rely
on failing services. To-overcome this problem, we will ent@gervice adapters to sup-
port “hot-swapping” of services alternatives. Specifigathther than representing only
one Web Service, individual adapters will maintain a listahdidate services. There-
fore, at runtime an adapter will be able to choose betwederdiit service implemen-
tations according to different criteria (availability, ff@rmance, throughput, etc). Of
course, this solution increases the cost of writing adapsince more code to accom-
modate adapter method signatures and Web Service operhtwa to be provided. In
this sense, assisting developers in this task will be ctucia

Acknowledgments

We deeply thank the anonymous reviewers for their helpfahoents and sug-
gestions to improve the quality of the paper. We acknowlatigefinancial support
provided by ANPCyT through grants PAE-PICT 2007-02311 aA&+PICT 2007-
02312.

11The QWS Datas¢Ht t p: /7 www. uoquel ph. ca/ ~qmahnoud/ qws/ | ndex. ht m

29

http://www.uoguelph.ca/~qmahmoud/qws/index.html

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

uws References

uws [1] M. B. Blake, D. R. Kahan, M. F. Nowlan, Context-aware atgeior user-oriented

1126 Web Services discovery and execution, Distributed andlebEzatabases 21 (1)
1127 (2007) 39-58.

ws [2] M. B. Blake, M. F. Nowlan, Taming web services from the dyilEEE Internet
1129 Computing 12 (5) (2008) 62—69.

uo [3] C. Buckley, G. Salton, J. Allan, The effect of adding relace information in
u31 a relevance feedback environment, in: 17th Annual Intésnat ACM SIGIR
1132 Conference on Research and Development in InformationeRetr(SIGIR '94),
13 Dublin, Ireland, Springer-Verlag, New York, NY, USA, 1994.

us [4] M. Burstein, C. Bussler, M. Zaremba, T. Finin, M. N. Huhi. Paolucci, A. P.
1135 Sheth, S. Williams, A semantic Web Services architect@eH Internet Com-
1136 putlng 9 (5) (2005) 72-81.

uw [5] L. Cavallaro, E. Di Nitto, An approach to adapt servicguests to actual service
1138 interfaces, in: 2008 International Workshop on Softwargikeering for Adap-
1130 tive'and Self-Managing Systems (SEAMS’08), Leipzig, GemgnaACM Press,
1140 New York, NY, USA, 2008.

ua [6] S."R. Chidamber, C. F. Kemerer, A Metrics Suite for Objéctented Design,
1142 IEEE Transactions on Software Engineering 20 (6) (1994)498.

us [7] M. A. Cibran, B. Verheecke, W. Vanderperren, D. SuvéeJdhckers, Aspect-
1144 oriented programming for dynamic Web Service selectiotregration and man-
1145 agement, World Wide Web 10 (3) (2007) 211-242.

ws [8] D. Coleman, D. Ash, B. Lowther, P. Oman, Using metrics Yaleate software
1147 system maintainability, Computer 27 (8) (1994) 44—49.

ws [9] M. Crasso, A. Zunino, M. Campo, AWSC: An approach to Welbvie clas-
1149 sification based on machine learning techniques, IntetigeArtificial, Revista
1150 Iberoamericana de IA 12/(37) (2008) 25-36.

usi [10] M. Crasso, A. Zunino, M. Campo, Query by example for Weln&es, in: 2008
1152 ACM Symposium on Applied Computing (SAC '08), Fortaleza,aGe Brazil,
153 ACM Press, New York, NY, USA, 2008.

usa [11] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawararae next step in Web
1155 Services, Communications of the ACM 46 (10) (2003) 29-34.

uss [12] S. Deerwester, S. T. Dumais, G. W. Furnas, T. Landaueld&shman, Index-
1157 ing by latent semantic analysis, Journal of the Americarig@péor Information
1158 Science 41 (6) (1990) 391-407.

uss [13] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, J. Zhangnitirity search
1160 for Web Services, in: 30th International Conference on \laagge Data Bases,
1161 Toronto, Canada, Morgan Kaufmann, 2004.

ue [14] T. Erl, Service-Oriented Architecture (SOA): Concgpfechnology, and Design,
1163 Prentice Hall, Upper Saddle River, NJ, USA, 2005.

