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Abstract. Software cognitive complexity refers to how demanding the mental process of
performing tasks such as coding, testing, debugging, or modifying source code is. Achiev-
ing low levels of cognitive complexity is crucial for ensuring high levels of software main-
tainability, which is one of the most rewardful software quality attributes. Therefore, in
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order to control and ensure software maintainability, it is first necessary to accurately quan-
tify software cognitive complexity. In this line, this paper presents a software metric to
assess cognitive complexity in Object-Oriented (OO) systems, and particularly those de-
veloped in the Java language, which is very popular among OO programming languages.
The proposed metric is based on a characterization of basic control structures present in
Java systems. Several algorithms to compute the metric and their materialization in the
Eclipse IDE are also introduced. Finally, a theoretical validation of the metric against a
framework specially designed to validate software complexity metrics is presented, and the
applicability of the tool is shown by illustrating the metric in the context of ten real world
Java projects and relevant metrics from the well-known Chidamber-Kemerer metric suite.

Keywords: Software cognitive complexity, Basic control structures, Java, CK metric suite

1 INTRODUCTION

IEEE refers to software quality as “the degree to which software possesses a desired com-
bination of attributes (e.g., reliability, interoperability)” [1]. In an ideal world, it would
be desirable to optimize all attributes, but in practice attributes may conflict among them-
selves. This situation is commonly known as a trade-off. Thus, it is necessary to assess
and somehow to adjust the values these attributes take to deal with such trade-offs. The
main goal of software metrics is to allow software engineers to assess software attributes
and in turn to make modifications on the software based on metrics values (i.e., mea-
sures). For example, in [28] some metrics for preventing software defects were proposed,
specifically those reported by customers when using a software and those identified during
customer acceptance testing.

In the early 80s, the software maintainability attribute motivated radical changes in
the way software was modeled, and concretely in the way source code elements were or-
ganized to represent a computational solution to a set of requirements. The widespread
acceptance of the Object-Oriented (OO) programming paradigm backs up the previous
statement. Due to the popularity of OO notions, many OO programming languages have
been developed, such as Smalltalk, C++, and Java. Accordingly, many software projects
have been developed using such languages. Since it is important to assess the maintain-
ability of these software projects, several OO metrics that cover some inherent modeling
features of the OO paradigm can be found in the literature, which are listed in [17].

The complexity of OO source code is an attribute related to software maintainabil-
ity [13]. Particularly, Kearney and his colleagues [14], state that complexity relates to
“the difficulty of performing tasks such as coding, debugging, testing, or modifying a
software”. Under this definition, complexity directly impacts on software maintainabil-
ity. Then, “complexity” should be understood as cognitive complexity, but for readability
from now on we will use “complexity” and “cognitive complexity” interchangeably.

Source code complexity has been commonly assessed by thirty-year old software
metrics such as Halstead’s complexity [10], McCabe’s cyclomatic complexity [19], or
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variants such as Hansen’s measure of complexity [11]. Although all these metrics were
designed for procedural programming and actually appeared before OO languages, they
can also be used to characterize OO source code and are still very popular among software
engineers. McCabe’s cyclomatic complexity metric bases on common procedural control
structures (e.g., IF-THEN-ELSE, WHILE, etc.) that are also present in OO source code.
Halstead’s metric bases on the number of operators (method names, arithmetical opera-
tors) and the number of operands (variables, and numeric/string constants), which also
apply to object orientation. Lastly, Hansen developed a paired metric that combines the
McCabe’s complexity metric with operators similar to that of Halstead’s.

Nowadays, however, many researchers claim that these metrics are not enough to
cope with today’s software. Consequently, some new metrics for measuring OO software
complexity have been proposed [3]. Particularly, [22] introduced a metric for measuring
the cognitive effort required to understand an OO software system. The metric considers
not only the basic control structures in source codes, but also the inheritance relationships
among classes and method calls. With regard to basic control structures, [22] exploits
the work of [24] –which describes a characterization of ten basic control structures– to
assess the effort introduced by the program statements that control the flow of a program.
The metric considers inheritance relationships and intra/inter class method calls. Besides,
a formulation to combine the metric values of isolated control structures by taking into
account inheritance and method calls was presented, along with a preliminary evaluation
involving a small system developed in C++.

Moreover, this paper proposes a metric for assessing the complexity of OO programs
written in Java, which is based on an extension of [24]. Concretely, we present six new
basic control structures, four of which have been designed to consider special operators
of the OO paradigm, while another two consider the Java language operators for handling
exceptions. This metric takes a more integral approach to complexity measurement com-
pared to similar recent metrics [3], which as stated by their own authors are still under
development (i.e., [4]) or are not designed to capture all the aspects involved in class de-
sign and implementation (i.e., [20]). Besides, because of the huge amount of hours per
man manually calculating the proposed complexity metric would require, and because
manually computing metrics even from small projects is an error prone task, this paper
also presents a tool for automatically gathering basic control structures from Java projects
and calculating their complexity. Therefore, the main contributions of this paper are:

• a complete characterization of basic control structures for OO/Java programs,

• a complexity metric that builds upon these basic control structures,

• an open source tool based on Eclipse for automatically computing the metric.

The rest of the paper is organized as follows. The next section discusses the most relevant
related work. Section 3 presents the basic control structures for OO and Java programs,
and describes the proposed complexity metric for OO systems. Section 4 describes a
software tool, implemented as an Eclipse plug-in, for automatically computing this metric
from Java projects. Section 5 validates the metric using the validation framework in [21],
and illustrates the feasibility of the tool with ten real world Java projects from the Apache



4 M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvorı́n

Software Foundation. The section also compares our metric with relevant metrics from
the well-known Chidamber and Kemerer’s metric suite. Future research directions are
described in Section 6. Lastly, concluding remarks are presented in Section 7.

2 BACKGROUND AND RELATED WORK

This section starts by revisiting some concepts of the OO paradigm and Java. Then, we
present a conceptualization and examples of basic control structures for Java.

2.1 Particularities of the OO paradigm in the context of Java

By definition, an object is a class instance. A class is a “blueprint” defining the attributes
and operations (methods from now on) for instances of that class. An OO system consists
of one or more classes plus objects communicating among them via message exchange
(i.e., method calls). New classes (a.k.a. the children) may be defined by inheriting at-
tributes and method definitions from an existing class (a.k.a. the base class or parent
class), thus conforming a class hierarchy. Then, inherited attributes and methods can be
accessed from children classes. For example, if a child class C inherits the definition of a
method s from a parent class S, then s may be called from methods defined in C.

Inheritance is a mechanism commonly combined with abstract methods. Contrarily
to concrete methods, an abstract method lacks implementation. When a class has at least
one abstract method, it is called abstract and cannot be employed for instantiating ob-
jects. Only children classes providing implementations for the definitions of all inherited
abstract methods can be employed for creating objects. When a child method provides
an implementation for an abstract method, it is said that the former overrides the latter.
Although abstract classes cannot be employed for the instantiation of objects, they can be
used in method signatures and variable/attribute definitions. At run-time, these elements
must be instantiated using one of the available children inheriting the abstract classes.

The Java language complements the OO paradigm with exception handling, a mech-
anism that allows developers to handle situations that fall outside the expected or normal
execution flow of program. In Java, the exception handling mechanism consists of a try
block, a catch block, and optionally a finally block. A try block is the set of statements
whose execution must be monitored for exception occurrences. A catch block, which is
associated with each try block, is a sequence of catch clauses. Each catch clause defines
the type of exception it is able to handle, and contains a block of code that is executed
when an exception of that type is caught. Lastly, each try statement can have a finally
block, which is always executed irrespective of an exception has occurred or not.

Another interesting feature of the Java language are anonymous classes. An anony-
mous class is a local class without a name, which can be included as part of a larger
expression such as a method call. Then, anonymous classes are defined and instantiated
in a single succinct expression using the new operator. Moreover, developers declare an
anonymous class exactly in the statement where the class is needed.

