
This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services

Marco Crasso1,2,3, Cristian Mateos1,2,3, José Luis Ordiales Coscia2, Alejandro
Zunino1,2,3, and Sanjay Misra4

1 ISISTAN Research Institute.
2 UNICEN University.

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
4 Department of Computer Engineering, Atilim University, Ankara, Turkey

Abstract. Undoubtedly, the Service-Oriented Computing (SOC) is not an incip-
ient computing paradigm anymore, while Web Services technologies is now a
very mature stack of technologies. Both have been steadily gaining maturity as
their adoption in the software industry grew. Accordingly, several metric suites
for assessing different quality attributes of Web Services have been recently pro-
posed. In particular, researchers have focused on measuring services interfaces
descriptions, which like any other software artifact, have a measurable size, com-
plexity and quality. This paper presents a study that assesses human perception
of some recent services interfaces complexity metrics (Basci and Misra’s metrics
suite). Empirical evidence suggests that a service interface that it is not complex
for a software application, in terms of time and space required to analyze it, will
not be necessarily well designed, in terms of best practices for designing Web
Services. A Likert-based questionnaire was used to gather individuals opinions
about this topic.

Keywords: SERVICE-ORIENTED COMPUTING; WEB SERVICES; WEB SERVICE UNDERSTANDABILITY;
WEB SERVICE COMPLEXITY; HUMAN PERCEPTION.

1 Introduction

Service-Oriented Computing (SOC) is a recent paradigm that allows developers to build
new software by composing loosely coupled pieces of existing software, or services [1].
Services are usually provided by providers, who only expose services interfaces to the
outer world, hiding technological details as much as possible. By means of these in-
terfaces, potential consumers can determine what a service (functionally) offers and
remotely invoke it from their applications. Consequently, SOC promotes not only code
reuse but also process reuse, in the sense that the life cycle of invoked third parties
services does not depend on consumers.

The high availability of broadband and ubiquitous connections nowadays allows
users to reach the Internet from everywhere and at every time, enabling in turn the invo-
cation of network-accessible services from within new software. In fact, the number of
real published services has increased in the last few years. This has generated a global
scale marketplace of services where providers offer their services interfaces, and con-
sumers may invoke them regardless geographical aspects through the Internet [2] to

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

ensure ubiquity. Therefore, services are implemented using standard Web-enabled lan-
guages and protocols, and thus are called Web Services. Web Services is on the other
hand the most common technological materialization of SOC, and find their applica-
tion in diverse contexts such as migrating legacy systems to modern platforms [3] or
exposing remotely-accessible information to smartphones [4].

Regardless the context of usage, much of the success of an individual Web Service
depends on the quality of its interface, because in practice this is the only information
source consumers have available when reasoning about the functionality offered by the
service [5]. Moreover, even when many approaches that aim at simplifying the task of
finding appropriate services exists [6], is the user who decides which service to select
from a list of potential candidates. This decision unavoidably requires to manually in-
spect the description of the candidate services interfaces. Web Services interfaces are
specified by using the WSDL, an XML-based format for describing a service as a set
of operations, which can be invoked via message exchange.

Like any other software artifact, a WSDL document has many measurable attributes [7].
For example, [8] proposes a catalog of common bad practices found in WSDL docu-
ments, whereas in [7] and [9] two suites of metrics to assess the complexity of Web
Services interfaces are proposed. There are almost two definitions of what it means for
a WSDL document to be complex. One definition considers the execution time –time
complexity– and space usage –spatial complexity– required by a software application
to inspect and interpret a WSDL document. For instance, when automatically building
a service proxy from a WSDL document, the complexity of a WSDL documents is di-
rectly related to the time and space needed to build the proxy. Furthermore, Kearney
and his colleagues [10] alternatively state that complexity is defined “by the difficulty of
performing tasks such as coding, debugging, testing, or modifying the software”. Un-
der this definition, complexity relates to how complex is for humans to inspect WSDL
documents.

Previous research works have emphasized on measuring some non-functional con-
cerns associated with interfaces in WSDL [8,7,9]. These concerns, specially complex-
ity, have been found to be related to interface understandability, i.e. under Kearney’s
complexity definition, and consequently some WSDL-level metrics have been pro-
posed. Based on these catalogs, service developers can modify and improve their WSDL
documents until desired metrics values and therefore certain understandability levels are
met. Therefore, it is really important for services providers to consider these WSDL-
level metrics in order to control WSDL documents attributes.