30

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

ues [15] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Ron. Polleres, Enabling

1165 Semantic Web Services: The Web Service Modelling OntolSgyinger-Verlag,
1166 Secaucus, NJ, USA, 2006.

uer [16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, DesigneRait Elements of
1168 Reusable Object-Oriented Software, Addison-Wesley, RgatMA, USA, 1995.
s [17] J. D. Garofalakis, Y. Panagis, E. Sakkopoulos, A. K.Kedigis, Contemporary
170 Web Service discovery mechanisms, Journal of Web Engimgé&ri(3) (2006)
un 265-290.

w2 [18] A. Gomez-Perez, O. Corcho-Garcia, M. Fernandez-Lppemlogical Engineer-
173 ing, Springer-Verlag, Secaucus, NJ, USA, 2003.

uwe [19] A. Hel3, E. Johnston, N. Kushmerick, Assam: A tool for santomatically an-
175 notating semantic Web Services, in: 3rd International Seim&Vveb Conference
176 (ISWC2004), Hiroshima, Japan, vol. 3298 of Lecture Note&Somputer Science,
ur Springer, 2004.

s [20] M. N. Huhns, M. P. Singh, Service-Oriented Computingykoncepts and prin-
179 ciples, IEEE Internet Computing 9 (1) (2005) 75-81.

uw [21] International Organization for Standardization, 8@fre engineering - product
181 quality - part 1: Quality model, ISO 9126.

ue [22] T. Joachims, A probabilistic analysis of the Rocchigaalthm with TFIDF
183 for text categorization, in: 14th International Conferermn Machine Learning
1184 (ICML 1997), Nashville, Tennessee, USA, Morgan Kaufmar897.

uss [23] R. Johnson, J2EE development frameworks, Computet 3&005) 107-110.
uss [24] T. C. Jones, Estimating Software Costs, McGraw-Hidl.|iHightstown, NJ, USA,

1187 1998.

us [25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rRaWV. Griswold, Getting

1189 started with ASPECTJ, Communications of the ACM 44 (10) (@®&D—65.

o [26] M.-C. Kim, K.-S. Choi; A comparison of collocation-bats similarity measures
1101 in query expansion, Information Processing & Managemerfl351999) 19-30.

ue [27] R.Kittredge, Sublanguages, American Journal of Catapanal Linguistics 8 (2)

1108 (1982) 79-84.

ue [28] R. R. Korfhage, Information Storage and Retrieval ii@filey & Sons, Inc., New

1195 York, NY, USA, 1997.

uss [29] A. Kozlenkov, G. Spanoudakis, A. Zisman, V. Fasoulass FCid, Architecture-

1187 driven service discovery for service centric systemsrirggonal Journal of Web
1108 Services research 4 (2) (2007) 82-113.

uee [30] V. Lakshmi Narasimhan, B. Hendradjaya, Some theambtionsiderations for a
1200 suite of metrics for the integration of software compongimf®rmation Sciences
1201 17 (3) (2007) 844-864.

w2 [31] V. Lertnattee, T. Theeramunkong, Effect of term diatitions on centroid-based
1208 text categorization, Information Sciences 158 (2004) 8%-1

31

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mteos, A Zunino,

M Canpo). Information Sciences, Special |ssue of Applications of Conputational Intelligence
and Machine Learning to Software Engineering. Elsevier Science. |ISSN. 0020-0255. Ed.: Marek
Ref ormat. 2010. Article in Press. DO : doi:10.1016/j.ins.2010.01.013

wa [32] R. M. Losee, Sublanguage terms: Dictionaries, usagd, aitomatic classifi-

1205 cation, Journal of the American Society for Informatione®aie 46 (7) (1995)
1206 519-529.

2wz [33] R. C. Martin, Object-Oriented Design Quality MetricAn Analysis of Depen-
1208 dencies, Report on Object Analysis and Design 2 (3).

e [34] C. Mateos, M. Crasso, A. Zunino, M. Campo, Supportingptogy-based seman-
1210 tic matching of Web Services in MoviLog, in: Advances in Aidial Intelligence,
1211 2nd International Joint Conference: 10th Ibero-Americanf€rence on Al, 18th
1212 Brazilian Al Symposium (IBERAMIA-SBIA 2006), vol. 4140 ofdcture Notes
1213 in Artificial Intelligence, Springer-Verlag, 2006.

2a [35] R. McCool, Rethinking the Semantic Web. Part |, IEEEehniet Computing 9 (6)
1215 (2005) 88, 86-87.

26 [36] S. A. Mcllraith, D. L. Martin, Bringing Semantics to Wekervices, IEEE Intelli-
1217 gent Systems 18 (1) (2003) 90-93.

s - [37] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera,CBsati, Semi-
1219 automated adaptation of service interactions, in: 16teri#tional conference
1220 on World Wide Web (WWW '07), Banff, Alberta, Canada, ACM PsedNew
1221 York, NY, USA, 2007.

222 [38] OASIS Consortium, UDDI Version 3.0.2, UDDI Spec Teatali Committee
1223 Draft,ht tp: 7/ uddi . org/ pubs/ uddi v3. htm (Oct. 2004).