For the purposes of this paper, it is worth describing the Java package arrangement
mechanism. This mechanism allows developers to include many classes in an individual
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file, commonly a zipped .jar file (Java ARchive), which is useful for distributing and
reusing such classes. A jar file may contain both Java source code files and Java bytecode
files, i.e., compiled source codes. Then, one or more jar files can be imported from any
Java program and, in turn, class definitions present in the jar file can be employed to
instantiate objects or to act as the base class for new classes. In the rest of the paper we
will refer to those classes in a jar file as “library classes”. When a jar file only contains
Java bytecode –but not source code– we will refer to it as a “closed library”.

2.2 Software engineering metrics for measuring Java and OO systems

In [18] the authors present a new approach for detecting non-cohesive classes in Java.
They state that if two different clients of a class have very different client views of the class
they are using, it can be assumed that the class does not implement a maximally cohesive
set of features. To detect this kind of lack of cohesion, the authors propose the LCIC (Lack
of Coherence In Clients) metric that measures how coherently the clients use a given class.
The metric bases on the hypothesis that a class is cohesive when all clients use the same
features of the class, i.e., clients have a similar view of the class. Otherwise, the class
might have unnecessary features, or it might implement several different abstractions [18].

The work also presents a prototype for automatically gathering the metric from Java
source files. The prototype parses Java source files, and builds a model representing class
attributes and methods. Built models are persisted using an XML database, which is then
queried during metric computation [18]. This prototype has been employed for assessing
the LCIC metric from three open source projects. The experiments show preliminary
results about the relationship between the LCIC metric and possible code refactorings
that are known to improve cohesion. Concretely, the authors analyze the LCIC metric for
several classes before and after performing well-known refactorings over them.

Beyond the Java arena, one of the most recognized efforts to assess complexity in OO
systems is the metric suite developed by Chidamber and Kemerer [7], which is popularly
known as the “CK metric suite”. The suite consists of six individual metrics: Weighted
Methods per Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),
Coupling Between Object classes (CBO), Response For a Class (RFC), and Lack of CO-
hesion in Methods (LCOM). The WMC metric counts the methods of a class. The DIT
metric is defined as the maximum inheritance path from a class to the uppermost class in
the hierarchy. The NOC metric counts the number of classes in a class hierarchy. The
CBO metric counts how many methods or attributes defined by other classes are accessed
by a given class. The RFC metric counts the methods that can potentially be executed in
response to a message received by an object of a given class. The LCOM metric measures
how well the methods of a class are semantically related to each other. Interestingly, all
the metrics in the CK metric suite are straightforward and simple to compute.

On the other hand, the CK metric suite does not cover the aggregated complexity of
a class due to all the measured factors, namely number of methods, classes hierarchical
depth and cardinality, coupling and cohesion. The internal architecture of a class in terms
of object orientation and the relationships due to inheritance in the class hierarchy, along
with the involved complexities, are also ignored. Lastly, CK metrics counts only the
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number of methods coupled with other classes, ignoring their complexities.
The lack of the above features in the CK metric suite motivated the work presented

in [22], which introduces a new metric suite that complements the CK metric suite. The
core idea of the former metric suite is to look inside method statements for inferring the
control flow of a block of code and hence better assess complexity. To do this, method
statements are categorized under the concept of basic control structures. The next section
focuses on describing this concept in detail.

Other similar metrics in line with the suite presented in [22] are Extended Weighted
Class Complexity (EWCC) and Average Complexity of a program due to Inheritance
(ACI). EWCC [4] is an indicator of class complexity due to inheritance that is very close
to [22], but as the authors of the EWCC metric assert, the metric bases upon formulae that
are not well-defined yet [3]. This makes the metric immature from a practical standpoint.
Moreover, ACI [20] has been also proposed recently. To determine class complexity,
ACI considers the complexities of the classes inherited by a class together with the com-
plexities of the methods defined by this latter. Method complexity is computed by using
classical metrics (e.g., CK) and does not consider the kind of method being called (e.g.,
local, third-party library, polymorphic, etc.). Like the core formalisms underpinning the
metric presented in this paper, the ACI metric has been validated by means of Weyuker’s
properties [30], a theoretical validation framework for complexity metrics that defines
desirable mathematical properties to which a software engineering metric should adhere.

Another work close to ours is [9], in which the authors propose a class complexity
metric based on three submetrics: Total Method Call Complexity (TMCC), Total Data
Call Complexity (TDCC) and Control Flow Complexity (CFC). TMCC considers the
complexity due to non-polymorphic (i.e., static methods) and polymorphic (i.e., object)
method calls. At the same time, the depth of inheritance trees is considered. Similarly,
TDCC computes the complexity due to accessing static and instance data members, which
also takes into account member hierarchical relationships. Lastly, CFC is self-descriptive
and is computed using the McCabe’s cyclomatic complexity metric. A major difference
between [9] and our work is that we define a more integral approach to compute CFC,
and besides we propose a way of calculating complexity at the system-level.

In a different direction, as discussed in [5], several authors conceive that the use of a
single metric suite is not enough to assess a certain software quality attribute, and claim
that quality should be derived from aggregating several related metrics and metric suites.
For this purpose, software quality prediction models have been extensively used, which
exploit classic machine learning techniques (e.g., C4.5 trees) and other artificial intel-
ligence algorithms (e.g., genetic algorithms and ant colony optimization). Rather than
proposing new metrics, the efforts in this area aim to improve the accuracy of these mod-
els. Building accurate prediction models is in general difficult due to lack of data in the
software engineering domain. Therefore, prediction models built for a particular software
do not accurately perform when used with metric values from another software [5].

From these models, the work in [29] uses a genetic algorithm to improve a model ac-
curacy in identifying components whose maintainability could be compromised. The ap-
proach relies on the coupling, cohesion, inheritance, complexity and size metrics from the
CK suite that are more likely to improve the performance of predictive models according
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to the author’s experiments. Notice that since we propose an alternative way of measuring
complexity, our work –as well as other works in that direction– complements [29] since
our work represents another metric upon models can be built.

2.3 Basic control structures

Table 1. Basic control structures and weights presented in [24]

Category Basic control structure(s) Weight

Sequence Sequence 1

Branch If-then-[else] 2

Branch Case 3

Iteration For-do, Repeat-until, While-do 3

Embedded component Function call 2

Embedded component Recursion 3

Concurrency Parallel, Interrupt 4

When analyzing source code complexity it is important to consider individual class-
level metrics such as number of methods, number of messages, and number of different
classes. The internal complexities of these classes are equally important [10]. Shao and
Wang [24] proposed a software metric that associates an individual weight to every basic
control structure in a system. As defined by the authors, “Basic control structures are a set
of essential flow control mechanisms that are used for building logical software architec-
tures” [24], and basic control structures can be employed to characterize internal control
flows in a source code. Then, the authors establish a weight for each basic control struc-
ture so that the higher the associated weight the higher its complexity. Basically, the idea
is that a set of program statements arranged in a sequence is more understandable than
those that, for example, are branched in two or more control flows. Table 1 summarizes
the basic control structures identified by the authors and their associated weights [24].
Moreover, as explained in [2], the values for these individual discrete weights were ob-
tained from empirical studies on cognitive informatics. These studies allowed the author
to establish an ordered ranking of the identified basic control structures based on a mea-
sure (i.e., weights) of the human effort necessary to capture the structure of different basic
control structures. All weights are relative to the Sequence basic control structure, which
is assumed to be the less effort-demanding basic control structures.

For the sake of exemplification, we will analyze the weight W for the code shown in
Listing 1, which is equal to 1+2∗ [2] = 5, where 1 is for the sequence (lines 1-2, which
are conceived as a single block) and 2 is for the if branch structure (lines 3-7). There is a
call to a local method inside the if body (line 5), adding 2 to the calculation. Notice that
since there are nested structures, we multiply the weights instead of summing them up.



