
This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

A programming model for the Semantic Web

Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo

ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil, Buenos Aires,
Argentina. Tel.: +54 (2293) 439682 ext. 35. Fax.: +54 (2293) 439683

Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract. This year the concept of “Semantic Web” celebrates its tenth anniver-
sary since it was coined by prominent researchers Tim Berners-Lee, James Hendler
and Ora Lassila. To date, there are many technologies to describe, in a machine-
understandable way, information and services available in the Web. An incipient
research area is focused on solving the issues related to building applications for
truly exploiting semantically-described resources. In this paper, we present an
approach to upgrade a software application into a Semantic Web-enabled one.
The approach builds on the Aspect-Oriented Programming (AOP) paradigm to
allow developers to incorporate ontology management capabilities into an ordi-
nary object-oriented application without modifying its source code. The paper
also discusses related works and presents case studies.

1 Introduction

From its beginnings, the Web was conceived as a system of computer networks sharing
linked HyperText documents. Later, applications become Web resources as well upon
the arrival of Web Services technologies. Nowadays, the Semantic Web is an extension
of the traditional Web, in which resources and services are described in such a way that
a machine can understand it [1]. The goal of this extension is that applications become
“users” of the Web. In this sense, it is expected that once every Internet resource will
be properly, and semantically, described, applications will be able to compose differ-
ent resources to achieve their goals, without human intervention. Accordingly, software
applications needing external information or services to solve everyday problems, such
as meeting or flight arrangement, supply-chain management, and so on, will reach un-
precedented levels of automatism [2].

For the vision of the Semantic Web to become a reality, standards and ontologies
should converge, and in turn applications should be turned from systems that assume
a closed world to ones that will operate by composing Web resources. On one hand,
standards play a pivotal role in developing and connecting heterogeneous functional-
ity, specially when different providers offer and distribute their services over the In-
ternet. In this sense, Web Services standards, such as Web Service Description Lan-
guage (WSDL) and Simple Object Access Protocol (SOAP) [15], represent a big push
in the right direction. WSDL is an XML format for describing the intended functional-
ity of a Web Service by means of an interface with methods and arguments, in object-
oriented terminology, and documentation in the form of textual comments. For example,
a provider may describe the interface of a service operation for retrieving the tempera-
ture of a certain region as getTemperature(zip:string):double.

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

In the context of computer and information sciences, an ontology defines a set
of representational primitives by which a domain of knowledge or discourse is mod-
eled [5]. Ontologies are crucial for bridging and abstracting away syntactical differ-
ences, e.g. those present at WSDL documents, which may hinder the utilization of the
corresponding services. To clarify the importance of ontologies, let us suppose that an-
other provider uses getFahrenheitTempFor(regionCode:long):string to describe the sig-
nature of a service operation similar to getTemperature(zip:string):double. Clearly, these
operations are syntactically different. Therefore, if either a human discoverer or a soft-
ware agent looks for all services that retrieve the temperature of a certain region, they
will have to infer that the aforementioned operation signatures have equivalent seman-
tics. Indeed, the W3C (www.w3.org) encourages developers to describe ontologies by
using the Ontology Web Language (OWL), an XML-based language having construc-
tors for defining classes and properties, with cardinality, range and domain restrictions
among others.

Ontologies allow providers to define each part of a service, i.e. its functionality,
inputs and expected results, with an unambiguous description of its semantics. From
now on, we will refer as annotation to the task of linking service descriptions with
concepts represented in a machine-understandable model that explicitly defines the se-
mantics of operations and data-types. There are different approaches to combine ontolo-
gies and standards for describing services and, in turn, build Semantic Web Services,
such as OWL-S [8] and WSDL-S [12]. For the sake of exemplification, although their
many differences, with these approaches developers can annotate the aforementioned
services input with the ZipCode concept from Schema Web ontology1, by extending
the associated WSDL input definitions with the unique and public URI of ZipCode
(http://www.daml.org/2001/10/html/zipcode-ont#ZipCode).

