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Abstract

Once a big repository of static data, the' Web has been gradually evolved into a worldwide network of
information and services known as the Semantic Web. This environment allows programs to autonomously
interact with Web-accessible information and services. In this sense, mobile agent technology could help
in efficiently exploting this relatively new Web in a fully automated way, since Semantic Web resources are
described in a computer-understandable way. In this paper we present SWAM, a platform for building and
deploying Prolog-based intelligent mobile agents on the Semantic Web. The article also reports examples
and experimental results in order toillustrate as well as to assess the benefits of SWAM.
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1. Introduction

The creation of the Web started early in the 90’s. It quickly became popular among developers because
it hid the diversity of software and hardware existing by then. This information space was designed to be
fully distributed and without a central control. Basically, the Web-maintains links or associations between
the various documents that could be located and retrieved from any site of the Internet. The mechanism for
browsing the Web is widely known: a user consults and interprets documents by reading HTML pages that
are rendered by a special application, this is, the Web browser.

Years ago, the Web started to evolve into a worldwide network of ‘annotated information and ser-
vices (author?) [35]. The objective of this new Web is to-achieve automatic interaction between appli-
cations and Web resources. Particularly, Web Service technologies (author?) [10, 38] provide the basis for
standard ways of specifying well-defined, Web-accessible interfaces to-access Web programs and resources.
Basically, Web Services can be thought as a number of applications that interact by borrowing representa-
tional languages and transport protocols from established Internet technologies. In this sense, nowadays,
the Web is not only concerned with information sharing, but also with providing an evolved infrastructure
for hosting programs that are autonomously exploited by user applications, including intelligent agents.

Web Services represent a suitable alternative to enable for systematic interactions of applications across
the WWW. Web Services essentially rely on XML, a widely-adopted structured language for information
interchange that guarantees platform independence. Furthermore, on top of XML, several standard XML-
based languages for invoking and describing services have been developed. WSDL (author?) [10, 41] is an
XML-based specification for describing Web Services as a set of callable operations over SOAP (author?)
[10, 40] messages, a high-level communication protocol also based on XML. From a WSDL specification,
any user application can determine how to use the functionality an individual Web Service provides.

In the last past years, an increasingly number of Web Services have arisen, mainly in the context
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of e-commerce. For example, many popular Web sites such as Google!, Flickr? and eBay> offer Web
Services for applications that expose the same information a user can access by using a regular Web
browser. Moreover, Amazon* delivers a set of Web Services that together interface a pay-per-use, reli-
able and scalable cluster computing platform for resource intensive applications. In addition, sites such
as www . xmethods . com do not provide Web Services but offer a sort of “yellow page” by maintaining
pointers to external services provided by other sites.

As the number of publicly available Web Services grows, several registries of services spring. A service
registry represents a crossroad in the path of providers and consumers. Providers can use the registry to
publish their services, while:.consumers can use it to find services that match their needs. After discovery,
a consumer must bind (i.e. to connect) his application to the (usually remote) Web Service in order to
interact and interchange data with it. UDDI (author?) [10, 33] defines a standard mechanism for searching
and publishing WSDL-described Web Services. By means of UDDI, a Web Service provider registers
information about the services he offers, thus making them available to potential clients. The information
managed by UDDI ranges from WSDL documents describing services interfaces to data for contacting
service providers (e.g. location, email addresses, etc.). Basically, UDDI standardizes and extends the idea
behind sites such as www . xmet hods . com to offer service browsing capabilities to users.

Currently, the above “publish-find-bind” process is fully handled by human developers. Unfortunately,
the “find” and “bind” operations still present many limitations that hinder the adoption of Web Services.
On one hand, common materializations in the software industry for service registries do not supply de-
velopers with a full-featured discovery support. For example, UDDI supports only keyword-based search
and category browsing of Web Services. This limitation is also present in contemporary keyword-based,
service search engines such as seekda’. com. Clearly, finding proper services —i.e. those fulfilling the
functional expectations of the client—through- UDDI is a time-consuming task when the number of services
is large, which is the case of massively distributed environments such as the Web. Furthermore, binding
an application to a Web Service requires developers to interpret its associated WSDL description and to
provide the necessary boilerplate code to programmatically contact the service and execute its operations.
When following this approach to Web Service invocation, developers are responsible for obtaining the
service endpoint and data-type definitions, and employing low-level communication libraries for consum-
ing the service. Alternatively, developers can employ frameworks for invoking Web Services, such as the
DAIOS (author?) [22] or the CXF (author?) [3], which provide programming abstractions to deal with
Web Service access and invocation. In the end, developers not only must literally decipher each service’s
intended purpose and invocation details, but also prepare their applicationsto consume selected services.

In order to facilitate the connection of Web Service consumers and providers, there is an increasing
need for automating the way programs interact with services. Specifically, the focus should be on the
“find” and “bind” operations. First, to find proper services automatically, a novel direction proposes to en-
hance Web Service descriptions using a nonambiguous and computer-understandable format. By assuming
that services are precisely described, it is expected that any application can autonomously understand the
concepts involved within the set of tasks a Web Service performs or even the contents of a Web information
source. Precisely, the Semantic Web effort proposes to annotate service descriptions with non-ambiguous
concept definitions from shared ontologies (author?) [24, 34]. This allows applications to autonomously
understand, from such semantically-enhanced Web Service descriptions, the functional capabilities of any
Web Service and the involved interaction mechanisms it prescribes (e.g. protocols). The idea behind the
Semantic Web is fairly simple: every Web resource (services and information sources such as pages, files,
databases, and so on) is annotated with precise descriptions of its semantics, known as metadata. Appli-
cations then use these metadata to understand the properties and the capabilities of those annotated Web
resources. These annotations are often expressed in standard semantic languages such as RDF (author?)
[39] and OWL (author?) [2].

The intelligent agent paradigm has been historically conceived to have a fundamental role in material-

'Google Code http://code.google.com

2Flickr Services http: //www.flickr.com/services/api

3eBay http://developer.ebay.com/DevProgram/index.asp
4Amazon Web Services http://aws.amazon.com
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izing the vision of user applications that autonomously understand such metadata (author?) [15]. Particu-
larly, software agents (author?) [15] — this is, autonomous software programs that perform tasks on behalf
of users— can exploit the semantics of Web Services to supply consumers’ applications with the knowledge
necessary to bind them to external Web Services automatically. Moreover, due to the massively distributed
nature of the Semantic Web, mobile agents (or agents able to migrate within a network to interact with
locally-accessible resources (author?) [13]) have properties that make them even more suitable for ex-
ploiting the potential of open information environments. In fact, mobile agents have been proposed for
exploting Cloud infrastructures (author?) [11], a recent model for highly scalable distributed computing.
Some well-known advantages of mobile agents with respect to ordinary agents are support for disconnected
operations, heterogeneous systems integration, robustness and scalability (author?) [21].

Despite the advantages mobile agents offer, many challenges remain in order to glue them with Web
Services technology. Still, most-of these challenges are a consequence of the nature of the WWW, since
from its beginnings Web content has been mainly designed for human use and interpretation (author?) [30].
In other words, there is a need for a proper support for semantic service discovery for mobile agents. In
addition, there is still a lack of proper programming mechanisms so that mobile agents can autonomously
take advantage of the capacities of Web Services and resources. These facts, together with the inherent
complexity of mobile code programming compared to traditional non-mobile systems, have hindered the
massive adoption of mobile agent technology and limited its usage to small applications and academic
prototypes (author?) [11].

In this sense, we believe there is a need for a mobile agent development infrastructure that addresses
these problems and, at the same time, preserve the key benefits of mobile agent technology for building
massively distributed applications (author?) [11]. To cope with this, we propose SWAM, a platform for
building and deploying Prolog-based mobile agents on the Semantic Web. SWAM defines a mobile agent
execution model that allows programmers to easily create and deploy mobile applications without worrying
about Web Services location or access details. Furthermore, in order to consider the semantics of services,
SWAM provides an infrastructure for semantic matching and discovery of semantic Web Services (au-
thor?) [28]. This infrastructure aims at enabling for a truly automatic interoperability between SWAM
agents and semantic Web Services along with little development effort. As we will explain later, Prolog
is central to our approach, since it has'been recognized as an excellent choice for developing intelligent
agents as well as exploiting semantic information.