This paper presents an evaluation of developers’ perception of the core complex-
ity metric described in [9], namely the Data Weight (DW) metric. The motivation of
this study is that it is clear that DW reflects the time and space complexity of a data-
type definition, i.e. DW is aligned with the first definition of complexity, whereas other
subjective aspects of a WSDL document that impact on cognitive complexity, may not
be so clearly reflected by DW. For instance, by definition of DW a definition having
restrictions, attributes and extensions, which are typical constructors found in WSDL
documents that allow developers to build well structured data-types, will be consider
more complex than a primitive data-type, e.g. a string. In this paper we provide em-
pirical evidence showing that the participants of our experiment perceive that WSDL

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

documents having well structured data-types have higher DW values, which means that
there is a trade-off between the “weightlessness” of data-type definitions and adopting
well-design practices for defining WSDL documents data-types, as the one described
in [11].

The rest of the paper is organized as follows. Section 2 reviews related work fo-
cused on quality metrics for services interfaces and services interfaces improvement.
The detailed experimental results are presented in Section 3. Section 4 concludes the
paper and presents future work directions.

2 Background and related work

Web Services interfaces are described using WSDL, a language that allows providers to
describe two main aspects of a service, namely what it does (i.e., its functionality) and
how to invoke it (i.e., its binding-related information). Consumers use the former part to
match external services against their needs, and the latter part to actually interact with
the selected service. With WSDL, service functionality is described as a port-type W =

{O0(I0,R0), ..,ON(IN ,RN)}, which lists one or more operations Oi that exchange input
and return messages Ii and Ri, respectively. Port-types, operations and messages are
labeled with unique names, and optionally they might contain some comments.

Messages consist of parts that transport data between providers and consumers of
services, and vice-versa. Exchanged data is represented by using data-type definitions
expressed in XML Schema Definition (XSD), a language to define the structure of an
XML construct. XSD offers constructors for defining simple types, restrictions, and
mechanisms to define complex constructs. XSD code might be included in a WSDL
document using the types element, but alternatively it might be put into a separate file
and imported from the WSDL document or external WSDL documents so as to achieve
type reuse. Therefore, it is commonly said that Web Services data-types are specified in
XSD.

There have been different research efforts to measure quality in WSDL-described
services interfaces, but also to improve it, though in a comparative smaller quantity. The
next subsections summarize related works.

2.1 Quality metrics for services interfaces descriptions

Previous research has emphasized on the importance of services interfaces and more
specifically their non-functional concerns. The work of [8] identifies a suite of com-
mon bad practices or anti-patterns found in services interfaces, which impact on the
understandability and discoverability of described services. Here, understandability is
the ability of a service interface description of being self-explanatory, i.e., no extra soft-
ware artifact apart from a WSDL is needed to understand the functional purpose of a
service.

Discoverability refers to the ability of a service of being easily located when con-
sumers inquiry the registry where the service is stored. The suite consists of eight bad
practices that frequently occur in a corpus of public WSDL documents. To assess the
understandability and discoverability of a WSDL document, one could account bad

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

practices occurrences because the fewer the occurrences are, the better the resulting
WSDL document is. The authors then offer a tool called Anti-patterns Detector [12],
which automatically computes the proposed metrics based on an input WSDL docu-
ment.

[7] describes a metrics suite that consists of different kinds of metrics, ranging from
common size measurements like lines of code and number of statements, to metrics for
measuring the complexity and quality of services interfaces. All the involved metrics
can be computed from a service interface in WSDL, since the metric suite is purely
based on WSDL schema elements occurrences. The most relevant complexity metrics
included in the suite are Interface Data Complexity, Interface Relation Complexity,
Interface Format Complexity, Interface Structure Complexity, Data Flow Complexity
(Elshof’s Metric), and Language Complexity (Halstead’s Metric). Moreover, the pro-
posed quality metrics are Modularity, Adaptability, Reusability, Testability, Portability,
and Conformity. Metrics results are expressed as a real coefficient in [0,1]. For complex-
ity metrics, a value in [0-0.4) indicates low complexity, in [0.4-0.6) indicates medium
complexity, in [0.6-0.8) indicates high complexity and in [0.8-1] indicates that the ser-
vice is not well designed at all. Instead, for quality metrics [0-0.2) indicates no quality
at all, [0.2-0.4) indicates low quality, [0.4-0.6) indicates medium quality, [0.6-0.8) indi-
cates high quality, and [0.8-1.0] indicates very high quality.