22a [39] M. Paolucci, K. Sycara, Autonomous semantic Web SesjidEEE Internet
1225 Computing 7 (5) (2003) 34-41.

26 [40] M. P. Papazoglou, W.-J. Heuvel, Service Oriented Amattures: Approaches,
1227 Technologies and Research Issues; The VLDB Journal 16 (8)(389—-415.
s [41] M. F. Porter, An algorithm for suffix stripping, Readm Information Retrieval
1229 (1997) 313-316.

2o [42] S. Ran, A model for Web Services discovery with QoS, Si@e Exchanges
1231 4 (1) (2003) 1-10.

w2 [43] E. Razina, D. Janzen, Effects of Dependency InjectiorMaintainability, in:
1233 11th IASTED International Conference on Software Engiimggand Applica-
1234 tions (SEA '07), Cambridge, MA, USA, ACTA Press, Calgary, ABanada,
1235 2007.

e [44] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. ElImo#e,R. Hurson, TF-
1237 ICF: A new term weighting scheme for clustering dynamic ddtaams, in: 5th
1238 International Conference on Machine Learning and Applicet (ICMLA '06),
1230 Orlando, Florida, USA, IEEE Computer Society, Washing@@, USA, 2006.
20 [45] M. P. Reséndiz, J. O. O. Aguirre, Dynamic invocation oEbVServices by us-
1201 ing aspect-oriented programming, 2nd International Cemfee on Electrical and
122 Electronics Engineering, Mexico City, Mexico (2005) 48-51

2 [46] G. Salton, A.Wong, C. S. Yang, A vector space model faomatic indexing,
1244 Communications of the ACM 18 (11) (1975) 613-620.

32

http://uddi.org/pubs/uddi_v3.htm

EasySOC. Maki ng Web Service Qutsourcing Easier. (M Crasso, C. Mateos, A. Zuni no
I nformati on Sci ences, Special |ssue of Applications of Computational
and Machi ne Learning to Software Engi neering. Elsevier Science. |SSN. 0020-0255.
2010. Article in Press. DA: doi:10.1016/j.ins.2010.01.013

M Canpo).

Ref or mat .

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

[47] G. Salton, C. Buckley, Term-weighting approaches itomatic text retrieval,
Information Processing & Management 24 (5) (1988) 513-523.

[48] C. Schmidt, M. Parashar, A peer-to-peer approach to Bfetvice discovery,
World Wide Web 7 (2) (2004) 211-229.

[49] N. Shadbolt, T. Berners-Lee, W. Hall, The semantic welisited, IEEE Intelli-
gent Systems 21 (3) (2006) 96-101.

[50] M. Shamsfard, A. A. Barforoush, Learning ontologiesnr natural language
texts, International Journal of Human-Computer Studie€604) 17-63.

[51] K. Sivashanmugam, K. Verma, A. P. Sheth, J. A. Miller,dith semantics to
Web Services standards, in: L.-J. Zhang (ed.), 2003 Intieme Conference on
Web Services (ICWS'03), Las Vegas, NV, USA, CSREA Press3200

[52] D. Spinellis; The way we program, IEEE Software 25 (4@g) 89-91.

[53] E. Stroulia, Y. Wang, Structural and semantic matcHmgassessing Web Ser-
vice similarity, International Journal of Cooperativedmation Systems 14 (4)
(2005) 407-438.

[54] D. Suvée, W. Vanderperren, V. Jonckers, Jasco: an aspiented approach tai-
lored for component based software development, in: 2refrational Confer-
ence on Aspect-oriented Software Development (AOSD '08§tén, MA, USA,
ACM Press, New York, NY, USA, 2003.

[55] S.J.Vaughan-Nichols, Web Services: Beyond the hypepguter 35 (2) (2002)
18-21.

[56] S. Vinoski, A time for reflection [software reflectiorhternet Computing 9 (1)
(2005) 86—89.

[57] P. Vitharana, H. Jain, F. Zahedi, Strategy-based desfigeusable business com-
ponents, IEEE Transactions on Systems, Man, and Cybesn®{iq4) (2004)
460-474.

[58] W3C Consortium, WSDL Version 2.0 Part 1: Core Languayy8C Candidate
Recommendatiomf t p: /7 ww. W3. or a/ TR wsdl"20] (Jun. 2007).

[59] H. Wang, J. Z. Huang, Y. Qu, J. Xie, Web Services: Prolsiemd Future Direc-
tions, Journal of Web Semantics 1 (3) (2004) 309-320.

33

i ntelligence
Ed.: Marek

http://www.w3.org/TR/wsdl20