Annotating a service may be a cumbersome task, specially when it requires building
ontologies from scratch and training development team members on OWL and WSDL-
S and their surrounding technologies. To cope with this problem, researchers have been
investigating on approaches to facilitate ontology construction along with service an-
notation, e.g. by automatically suggesting ontologies for a given service description in
WSDL [3]. In this paper we explore the annotation problem, but from the perspective
of Semantic Web applications, i.e. those applications that consume external services
to accomplish their goals. In essence, the approach for turning an ordinary application
into an application that automatically discovers, selects and invokes Semantic Web Ser-
vices, is to annotate its business object definitions with ontologies. This is because such
an application not only requires to semantically express its functional needs, but also to
“talk” with Semantic Web Services through ontologies. For example, to automatically
call a service expecting a ZipCode concept as input, an application must upgrade its
internal representation of ZIP code, possibly a variable of type long, into an OWL class
instance.

Until now, unlike the case of service annotation, there is not a consensus about how
to annotate applications. In some clean cases, the approach to decorate business objects
classes with special proxy objects has shown to be useful for maintaining annotations
in accordance with dynamic objects states [14]. One limitation of this approach is that

1 http://www.schemaweb.info/schema/SchemaInfo.aspx?id=20

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

it is feasible only when business objects are modeled and implemented in accordance
with specific design conventions. Besides, to incorporate such special proxies to an
application, its source code must be modified.

Undoubtedly, it is not always possible to refactor existing applications for accom-
modating business object designs and implementations or adding proxies. Therefore,
this paper presents an approach that copes with the aforementioned limitations. The ap-
proach bases on the Aspect-Oriented Programming paradigm to treat the requirement
of semantic annotations as a cross-cutting concern. In computer science, a cross-cutting
concern is a requirement that traverses different parts of an application, and it is com-
plex to decouple from other application components. Then, with this approach, man-
agement of semantic annotations is encapsulated in modules, called semantic aspects,
which can be plugged in any specific point of an application, without modifying its
source code. Therefore, the opportunity for transparently turning an ordinary applica-
tion into a Semantic Web-powered one, comes at expenses of learning and implement-
ing the semantic aspects.

The rest of this paper is organized as follows. Section 2 presents an overview of
related work. Section 3 explains the proposed approach to annotate applications. Case
studies and comparisons are shown in Section 3.1. Finally, Section 4 concludes the
paper.

2 Related work

The problem of ontology-application integration has been mainly approached by trans-
lating ontologies to source code files in any object-oriented language. The basic idea
is to create an application programming interface (API) that represents a given seman-
tic model [6]. Furthermore, when a business object is programmatically modified, the
API forwards the associated changes to a database of ontological annotations, a.k.a. se-
mantic repository [14]. This approach bases on bridging semantically equivalent object
constructors of Description Logic (DL) and Object Oriented (OO) systems. For exam-
ple, an instance of a Java class represents an instance of a single OWL class with most
of its properties maintained.

RDFReactor [14] is an approach to transform a given ontology into an Object-
Oriented Java API. The approach receives its name since it accepts as input an ontology
in Resource Definition Framework (RDF), the baseline for W3C ontology languages
like OWL. For each business object definition found in the input ontology, RDFReactor
generates a special stateless proxy object that delegates all method calls to semantic
repository queries and updates. A proxy represents business objects by exposing the
methods that would expose a plain object designed for representing the same business
object. The proxies are responsible for querying the semantic repository when an ac-
cessor method is called, or for updating the repository when the call refers to a method
used to control changes to a variable, i.e. a mutator method. To clarify this, let suppose
that books are modeled as instances of a class named Book, which has associated isbn
instances as well. Then, a special proxy for such an instance would set a relationship
between a concept Book and another concept ISBN when the association is program-
matically set, for example by calling setISBN method.

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

c:Client p:Proxy r:RDFModel

«create»
b:Book

getProxy()

p

setISBN(isbn)

addProperty(b,isbn,isbn)

syncResult

isbn

Fig. 1. RDFReactor’s proxy example.

Figure 1 depicts the resulting classes and messages that have been produced after
translating an ontology for the mentioned book domain. In the Figure, a specific busi-
ness object, i.e. the b:Book, is created by a client. The approach replaces business object
instantiation (lets suppose a new statement in Java) with proxy instantiation. Then, the
client indirectly updates the semantic model when calling the mutator method named
setISBN, a typical Java setter method.