Regarding services interfaces complexity, Baski and Misra [9] present a metric
suite (BM metrics suite) whose cornerstone is that the effort required to understand
data sent to and from the interfaces of a service can be characterized by the struc-
tures of the messages that are used for exchanging and conveying the data. Basing on
this statement, Baski and Misra define five metrics: Data Weight (DW), Distinct Mes-
sage Count (DMC), Distinct Message Ratio (DMR), Message Entropy (ME) and Mes-
sage Repetition Scale (MRS), which can also be computed from a service interface in
WSDL, since this metric suite is purely based on WSDL and XML schema elements
occurrences. Below, we further explain these metrics since this paper is based on them.

Data Weight metric The definition of the Data Weight (DW) metric computes the
complexity of the data-types conveyed in services messages. For the sake of brevity, we
will refer to the complexity of a message C(m) as an indicator of the effort required to
understand, extend, adapt, and test a message m by basing on its structure. C(m) counts
how many elements, complex types, restrictions and simple types are exchanged by
messages parts, as it is further explained in [9]. Formally:

DW(wsdl) =

nm∑
i=1

C(mi) (1)

, where nm is the number of messages that the WSDL document exchanges. The DW
metric is a positive integer. The bigger the DW of a WSDL document, the more com-
plex its operations messages are. For the purposes of this paper, we have assumed nm

to consider only those messages that are linked to an offered operation of the WSDL
document, thus the DW metric does not take into account dangling messages.

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

Distinct Message Count metric Distinct Message Count (DMC) metric can be de-
fined as the number of distinct-structured messages represented by [C(m), nargs] pairs,
i.e., the complexity value C(m) and total number of arguments nargs that the message
contains [9].

To better illustrate the DMC metric, in Figure 1 two WSDL documents defining an
operation for returning the weather report in a city are shown. The WSDL document on
the left defines two operations (GetWeatherReportIn y GetWeatherReportOut) point-
ing to wrapper data-types encapsulating one argument (city and report, respectively). It
is easy to see that both messages have the same complexity, and thus computing DMC
would output [C(GetWeatherReportIn), 1] and [C(GetWeatherReportOut), 1] as the
pairs. As a result, DMC is zero since there are not distinct pairs. On the other hand, by
looking at the WSDL document on the right, the GetWeatherReportRequest data-type
has now two arguments. The associated pairs are thus [C(GetWeatherReportIn), 2] and
[C(GetWeatherReportOut), 1], resulting in DMC = 2.

. . .
< w s d l : t y p e s >

< x s d : e l e m e n t name=" G e t W e a t h e r R e p o r t R e q u e s t ">

<xsd :complexType>

<x s d : s e q u e n c e>

< x s d : e l e m e n t maxOcurrs=" 1 " minOcurrs=" 1 "
name=" c i t y " t y p e=" x s d : s t r i n g " / >

<x s d : s e q u e n c e>

<xsd :complexType>

< / x s d : e l e m e n t>
< x s d : e l e m e n t name=" Ge tWea the rRepor tResponse ">

<xsd :complexType>

<x s d : s e q u e n c e>

< x s d : e l e m e n t maxOcurrs=" 1 " minOcurrs=" 1 "
name=" r e p o r t " t y p e=" x s d : s t r i n g " / >

<x s d : s e q u e n c e>

<xsd :complexType>

< / x s d : e l e m e n t>
< w s d l : t y p e s >

<w s d l : m e s s a g e name=" G e t W e a t h e r R e p o r t I n ">

< w s d l : p a r t e l e m e n t=" t n s : G e t W e a t h e r R e p o r t R e q u e s t "
name=" r e s p o n s e " / >

< / w s d l : m e s s a g e>

<w s d l : m e s s a g e name=" GetWea the rRepor tOut ">

< w s d l : p a r t e l e m e n t=" t n s : G e t W e a t h e r R e p o r t R e s p o n s e "
rname=" r e s p o n s e " / >

< / w s d l : m e s s a g e>

. . .