This article is organized as follows. The next section describes SWAM; focusing on its syntax and its
mobile agent execution model. Section 3 describes the semantic discovery subsystem of SWAM. Section 4
presents an example application to illustrate the interaction model between mobile agents and semantic
Web Services promoted by SWAM. Section 5 reports an evaluation of SWAM. Section 6 discusses relevant
related works. Finally, Section 7 presents concluding remarks and future works.

2. SWAM

SWAM (Semantic Web-Aware Movil.og) is a language for programming Prolog-based mobile agents
and deploying them in the Semantic Web. SWAM is built upon-an extension and a generalization of
MoviLog (author?) [44, 29]. MoviLog is a platform for building intelligent mobile agents on the WWW
following a strong mobility model (author?) [32], where agents”™ execution state is transferred transparently
on migration. Besides providing basic strong mobility primitives, an interesting feature of SWAM is the
notion of Reactive Mobility by Failure (RMF) (author?) [44], notion not exploited by any other tool for
mobile agents. Conceptually, a failure is defined as the impossibility of an executing mobile agent to find
some required resource at the current site (author?) [44].

SWAM execution units are mobile agents called Brainlets. Each Brainlet carries Prolog code that is
organized in two sections: protocols and clauses. The former section declares rules that are used by RMF
for managing mobility. Specifically, protocols are the interfaces or descriptions of those resources which
may trigger RMF-like mobility. On the other hand, the clauses section defines agent behavior and private
data. Syntactically, the code of a Brainlet has the following form:

PROTOCOLS

o

% Prolog facts representing protocols
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CLAUSES

o

% Prolog rules implementing agent behavior

RMF states that when a predicate declared in the PROTOCOLS section of an agent fails, SWAM moves
the Brainlet and its execution state to a site that contains definitions for the predicate and then resumes the
Brainlet’s execution. Not all failures trigger mobility, but only failures caused by predicates declared in the
PROTOCOLS section. The idea is that normal predicates are evaluated with the regular Prolog semantics,
but predicates for which a protocol has been declared are treated by RMF so that their failure may cause
migration. To distinguish between Prolog failures with the traditional semantics and failures handled by
RMF we will refer to the latter as m-failures.
Let us take a closer look at the SWAM language. For instance, the following code:

PROTOCOLS
protocol (aFunctor, f[arity(2)]).
CLAUSES
anotherFunctor(Y) :—
aQuery:—- aFunctor (X,Y), anotherFunctor(Y).
?=aQuery.

implements a Brainlet whose behavior is governed by the rules included in the CLAUSES section. Section
PROTOCOLS states that every clause whose functor is "aFunctor" and arity is two will be treated by RMF.
In this way, when the evaluation of aFunctor(X,Y) fails, the agent will be transferred to a site that contains
definitions for that clause. Then, incase of a successful evaluation of aFunctor(X,Y) at the remote site,
the agent will attempt to solve-anotherFunctor(Y) according to the standard Prolog evaluation semantics;
otherwise the evaluation of ?-aQuery will fail, because of the failure of aFunctor(X,Y).

Next is another example, presenting a Brainlet whose goal is to collect temperature values from dif-
ferent distributed sites, ‘and then to calculate the average of these values. Each measurement point is
represented by a site with a sensing process that periodically stores the last measurement Value in a local
database as a temperature(Value,Unit) predicate. The SWAM code implementing the Brainlet is:

PROTOCOLS
protocol (temperature, [arity (2)]1) .
CLAUSES
% Computes average and performs unit conversion
average (List, Avg):—...
% Collects temperature values
getTemp (Curr, List) :-
temperature (Value, Unit),
currentSite (S),
not (member (measure (Value,_,S), Curx)),
getTemp ( [measure (Value,Unit,S) |Curr], List).
% All sites have been visited
getTemp (Curr, Rev) :— reverse (Curr, Rev).
average (Avg) : —
getTemp ([], List),
average (NewList, Avg).
% Brainlet’s main goal
?—average (Avg) .

The idea of the program is to force the Brainlet to visit all available sites, locally getting on each site the last
measured temperature. The potential activation point of RMF is the temperature(Value,Unit) predicate.
PROTOCOLS declares that the evaluation of temperature(Value,Unit) must be handled by RMF. As a
consequence, if the evaluation of this predicate fails at a site S, RMF will move the Brainlet to a site
containing definitions for temperature/2 (i.e. predicates with functor “temperature” with two arguments).
The evaluation of getTemp will end successfully once all the sites offering temperature/2 have been visited.

For the sake of explaining the execution of the program we will consider a network comprised of three
SWAM-enabled sites. The idea is to trigger mobility upon m-failures of predicates temperature/2 and there-
fore forcing the Brainlet to visit the three sites Sy, S and S3. We launch the program from S| by invoking
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?-average(Avg). The code behaves the same as a regular Prolog program up to the point when getTemp
evaluates temperature for the second time. In this case, the evaluation of temperature fails because the
value stored at S has been already collected. Considering that temperature has been declared as a proto-
col, an m-failure occurs. Then, RMF searches for sites providing temperature/2 so as to migrate the agent
and to try to reevaluate the goal there. Note that there are two options, either S, or S3. Let us assume
RMEF selects S;. Then, after the migration to S, getTemp collects the local temperature until no more
choices are available. At this point another m-failure occurs and RMF selects S3. After evaluating once
at S3, temperature m-fails again. As there are not more options left for migrating the agent, evaluation of
getTemp ends. Then, the average of the values [temperature(Value|, Unit,), temperature(Value,, Unity),
temperature(Values, Unit)] is computed, thus causing the evaluation of ?-average(Avg) to finish. Finally,
the agent is automatically returned? to its origin (Sy).

In the example, the agent visits all sites containing temperature values. This behavior is not forced by
SWAM, but by getTemp, because it evaluates all available temperature predicates so as to make not(mem-
ber(...)) true. In other words, when an m-failure occurs, RMF moves the mobile agent to one particular
site, leaving remaining alternatives as backtracking points.

It is-worth noting that SWAM does not restrict the programmer to make use of RMF for handling
mobility. Instead, by declaring protocols the programmer is able to select which predicates of a Brainlet’s
code can trigger mobility. At an extreme, a Brainlet may not declare any protocol. This does not imply
that mobility is not available, but it'is in charge of the programmer as in most languages for mobile agent
programming. Indeed, protocol declarations allow the programmer to use RMF and traditional proactive
mobility at the same time, depending on his requirements.

The next subsection explains the underlying execution model of SWAM in detail. Then, section 2.3
describes its policy programming support.

2.1. Generalized reactive mobility by failure

RMF (author?) [44] was mainly designed to automate mobility decisions such as when and where
to move a Brainlet. However, blindly moving an agent every time some required resource is not locally
available can lead to situations where performance is bad (author?) [43, 29]. An illustrative example of
this fact arises when the size of a Brainlet is greater than the size of a requested resource. Clearly, it is
convenient to transfer a copy of the resource from the remote site, instead of moving the Brainlet to that
site. Another example takes place when the requested resource is-a Web Service, because a transfer is not
feasible, and hence the proper way to use it is by invoking the service, thus only inputs and outputs are
transferred. Finally, the interaction of an agent with a large database can be better done by moving the
agent to the provider site, and then locally interacting with the data. In this case, database access by copy
is unacceptable because it might use too much network bandwidth.