8 M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvorı́n

Listing 1. Basic control structure based weight: Example
1 short a=b ;
2 short c=d ;
3 i f ( a<c ) {
4 d=a ;
5 th is . f ( ) ;
6 } else {
7 a=c ;
8 }

This procedure is repeated for each individual system module (e.g., functions, procedures,
and methods) and in turn summed, in order to assess the complexity of the entire system.

As shown in Table 1 the basic control structures proposed in [24] covers a wide range
of control structures present in programs developed in various paradigms and languages.
However, some basic control structures that are commonly used in OO source code have
not been included in the previous set and deserve to be analyzed. For example, some
loose points that this paper discusses is whether the cognitive effort of a call to an abstract
method and a call to a concrete method are the equal, and whether a call to inherited
methods should be treated different than calling methods from other class hierarchies, or
as proposed in [22] whether class attributes should be considered when computing class
complexity. Therefore, we argue that the basic control structures from [24] are not enough
for assessing the complexity of Java-based OO software systems.

3 NEW BASIC CONTROL STRUCTURES AND METRIC SUITE FOR
ASSESSING THE COMPLEXITY OF JAVA SYSTEMS

In our view, the cognitive complexity of an entire OO system is calculated by aggregat-
ing the individual complexities of classes [22]. In the same line, method complexities
are calculated by analyzing the complexity of each code statement in terms of basic con-
trol structures, while computing the complexity of a class consists mainly on calculating
method complexities along with the class inheritance relationships.

In accordance with the basic control structures categorization presented in [24], in an
OO method there are control structures belonging to the following categories: Sequence,
Branch, Iteration, Embedded component and Concurrency. Particularly, we propose to
extend the Embedded component category for differentiating specific conditions under
which a method can be called. We established weight factors for methods calls according
to whether the method is local or non-local. When a called method definition is owned
by the same class of the calling object or by one of its parent/child classes, the call is
on a local method. Instead, we refer to non-locally defined methods to those methods
whose definition belong to another class in a different hierarchy than that of the calling
class. Indeed, since sometimes classes are packaged into libraries for reuse purposes, and
the source code of third-party libraries may not be available, we also discriminate called
methods belonging to closed library classes. We will refer to these methods as external.

Lastly, abstract methods can be also called and the cognitive effort associated with
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calling them is somehow determined by the complexities of the available implementations
of those methods. Concretely, an abstract method m from an abstract class S having
C concrete children, means that there are C alternative implementations for sending the
message m to a variable of type S. Then, the effort required to understand, modify, or test
that method call is different from the one required for calling a local method and as such
it should be differentiated.

To sum up, our extension to the Embedded component category of [24] (see row 8 of
Table 1) bases on differentiating and determining the cognitive effort required to under-
stand a call to a local method (i.e., when it is defined by the same class or class hierarchy
than the caller method), a call to a non-local method (i.e., methods defined in a different
hierarchy than that of the calling class), a call to an external method, and a call to an ab-
stract method of a polymorphic object. In summary, our first extension to [24] focuses on
the Embedded components category and covers the next basic control structures: a) call-
ing local methods; b) calling non-local methods; c) calling external methods (i.e., those
present in closed libraries); and d) calling abstract methods.

Second, we propose that the Sequence and Branch categories of basic control struc-
tures shown in [24] should be extended to be applicable to programs in Java, for account-
ing the effects of exception-handling constructs and exception occurrences. The rationale
of this decision is that throwing an exception disrupts the normal control flow of a pro-
gram, and thus increases the complexity of the code. Assuming that no catch block is
declared, a try block, which must be accompanied with a finally block, is conceptually
equivalent to a common sequence control structure. This is because assuming that no
exception occurs, by default neither a try block nor a finally one alter the normal control
flow. Despite this similitude between try/finally control structures and sequences, the for-
mer deserves having a different cognitive weight since understanding try/finally structures
requires at least to be familiar with the semantics of the Java exception handling mecha-
nism. Besides, flow disruption may occur. On the other hand, one or more catch blocks
added to the try block mean that a program flow may be further branched due to potential
exceptions. Therefore, catch*[catch] blocks should be given a different weight.

Table 2. OO and Java basic control structures introduced in this paper

Category Basic control structure Weight

Embedded component

Call to a local (including super) method m 2

Call to a non-local method m 2+Wm

Call to a method m of an external library 3

Call to an abstract method a, for which a0, ..an override a I + f (Wax)

Sequence Try-finally (no catch block) 2

Branch catch *[catch] 3

Table 2 shows the six new basic control structures introduced in this paper, which have
been characterized using the basic control structure taxonomy defined in [24]. The third
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column of the Table presents the associated weighs for each new basic control structure.
As the reader can see, two weights have been defined in terms of symbolic variables.

The weight of calling local methods is 2, which is derived from the weight given to
the Function call basic control structure in [24]. As explained, this encompasses methods
defined in the calling class or in parent classes of the former. On the other hand, the weight
of non-local methods is defined as 2+Wm. This is because in [24] Function calls struc-
tures have a weight of 2 (because of the call itself), and non-local methods complexity
(Wm, Equation 1) is calculated and then summed [22]. Note that the weight of non-local
methods is in fact 2+Wm with Wm = 0. This is since the weight of locally defined meth-
ods is omitted [22], and the cognitive effort of the target method is not accounted directly
in its weight but in the metrics explained below, which take into account hierarchical rela-
tionships. Furthermore, the weight of calling a method of an external closed library is 3,
since it is a Function call, plus a symbolic weight of 1 due to the effort of understanding
the signature of the method being called. Recall that for closed libraries the source code
is not available, and thus Wm cannot be computed as we do for non-local methods.

The weight associated with calling an abstract method is defined in terms of those
methods that override it. The associated weight is the sum of the weights of all overriding
methods (SUM(Wax)), their average (AV G(Wax)), the maximum weight (MAX(Wax)) or
the minimum weight (MIN(Wax)). The software engineer who analyzes the complexity
of a system should select among these alternatives to determine the weight of the basic
control structure. For example, the second alternative (i.e., AV G(Wax)) could be selected
provided the dispersion of complexities among overriding methods is not large, otherwise
the average would not be not significant enough from a probabilistic standpoint.

The weight associated with a try block and optionally a finally block (without consid-
ering potential catch blocks) is defined as 2, and a weight of 3 is given to the list of catch
blocks associated to a try-[finally] block. Even when try/finally has in essence a sequential
structure, it allows the code to abruptly jump to the finally block in case of exceptions, so
we weight similarly to the If-then-[else] basic control structure. On the other hand, a list
of catch blocks can be viewed as a Case basic control structure: depending on the type of
the exception, a different code block is executed.