. . .
< w s d l : t y p e s >

< x s d : e l e m e n t name=" G e t W e a t h e r R e p o r t R e q u e s t ">

<xsd :complexType>

<x s d : s e q u e n c e>

< x s d : e l e m e n t maxOcurrs=" 1 " minOcurrs=" 1 "
name=" l a t i t u d e " t y p e=" x s d : f l o a t " / >

< x s d : e l e m e n t maxOcurrs=" 1 " minOcurrs=" 1 "
name=" l o n g i t u d e " t y p e=" x s d : f l o a t " / >

<x s d : s e q u e n c e>

<xsd :complexType>

< / x s d : e l e m e n t>
< x s d : e l e m e n t name=" Ge tWea the rRepor tResponse ">

<xsd :complexType>

<x s d : s e q u e n c e>

< x s d : e l e m e n t maxOcurrs=" 1 " minOcurrs=" 1 "
name=" r e p o r t " t y p e=" x s d : s t r i n g " / >

<x s d : s e q u e n c e>

<xsd :complexType>

< / x s d : e l e m e n t>
< w s d l : t y p e s >

<w s d l : m e s s a g e name=" G e t W e a t h e r R e p o r t I n ">

< w s d l : p a r t e l e m e n t=" t n s : G e t W e a t h e r R e p o r t R e q u e s t "
name=" r e s p o n s e " / >

< / w s d l : m e s s a g e>

<w s d l : m e s s a g e name=" GetWea the rRepor tOut ">

< w s d l : p a r t e l e m e n t=" t n s : G e t W e a t h e r R e p o r t R e s p o n s e "
name=" r e s p o n s e " / >

< / w s d l : m e s s a g e>

. . .

Fig. 1. DMC: Examples

Distinct Message Ratio metric The Distinct Message Ratio (DMR) metric comple-
ments DW by attenuating the impact of having different messages within a WSDL
document with the same structure. As the number of similarly-structured messages in-
creases the complexity of a WSDL document decreases, since it is easier to understand
similarly-structured messages than structurally different ones as a result of gaining fa-
miliarity with repetitive messages [9]. Formally:

DMR(wsdl) =
DMC(wsdl)

nm
(2)

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

The DMR metric provides a number in the range given by [0, 1], where 0 means that all
defined messages are similarly-structured, and 1 means that all messages are dissimilar.
Therefore, the WSDL documents of Figure 1 (left) and Figure 1 (right) have a DMR of
0/2 = 0 and 2/2 = 1, respectively.

Message Entropy metric The Message Entropy (ME) metric exploits the probability
of similarly-structured messages to occur within a given WSDL document. Compared
with the DMR metric, ME also bases on the fact that repetition of the same messages
makes a developer more familiar with the WSDL document and results in ease of under-
standability, but ME provides better differentiation among WSDL documents in terms
of complexity. Formally:

ME(wsdl) =

DMC(wsdl)∑
i=1

P(mi) ∗ (−log2P(mi)) (3)

P(mi) =
nomi

nm

, where nomi is the number of occurrences of the ith message, and P(mi) represents
the probability that such a message occurs within the given WSDL document. The ME
metric has values in the range [0, log2(nm)]. A low ME value shows that the messages
are consistent in structure, which means that data complexity of a WSDL document is
lower than that of other WSDLs having equal DMR values.

Message Repetition Scale metric The Message Repetition Scale (MRS) metric an-
alyzes variety in structures of WSDL documents. MRS measures the consistency of
messages by considering frequencies of [C(m), nargs] pairs, as follows:

MRS (wsdl) =

DMC(wsdl)∑
i=1

nom2
i

nm
(4)

The possible values for MRS are in the range [1, nm]. When comparing two or more
WSDL documents, a higher MRS and lower ME show that the developer needs less
effort to understand the messages structures due to the repetition of similarly-structured
messages.

2.2 Approaches to improve services interfaces

As far as we know, two main approaches to improve services interfaces have been ex-
plored. One approach occurs at the deployment phase of services and WSDL docu-
ments. The other approach is called “early”, since it deals with the improvement of
interfaces during the implementation phase of the underlying services, i.e., prior to ob-
tain their corresponding WSDL documents.