SWAM improves RMF by defining a new execution model named GRMF (Generalized Reactive Mo-
bility by Failure), which includes extra methods for accessing resources besides agent mobility. GRMF
supports proper methods for interacting with Web resources, such as remote invocation, for the case of
Web Services, and mirroring of resources, for the case of data and code. From the point of view of the
mobility model, GRMF generalizes RMF, since remote invocation-implies control flow migration, and
replication can be considered as a form of resource migration. From the resource access point of view,
GRMF extends RMF. GRMF provides decision mechanisms for selecting an access method based on both
resource types and environmental conditions, such as the total free memory available at a given site, the
network transfer rate, and so on.

When an m-failure occurs, there may be many sites offering the needed resource. SWAM is able to
decide an ordering for accessing sites if a Brainlet needs visiting more than one of them. In addition,
since depending on the nature of a resource several access methods may be suitable, SWAM can apply
different tactics to select the most convenient one. Both, ordering sites and choosing an access method
are decided by SWAM through policies. Policies are decision mechanisms based on platform-level metrics
such as network traffic, nearness between sites, agent size, CPU load, among others. For example, one may
specify that any access to a certain large database should be done by moving the mobile agent where the

5 An agent is sent back to its origin when it finishes its entire execution, regardless the execution is successful or not.
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database is located, rather than performing a potentially time and bandwidth-consuming copy operation of
the required data from the remote site. Besides, SWAM lets the programmer to define custom policies for
adapting GRMF to fit specific application requirements.

2.2. Protocols

As explained before, protocols are descriptors or logical pointers a Brainlet uses to reference the set
of resources it could need along its lifetime. Protocols must be declared in the PROTOCOLS section of a
Brainlet code with the following Prolog structure:

protocol(resourceKind, [ propy, propa, ..., propJ,accessPolicy)

where:

e resourceKind is aliteral (Prolog atom) representing the category which the resources referenced
by the protocol belong to. A category stands for any kind of resources made accessible to Brainlets,
such as files, databases, code libraries, Prolog clauses and Web Services. For example, protocol(file,-
[name(index.html)],_) refers to all resources of type “file” whose name is “index.html”.

e The second argument of the protocol corresponds to the list of properties the desired instances must
match, which allows a Brainlet to reference different subsets from the set of resources belonging to
the resourceKind class. Each property is a Prolog fact A(B), where A is the property name, and B
contains the property value (e.g. the pair “name” and “index.html” in the previous example).

e Finally, accessPolicy contains the identifier of the policy used by the agent to choose an unique in-
stance of the resource when more than one are available, and to select the access method. Remaining
instances are left as backtracking points. This policy must be declared in a POLICIES section, as
will be explained later. A “none” value indicates that all access decisions over the referenced set of
resources are fully delegated to GRMF.

As one might expect, every resource kind defines its own set of properties for describing resource instances.
For example, a protocol for a Web Service resource should include the operation name®, input arguments
and outputs. The following SWAM code declares a protocol describing a Web Service for searching Web
pages based on one or more keywords:

protocol (webService, [operation (keywordSearch),
in ([keywords (K) 1) ,out () ], none)

Roughly, the previous declaration enables GRMF to-act whenever a generic search service cannot be found
at the local site. When this occurs, GRMF searches for published Web Services including an operation
whose name matches “keywordSearch”, such as the ones provided by Google or Amazon. Also, the search
is constrained to those operations with one argument (keywords), but does not restrict the operation output
(i.e. the Prolog fact representing the search result). Moreover, since no access policy has been specified for
the protocol, the runtime of GRMEF is in charge of selecting an appropriate method for contacting services.
Note that a different protocol for a specific search pattern —such as a hardwired list of keywords— could
be declared, just by replacing the variable K with the desired values. This is useful for applying different
user-defined policies for accessing different subsets of service instances.

As the reader can see, some attributes of the Web Service such as the server address or the transfer
protocol are not specified. The information needed for contacting a search service instance is encapsulated
in its associated WSDL file, and is extracted and used by SWAM at runtime when a specific instance is
selected. We call this kind of attributes the hidden properties of a resource, this is, descriptive information
accessible only to the SWAM platform and therefore not taking part in the protocol matching process.
Hidden properties and public properties (WSDL document location; operation, in and out in our example,
respectively) must be supplied by providers when they publish a service or a resource in SWAM.

OThis property is mandatory, since within a WSDL definition a single Web Service may be composed of more than one operation.
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One of the main benefits of consuming Web Services using SWAM is that it deals with seamlessly
incorporating external services into users’ applications. Upon a Web Service that fits a protocol declaration
is located, SWAM interprets its associated WSDL document and invokes its functionality. Besides free-
ing developers of providing the necessary boilerplate code to consume a service, SWAM shields service
consumers from all non-functional aspects of service binding.

One of the main limitations of the aforedescribed support for consuming Web Services, on the other
hand, is that having syntactic-based protocol specifications requires that consumers and providers use the
same signature to request and offer services, respectively. Obviously, this is a very brittle approach in
decentralized environments like the WWW. In the end, only those services that exactly match the protocol
description can be used. In order to overcome this restriction we exploit semantics-based descriptions of
services and requests, or protocols in the context of GRMF. SWAM introduces another kind of resources
named semanticWebService, which stands for Web Services which have been semantically described using
shared ontologies. To indicate the need of a semanticWebService resource, a developer should write the
properties of the expected service using concepts from the same shared ontologies. For example, let us
suppose that-a developer uses the concepts “s:KeywordBasedSearch” and ““s:KeywordList” to semantically
describe the operation and inputs of a desired service, then the code of the protocol would be:

protocol (semanticWebService, [operation (’s:KeywordBasedSearch’),
in(’s:KeywordList’),out (_)],none)

By assuming that both publishers’ services and (agent) discoverers’ protocols are precisely described,
it is expected that connecting them would be simplified. Clearly, one limitation of this semantics-based
approach to matching protocols-and queries-is that it requires to describe them using the same concepts.
Section 3 will present a semantic similarity scheme that addresses this limitation.

Another example is presented next, which consists of a mobile agent for distributed text file search. In
particular, the Brainlet has to find the files whose name is “Book.html” containing the string “Semantic
Web”. For simplicity, wild cards-are not supported. The code that implements the agent is (let us ignore
for the time being the contents of the POLICIES section):

PROTOCOLS

protocol (file, [name(X)], none).
POLICIES

% empty section
CLAUSES

searchForFiles (FileName, Text, Files) :-
assert (filesFound([])),
findFiles (FileName, Text),
retract (filesFound (Files)) .
findFiles (FileName, Text) :-
file([name (FileName) ], FileProxy),
analizeFile (Text, FileProxy), !, fail.
findFiles(_, _).
analizeFile (Text, FileProxy) :—
searchText (Text, FileProxy),
getURI (FileProxy, FileURI),
saveResult (FileURI) .
% asserts a new result
saveResult (F1l1eURI) :—
retract (filesFound (Temp) ),
assert (filesFound ([FileURI |Temp])) .
% Checks whether FileProxy contains Text
searchText (Text, FileProxy) :-—
?-searchForFiles ("Book.html", "Semantic _Web", Result).

In this case, the agent defines one protocol that declares the need for accessing, at some point of its execu-
tion, one or more instances of a “file” resource. The protocol indicates that those instances must have their
“name” attribute as a public property. Every time the agent evaluates a rule requiring a file, GRMF will
handle the request.
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The example shown includes a new section named POLICIES. This is the place where programmers
can define custom heuristics for resource retrieval (in this case, files). For example, it could be convenient
to select the access method according to the file size. If it exceeds a certain size, the agent could migrate to
the site where the file is located rather than transferring the file, because this latter approach might waste
network bandwidth. In the next subsection we will explain how to state these decisions.

The Brainlet begins its execution by evaluating ?-searchForFiles. When a predicate fails accessing a
file, SWAM asks the current site for the list of remote resource instances matching the protocol requested.
To be more specific, SWAM searches for those instances which have been tagged with the “file” resource
category with a public “name” property. As the agent does not declare any policy for accessing files, SWAM
chooses any instance from the list and a proper access method. When the file predicate is reevaluated,
SWAM uses another item of this list. Once all items have been consumed, the predicate cannot be further
reevaluated, and the file searching process ends. After this, the agent is moved to the site from where it was
initially launched.