Cognitive weights are used to measure complexities of methods once their basic con-
trol structures have been identified. Equation 2 formally defines the complexity of a single
method (MC). We consider that any method comprises a Sequential basic control struc-
ture that represents its entire body and at the same time q linear basic control structures
contained in the Sequential basic control structure (methodsBCSs). Then, the complex-
ity of a method is defined as two plus the sum of cognitive weights of a list of arbitrary
basic control structures recursively, since each basic control structure may in turn consist
of layers of nested basic control structures. At each layer, again, the linear basic control
structure weights are summed. In Equation 1, W (BCS j) is the cognitive weight of the
involved basic control structures as established in Tables 2 and 1.
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MC′(BCSs) =
q

∑
j=1


W (BCS j)∗MC′(innerBCSs(BCS j)) BCS j = branch, iteration

try/ f inally,catch∗ [catch]
W (BCS j) otherwise

(1)

MC = log2(1+[1+MC′(methodBCSs)]) (2)

The Weighted Class Complexity (WCC) metric goes one step beyond and computes
the complexity of an entire class. The following equations calculate the Weighted Class
Complexity (WCC) of a class with m methods:

WCC′ = AC+
m

∑
i=1

MC′
i (3)

WCC = log2(2+WCC′) (4)

WCC’ is the sum of all the method complexities of a class, and the Attribute Complex-
ity (AC) metric that reflects the complexity due to attributes. Class complexity due to
data members is the total number of attributes of the class. Attributes are not local to
one method but to every instance of a class, and can be accessed from several methods.
Accordingly, the attribute complexity of a class (AC) is given by AC=a, where a is the
total number of attributes. Finally, for calculating the complexity of the entire system,
we have to consider not only the complexity of all the classes, but also the relationships
among them. That is, we are giving emphasis on the inheritance property because classes
may be either parent or children classes of others. In the case of a child class, it inherits
the features from its parent class. By considering this OO property, we propose to calcu-
late the code complexity of an entire system as follows. If the classes belong to disjoint
hierarchies or are in the same hierarchical level of a class hierarchy, their individual WCC
values are summed. On the other hand, the weights of classes belonging to the same class
hierarchy are multiplied. Formally, if there are d levels of hierarchy depth in the OO code
and level j has c classes, then the Code Complexity (CC) of the system is given by:

CC = log2(1+
d

∏
j=1

[
c

∑
k=1

WCC′
jk

]
) (5)

In general, it is known that class hierarchies are a potential source of complexity in
OO systems and therefore many software metrics based on the structure of class hierar-
chies have been proposed [25]. Intuitively, the deeper a class is in a hierarchy, the more
the potential code reuse. However, this makes the cognitive effort to reason about class
behavior from the code much higher. From the perspective of complexity, similarly to
recent related metrics [20], we basically penalize depth in class trees.

The unit of CC, Code Complexity Unit (CCU), is defined as the cognitive weight of
the simplest system, i.e., a system having a single class with no attributes nor inheritance,
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including a single method having only a sequential structure (sequential structure in basic
control structure terminology). In other words, the MC′ of this method is 1, the WCC′ of
the mentioned class is 1, hence CC = log2(1+ 1) = 1. In the same line, MCU (Method
Complexity Unit) and WCCU (Weighted Class Complexity Unit) are also defined to mea-
sure and compare individual method and class complexities.

Four more metrics can be derived by averaging the values of the above presented
metrics. At the class-level, dividing the sum of complexities of all the methods of a class
by the total number of methods in that class results in the Average Method Complexity
of a class. The Average Method Complexity at a system-level is computed summing all
MC values and dividing the result by the total number of methods. Similarly, the Average
Number of Attributes (i.e., Average AC) per class at a system-level, is computed summing
all AC values and diving the result by the total number of classes. Lastly, Average WCC
represents the average weighted complexity of classes, which is derived from summing
individual WCC values and dividing the sum by the total number of classes.

The next section describes a tool for automatically computing CC for Java programs.

4 AN ECLIPSE PLUG-IN FOR AUTOMATICALLY ASSESSING THE
COMPLEXITY OF JAVA SYSTEMS

We have designed an Eclipse plug-in called ccm4j1 (Code Complexity Metric for Java).
ccm4j is organized around a pipeline-like architecture, resembling the one commonly
found in compilers. The main components of ccm4j are shown in Figure 1. The ccm4j
architecture imposes a strict relationship order by which a filter (or phase) runs only after
the previous one has completely finished its task. Moreover, there is a shared data struc-
ture among the three phases, which will be explained below. As shown in Figure 1 ccm4j
has three phases, namely Parsing, Complexity Calculation, and Consolidation. Below, the
most relevant details of each phase are explained.

Parsing Complexity Calculation Consolidation

Source Model

MC Report

WCC Report 

CC Report

[...]

Source
Code

Fig. 1. Architecture of ccm4j

4.1 Parsing phase

During this phase, ccm4j parses the source code of the Java project being analyzed. The
goal of the parsing phase is to build a representational model from the source code, which

1 ccm4j home page, https://code.google.com/p/ccm4j/
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is suitable for later processing. To do this, ccm4j relies on the Eclipse Java Develop-
ment Tools (JDT) framework, which provides APIs to access and manipulate Java source
code. One of the provided APIs is called the Abstract Syntax Tree (AST), which is con-
ceptually similar to the XML Document Object Model (DOM). DOM defines a standard
way for representing and manipulating XML documents. A DOM is a a tree-structured
representation in memory of an XML document.

For parsing, ccm4j takes advantage of the ASTParser provided by the Eclipse JDT
framework. The ASTParser builds an AST tree in memory capable of resolving variable
bindings for each method statement while providing type information for them.

The ccm4j plug-in identifies declared classes and anonymous ones. With respect to
method bodies, for each method ccm4j supplies the ASTParser with theirs statements, and
creates a data structure indexed by method signatures. Basically, this structure contains a
reference to each method AST, in which not only the implementation of that method can
be found, but also information needed by the Complexity Calculation phase to compute
method complexity. Then, this initial structure is used as input to the next two phases.

4.2 Complexity Calculation phase

At this phase, ccm4j traverses the source model constructed in the previous phase, and
calculates the weights of the basic control structures of each method, i.e., the MC’ of
each available method. This is the most resource demanding phase, since for calculating
method complexities the tool needs to completely analyze the AST of each method. Be-
sides processing the structure of methods, this phase also needs to handle recursion and
to determine external invocations. This is because, as described in Section 3, the weight
of any given method depends on the weights of the external methods called. To avoid
processing the same method multiple times, the tool consults the source model built in
the Parsing phase from a cache. Then, the first time a method is processed, the method
entry in the model structure is associated with its complexity value, a.k.a. weight.

To compute the complexity of a particular method the ccm4j tool relies on the well-
known Visitor OO pattern. The Eclipse framework provides an implementation of the
Visitor Pattern to inspect the AST of a code block statement by statement. This support
provides default implementations for processing all types of source code fragments and
automatically step in nested structures such as code blocks and conditional statements,
allowing us to redefine only those framework hooks for which a special action needs to
be taken. This greatly simplified the implementation of the ccm4j tool.

The ccm4j tool handles two different types of recursive methods calls. The most
simple recursive functions are those that involve only one method, calling itself in loop.
We refer to this type of recursive call as a “local recursive call”. For example, a method
to sum the first n elements of an array, as shown in Listing 2, has a local recursive call.
During the computation of the complexity of the sum method, ccm4j accounts an If-then-
[else] basic control structure (according to Table 1 its weight is 2) and a Recursion basic
control structure (its weight is 3). To solve this case ccm4j identifies whether the callee
method is the same that the caller one or not, i.e., is a local call, before computing the
complexity for the callee method.
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Listing 2. Simple recursive method
1 i n t sum( i n t a r r [ ] , i n t n ) {
2 i f ( n == 0 )
3 return 0;
4 else
5 return a r r [ n−1] + sum( ar r , n − 1 ) ;
6 }

Listing 3. Mutually recursive methods: A canonical example
1 boolean i s even ( i n t n ) {
2 i f ( n == 0)
3 return true ;
4 else
5 return i s odd ( n−1);
6 }
7
8 boolean i s odd ( i n t n ) {
9 i f ( n == 0)

10 return fa lse ;
11 else
12 return i s even ( n−1);
13 }

Recursion can also be found in the form of cyclic calls involving N methods, for ex-
ample if A.a() calls B.b(), B.b() calls C.c(), and C.c() calls A.a(). We refer to this type
of recursive calls as “complex recursive calls”. For calculating the weight of complex re-
cursive calls, ccm4j uses an algorithm that receives a yet-non-computed method as input.
The algorithm relies on a stack for keeping account of methods for which complexity has
been already computed. The main steps of the algorithm are:

1. Push the method being analyzed onto a stack.

2. For each basic control structure present in the body of the method:

(a) If it is a function call, check if the target method is already on the stack.

i If the target method is not in the stack, go to step 1 using it as input.
ii If the target method is already on the stack, meaning that there is a loop, assign

to it the constant weight associated with recursion, and go to step 2.