The work of [8] fits in the first approach mentioned, since it identifies WSDL bad
practices and supplies guidelines to remedy these. A requirement inherent to applying

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

these guidelines is following contract-first, a method that encourages designers to first
build the WSDL document of a service and then supply an implementation for it. In
this context, the term contract refers to technical contract and interface, indistinctly.
However, the most used method to build WSDL documents in the industry is code-first,
which means that one first implements a service and then generates the corresponding
WSDL document by automatically extracting and deriving the interface from the im-
plemented code. This means that WSDL documents are not directly created by humans
but are instead automatically derived via language-dependent tools, which essentially
map source code to WSDL code.

With regard to the early approach, the idea is to anticipate potential quality problems
in services interfaces. Conceptually, the approach is to identify refactoring operations
for services implementations that help to avoid problems in services interfaces. The
main hypothesis of this approach is the existence of statistical relationships between
two groups of metrics, one at the service implementation level and another at the ser-
vice interface level. This implies that at least one metric in the former group could be
somehow “controlled” by software engineers attempting to obtain better WSDL docu-
ments, with respect to what is measured by the metrics that belong to the latter group.
This also means that if a software engineer modifies his/her service implementation and
in turn this produces a variation on implementation level metrics, this change will be
propagated to services interfaces metrics, assuming that both groups of metrics are cor-
related. Thus, key to this approach is understanding how implementation level metrics
relate to interface level ones.

The work presented in [13] studies the relationships between service implementa-
tion metrics and the occurrences of the bad practices investigated in [8], when such
interfaces are built using the code-first method. This bad practices come with a num-
ber of metrics not to assess complexity but to measure service discoverability, i.e., how
effective is the process of ranking or locating an individual service based on a mean-
ingful user query that describes the desired functionality. Then, the authors gathered
6 classic OO metrics from several services implementations, namely Chidamber and
Kemerer’s [14] CBO (Coupling Between Objects), LCOM (Lack of Cohesion of Meth-
ods), WMC (Weighted Methods Per Class), RFC (Response for Class), plus the CAM
(Cohesion Among Methods of Class) metric from the work of Bansiya and Davis [15]
and the well-known lines of code (LOC) metric. Additionally, they gathered 5 ad-hoc
metrics, namely TPC (Total Parameter Count), APC (Average Parameter Count), ATC
(Abstract Type Count), VTC (Void Type Count), and EPM (Empty Parameters Meth-
ods). Then, the authors collected a data-set of publicly available code-first Web Services
projects and analyzed the statistical relationship among metrics. Finally, the correlation
analysis shows that some WSDL bad practices are strongly correlated with some im-
plementation metrics.

As the reader can see, previous efforts present in the literature strongly suggest that
employing correlation analysis among classical software engineering metrics and other
metric suites is in the right direction towards predicting undesirable situations. In this
sense, in [16] the authors analyze the correspondence between the metrics described in
Section 2.1 and classical software engineering metrics. The achieved results show that
there are statistically significant relationships among pairs of metrics. Accordingly, the

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

authors conclude that by monitoring several metrics, which are present at services im-
plementations, the complexity, in particular the Data Weight (DW), of the target WSDL
documents can be reduced [16].

Recent investigations show that the refactorings needed to reduce DW in WSDL
documents affect other quality concerns, in particular the adoption of best design prac-
tices described in [11]. The experimental results showing these undesirable relation-
ships are going to be explained in another paper, i.e., the explanation of the statistical
correlations between DW and anti-patterns is out of the scope of this paper, but a few
words about this phenomena are need to clearly explain the focus of this paper. The
DW metric measures the complexity of a data-type in XSD, from the perspective of a
software application that must interpret and process such data definition. For example,
parses like Xerces, and xjc require more CPU processing for parsing bigger data-types
definitions, in terms of lines of code. This is because DW increases as C(m) counts how
many elements, complex types, restrictions and simple types are exchanged by mes-
sages parts. However, not always a bigger data-type definition would be a bad design
decision. In general, when using XSD for defining data-types, more lines of code means
a more detailed definition, which in turn makes easier to represent a business object
specifically. A contra-example of this situation is given when defining a data-type using
general-purpose data-types, like the xsd:any, called “wild-card” in [17], which allows
defining almost any XSD content in just one line of code: <element name=“theName”
type=“xsd:any”/>. Understanding business-object represented by this data-type is im-
possible, unless natural language documentation accompanying the data-type definition
provides enough information. On the other hand, as explained in [18] when defining
wild-cards developers are breaking best design practices of WSDL documents [11].