Furthermore, there are a handful of tools implementing the same approach followed
by RDFReactor, such as Jastor [13] and ActiveRDF [9]. A complete list of similar
projects can be found in http://semanticweb.org/wiki/Tripresso. This
Web site groups several researchers that discuss issues related to translation of ontology
languages to Object-Oriented languages.

All in all, though with the approach described in the previous paragraphs develop-
ers might bootstrap any Object-Oriented application into a Semantic Web ready appli-
cation, the approach has some limitations. Particularly, a major limitation is that the
approach forces developers to introduce design and implementation-level changes into
target applications, which is clearly an undesirable situation.

3 An AOP-based approach to annotate applications with
semantics

Separation of Concerns (SoC) [11] is both a principle and a process for building soft-
ware applications, which states that each constituent part of an application should be
free of behaviors not inherent to its functional nature. Traditionally, SoC has been
achieved by using modularity, encapsulation and information hiding techniques in the
context of Object-Oriented programming, or layered designs in an architectural one.
The AOP paradigm has shown to be quite effective in increasing application modu-
larity and reducing inter-module coupling by allowing the separation of cross-cutting
concerns, i.e. a concern that affects many parts of an application [4].

With AOP, the logic of cross-cutting concerns is encapsulated in modules called
aspects, which can be joined to specific points of an application, called join-points.

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

Aspects inhabit a special plane, whereas application components constitute the base
plane. Weaving is the act of activating the aspects of the aspects plane that are associated
with join-points at the base plane. Most AOP materializations allow one of two types
of weaving: dynamic and static. The difference between both types of weaving stems
from the moment at which aspect code is linked to the code of its join-points. With
static weaving, the code is woven at compilation time, whereas dynamic weaving allows
aspects to be incorporated into running applications.

Having explained the main concepts of the AOP paradigm, we propose an approach
that handles semantic annotation as a cross-cutting concern. The rationale behind this
assumption is that it is out of the scope of most business object representations to man-
age their associated semantic model, and clearly business objects represent most appli-
cation parts, at least in traditional CRUD applications.

Our approach proposes to encapsulate the code needed to interact with a semantic
repository into aspects. Furthermore, every business object mutator method is conceived
as a join-point. Static or dynamic weaving, indistinctly, produces business object rep-
resentations capable of managing their semantic annotations without having to modify
their source code. In contrast to proxy-based approaches such as [14,6], our approach is
not invasive for applications, since it maintains business objects encapsulation. This is
because business object classes remain untouchable, even having instance variables for
holding objects states. Aggregated code blocks, i.e. those sentences needed for updating
a semantic repository, are concealed by the aspects.

Business object

Semantic aspect

Ontology

Ontology syncronization

Aspect activation

Semantic plane

Base plane

Legend:

Fig. 2. Base and Semantic AOP planes.

Figure 2 depicts the conceptual overview of the approach. In the Figure, business
objects constitute the base plane of an application, which are not responsible for nothing
apart from modeling the application business logic. Alternatively, the modules of the
semantic plane, or semantic aspects, know how to keep business objects and ontologies
updated.

To systematically annotate applications business objects with the proposed approach,
the next steps should be followed:

1. identify business objects,

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

2. map the identified business objects onto ontological elements,
3. build semantic aspects for programmatically updating ontologies,
4. identify join-points,
5. weave aspects into join-points.

The first step refers to analyze the applications under study looking for the minimal
set of business objects that need to be annotated, possibly to interact with external Web
Services. Step 2 is intended for identifying to which classes or properties of an ontology
should the business objects be mapped. At the next step, the implementation of seman-
tic repository updates should be provided. This step requires to select technologies for
materializing the AOP paradigm and the semantic repository, or in other words choos-
ing among different AOP frameworks such as AspectJ or SpringAOP [7], and ontology
containers, such as Jena [10]. Once proper technologies have been selected, the specific
lines of codes for updating the ontology elements identified at step 2 should be encap-
sulated into aspects, which is done at step 3. Moreover, step 4 deals with analyzing the
whole application and seeking in which parts of it the business objects are modified.
Finally, the fifth step is for gluing aspects and the application.

The next sub-sections explain how to annotate particular business objects that be-
long to two real world applications that we are porting to the Semantic Web as an initial
attempt to assess the feasibility of the proposed approach. The application domains and
the employed AOP technologies are described.