3. Pop the method from the stack.

The algorithm analyzes each basic control structure of a given method until a method
call is detected. At step 2(a), the algorithm checks whether the complexity of the called
method has been computed or not. The algorithm uses a stack to determine whether it is
not necessary to go forward and process the called method, or it is necessary to process it.
Once all the basic control structures of the given method have been analyzed, the method
is removed from the stack.

The algorithm shown below exemplifies calculating the complexity of the method
is even, which has been deliberately defined in terms of another recursive method is odd
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to introduce complex recursive calls (see Listing 3). Figure 2 shows from top to bottom
the steps the algorithm performs to compute the complexity of the is even method, and
the state of the stack during the execution at each step. Note that we are assuming that
is even and is odd are defined in different classes.

cost(is_even)

1 + 2 * (2 + cost(is_odd))

1 + 2 * (cost(is_even))

is_even

is_even
is_odd

StackMC'=1 + 2 * (2 + 1 + 2 * 2)=15

2 is_even is on the stack  =>  

     return recursion factor (e.g., 2) 

<<empty>>

Fig. 2. Complexity of mutually recursive methods

Graphic

+draw()

Line

+draw()

Text

+draw()

CompositeGraphic

+draw()

draw(){

  for(Graphic child:children)

    child.draw()

}

Fig. 3. Mutual recursion in a hierarchy tree. The Composite Pattern example

This kind of complex recursive calls are often found in OO systems, and even some
OO design patterns encourage them. An example of complex recursive calls is found in
the well-known Composite OO design pattern. The Composite design pattern allows de-
velopers to treat a group of objects as a whole, since these expose the same interface that a
single instance would expose. In Figure 3 a materialization of this design pattern is shown.
The CompositeGraphic.draw() method leads to a situation where one implementation of
an abstract method recursively calls the same method.

In order to exemplify how ccm4j deals with this situation, let us assume that the com-
plexity of both Line.draw() and Text.draw() methods is 1, and the composite implementa-
tion is the one shown in the text box on the right side of Figure 3. Then, by using the
average strategy for weighting abstract methods (see Table 2 row 5) the complexity (MC′)
of Graphic.draw() is (1+ 1+(1+ 3 ∗ 3))/3 = 4. Since Graphic.draw() is already on the
method stack when processing CompositeGraphic.draw(), the associated cost of that call
is the recursion factor, e.g., 3. Once the tool has computed the method complexity for all
available methods, during the next phase the computed complexity values are aggregated
to consolidate the MC, WCC and CC values.
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complexity(Graphic.draw)

average (complexity(Line.draw),  complexity(Text.draw), complexity(CompositeGraphic.draw))

1 1

sequence + loop * complexity(Graphic.draw)

1 3 3

MC' = average(1,1,10) = 4

Fig. 4. Cost of recursion in the Composite Pattern

4.3 Consolidation phase

This last phase uses the method complexities obtained in the Complexity Calculation
phase to calculate the metrics. To do this, these complexity values are augmented with
the class hierarchy relationships and the cost introduced by each disjoint hierarchy to
calculate WCC. Besides, ccm4j aggregates data to obtain the total Code Complexity (CC)
of the Java project under analysis. Finally, during this phase, the ccm4j tool produces a
report as three Comma-Separated Values (CSV) files. Each CSV file stores tabular data
in plain-text format with the MC, WCC, and CC values.

The MC output file has a row for each available method and five columns. The first
column, “id”, provides a unique identifier for each row. The second column, “method”,
contains the method signature. The third column, called “weight”, contains the MC value
for that method according to Equation 2. The column “weight expression” shows the
weights summed or multiplied that produce the MC’ value. The last column, called “ex-
ternal calls” indicates the number of external methods that are called from that method.
For example, Table 3 shows the output for a method from the Apache Lenya project.

Table 3. MC output example

id method MC complexity expression external calls

1 WorkflowUtil#invoke 4.524 1 + (6) + 3 * [ +2 + [3]] 4

The WCC output file consists of rows representing analyzed classes and six columns.
The “id” column provides a unique identifier for each row. The second column is the class
name, whereas the third column represents the parent class of that class. The other three
columns contain class metrics, namely the number of methods, the number of attributes,
and the resulting WCC (Equation 4), respectively.

Finally, the CC output file has one row for each class hierarchy and six columns. As in
the other files, the first column is the identifier. The second column is called “hierarchy”
and contains the name of the class at the top of each separate class hierarchy. The third
column is the CC value (Equation 5). The fourth column contains the number of classes
while the fifth one represents the depth of the hierarchy, respectively. Finally, the sixth
column contains the CC expression. Table 4 presents an example of this output file.
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Table 4. CC output example

Id hierarchy CC number of classes depth complexity expression

15 org.apache.lenya.cms.rc.RCMLEntry 7.139 3 2 10*(+9+5)

5 PROPOSED METRICS AND TOOL: VALIDATION AND PRACTI-
CAL EVALUATION

Next, we describe the validation of the metrics, and we illustrate and evaluate the ccm4j
tool. The former task (Section 5.1) was performed using a recent validation framework
specifically designed for evaluating software complexity metrics [21]. The aim was to
complement the validation of the proposed metrics already done via Weyuker’s proper-
ties [3]. We also evaluated the computational resources consumed by ccm4j on real Java
projects, and illustrated the usage of the metrics for assessing complexity in classes from
these projects (Section 5.2). The aim is to assess whether ccm4j is viable from a practical
perspective and to show how to interpret the underlying metrics and related metrics.

5.1 Metric validation

The framework in [21] was recently proposed to fulfill the need of validating software
complexity metrics practically. Given that most validation frameworks up to now are
based on measurement theory, it has been argued that other aspects should be considered
when validating complexity metrics [21, 15]. Particularly, the framework prescribes a set
of guidelines to assess the usefulness of a software complexity metric. Since our metrics
are backed up with a tool, usefulness in practice is of utmost importance to our goals.
Moreover, in this section we focus on the CC metric, since the framework is designed to
validate system-level complexity metrics.

These guidelines come in the form of nine desirable properties which metrics should
adhere to. To better explain the guidelines in the context the CC metric, we include other
classical complexity metrics, namely statement count, Halstead’s complexity [10] and
McCabe’s complexity [19]. The desirable properties analysis is shown below:

• Property 1: The measure should be simple, which states that computing the met-
ric should not involve complex mathematical functions, i.e., it should be computing
resource-friendly. First, statement count clearly satisfies this property. McCabe’s
complexity does not heavily depend on the size of the system, and it is calculated
from the graph that represents the control flow of the system. Halstead’s uses sim-
ple formulas to compute system length, volume and effort. Finally, the calculation
of CC is simple as well, since counting the variables used in its formulation is not
difficult. In fact, resources consumption when computing CC on real Java projects is
acceptable (see next Subsection).

• Property 2: The measure should be language independent. Statement count and Hal-
stead’s complexity depend on the verbosity and the operators of the programming
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language, respectively, and hence these metrics do not satisfy the property. Moreover,
McCabe’s complexity and CC are based on control flow structures and basic control
structures present in many languages. Even when CC is conceptually designed for
OO languages, assuming no inheritance (i.e., depth = 1) is analogous to computing
the metric on a number of procedural modules as McCabe’s complexity does.

• Property 3: The metric should be developed on a proper scale. This means that
there is always a need for a scale upon which comparison of two measures of the
same metric is done. For statement count and Halstead’s metric, there is not precise
information on this issue [21]. For McCabe’s complexity, an empirical discretization
of the metric has been derived, which classifies systems into four categories (simple,
less complex, complex, and highly complex). On the other hand, CC is based on a
logarithmic scale, which allows different CC values to be compared.