Returning to the mentioned correlations between best design practices and the DW
metric, this paper represents a step towards understanding why the refactorings needed
to reduce DW may deteriorate the design quality of WSDL documents. In this sense,
this paper analyzes human beings’ opinions about the DW metric. This paper aims to
answer whether there is a trade-off between achieving low DW values, i.e., a smaller
complexity, and preserving the highest possible standards in terms of WSDL documents
design quality.

3 Experimental results

We performed a controlled experiment with humans to assess how they perceive Data
Weight (DW) metric values. The experiment involved 27 participants that were asked to
complete a survey to collect their opinions. The survey was designed as a Likert’s based
questionnaire for determining to whether there is a trade-off between services data-types
design quality and how complex a service description is for a computer application, i.e.,
the DW metric values.

The survey was developed in the context of the “Service-Oriented Computing”5

course of the Systems Engineering at the Faculty of Exact Sciences (Department of
Computer Science) of the UNICEN during 2012. The course has been offered since in

5 http://www.exa.unicen.edu.ar/~cmateos/cos

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

2008, is optional, and its audience are last-year undergraduate students and postgraduate
students (both master and doctoral programs) without knowledge on SOC concepts. The
course requirements are excellent skills on programming and some experience with Java
development. In the context of our experiment, this means that the participants could
be regarded as software developers. After five lectures within one week of three hours
each discussing the fundamentals of the SOC paradigm and enabling technologies the
students were instructed to develop a code-first Web Service, then a contract-first Web
Service, and finally an application that consumes the previous services. After that, the
students were invited to complete the survey. The survey asks the participants to analyze
different versions of a Web Service. Each version of the service has been chosen to
present different levels of the DW metric along with data-types having different design
quality. The design quality of each data-type was assessed in accordance to the catalog
of best design practices of [11]. To do this, three Web Services specialist follow the
conventions and recommendations of W3C XML Schema Definition 1.16.

The questionnaire has been designed as a set of 18 statements. For each statement,
the participant can choose among 6 alternatives, being totally agree, agree, somewhat
agree, somewhat disagree, disagree and completely disagree. The reason to choose
among six alternatives is that by being a pair number there is not chance for neutral
opinions. We have included in the questionnaire 12 positive statements and 6 negative
ones. A positive statement is a statement that textually confirms the existence of the hy-
pothesis that the survey is testing, e.g., the existence of a trade-off between DW metric
values and services interfaces design quality. On the other hand, a negative statement is
one that denies the existence of the mentioned trade-off. This is important to note, be-
cause each statement is associated with a numerical score, which is known as Likert’s
score. The reason to have both positive and negative statements is to include contin-
gent statements. A contingent statement is employed for re-formulating a statement to
achieve more confident about a participant’s response.

The numerical score of a statement depends on the polarity of the statement. For
positive statements the numerical score ranges from 5 (totally agree) to 0 (totally dis-
agree), whereas negative statements are inversely scored, i.e., ranging from 0 (totally
agree) to 5 (totally disagree).

We computed the Likert score per participant. The numerical score for a partici-
pant’s questionnaire is calculated by summing the individual score of all his/her state-
ments. Then, the bigger the numerical score of a participant, the stronger is his/her con-
fident about the existence of the trade-off between DW metric values and services inter-
faces design quality. A score equals to 0 means that the participant strongly disagrees
with the trade-off existence, but a 90 score means that the participant strongly agrees
with trade-off existence. For readability purposes, we translated the Likert’s scores from
a [0,90] scale to a [0,100] scale.

Figure 2 shows the score histogram, where each bar contains the number of partic-
ipants who had the same score. Figure 2 shows that nine participants did not achieve
the same score as any other participant. As shown in the Figure, this situation corre-
sponds to participants achieving extreme scores, i.e., the lowest or the highest scores.
At the same time, four participants achieved the same score, as denoted by the highest

6 XML Schema Definition (XSD), http://www.w3.org/TR/xmlschema11-1/

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m

b
e
r

o
f
re

s
p
o
n
d
a
n
ts

 w
h
o
 a

c
h
ie

v
e
d
 t
h
e
 s

a
m

e
 s

c
o
re

Likert scale

Frequency histogram

Fig. 2. Likert scale: Frequency of the scores.

bar of Figure 2, and they were positioned in the middle of the score scale and not in the
extremes.