The actual access to every file instance is requested through the predicate file([name(FileName),File-
Proxy), which filters via standard Prolog unification those files whose name is not the same as FileName.
Moreover, the FileProxy variable is instantiated with a platform-supplied object that hides the real location
of the file, and provides a handler to read its contents.

2.3. Customizing GRMF

SWAM allows programmers to customize the way mobile agents interact with resources to fit spe-
cific applications particularities. SWAM provides support for programming complex rules for accessing
resources based on platform-level metrics. Policies are declared in a special section of a Brainlet’s code
named POLICIES. Each policy has a unique identifier and code implementing its behavior. In this way, the
same rule can be referenced from more than one protocol, thus allowing reuse of policies.

Upon an m-failure, SWAM searches for the resource instances that match the protocol of the predicate
that m-failed. Then, if the protocol references an existing policy, SWAM evaluates this policy to decide the
particular resource instance that will be accessed, and the particular access method that will be used. The
programmer specifies these decisions by declaring two separate Prolog rules, both with the same identifier,
and with the following structure:

sourceFrom (PolicyName, resource(Idl, Hostl),
resource (Id2, Host2), Result):-—

accessWith (PolicyName, resource (Id, Host),
MethodA, MethodB, Result) :-

The first rule defines the logic to select the desired resource instance among any pair of candidates. Sim-
ilarly, the second rule contains the behavior for choosing an access method given any pair of valid access
methods (MethodA and MethodB). By valid we mean a method that SWAM considers suitable for ac-
cessing a specific kind of resource. For example, SWAM does not consider a copy operation for accessing
a large database. In addition, the global resource identifiers (i.e. Id1-and 1d2) are included as arguments
of each rule. Note that this feature is useful to obtain information about a resource and thus to specify
constraints over its size, availability or cost.

We will extend the example of the file searcher Brainlet previously discussed. Suppose for instance
that the agent has to use the following policy for accessing files: “access the file instance located at the host
with the best bandwidth. In addition, if the Brainlet size is less or equal than the file size, access the file via
migration®. The rules that are necessary for coding this policy are:

sourceFrom (#1, resource(_, Hostl), resource(_, Host2), H):-
transferRate (Hostl, T1),
transferRate (Host2, T2),
minimum(T1l, T2, Hostl, Host2, H).

accessWith (#1, resource(Id, Hostl), move, _, move) :—
agentSize (AgentSize),
resourceSize (Id, FileSize),
AgentSize <= FileSize.
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2.4 Runtime support 9

The rule sourceFrom estimates the transfer rate between the current agent location and each remote host,
and then binds H with the address of the host to which the local site experiments the best network transfer
rate. On the other hand, accessWith selects the move method for accessing a file provided the Brainlet’s
size is less or equal than the file size. It is worth noting that transferRate, agentSize and resourceSize
are built-in predicates offered by the policy support of SWAM, which also provides various metrics related
to environmental conditions such as CPU, memory and storage availability.

2.4. Runtime support

SWAM is based on GRMF, a generic execution model able to automate decisions on when, how and
what site to contact to satisfy agents resource needs. GRMF is based on the idea that an entity external to
the Brainlet helps this latter to handle m-failures. Those entities are stationary agents called PNS (Protocol
Name Servers) agents:

Each site capable of hosting Brainlets (i.e. a SWAM-enabled site) has one or more PNS agents. PNS
agents are responsible for managing information about protocols offered at each site, and for returning the
list-of resource instances matching a given protocol under demand. A site offering resources registers with
its local PNSs- the protocols associated with these resources. For example, when publishing a Web Ser-
vice, the protocol-related information associated to the service —i.e. operations, valid inputs and delivered
outputs— must be supplied by the user to the hosting SWAM site. As a consequence, the local PNS agents
announce the newly added protocol to other sites of the network. Announcement is performed by means
of GMAC (author?) [14], a communication protocol of our own specially designed to provide efficient
multicast messaging to mobile platforms in open environments.

(iv)(@) Copy

__________
________
- ~

Resource instance e
and access method L
selection (iii)

Matching list of
resources and
valid access
methods (i),

Non-local

interactions

between

protocol ag(_ar_]ts; ________ i i i ;
SWAM-enabled Site 1 SWAM-enabled Site 2

Figure 1: Overview of GRMF

Figure 1 depicts the SWAM runtime support. When an m-failure occurs, SWAM queries local PNS
agents for sites offering the needed resource (step (i) in the figure), getting a list L; of hidden properties
(resource size, provider host, etc.) of the instances matching the agent request (step (ii)). As pointed out
before, hidden properties —unlike public ones— are not visible from protocols. In other words, protocol
declarations are not allowed to include properties such as “size”, “host”, “availability”, an so on. However,
hidden properties can be accessed by programmers through SWAM built-in predicates in order to specify
custom resource access policies, as shown in subsection 2.3 through the policy for accessing files. Note
that, in that case, the file size is queried by means of a “resourceSize” built-in predicate.

Taking L; as an input, SWAM creates a list of pairs L=< o, 3 >, where o represents the resource
instance identifier, and 3 are the valid methods for accessing that instance. Based on the list L, the following
tasks are performed (step (iii)):

1. Instance selection: SWAM selects from the input list the site from where the resource will be re-
trieved. In other words, an item from the list of instances is picked, leaving the remaining items as
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backtracking points to ensure completeness. If defined, the policies coded by the programmer are
evaluated.

2. Access method selection: SWAM chooses the access strategy taking into account the current platform-
level execution conditions such as CPU load and network traffic. If present, policies declaring custom
access strategies are also evaluated.

Finally, the platform uses the selected method for accessing the resource instance as shown in steps (iv)(a),
(iv)(b) and (iv)(c) of Figure 1. These steps are sketched using dashed lines to denote that only one of them
is performed.

Up to this point, we have explored the programming and execution models of SWAM for implementing
mobile agents, focusing on the application-level and the middleware-level mechanisms by which agents in-
dicate and contact external resources that are required to perform their tasks. Particularly, resource needs
are indicated by means of protocols, this is, structured descriptions of the properties of external resources
such as files, libraries and services. In order to effectively access Web Service resources we have imple-
mented a support for semantic discovery, which addresses the tasks of managing, querying and reasoning
about protocols and Web Service metadata. The next sections focus on describing this support.

3. Semantic matching in SWAM

Semantic matching allows agents to take advantage of ontologies by using reasoners. An ontology
explicitly represents the meaning of terms in vocabularies and the relationships between these terms (au-
thor?) [8]. Moreover, a reasoner is a software component that infers knowledge that is implicitly conveyed
in ontologies. For example, let us suppose we have an ontology representing the relationships “John is
Mary’s father” and “Mary is Ben’s mother”. Then, if we supply a reasoner with the rules “father(x,z) A par-
ent(z,y)—grandFather(x,y)” and “mother(x,y) U father(x,y)—parent(x,y)”, the reasoner would infer that
“John is Ben’s grandfather” from the ontology.

Indeed, one of the most powerful uses of ontology-based reasoning, and a key enabler for agents on the
WWW, is in the area of Web Services. Old approaches to managing machine-to-machine interactions over
the Web have been mainly focused on providing standard to make sure an agent knows the interface and
invocation details of a service before the interaction actually takes place. However, this is very inflexible,
since those bindings must be statically supplied by the programmer, rather than let the agent to dynamically
perform this task. In this sense, the Semantic ' Web aims at offering machine-readable ontologies and
reasoning tools to allow agents to autonomously find services whose exposed functionality fits agents’
needs.

We have designed a Prolog-based reasoner implemented as a set of rules for computing semantic like-
ness between any pair of concepts from a shared ontology. This support is used by SWAM agents in order
to determine the set of Web Services which best suit their semantic service requests. In the next subsections
we present our matchmaking support and reasoner.