• Property 4: Metrics in metrics/measures should be consistent. Often one metric is not
sufficient to consider the goals of the software project. Besides, when several met-
rics are proposed, lower or higher values should consistently have the same meaning
across all metrics in the suite. Statement count, McCabe’s complexity and CC do
not propose a suite, and hence they should be used in conjunction with other met-
rics. Halstead’s effort, on the other hand, takes a more high-level view of software
complexity, and consistently considers other well-known aspects of systems, namely
length, size, volume and effort [6].

• Property 5: The metric should have a foundation that can be explained, which means
that the reliability of a metric is poor if its values are not relative to some fundamental
unit. For the case of statement count, this unit is program size (1 line is the smallest
possible size). Halstead’s complexity estimates number of bugs and effort to fix/-
develop the software. McCabe’s complexity measures control flow complexity w.r.t.
the simplest control flow possible. Finally, CC takes into account cognitive effort in
CCU units (i.e., 1 CCU is the least possible complex system cognitively speaking).

• Property 6: The metric should output positive numbers. Statement count, Halstead’s
complexity and McCabe’s complexity give positive numbers [21]. The CC metric is
computed by feeding a logarithmic function with a positive complexity value, which
is obtained from multiplying and adding class complexity values. These values are
based on the number of attributes and method complexities. Method complexities
are computed by multiplying and adding basic control structure complexity values,
which are positive numbers. Therefore, CC always gives positive numbers.

• Property 7: The metric should differentiate between the complexities of the basic
program constructs. Statement count and Halstead’s complexity cannot clearly make
this distinction. McCabe’s metric computes complexity basing on the control flow
of the system and not on the structure of the available constructs. CC computes
complexity by considering the logical structure of program building blocks.

• Property 8: The metric should differentiate between a sequence of the same con-
struct and a nesting of them or an equivalent construct. Note that this property is not
satisfied either by statement count, Halstead’s complexity or McCabe’s complexity,
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because they cannot distinguish among different constructs. Under CC, each basic
control structure has its own weight. Having the same or equivalent basic control
structures in sequence results in a sum of cognitive weights, but having so in nested
structures implies multiplying cognitive weights.

• Property 9: The metric should consider the modular complexity by a) the complex-
ity should be affected by the addition, deletion and replacement of a module, and
b) the complexity should reflect the interaction among the modules. With respect
to a), it is clear that statement count and Halstead’s complexity satisfy the property:
the effort changes upon adding, deleting or replacing a module. However, this is not
always the case with McCabe’s complexity: adding a module with the same cyclo-
matic complexity as a module already present in the system does not affect the overall
complexity. With CC, however, adding/deleting or replacing a class directly affects
the associated complexity factor in the CC formula, and thus the property is satisfied.
On the other hand, b) is satisfied by all metrics, since interactions between modules
account for more statements, effort, cyclomatic entry points, and method weights in
the respective metrics.

Table 5 summarizes the properties satisfied by the analyzed metrics. CC is the one that
satisfies the most. Then, according to the guidelines in [21], CC qualifies as a useful
complexity metric in practice.

Table 5. Assessment of complexity metrics against the framework in [21]

Property Statement count Halstead’s complexity McCabe’s complexity CC

1 yes yes yes yes

2 no no yes yes

3 no no yes yes

4 no yes no no

5 yes yes yes yes

6 yes yes yes yes

7 no no no yes

8 no no no yes

9 yes yes no yes

# of satisfied properties 4/9 5/9 5/9 8/9

5.2 Tool evaluation and illustration

We have evaluated ccm4j via ten open source Java projects from the Apache Software
Foundation. Then, we computed the MC, WCC, and CC metrics, and assessed the de-
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manded computational resources. The main goal of the performed experiment was to
verify that ccm4j was able to process all the basic control structures and characteristics
found on large, real life software projects, such as anonymous and inner classes, complex
recursion patterns, multiple top level class declaration per source file, closed libraries us-
age, and exception handling mechanisms. In addition, we wanted to verify whether the
ccm4j tool was feasible to be employed in an ordinary workstation in terms of resource
consumption. In other words, we want to assess the amount of memory and CPU time
needed to run ccm4j on real-life projects, and if these values are between manageable
bounds. Finally, once the metrics were computed for each employed project, we used the
results for identifying complex methods and classes, and comparing it with CK metrics.

The next subsection describes the experiments performed. Subsection 5.2.2 presents
the performance results. Section 5.2.3 discusses the achieved complexity results.

5.2.1 Experimental data and settings

Table 6. Project description

Project CC Lines

of code

# of

class

hierar-

chies

Avg. #

of

classes

per hi-

erarchy

Avg.

hierar-

chy

depth

# of

types

# of

meth-

ods

Commons-

collections

33.605 23,713 200 1.915 1.260 417 3,461

Commons-

math

75.861 81,803 507 1.553 1.666 924 7,084

CXF 33.087 47,222 444 1.341 1.115 709 5,153

Httpclient 33.840 17,814 178 1.315 1.146 314 1,751

Jgroups 56.306 73,156 500 1.456 1.098 800 7,836

Lenya 46.431 8,548 106 1.217 1.123 214 1,216

Log4j 50.968 20,631 202 1.431 1.134 308 2,090

Struts 55.115 23,198 165 2.370 1.157 424 2,854

Wicket 88.977 74,531 528 1.890 1.199 1,169 7,431

Xerces-J 72.305 71,027 182 2.231 1.214 570 5,788

For the experiment ten projects from the Apache Software Foundation were em-
ployed. All the projects were downloaded from their official Web sites. Once a project
was downloaded, all its dependencies were satisfied until the project was fully compiled.
In this context, a dependency is a jar file required by the project to compile.
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Table 6 presents a structural description of the projects, including their CC values.
The employed projects have more than 100 classes. Regarding the hierarchical arrange-
ment of their classes, all projects have an average Depth of Inheritance Tree (DIP) above 1.
The number of methods of each project is quite varied, ranging from 1,216 to 7,836. At
the same time, as described in the previous paragraph, the employed projects are hetero-
geneous not only from the functional and structural perspectives, but also from a tech-
nological one. For example, Lenya runs as a Web application on top of a Java Servlets
engine, whereas Log4j and Xerces-J are libraries used by other projects that need logging
facilities or processing XML files, respectively. In the same line, CXF and JGroups are
used in distributed applications.

We computed the top 5 most complex classes and top 5 most complex methods in
terms of WCC and MC of the projects, respectively. There were no significant differences
between WCC values within the same project, with the exception of Wicket, JGroups and
particularly Lenya. In this latter case, notably the complexity of the PageEnvelopeModule
class at least doubles the complexity of any class in the project. Its most complex method,
getAttribute(String, Configuration, Map), accounts for a big percentage of the total com-
plexity of the class. Then, we looked inside this method code and observed that the cause
for it being so complex is that it is basically a very deep chain of nested if-else blocks. On
the other hand, in Httpclient, Jgroups and Xerces-J more than one method from the same
class are in the top 5 method list.

The laptop used for the tests included a Core 2 Duo SU7300 processor running at
1.3 GHz with 4 GB of RAM. Note that the employed hardware represents the low end
of the hardware usually available on the marketplace for software development. Lastly,
the Java Virtual Machine (JVM) started to launch Eclipse was set with the parameters
-XX:MaxPermSize=1024m -Xms256m -Xmx1024m.