Figure 3 shows that by smoothing the frequency results using Bézier curves, they
tended to a normal distribution with an average µ = 65 and a standard deviationσ = 7.5.
Then, 95.4% of the students scored between [µ − 2 ∗ σ, µ + 2 ∗ σ]. In other words,
25 students scored in the range of [50, 80], which manifests the existence of a trade-off

between DW metric values and WSDL design criteria.
In other words, the previous results provide empirical evidence showing that the

surveyed humans perceives that for a given WSDL document having high DW metric
values will not necessarily mean that the service interface is complex for them. On
the other hand, the surveyed humans confirmed that a well designed service interface
could have a higher DW metric value in its associated WSDL document than a poorly
designed one.

The questionnaire included a statement designed to assess humans’ perception of
two aspects of a service interface that impact on the service description complexity.
One aspect is the use of descriptive names for denoting WSDL elements. This aspect
is important for the purposes of the experiment as the DW metric only considers the
syntactic information of a WSDL document. On the other hand, the other aspect re-
lates to arranging error information using special WSDL fault messages. This aspect is
important because for the DW metric another WSDL message would increase service
complexity, whereas in [11] the authors identify “using a separated (extra) message for
exchanging fault information” as a best design practice for WSDL documents. Figure 4
shows that the average score for the participants was 2. The y-axis of the Figure also
shows the statement text. As the reader can see, the participants did not share a strongly
defined opinion about the usage of descriptive names and fault messages as the only
drivers for service interface quality. Accordingly, more work should be done to analyze

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

 0

 1

 2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m

b
e
r

o
f
re

s
p
o
n
d
a
n
ts

 w
h
o
 a

c
h
ie

v
e
d
 t
h
e
 s

a
m

e
 s

c
o
re

Likert scale

µ=65

Bézier curve

Fig. 3. Likert scale: Distribution of the scores.

the humans’ perception of these concerns, in order to include them in the calculation of
the DW metric.

4 Conclusions and Future Work

This papers states that the core metric of the metric suite described in [9] is very useful
for assessing the complexity of WSDL documents, when we refer to complexity as the
computational effort that a software application (e.g., a parser) must put to interpret and
“consume” the document, but the metric may be revised and improved in order to use
it to assess the design quality of such a document. Historically, there has been contro-
versy between software engineering metrics that are based on syntactical constructions
and those based on subjective aspects. For example, when T. McCabe discusses the
effectiveness of physical size driven metrics and use as an example a 50 line program
consisting of 25 consecutive “IF THEN” constructs, he shows that those metrics based
on LOC might not provide an accurate overview of the program complexity. In this
case, we have identified a similar situation in which a WSDL document having few
lines of code will have a smaller DW than another having more code and potentially a
better design, in terms of data-type definitions.

A major limitation of the presented study is the number of participants that have
been surveyed, although some tendencies could be observed from their responses. In
this sense, the study shows that the participants perceive the existence of a trade-off

between the DW metric and the design quality of services interfaces descriptions. All
in all, more work should be done in order to determine and possibly adjust the DW
metric definition, or define a complementary metric. Moreover, the study has shown
that such a complementary metric may consider two important aspects ignored by DW,
namely data-types names and fault-messages.

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

 0 1 2 3 4 5 6 7 8 9

 1
0

 0
 1

 2
 3

 4
 5

 6

Number of respondants who achieved the same score for:

Service quality can be improved only by using more descriptive
names and removing fault information from the output message

L
ik

e
rt s

c
a
le

F
re

q
u
e
n
c
y
 h

is
to

g
ra

m
B

é
z
ie

r c
u
rv

e

µ
=

2

Fig. 4. Likert scale: Frequency of the scores.

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

We are planning to extend the present paper by including a statistical analysis that
shows the correlation between the DW metric and WSDL best practices. This could
be done by quantifying the level of compliance of WSDL documents with the WSDL
design practices proposed in [11] and performing appropriate statistical analyses.