3.1 Case study I

In this section the five steps previously described will be applied for annotating an appli-
cation belonging to the library domain. The application has been implemented in Java.
Broadly, the application manages books and their authors. Books and authors are the
business objects required to be annotated, which are represented as JavaBeans classes.
JavaBeans is a programming convention that states that for each instance variable there
is an accessor method named using the prefix “get”, and a mutator method having the
“set” prefix in its signature name. For example, the Book class has an instance vari-
able called author of type Author, and it has two methods accordingly: getAuthor()
and setAuthor(Author), the accessor and mutator, respectively. The Book class has an-
other instance variable, a String named title, and two more methods getTitle() and setTi-
tle(String).

At the same time, books and authors are semantically represented using the next
part of the library ontology:
<owl :Class r d f : I D =" Book " / >
<owl :Class r d f : I D =" Person " / >
<owl :Ob jec tProper ty r d f : I D =" isAuthorOf ">

<owl : inverseOf>
<owl :Ob jec tProper ty r d f : I D =" hasAuthor " / >

< / ow l : inverseOf>
<rdfs :domain r d f : r e s o u r c e =" #Person " / >
< rd f s : r ange r d f : r e s o u r c e =" #Book " / >

< / ow l :Ob jec tProper ty>
<owl :Ob jec tProper ty r d f : a b o u t = " #hasAuthor ">

<rdfs :domain r d f : r e s o u r c e =" #Book " / >
<owl : inverseOf r d f : r e s o u r c e =" # isAuthorOf " / >
< rd f s : r ange r d f : r e s o u r c e =" #Person " / >

< / ow l :Ob jec tProper ty>

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

The association between books and authors for the business objects is semantically
represented via the isAuthorOf property, which is defined as inverseOf the hasAuthor
property, meaning that by annotating x isAuthorOf y the relationship y hasAuthor x holds.

Returning to the steps needed to employ the proposed approach, at this point busi-
ness objects have been identified (step 1), and these objects have been mapped onto
concrete ontology elements (step 2). With regard to step 3, the fact that the JavaBeans
convention was followed allows for rapid identification of join-points, since aspects
in charge of updating the semantic repository should be activated every time a set-
ter method is called. To implement the aspects (step 4) for this application we have
employed the well-known AspectJ support, and Jena for ontology annotations persis-
tence. AspectJ has been designed as an extension of the Java language. One of the
design drivers of AspectJ was that it should allow Java developers to intuitively incor-
porate aspects to their Java applications. On the other hand, Jena is a software library
for manipulating ontology repositories programmatically. The next code illustrates the
resulting aspect. As the reader can observe, we have used an aspects extension mecha-
nism similar to regular class inheritance, and thus the generated aspect inherited from
another aspect called SemanticAspect. This is because the boilerplate code needed for
Jena initialization tasks has been abstracted for clarity reasons.

public aspect BookSemanticAspect extends SemanticAspect {

pointcut setAuthor (Book b) :
target (b) && c a l l (public ∗ setAuthor (. .)) ;

before (Book b) : setAuthor (b) {
i f (model . g e t I n d i v i d u a l (ns + b . getISBN ()) == nul l) {

model . c r e a t e I n d i v i d u a l (ns + a . getISBN () , th is . baseClass) ;
}

}

a f te r (Book b) : setAuthor (b) {
I n d i v i d u a l a i = model . g e t I n d i v i d u a l (ns+b . getAuthor () . getSN ()) ;
I n d i v i d u a l b i = model . g e t I n d i v i d u a l (ns+b . getISBN ()) ;
b i . se tProper tyValue (model . ge tProper ty (ns+" hasAuthor ") , a i) ;

}
}

Table 1. Aspect composition summary.

Join-Point AspectJ
class: Book
method: setAuthor

pointcut setAuthor(Book b):
target(b) && call (public * setAuthor(..))

class: Book
method: setTitle

pointcut setTitle(Book b):
target(b) && call (public * setTitle(..))

To sum up, two instance variables, namely author and title, of the book business object
have been mapped onto a semantic model in OWL. Then, proper synchronization mech-
anisms to mirror object changes onto a semantic repository have been implemented
using AspectJ and Jena. Table 1 summarizes the application join-points and their corre-
sponding aspects.