3.1. Matching concepts

Ontologies are used to describe data and services in a machine-understandable way. In automated Web
Service discovery systems, agents usually try to locate a sufficiently similar service to accomplish their
current goal. The problem is indeed to define what “sufficiently similar” means. We propose to compute
the similarity between a needed protocol and published services from the similarity, or degree of match,
between individual concepts that describe their public properties and constituent elements, respectively.
Therefore, the rest of this section describes how to determine the degree of match between any pair of
concepts.

The degree of match between two concepts depends on their distance in a taxonomy tree. A taxonomy
may refer to either a hierarchical classification of things, or the principles underlying the classification.
Almost anything (objects, places, events, etc.) can be classified according to some taxonomic scheme.
Anatomically, a taxonomy is a tree-like structure that categorizes a given set of objects. Like (author?)
[34], we define four degrees of similarity between two concepts X and Y as follows:

e exact if X and Y are individuals belonging to the same or equivalent classes.
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e subsumes if X is a subclass of Y.
e plug-inif Y is a subclass of X.
e fail occurs when none of the previous degrees apply.

Definition 1 states the degree of similarity in terms of OWL operators.

exact if X equivalentClass Y,
b if X subClassOf Y
similaritydegree(X,Y) = - sum.es 1 Subtasst et = (1)
plug—in if Y subClassOf X,
fail otherwise

Although this scheme is very general and can be used to compute similarity between any pair of concepts,
it has a drawback, which we will explain through an example. Figure 2 illustrates how to use this similarity
scheme for measuring the degree of match of four concept instances. In the figure, the names of the
concepts have been chosen to denote their belonging classes. For example, concepts al and b1 are instances
of classes A and B, respectively. Since C is a subclass of B, in the left side of Figure 2 we labeled the
similarity between c¢2 and bl as “plug-in”. Moreover, we labeled the similarity between c2 and al as
“plug-in”, because C (indirectly) subclasses A as well. Note that though c2 is intuitively more similar to
bl than to al, this cannot be derived by employing the similarity scheme of Definition 1. Thus, we have
enhanced this scheme by taking into account the distance between any pair of concepts in the taxonomy
tree, as shown in the right side of the figure. Accordingly, the new similarity labels between c/ and b1 is
“plug-in, 17, and “plug-in,2” for ¢/ with al.Therefore, although these similarity labels share a qualitative
value, the labels state that c2 is hierarchically closer —i.e. more similar— to b/ than to al.

Simple metric Enhanced metric
/ N ™
Object @
propéty.., TN .~ A ]
instarice OF @ subCl%ss of instar . subClass Of
e A \ . '/_,»
subClass Of Z N |
subClass Of
e
4’90{ @
- X J

Concept X

Instance z

Figure 2: Enhanced degree of match

We have implemented in Prolog an algorithm to compute these enhanced similarity scheme between
two arbitrary pair of concepts. Roughly, the algorithm consists of Prolog rules for computing the taxonomic
distance between concepts. The recursive nature of Prolog fits very well for implementing this enhanced
similarity scheme.

The rule match(X,Y,L,D) returns the distance D between a concept X and a concept Y under label L.
In this sense, accepted values for L are “exact”, “plug-in”, “subsumes” and “fail”, while D may take any
positive integer as value. Note that having a hierarchical distance equals to zero means that the two concepts
are equivalent, since they are at the same position in the taxonomy. The rule for computing the distance of
equivalent classes is:

match (X, Y,exact,0) :— equivalentClass (X,Y).
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Table 1: OWL-Lite to Prolog correspondence

OWL-Lite primitive Prolog representation | Description

Class class(X) X is a class

rdfs:subClassOf subClassOf(X,Y) X is a subclass of class Y
rdf:Property property(X) X is a property
rdfs:subPropertyOf subPropertyOf(X,Y) X is a subproperty of property Y
Individual individualOf(X,Y). X is an instance of class Y
inverseOf inverseOf(X,Y) X is inverse to property Y
equivalentProperty equivalentProperty(X,Y) | X is equivalent to property Y
equivalentClass equivalentClass(X,Y) X is equivalent to class Y
Relationships triple(X,Y,Z). X is related to Z by property Y

As we will showin next section, the antecedent of the rule is an appropriate Prolog translation of the OWL
constructor “‘equivalentClass”. Distance between a class and its directly related superclasses is defined
as 1. Similarly, the distance between a class and its directly related subclasses is defined as 1. The rules
associated with these two cases are:

match (X, Y, subsumes, 1) := isSubClassOf (X,Y).
match (X, Y,plug-in, 1) :— isSubClassOf (Y, X) .

Calculating the distance between indirect subclasses requires to vertically traverse the taxonomy tree and
computing the associated inheritance depth. Basically, distance for indirect subclassing is defined recur-
sively by the following rules:

isSubClassOf (X,Y,1) :— subClassOf (X,Y).
isSubClassOf (X,Y,D) :— subClassOf (X,D), isSubClassOf(Z,Y,D2),
D .is D2+1.

Finally, the matching rules for indirect subclasses are built on top of the rules for traversing the taxonomy:

match (X, Y, subsumes, D) : - isSubClassOf (X,Y,D).
match (X,Y,plug-in,D) :— isSubClassOf (Y, X,D).

For simplicity, the matchmaking support for concept properties is omitted. Nevertheless, it is implemented
in a similar way to the scheme for classes previously discussed. The next subsection explains how we
translate OWL constructors, such as “equivalentClass” or “subClassOf”, onto Prolog.

3.2. Representing ontologies in Prolog

Our Prolog-based reasoner is built on top of the OWL-Lite language (author?) [2]. Interestingly,
OWL-Lite is easily translatable to Prolog, since its semantics are equivalent to Description Logic, which is
a decidable fragment of first-order logic (author?) [4]. Table 1 shows the Prolog counterpart for some of
the OWL-Lite sentences supported by our reasoner.

RDF triples are the core-blocks to express OWL-Lite constructors in Prolog. An RDF triple is a struc-
ture triple(subject,property,value) stating that subject is related via property to value. OWL-Lite features
such as cardinality, range and domain constraints over properties are also translated to triples. For exam-
ple, triple(author, domain, book) and triple(author, range, person) define that author can be applied
to instances of class book with an instance of class person as value, while triple(’A Tale of Two Cities’,
author, ‘Charles Dickens’) states that Charles Dickens wrote a book named A Tale of Two Cities.

Most OWL-Lite features can be directly mapped as facts, which represent RDF triples. However, we
build some rules for wrapping these facts, in order to improve the readability of the Prolog source, such as:

triple (X, rdfs:subClassOf’,Y) :- subClassOf (X,Y).
triple(X,’owl:equivalentClass’,Y) :—- equivalentClass (X,Y).

Contrarily, there are two OWL-Lite features that cannot be directly mapped onto facts but require to use
Prolog rules. OWL-Lite inequality and transitive sentences are supported through the following rules:
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3.3 Semantic Web Service discovery 13
triple(Y,I,X):- inverseOf(P,I), triple(X,P,Y).

inverseOf (P, I):- triple(P, ’'owl:inverseOf’, I).

triple(X,T,Z):—- transitive(T), triple(X,T,Y), triple(Y,T,Z).

transitive(T) :— subClassOf (T, ’'owl:TransitiveProperty’).

The first rule states that a concept Y is related to a concept X by property I whenever X is related to Y by
a property P inverse to 1. For example, if wrote and author were inverse properties, then triple('Charles
Dickens’, wrote, A Tale of Two Cities’) holds. The last rule handles transitive relationships between
concepts. For example, if taller_than is a transitive property and John is taller than Paul and this latter is
taller than George, then John is taller than George.
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triple(section,content,owl:string).
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triple(advisor,rdfs:range,person).
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Figure 3: An ontology for generic documents

For exemplification purposes, the left side of Figure 3 depicts a simple ontology for documents while
the left side of the figure illustrates its associated Prolog representation. The ontology defines that thesis
and article are both a document having one author. A thesis has also an advisor. Both author and ad-
visor are properties whose values are instances of person. A document comprises a title, a language and
sections. Finally, every section has confent. In-the previous rules two new concepts appear: Thing and
owl:string. Thing is the parent class of all OWL classes, since every class direct or indirectly inherits from
it. Furthermore, OWL includes some built-in datatypes such as owl:string, owl:long, owl:boolean, to name
a few, which allow to define literal properties.