5.2.2 Resource consumption analysis

We measured the runtime and memory consumption of the ccm4j tool when analyzing
three of the projects from Table 6. Basically, we took a small (Lenya), a medium-sized
(Log4j) and a large (Xerces-J) project in terms of lines of code to ensure representative-
ness. First, we assessed the run time and memory demanded by ccm4j when it was fresh
started. In this context, the fresh start is used to indicate that the tool is executed just
after starting an Eclipse session. The performance results obtained by averaging 10 fresh
start executions of the tool on each selected project was 11.83 seconds and [110-130]
MB RAM (Lenya), 17.73 seconds and [110-130] MB RAM (Log4j), and 38.32 seconds
and [400-450] MB RAM (Xerces-J). As the reader can see, the run time and memory
demanded seems to be influenced by the input project structural characteristics. The stan-
dard deviations for the 10 averaged executions of each project was negligible. Xerces-J,
the biggest project, was the one that demanded significant resources.

Note that the normal workflow of a developer who is employing the tool includes:
a) calculating the metrics, b) identifying complex methods or classes, and c) modifying
them to reduce their complexity. We ran the ccm4j tool with Xerces-J and, in turn, ana-
lyzed the MC metric results to identify the most complex method. The identified method
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was scanContent(org.apache.xerces.utils.QName) from the UCSReader class (see the
abovementioned Web data). Then, we commented the entire body of the method, and
we reproduced the experiment. We observed that the runtime for this second execution
moves downward from 42 seconds to 13.316 seconds. To study the reasons behind this
fall, we performed a second experiment. One possibility was that the fall occurred be-
cause the identified method demanded a lot of resources for computing the MC metric.

Fig. 5. Effects of JIT and disc cache on tool execution time

Another possibility was that the ccm4j tool experienced a “warm” effect produced by
both the disk cache and the Just In Time (JIT) compiler of the JVM. To test this possibility
we executed 10 times the ccm4j tool for each project, but during the same Eclipse session.
The results are shown in Figure 5. As the reader can see, the demanded run time has a
peak at the fresh start execution of all projects, but then it falls and stabilizes around a
lower value. Specifically, by averaging the execution times from the third to the last run,
Lenya run time was 2.86 seconds, Log4j 3.98 seconds, and Xerces-J 11.804 seconds. It
is worth noting that the projects were not modified at all between each run.

5.2.3 Complexity results analysis

In order to compare our complexity metrics with the well-known CK metrics, we designed
an experiment consisting on measuring the effectiveness of spotting the most complex
classes in each project with our plug-in and at the same time using CK metrics. For
gathering CK metrics, we used ckjm2.

As suggested earlier, the typical use of our plug-in includes spotting complex methods
or classes first. Finding complex classes also involves identifying their most complex
methods afterwards. Thus, in this experiment we took the opposite direction: we first
spotted the top 5 most complex methods of each project and then we took the ordered
list of classes (i.e., L) in which they were declared. To ensure better system coverage,

2 http://www.spinellis.gr/sw/ckjm
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for Httpclient, Jgroups and Xerces-J more methods were considered so the resulting 5-
element lists contained no duplicate class names. For example, LCXF =[ClientImpl$2,-
ClientImpl$2$1,ClientImpl,OneWayProcessorInterceptor,AttachmentDeserializer].

Then, for each project p, we obtained five lists containing all the classes sorted by
WMC, DIT, RFC, CBO and WCC in decreasing order, i.e., LWMCp, LDIT p, LRFCp,
LCBOp and LWCCp. Then, for each class name in Lp the index (or position) in the lists
was separately computed. These results, labelled Index∗, had the form [start position--
end position], meaning that all classes in this range have the same metric value. For exam-
ple, the ClientImpl$2 class of the CXF project, when sorting classes by decreasing WMC,
is in the [453-558] position according to its IndexWMC value. In other words, 106 classes
in the project have WMC=3. As a corollary, start position=end position means that only
one class has a particular metric value. This was the case, for example, of the ClientImpl
class and its IndexWMC. Finally, LWCCp has discrete values, since no duplicate values
for WCC were found when considering several decimal places. Below we provide a per-
metric analysis of these results. For space reasons, the data backing up these results are
provided as supplementary Web material3.

Broadly, using WMC to spot the potentially complex classes was in general inef-
fective. Basically, WMC assumes that the weight of each method is one, while in MC,
and indirectly in WCC, the internal structure of methods is considered a central factor.
For example, in CXF, the highest ranked class from Lp according to WMC is ClientImpl,
whereas the rest appear much latter in LWMCp. Moreover, although the WMC metrics
may calculate the same value for two similar codes, WCC obtains different results since
it considers method structures in more detail.

DIT represents the maximum length in the class hierarchy tree from the node associ-
ated to a class to the root of the tree. Hence, DIT values vary from class to class depending
on the level of classes in the hierarchy. Most DIT values ranged from 0 to 2, and therefore
they provide very limited information about the complexity of classes. Then, it is difficult
to assess class complexity by just considering DIT.

Moreover, the RFC metric is defined as the total number of methods that can be
potentially executed in response to a message sent to a class. This includes all the methods
available in the class hierarchy. RFC is important since as it increases, the effort required
for testing increases as well [23]. RFC tended to spot more classes because it is a more
ellaborated metric compared to WMC and DIT. Still, RFC only calculates the number
of methods in response to a message but our metrics also consider the complexity of the
called methods. We believe that considering not only the number of methods, but also the
whole structure of methods takes into account valuable information about the complexity
of the code.

Furthermore, CBO quantifies the interactions between objects by taking into account
the number of other classes to which a class is coupled. Broadly, CBO has a significant
impact on complexity in terms of modularity, maintenance, and testing of a system. In the
analyzed projects, the effectiveness of CBO for spotting classes was slightly better than
that of RFC. Note that one class might have CBO=1 meaning that it interacts with only

3 https://dl.dropboxusercontent.com/u/27875764/Data-CAI-2014.pdf
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one class, but the former might include a high number of messages to that class, which
makes the code intuitively more complex. On the other hand, our metrics consider the
number of message calls to other classes plus the weight of the called methods.

All in all, the complexity factors evaluated by our metrics can be to some extent
also evaluated by WMC, DIT, RFC and CBO, but it is clear that none of these metrics
is designed to consider of all these factors simultaneously. This shows that our metrics
do not directly compete with the analyzed CK metrics, but we aim at offering another
approach to quantify complexity in OO code by aggregating several factors that are known
to affect overall complexity. Another interesting outcome of the experiment is that there
was a high correspondence between MC and WCC values in the analyzed projects, which
was ideal in some cases (i.e., Httpclient, JGroups and Wicket), whereas for other projects
all classes appeared within the top 10 most complex classes. This means that ranking
system methods by decreasing MC quickly leads to the most complex classes, and vice
versa, which accelerates the task of system-wide identification of the most complex code
pieces to refactor or document.

6 FUTURE WORK

We are planning to extend our set of basic control structure in order to account for Java
concurrency constructs (e.g., synchronized statements) and concurrency facilities such as
the Thread, Executor and Callable classes from the Java concurrency framework. As for
the WCC metric itself, we will study how to better deal with class attributes in terms of
complexity. One starting point is to take into account data-type abstractness in the current
metric to reflect polymorphic variables. Intuitively, the cognitive effort necessary to un-
derstand primitive data-types, and more concrete versus abstract non-primitive data-types
should be weighted differently. In principle, this will require considering and weighting
several factors, namely composition and inheritance relationships between data-types,
cardinalities, Java generics, and so on. Particularly, it is known that the problem of de-
termining whether abstract modeling (like OO data-types) leads to more cognitive effort
than concrete modeling concepts or vice versa, at least in the engineering domain, de-
pends on the learning style of users [8]. Lastly, another element from the Java language to
consider are annotations. Upon compiling a project, annotations are processed by certain
compiler plug-ins called annotation processors, which can create additional Java source
files/resources or even modify the annotated Java code itself. Therefore, this mechanism
might alter the program code, which impacts on the WCC metric.