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

3.2 Case study II

We employed the proposed approach with another case study, namely a warehouse man-
agement Java application that uses a relational database through JDBC to persist ware-
house article data. One peculiarity of the application’s design is that business objects
are represented by a single Warehouse object, which updates and queries the database.
From a semantic perspective, we have employed an ontology having a class named
Article, which has a property named hasQuantity. The range of this property is an in-
teger, and its domain is an instance of the OWL class named Article. Therefore, when
an article’s quantity is modified in the Warehouse object (i.e. within the Java code), the
associated hasQuantity property in the corresponding article is updated in the semantic
repository.

To implement the semantic aspects we have employed the SpringAOP framework.
This framework allows developers to implement aspects as any other ordinary Java
method, but according to specific signatures defined by certain hook methods. Con-
cretely, we have implemented the required hook method afterReturning as follows:
public void a f t e rRe tu rn i ng (Object o , Method m, Object [] args ,

Object target) throws Throwable {
S t r i n g code = S t r i n g . valueOf (args [0]) ;
i f (model . g e t I n d i v i d u a l (ns + code) == nul l) {

model . c r e a t e I n d i v i d u a l (ns+code , baseClass) ;
}
long q u a n t i t y = Long . parseLong (S t r i n g . valueOf (args [1])) ;
I n d i v i d u a l i = model . g e t I n d i v i d u a l (ns + code) ;
Proper ty p = model . getDatatypeProper ty (ns + " hasQuant i ty ") ;
i . se tProper tyValue (p , model . c r e a t e L i t e r a l (q u a n t i t y)) ;

}

As the reader can see, this application design is not as clean as that of the case study
presented previously, since business objects and mutators were not evident. Here, busi-
ness objects have been represented using the primary key of a relational table, i.e. in a
conventional, database-like style. Moreover, one class has mutators, but no code con-
vention was followed to name them. The next code presents for example the incArticle
mutator method:
class Warehouse {

public void i n c A r t i c l e (S t r i n g code , long q u a n t i t y) throws Except ion {
conn . setAutoCommit (fa lse) ;
PreparedStatement stmt = conn . prepareStatement (
"UPDATE ARTICLE SET QUANTITY=? WHERE CODE=? "
) ;
stmt . setLong (1 , q u a n t i t y) ;
stmt . s e t S t r i n g (2 , code) ;
stmt . executeUpdate () ;
conn . commit () ;

}
}

Then, the semantic aspect should be activated every time the incArticle method suc-
cessfully returnes. Having identified business objects, mapping them onto ontology el-
ements, implementing the semantic aspects, and detecting join-points, the missing step
was to configure the SpringAOP framework for weaving the aspect and the join-point
at run-time. The following XML code belongs to the SpringAOP configuration file:
<!− A f t e r advise d e c l a r a t i o n −>
<bean i d =" myAfterAdvice " c lass=" MySemanticAfterAdvise " / >

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

<!− Proxy wi th i n t e r c e p t o r s stack d e c l a r a t i o n −>
<bean i d =" business log icbean " c lass=" #aop #. ProxyFactoryBean ">

<proper ty name=" p roxy In te r f aces ">
<value>Warehouse< / value>

< / p roper ty>
<proper ty name=" t a r g e t ">

< r e f l o c a l = " beanTarget " / >
< / p roper ty>
<proper ty name=" interceptorNames ">

< l i s t >
<value>myAfterAdvisor< / value>

< / l i s t >
< / p roper ty>

< / bean>

<!− Jo in po in t d e c l a r a t i o n −>
<bean i d =" myAfterAdvisor " c lass=" #aop #. RegexpMethodPointcutAdvisor ">

<proper ty name=" advice ">
< r e f l o c a l = " myAfterAdvice " / >

< / p roper ty>
<proper ty name=" pa t t e rn ">

<value>Warehouse . i n c A r t i c l e < / value>
< / p roper ty>

< / bean>

4 Conclusions and future research possibilities

This paper presented a novel approach to incorporate ontology management into con-
ventional applications. The most important difference among related approaches is that
application code is not modified. In most cases, running applications and ontologies
may be integrated by re-launching the former ones. The main limitation of the ap-
proach, however, is that application developers should be trained in AOP concepts and
technologies.