3.3. Semantic Web Service discovery

To perform a semantic search of Web Services instead of a less effective keyword-based search (e.g.
by service name), an agent needs computer-interpretable descriptions about the functionality of services.
Additionally, agents should semantically describe the services they need. Ontologies can be used for
representing such descriptions. In this sense, OWL-S (author?) [24] is a collaborative effort which aims at
creating a worldwide standard service ontology represented in OWL. OWL-S consist of a set of predefined
classes and properties for representing services. OWL-S is intended to describe Web Services and how
they must be invoked. On the other hand, SWAM allows agents to describe their service needs as a special
kind of resources: semanticWebServices, as explained in Section 2.2. In order to manage OWL-S based
descriptions of Web Services and match then onto SWAM protocols we have built a semantic discovery
infrastructure, which is shown in Figure 4.
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Figure 4: SWAM and its semantic Web Service discovery infrastructure

One of the main components of our semantic discovery system is its repository of shared ontologies.
This repository stores the concepts used for semantically describing published Web Services. The current
prototype of our service registry is based on an OWL-S sub-ontology named Service Profile, which offers
support for semantic descriptions of functionality, arguments, preconditions and effects of Web Services.
The repository. of shared ontologies not only keeps previously used concepts, but also allows publishers
to reuse these concepts. In this way, a publisher can describe the functionality of his services and their
input/output parameters in terms of concepts from this shared ontology repository. Instead, when none
of the concepts of the shared ontologies database fits for describing a service, the publisher is allowed
to add new ones. Upon publishing a Web Service, the service provider must also provide the URL of the
corresponding WSDL document. We maintain a record that associates each WSDL document with the con-
cepts involved in the semantic description of the corresponding Web Service in the Semantic Descriptions
Database (SDD).

Discoverers, on the other hand, interact with our registry of Semantic Web Services by means of
search requests. A search request is basically a semantic search expression given by a collection of
<property,expected_value> pairs describing the desired conceptual value for some specific relationships
within the Service Profile ontology. As we will-explain later in this section, to rank candidate services
we employ three properties from the Service Profile ontology: (1) operation functionality, (2) inputs and
(3) outputs. Consequently, a search expression must partially or fully include the  functionality, inputs
and outputs that the discoverer expects to obtain from candidate services. These expressions, which may
come from SWAM agents or conventional client applications, are appropriately translated to a Prolog query
combining RDF triples and the match rule of Section 3.1.-In general, such a Prolog query looks like:

triple (X, property, V), match(V, expected_value, L, D).

with L and D representing the degree of match between V, i.e.” the value of X for property, and the
expected_value for that property. For example, the protocol of Section 2.2, which states that a Brainlet
needs a Web Service for doing keyword-based searchers, generates the Prolog query:

?:-triple (Sx,’owls:hasInput’,V0), match(Vv0,’s:KeywordList’,L0,DO),
tripe (Sx,’owls:functionality’,V1), match(Vl,’s:KeywordBasedSearch’,L1l,D1).

where Sx represents the identifier of a service that has an input semantically similar to a s:KeywordList
concept with a <L0,D0> degree of match, such as <subsumes,2>, and whose functionality matches into
s:KeywordBasedSearch.

The Semantic Search Engine (SSE) is the component of our registry in charge of processing and han-
dling search requests, performing the discovery process and returning back the results. Processing a request
means to translate it to a Prolog query. After processing a request, the SSE searches for Web Services that
semantically matches’ the requested conceptual functionality, inputs and outputs. To do this, the SSE com-

7 A successful match between two concepts occurs when its similarity is greater than a application-given threshold.
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Algorithm 1 Ranking algorithm

1: procedure SORTRESULTS(result1, result2) > Returns the first result

2: if result1.operation.degreeO fMatch > result2.operation.degreeO fMatch then
3: return result1
4 end if
5: if result1.operation.degreeO fMatch < result2.operation.degreeO fMatch then
6: return result2
7: end if
8 if result1.out put.degreeO fMatch > result2.out put.degreeO fMatch then
9: return result1
10: end if
11: if result1.out put.degreeOfMatch < result2.out put.degreeO fMatch then
12: return result2
13: end if
14: if result1.input.degreeO fMatch > result2.input.degreeO fMatch then
15: return result1
16: end if
17: if resultlinput.degreeO fMatch < result2.input.degreeO fMatch then
18: return result2
19: end if

20: end procedure

pares the derived semantic query against the semantic descriptions of the published services. Likewise, the
SEE exploits concept relationships, such as subclassing and equivalence, which have been also stored in
the repository of shared ontologies. Then, a ranking algorithm is used to sort these results. The current
materialization of the SSE has a default sort criterion which gives priority to the resulting degree of match
between service functionality and outputs, however this criterion can be changed dynamically. If two re-
sults have the same similarity, similarities are computed on their inputs to check that the requester is able
to properly invoke any of the two-services. Algorithm 1 describes the main steps of the proposed ranking
algorithm.

To better illustrate the notions exposed up to-this point, the next section describes an example of a
semantic Web Service-enabled application coded with SWAM. We will put emphasis on how to implement
SWAM agents that make use of protocols to semantically describe required Web Services.

4. A sample application

Let us suppose we are deploying a network composed of SWAM-enabled sites, where some of these
sites offer Web Services for translating different types of documents (academic articles, forms, reports, and
so on) to a target language. Every time a client wishes to translate a document, a Brainlet is asked to find
the service that best adapts to the type of document being processed. In order to add semantics features to
the model, all sites publish and search for Web Services by using SWAM, and services are annotated with
concepts from the ontology presented in Section 3.2.

We also assume the existence of different candidate Web Services for handling the translation of a
specific kind of document. For example, translating a plain document may differ from translating a thesis,
since a more smart translation can be done in this latter case: a service can take advantage of a thesis’
keywords to perform a context-aware translation. Nevertheless, note that a thesis could be also translated
by a Web Service which expects a document concept as an input argument, as thesis concept specializes
document according to our ontology.

When an agent receives a new document for translation, it prepares a semantic query. Here, the Brainlet
is asked to translate a thesis to English. Figure 5 shows the activities performed by the components involved
in the translation process (the involved concepts are in italics). Before submitting the Web Service query,
the Brainlet sets the desired service output as a thesis. Also, the Brainlet sets the target language as English
and the source document type as thesis. Then, the semantic search process begins. SWAM its semantic
matching capabilities to find all existing translator services. Let us suppose two services are obtained: a
service for translating theses (S1) and a generic service (S2) for translating any type of document.

After finding a proper list of translation Web Services, SWAM sorts this list according to the degree of
match computed between the semantic query and services descriptions, and returns this new list back to



This is a preprint of the article: "SWAM: A logic-based mobile agent programming language for the Semantic Web. (M. Crasso, C. Mateos, A. Zunino, M.
Campo). Expert Systems With Applications. Elsevier Science. ISSN: 0957-4174. 38(3):1723-1737, 2011."

The final publication is available at http://dx.doi.org/10.1016/j.eswa.2010.07.098

16
Service 1 (S1) Service 2 (S2)
| negd a translator Op: translator Op: plug-in,1  Op: plug-in,1
service to translate In: thesis In: exact, exact In: subsumes,1; exact
this thesis to English Out: thesis Out: exact Out: subsumes,1
Brainlet \.