Acknowledgments

We acknowledge the financial support provided by ANPCyT (PAE-PICT 2007-02311).

References

1. Martin Bichler and Kwei-Jay Lin. Service-Oriented Computing. Computer, 39(3):99–101,
2006.

2. S. Wang, Q. Sun, H. Zou, and F. Yang. Reputation measure approach of Web Service for
service selection. IET Software, 5(5):466–473, 2011.

3. Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo
Campo. Bottom-up and top-down COBOL system migration to Web Services: An experi-
ence report. IEEE Internet Computing, 2011. To appear.

4. Guadalupe Ortiz and Alfonso García De Prado. Improving device-aware Web Services and
their mobile clients through an aspect-oriented, model-driven approach. Information and
Software Technology, 52(10):1080–1093, 2010.

5. Marco Crasso, Juan Manuel Rodriguez, Alejandro Zunino, and Marcelo Campo. Revising
WSDL documents: Why and how. Internet Computing, 14(5):30–38, 2010.

6. Marco Crasso, Alejandro Zunino, and Marcelo Campo. A survey of approaches to Web
Service discovery in Service-Oriented Architectures. Journal of Database Management,
22(1):103–134, 2011.

7. Harry M. Sneed. Measuring Web Service interfaces. In 12th IEEE International Symposium
on Web Systems Evolution (WSE), 2010, pages 111 –115, September 2010.

8. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Improving
Web Service descriptions for effective service discovery. Science of Computer Programming,
75(11):1001–1021, 2010.

9. D. Baski and S. Misra. Metrics suite for maintainability of extensible markup language Web
Services. IET Software, 5(3):320–341, 2011.

10. Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson, Michael A. Gray, and
Michael A. Adler. Software complexity measurement. Communications of the ACM,
29(11):1044–1050, November 1986.

11. Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, and Alejandro Zunino. Best prac-
tices for describing, consuming, and discovering Web Services: a comprehensive toolset.
Software: Practice and Experience, 2012.

12. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Automati-
cally detecting opportunities for web service descriptions improvement. In Wojciech Cellary
and Elsa Estevez, editors, Software Services for e-World, IFIP Advances in Information and
Communication Technology, pages 139–150, Boston, MA, USA, 2010. Springer.

13. Cristian Mateos, Marco Crasso, Alejandro Zunino, and José Luis Ordiales Coscia. Detecting
WSDL bad practices in code-first Web Services. International Journal of Web and Grid
Services, 7(4):357–387, 2011.

14. S. Chidamber and C. Kemerer. A metrics suite for Object Oriented design. IEEE Transac-
tions on Software Engineering, 20(6):476–493, 1994.

This is a preprint of the article: "M. Crasso, C. Mateos, J. L. Ordiales Coscia, A. Zunino and S. Misra: ’An Evaluation on Developer’s Perception of XML
Schema Complexity Metrics for Web Services’. Lecture Notes in Computer Science (4th International Workshop on Software Quality - ICCSA 2013). Vol.
7972, pp. 475-486. Springer-Verlag. 2013. ISSN 0302-9732."

The original publication is available at http://dx.doi.org/10.1007/978-3-642-39643-4_34

15. Jagdish Bansiya and Carl G. Davis. A hierarchical model for Object-Oriented design quality
assessment. IEEE Transactions on Software Engineering, 28:4–17, January 2002.

16. José Luis Ordiales Coscia, Marco Crasso, Cristian Mateos, Alejandro Zunino, and Sanjay
Misra. Predicting Web Service maintainability via Object-Oriented metrics: A statistics-
based approach. In Beniamino Murgante, Osvaldo Gervasi, Sanjay Misra, Nadia Nedjah,
Ana Rocha, David Taniar, and Bernady Apduhan, editors, Computational Science and Its
Applications (ICCSA 2012), Salvador de Bahia, Brazil, volume 7336 of Lecture Notes in
Computer Science, pages 29–39. Springer Berlin / Heidelberg, 2012.

17. James Pasley. Avoid XML schema wildcards for Web Service interfaces. IEEE Internet
Computing, 10:72–79, 2006.

18. Marco Crasso, Juan Manuel Rodriguez, Alejandro Zunino, and Marcelo Campo. Revising
WSDL documents: Why and How. IEEE Internet Computing, 14(5):48–56, 2010.