In the near future, we will use performance metrics for evaluating different tech-
nologies for implementing the approach. The goal of this task is to have evidence about
the overhead introduced by the semantic aspects over ordinary applications. Besides,
we are employing the proposed approach with the reference Web application provided
by Oracle to illustrate how developers can apply various Java Enterprise Edition tech-
nologies for implementing Web Services.

We are planning to extend the proposed approach in several directions. First, one
line of research will investigate on facilitating semantic aspects generation. In paral-
lel, we are designing heuristics for assisting developers in performing the second step
of the proposed approach, which deals with mapping identified business objects onto
ontological elements. In this sense, we will test the hypothesis that OO business ob-
jects specifications contain information –e.g. the names and comments of classes and
methods– that is useful for guiding the ontology mapping process. Lastly, we will in-
vestigate the applicability of the extended approach in the context of SWAM [2], a
Prolog-based programming language that allows the construction of mobile agents that
are able to interact with RDF-described Web services and resources. Although SWAM
is aimed at exploiting separation of concerns concepts, to a certain extent the language
still forces users to mix agent code with the code in charge of interacting with semantic
resources.

This is a preprint of the article: "A Programming Model for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M. Campo). Lecture Notes in Computer
Science. Advances in New Technologies, Interactive Interfaces and Communicability. Springer-Verlag. ISSN 0302-9743. 7547. 2012."

The original publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-34010-9_20

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web. Scientific American,
284(5):34–43, May 2001.

2. Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo. SWAM: A logic-
based mobile agent programming language for the Semantic Web. Expert Systems with
Applications, 38:1723–1737, March 2011.

3. Marco Crasso, Alejandro Zunino, and Marcelo Campo. Combining document classification
and ontology alignment for semantically enriching Web Services. New Generation Comput-
ing, 28:371–403, 2010.

4. Juan Enriquez, Graciela Vidal, and Sandra Casas. Design configurable aspects to connect-
ing business rules with Spring. In Francisco V. Cipolla Ficarra, Carlos de Castro Lozano,
Mauricio Pérez Jiménez, Emma Nicol, Andreas Kratky, and Miguel Cipolla-Ficarra, editors,
Advances in New Technologies, Interactive Interfaces and Communicability - 1st Interna-
tional Conference (ADNTIIC 2010), Huerta Grande, Argentina, volume 6616 of Lecture
Notes in Computer Science, pages 92–101. Springer, 2011.

5. Tom Gruber. Ontology. In Encyclopedia of Database Systems, pages 304–307. Springer-
Verlag New York, Inc., 2008.

6. Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Padget. Automatic
mapping of owl ontologies into java. In Frank Maurer and Günther Ruhe, editors, SEKE,
pages 98–103, 2004.

7. Gary Mak, Josh Long, and Daniel Rubio. Spring AOP and AspectJ support. In Spring
Recipes, pages 117–158. Apress, 2010.

8. David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia
Sycara, Deborah L. Mcguinness, Evren Sirin, and Naveen Srinivasan. Bringing semantics to
Web Services with owl-s. World Wide Web, 10(3):243–277, 2007.

9. Eyal Oren, Benjamin Heitmann, and Stefan Decker. ActiveRDF: Embedding Semantic Web
data into object-oriented languages. Web Semantics, 6:191–202, September 2008.

10. Dave Reynolds. Jena 2 inference support. http://jena.sourceforge.net (last
accessed June 2011), 2011.

11. Chris Richardson. Untangling enterprise Java. Queue, 4(5):36–44, 2006.
12. Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth, and John A. Miller. Adding se-

mantics to Web Services standards. In The 2003 International Conference on Web Services,
pages 395–401, Las Vegas, NV, USA, September 2003. CSREA Press.

13. Ben Szekely and Joe Betz. Jastor: Typesafe, ontology driven RDF access from Java. http:
//jastor.sourceforge.net (last accessed June 2011), 2011.

14. Max Völkel. RDFReactor – From Ontologies to Programatic Data Access. In Proc. of the
Jena User Conference 2006. HP Bristol, 2006.

15. Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F. Fer-
guson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005.