SWAM Prepare Query Prepare Result

Find Web Services

?:- triple(Sx,'owls:operation',Vx), match(Vx,translator,Lx,Dx)
triple(Sx,'owls:hasInput',Vx), match(Vx,thesis,Lx,Dx)
triple(Sx,'owls:hasOutput,Vx), match(Vx,thesis,Lx,Dx)

Figure 5: A Brainlet for thesis translation

the agent. In the example, the degree of match against S1 is greater than that of S2, because S1 outputs a
thesis (exact matchmaking) while S2 results in subsumes matchmaking with distance one.

PROTOCOLS
protocol (webService, [name (translate), in([thesis,english]),
out (thesis) ], none) .
CLAUSES
% The Prolog structure representing some thesis
thesis([title (' Title’),
author (" Author’),
language (spanish),
advisor (' Advisor’),

sections([...])}).
?-translate (TargetLang, Res):-—
In = in([thesis, TargetLang]),
Out = out (thesis),

webService ([operation(translate), In, Out], WSProxy),
thesis (Th),
executeService (WSProxy, [Th, TargetLangl), Res).

The above SWAM code implements the Brainlet discussed so far. When the webService(...) predicate
of the CLAUSES section is reached, SWAM contacts its underlying semantic discovery subsystem to find
candidate services that semantically match the Brainlet’s request. The evaluation of the predicate returns
a proxy (WSProxy) which is used to effectively invoke the resulting Web service. As explained before,
the way this Web Service is actually contacted (i.e. migrate to the service location or invoke it remotely) is
governed by access policies, in this case managed by the underlying platform as we have not configured a
custom policy for accessing the service.

To sum up, the Brainlet has obtained a Web Service for execution using data semantic information
rather than syntactic descriptions. To imagine a non-semantic matching scenario, assume that a syntactical
categorization of services for translating documents is defined. Such a categorization would typically have
a tree-like structure with a root node labeled “Document translator”. The root would have two child
nodes labeled “Article Translator” and “Thesis Translator”, respectively. Without a semantic description
about the type of documents each service is able to translate, the only way to find proper services is by
their name, a pure syntactic and rigid mechanism. In this way, the logic to determine which service is
appropriate for translating each type of document in terms of required inputs and delivered outputs remains
hardcoded in the agent code. Furthermore, when a new type of document unknown to the agent is added,
its implementation might need to be rewritten.
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5. Experimental results

The next subsections report some experimental results obtained with a SWAM application for air ticket
booking (without semantic matching of services) and several matchmaking simulations by using its seman-
tic discovery support. Basically, the first set of experiments assessed the performance of SWAM agents
when interacting with Web Services, without considering semantics. On the other hand, the second set of
experiments evaluated the performance of the semantic discovery support of SWAM.

5.1. An air ticket booking application

We developed several SWAM agents to solve a constraint problem in the air travel domain described
in (author?) [26]. The goal of the application is to book an airplane ticket for traveling between two given
cities according to certain domain business rules and user preferences. Examples of business rules are
flight and seats availability, whereas examples of users’ preferences are constrains over the ticket cost or
air companies. We assumed the existence of Web Services for querying the availability of flights, seats,
flight costs, and for booking a flight. The list of the operations offered by these Web Services are:

1. findFlight(Co, Origin, Destination, DepartureDate, ArrivalDate): Checks the existence of a flight in
a.company “Co” for the desired cities and dates. The service returns the ID of the first flight fulfilling
the criteria.

2. checkSpace(Co, flightID): Checks whether “flightID” has available seats.

3. checkCost(Co, flightID): Idem (2) for the cost of a flight.

4. bookFlight(Co, flightID): Books a flight and returns the ticket ID back to the client.

In addition, we considered a fixed set of companies, known by the Brainlet implementing the application.
For simplicity, the universe of constraints users may specify were grouped in five categories, which led to
five different variants and hence implementations of the main problem:

e Problem BPF (Book Preferred Flight): The Brainlet must book the flight offered by the user’s pre-
ferred company whenever it is possible; otherwise, the agent should book a flight in any company.

e Problem BMxF (Book Maximum Flight): This problem involves a different constraint: the user
specifies a maximum price that he is willing to pay for a ticket.

e Problem BPMXxF (Book Preferred Maximum Flight): This problem considers not one but two user--
defined constraints, namely preferred company and maximum price, and can be seen as a mix be-
tween the BPF and BMxF.

e Problem BBF (Book Best Flight): This variant represents an optimization task where the user wants
to book the cheapest flight available.

e Problem BBPF (Book Best Preferred Flight): The Brainlet must book the cheapest flight available,
but if two flights have the same price, the agent should favor the one offered by a given preferred
company.

We compared the performance of the SWAM solutions to the air ticket problem with equivalent implemen-
tations using IG-JADE-PKSLib (author?) [26, 25], a toolkit for the development of multi-agent systems
for Web Service composition and provisioning. IG-JADE-PKSLib is based on conventional Al planning
techniques to perform service selection, which is a rather different approach to ours and therefore an inter-
esting base for comparison.

The results of the IG-Jade-PKSLib implementations for the different variants of the flight booking prob-
lem are shown in Figure 6. These results were extracted from (author?) [27, 25]. The experiments were
performed on a XEON 3.0 GHz with 4 Gb RAM under Linux. The Figure shows the average execution
time for five runs of each variant of the problem with a different number of companies (varying from 2
to 10). All times are expressed in seconds. In terms of performance, IG-JADE-PKSLib behaves reasonably
well in BPF, BMxF and BPMXF, as service selections are performed in less than five seconds for five or
less air companies. However, it can be seen from the Figure that the implementation of these variants do
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Figure 6: Performance of BPF, BMxF and BPMxF (IG-Jade-PKSLib)

not scale well for ten or more companies. Furthermore, BBF and BBPF were too slow in the tests, so we
decided to left them out of the graphic.

Figures 7 and 8 show the average execution times (five tuns) of the SWAM implementations of each
variant of the booking problem. In this case, the tests were conducted on a Pentium 4 2.2 GHz with 1 Gb
RAM under Linux. The Web Services were deployed onthe Apache Tomcat web server, running on a
second machine under Sun Java Virtual Machine (JVM) 1.5 (build 19).

As the reader can see, SWAM performed excellent, even when running on less powerful hardware.
Unlike IG-JADE-PKSLib, all solutions (i.e. BPF, BMxF, BPMxF, BBE, BBPF) scaled well and performed
in the order of few seconds. As expected, the worst execution times were obtained from BBF and BBPF
variants, because they are the most computationally demanding problems. Specifically, the agent must find
out the company that offers the least expensive ticket, which in turn requires checking prices in every com-
pany. All in all, these results are very encouraging since they suggest that using SWAM to simultaneously
consume several Web Services does not lead to losing performance while maintaining both the benefits
of Prolog for declaratively implementing mobile agent applications and the good features of GRMF and
protocols for easily interacting with external Web Services.

5.2. Semantic matchmaking simulations

We evaluated the performance of our semantic approach to service discovery, in terms of response time,
with regard to different sizes of the Semantic Description Database (SDD) component (i.e. the number of
semantically-annotated published Web Services). We developed a number of simple SWAM applications
(without relying on mobility) that performed semantic search requests. Both the discovery infrastructure
and all test applications were deployed on an Intel Pentium 4 working at 2.26 GHz and 512 MB of RAM,
running Sun JVM 1.5 under Linux.

To fed the SDD, we first created two ontologies. The domains of these ontologies were stock man-
agement and car selling, respectively. Afterward, based on these two ontologies, we automatically created
service descriptions and supplied them to the SDD. Each service description consisted of three properties:
input, output and functionality. For example, the concepts involved in a service providing a quote for a sport
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car are cs:sportcar=input, cs:quote=output and cs:car_guoting=functionality (“cs” is the abbreviation for
the “car selling” namespace).