We will also research on weighting those classes for which the developer has no
source code. A call to a library method whose implementation is unknown is associated
with a weight that, while configurable, is the same for all external libraries calls regardless
of the signature of the called method. We believe that there is room for refinement on this
weighting schema, which is worth to be investigated. As discussed in [12], an interface by
itself requires developers’ effort to be used, so that simpler libraries interfaces are prefer-
able over complex ones to reduce the overall system complexity. Then, we can combine
the weight employed for calling closed external libraries with interface complexity met-
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rics like those presented in [27]. Though these interface complexity metrics are specially
designed for interfaces described in the Web Services Description Language (WSDL),
their underpinnings may be applied to interfaces written in Java as well.

Moreover, we are extending the ccm4j tool by following the approach to visualize
multiple metrics presented in [16], to provide a graphical layout of classes complexities
as a complement of the current spreadsheet based output. This visual approach is called
Polymetric views [16]. The polymetric views approach represents a lightweight software
visualization technique enriched with software metrics information, whose goal is to help
developers to understand the structure and detect problems of a software system related
to quality attributes. We are adapting the polymetric views approach to our complexity
metrics to increase the overall comprehensibility of a system for both maintenance and
new developments activities, while easing the identification of more complex methods
and classes by rapidly spotting the most complex methods/classes. An appropriate com-
bination of metrics and relationships visually shape methods and classes so that is easier
to identify which ones require more effort to understand, test, and maintain.

id, WCC=1

id, WCC

Keys:

Non-filled boxes represent external classes.

Grayscale gradient represents the WCC metric.

A class width represents its number of methods, 

while height is derived from its number of attributes.

139, 296 140, 19

141, 2147987574

142, 128

143, 106

145, 143

144, 144 146, 45196 148, 10

229, 1

Fig. 6. Using polymetric views for depicting the WCC metric of a class hierarchy

We have developed a proof of concept to realize our idea and demonstrate its feasi-
bility. Figure 6 shows the result of displaying a class hierarchy from the Lenya project.
Gray-scale boxes represent project classes. The color of these boxes depends on the nor-
malized WCC metric results among all the classes of the project. Light gray is used for
denoting classes with low WCC metric, whereas the darker a box the higher the WCC of
the class it represents. The area of a box is determined by the number of attributes and
methods of a class. As the reader can see, this type of diagram allows the developer to
quickly figure out that classes 141 and 146 are the more complex of the hierarchy, while
the complexity for class 141 is concentrated in fewer methods because of the dimensions
of its respective box. In fact, the class 141 is PageEnvelopeModule, which as mentioned
earlier, has the getAttribute(String, Configuration, Map) method whose complexity is much
higher than any of the others methods in the same project. This means that if a developer
wants to reduce the overall hierarchical complexity she/he may choose to modify the
smaller class in order to introduce as fewer changes as possible.

Finally, we plan to study MC, WCC, and CC metrics for predicting software quality



26 M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvorı́n

attributes. Different software engineering metrics can be employed for predicting situa-
tions such as whether bugs will be reopened or not, or whether a class will have a propen-
sity for bugs or not (e.g., [26]). In principle, we will analyze the statistical correlation
among the metrics and different aspect of classes.

7 CONCLUSIONS

There is an incessant necessity for measuring software quality attributes in OO systems
so as to ensure software maintainability and properly focus efforts in projects. This pa-
per presented a set of software metrics that measure software cognitive complexity by
basing on a set of basic control structures for characterizing Java-based OO source code.
Additionally, this paper described an automatic tool for gathering these metrics, which
is implemented as a plug-in for Eclipse. As a complement to a previous theoretical val-
idation of the underpinnings of the metrics, we show that the system-level metric of the
proposed set (i.e., the CC metric) satisfies eight out of nine of the practical properties for
software complexity metrics identified in [21]. This shows the practical validity of the
metric and, together with a theoretical evaluation performed via Weyuker’s properties,
suggests that the CC metric can be considered in real development scenarios.

The identified set of basic control structures to materialize the MC and indirectly
WCC and CC covers a wide range of programming constructs for Java, one of the most
popular OO programming languages. Complementary experimental evaluation reported
in this paper provides further evidence on the feasibility of using the proposed approach
to assess real-world Java projects. These experiments show that our tool can be executed
using a low-end personal computer in the order of seconds. Also, based on real projects,
we have shown that our metrics can be useful in practice to assess complexity in a more
ellaborated way since our metrics aggregate factors that are known to individually affect
complexity. In fact, the experiments have also shown that such factors are not simultane-
ously captured by popular CK metrics such as WMC, DIT, RFC and CBO.

8 ACKNOWLEDGEMENTS

This paper has been partially supported by grant PICT-2012-0045 of ANPCyT. We also
thank the reviewers for their helpful comments to improve the paper.

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990.
[2] WANG, Y.: On Cognitive Informatics. Brain and Mind, Vol. 4, 2003, No. 2, pp. 151–167.
[3] ALOYSIUS, A., AROCKIAM, L.: A Survey on Metric of Software Cognitive Complexity

for OO Design. World Academy of Science, Engineering and Technology, Vol. 58, 2011,
pp. 765–769.



Assessing Cognitive Complexity in Java Systems 27

[4] AROCKIAM, L., GEETHA, K., ALOYSIUS, A.: On Validating Class Level Cognitive Com-
plexity Metrics. CiiT International Journal of Software Engineering and Technology, 2010,
pp. 152–157.

[5] AZAR, D., VYBIHAL, J.: An Ant Colony Optimization Algorithm to Improve Software
Quality Prediction Models: Case of Class Stability. Information and Software Technology,
Vol. 53, 2011, No. 4, pp. 388–393.

[6] BRIAND, L., MORASCA, S., BASILI, V.: Property-based Software Engineering Measure-
ment. IEEE Transactions on Software Engineering, Vol. 22, 1996, No. 1, pp. 68–86.

[7] CHIDAMBER, S., KEMERER, C.: A Metrics Suite for Object Oriented Design. IEEE Trans-
actions on Software Engineering, Vol. 20, 1994, No. 6, pp. 476–493.

[8] FELDER, R., SILVERMAN, L.: Learning and Teaching Styles in Engineering education.
Engineering Education, Vol. 78, 1988, No. 7, pp. 674–681.

[9] GILL, N., SIKKA, S.: New Complexity Model for Classes in Object Oriented System.
SIGSOFT Software Engineering Notes, Vol. 35, 2010, No. 5, pp. 1–7.

[10] HALSTEAD, M.: Elements of Software Science. Elsevier Science Inc. (Operating and Pro-
gramming Systems Series), New York, NY, USA, 1977.

[11] HANSEN, W.: Measurement of Program Complexity by the Pair: (Cyclomatic Number,
Operator Count). ACM SIGPLAN Notices, Vol. 13, 1978, No. 3, pp. 29–33.

[12] HENNING, M.: API Design Matters. Communications of the ACM, Vol. 52, 2009, No. 5,
pp. 46–56.

[13] KAFURA, D., REDDY, G.: The Use of Software Complexity Metrics in Software Mainte-
nance. IEEE Transactions on Software Engineering, Vol. 13, 1987, No. 3, pp. 335–343.

[14] KEARNEY, J., SEDLMEYER, R., THOMPSON, W., GRAY, M., ADLER, M.: Software Com-
plexity Measurement. Communications of the ACM, Vol. 29, 1986, No. 11, pp. 1044–1050.

[15] KITCHENHAM, B., PFLEEGER, S., FENTON, N.: Towards a Framework for Software Mea-
surement Validation. IEEE Transactions on Software Engineering, Vol. 21, 1995, No. 12,
pp. 929–943.

[16] LANZA, M., DUCASSE, S.: Polymetric Views-A Lightweight Visual Approach to Reverse
Engineering. IEEE Transactions on Software Engineering, Vol. 29, 2003, No. 9, pp. 782–
795.

[17] LANZA, M., MARINESCU, R.: Object-Oriented Metrics in Practice: Using Software Met-
rics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer
Berlin Heidelberg, 2006.
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