Then, we published 100, 1.000 and 10.000 semantic service descriptions. For each variant given by the
three SDD sizes, we separately performed 200 search requests and took the elapsed times. Searches were
simulated by using randomly-generated conditions and expected results. As mentioned above, searches
were performed locally, this is, both the test applications and our registry of Semantic Web Services were
deployed on the same machine. This was done to avoid the noise introduced by network communication
so as to accurately evaluate the retrieval performance of the discovery system.

Table 3 summarizes the resulting average response time for 600 random searches (i.e. 200 per test
case). From the table we can observe that the average performance of our discovery infrastructure was
below 150 milliseconds, even with 10.000 Web Services stored in the SDD. Graphically, Figure 9 shows
the relation between the size of the SDD and the search time. It is worth mentioning that the peaks of the
curves are a consequence of overhead introduced by the JVM garbage collector. Nevertheless, the upper
bounds of the response times are excellent regardless the size of the database.

Table 3: Performance of our semantic registry: Summary
Number of published Web Services 100 | 1.000 | 10.000
Average response time [milliseconds] | 2.37 | 12.65 | 149.33
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Figure 9: Performance of our semantic registry: Average search time

6. Related work

There is an interesting body of efforts that has been being done on agent toolkits for leveraging Web
Services. Some of the most relevant of such toolkits to our work are ConGolog (author?) [31], IG-JADE-
PKSLib (author?) [26, 25] and MWS (author?) [17, 18]. Despite some interesting advances towards the
integration of agents and Web Services have been made, current proposals have the following problems:
bad performance/scalability (IG-JADE-PKSLib), no/limited mobility (IG-JADE-PKSLib, ConGolog) and
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lack of support for common agent requirements such as knowledge representation, reasoning and high-
level communication (MWS). Furthermore, none of the previous platforms provide support for seman-
tic matching and discovery of Web Services. Another work close to ours is SmartResource (author?)
[19], a platform for programming service-oriented multi-agent systems that is implemented on top of the
JADE (author?) [6] agent platform. Mobile agents are implemented in an XML-based language that ex-
tends RDF called S-APL (Semantic Agent Programming Language). This, however, makes SmartResource
more difficult to adopt since logic-based languages (e.g. Prolog) are commonplace in agent programming.

Furthermore, there are a number of mobile agent-based platforms that address the problem of service
access in wireless environments. Concretely, (author?) [5] follows a framework-based approach to in-
tegrate mobile agents and semantic Web Services, and therefore forces developers to have expertise on
the framework before exploiting its capabilities. Similar to our agents, the structure of a mobile agent
comprises code, data and migratory/cloning policies, plus some extra elements (e.g. an embedded seman-
tic matching engine) that potentially makes them more heavier in terms of network resource usage than
SWAM agents. Moreover, (author?) [37] and (author?) [1] follow the idea of using mobile agents to
enable for mobile ' Web Services. Contrarily, we tackle the problem of simplifying the development of
mobile applications and their interaction with stationary semantic Web Services. Unfortunately, (author?)
[1] does not handle service semantics, while the soundness of the approach proposed in (author?) [37] has
not been corroborated experimentally yet.

Also, there are some proposals for semantic matching, publication and discovery of Web Services
(author?) [9, 16, 36]. One major limitation of these approaches is that their matching schemes do not
take into account the distance between concepts within a taxonomy tree. As a consequence, similarity
related to different specializations of the same concept are wrongfully computed as being equal. The
most relevant work to the service matching approach of SWAM is the OWL-S Matchmaker (author?)
[20], an UDDI-compliant semantic discovery and publication system. The OWL-S Matchmaker includes
a semantic matching algorithm that is based on service functionality and data transformation descriptions
which are made in terms of service input and output arguments. However, the OWL-S Matchmaker does
not support taxonomic distance between concepts either.

Another interesting approach to semantic discovery of Web Services is proposed in (author?) [23].
Here, a Web Service is described by using'a OWL-S profile or by employing an extension of an existing one.
Semantic similarity between two given services is therefore computed by comparing their associated profile
metadata rather than matchmaking their inputand output concepts. A service request must contain the class
associated with the ideal service profile (i.e. the one preferred by the requester), which is matched against
published profiles. The drawback of this approach is that it may be a cumbersome task for discoverers to
build a service profile extension that properly describes their needs.

Finally, (author?) [7] is another contemporary approach to discovery of semantic Web Services. Func-
tionally, the underlying matchmaking algorithm proposed in this work is very similar to ours. Particularly,
the algorithm exploits the metamodel for Web Services defined by the OWL-S Service Profile, and in-
troduces a similarity scheme that considers taxonomic distance. However, the most significant difference
between (author?) [7] and our approach to semantic Web Service discovery is the idea of sharing ontolo-
gies. Specifically, (author?) [7] incorporates the notion of independent ontologies, whereas we encourage
sharing ontologies among service publishers.

The scheme adopted by (author?) [7] allows publishers to describe their services using new concepts
upon publishing a service, instead of encouraging them to inspect those concepts that were used in the past
and, in turn, reuse or extend them, as our approach does. Then, many inconsistencies may spring, e.g. two
services that produce the same output, but the former is described using cs:Car and the latter by means of
cs2:Automobile. In this example, the outputs of the services will be treated as being different, unless their
publishers explicitly indicate that cs:Car and cs2:Automobile are equivalent concepts. To mitigate this kind
of inconsistency, (author?) [7] also takes into account lexical relations from WordNet between the names
of a pair of concepts. However, as the underpinnings of the WordNet (author?) [12]-based approach to
bridge different concepts lie in the syntax of concept names, names without any representative keywords
may deteriorate the retrieval effectiveness of the proposed similarity scheme.
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7. Conclusions

Intelligent mobile agents have the ability to infer, learn, act and move. Many researchers agree that
they will play a key role in providing backbone technology to truly materialize the Semantic Web vision.
In this light, our research aims at providing tools and platforms for easily building mobile agents and for
allowing these agents to autonomously interact with Web Services. We have introduced SWAM, a lan-
guage for programming Prolog-based mobile agents on the Semantic Web. A major difference between
SWAM and other mobile agent toolkits is its support for reactive access to resources by failure, which
reduces development effort by automatizing mobility and resource access decisions. In addition, its se-
mantic matchmaking and discovery support helps agents to autonomously find and invoke Web Services.
We have shown the practical usefulness of SWAM through a number of benchmark experiments. As ex-
plained, SWAM agents perform very well with respect to related approaches. Similarly, performance tests
conducted on its discovery support gave promissory results.

Unlike previous work, SWAM defines a more precise semantic matchmaking algorithm, which is im-
plemented ontop of a Prolog-based reasoner that offers semantic inference capabilities over the decidable
OWL-Lite ontology language. Our semantic infrastructure enables for the development of mobile agents
that interact with Web-accessible functionality published across the WWW. This leads to the provisioning
of an environment where every site can publish its capabilities as semantic Web Services to which agents
can find and access in a fully autonomous way.

There are some issues that are subject of future work. On one hand, we are developing more SWAM
applications to assess its benefits from a software engineering perspective. For example, we are rebumping
the Chronos (author?) [42] mobile agent-based distributed meeting scheduler to exploit Web Services as
well as semantic annotations. We are conducting research towards incorporating reasoning support for
a more powerful and expressive language than OWL-Lite, such as OWL DL or OWL Full. However,
this is rather challenging, as it is necessary to ellaborate a convenient solution to address the “decidability
versus expressive power’” tradeoff inherent to the sublanguages of OWL, and to incorporate proper mapping
rules into our Prolog-based reasoner or a bridge for querying a description logic reasoner. On the other
hand, the Shared Ontologies database of our semantic registry must be extended to provide a framework
to semantically describe, publish and discover other types of Web resources apart from Web Services,
for example pages, blogs and other agents. Thereby a software agent would be able to autonomously
interact with Web Services or any kind of Web resource whose content and/or capabilities are defined in
a machine-interpretable way. In addition, since the centralized nature of the discovery infrastructure may
lead to scalability issues, we are extending the P2P facilities of GMAC (author?) [14] with decentralized
semantic Web Service discovery.
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