
This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.htmlJournal of Web Engineering, Vol. Vol., No. No. (Year) Page Nos.© Rinton Press

EMPIRICALLY ASSESSING THE IMPACT OF DEPENDENCY INJECTIONON THE DEVELOPMENT OF WEB SERVICE APPLICATIONSMARCO CRASSO, CRISTIAN MATEOS, ALEJANDRO ZUNINO and MARCELO CAMPOISISTAN Researh Institute, Universidad Naional del Centro. Also CONICET.Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina.Tel.: +54 (2293) 439682. Fax.: +54 (2293) 439681mrasso�gmail.omReeived (reeived date)Revised (revised date)Servie-Oriented Computing (SOC) has been broadly oneived as the next big thingin distributed software development. The software industry has embraed SOC throughWeb Servies �funtionality that is aessible via ubiquitous protools suh as HTTP�.This tehnology provides the basis for reuse and interoperability of appliations arossthe WWW. However, onsuming Web Servies is still an expensive task in terms of de-velopment osts, sine developers still have to invest muh e�ort not only into manuallydisovering servies, but also on providing ode to invoke them, whih leads to softwarethat is polluted with servie-aware ode and therefore is more di�ult to modify and test.Reently, a tehnique that has beome very popular for building software is DependenyInjetion (DI), whih allows appliations to be far more testable and maintainable. Inthis paper, we quantitatively analyze some of the bene�ts and osts of DI for buildingWeb Servie appliations. We base our experiments on a re�ned version of DI that om-bines text-mining, mahine learning, and best praties from omponent-based softwaredevelopment to simplify the way Web Servies are disovered and onsumed. To ourknowledge, this is the �rst study on the impats of using DI in the ontext of SOC.Keywords: servie-oriented omputing, Web Servies, dependeny injetion, ode-�rstoutsouring, text miningCommuniated by : to be �lled by the Editorial1 IntrodutionServie-oriented omputing (SOC) is a ontemporary omputing paradigm that supports thedevelopment of distributed appliations in heterogeneous network environments [1℄. SOCappliations are built by omposing existing funtionalities (or servies) that are publishedand aessed through speialized protools. From the point of view of software engineering,SOC is an interesting paradigm for appliation development, sine it heavily promotes softwarereuse in a loosely oupled way [1℄.Mostly, the software industry has materialized SOC through Web Servies [2℄, this is,programs with well-de�ned interfaes that an be loated, published and invoked by meansof ubiquitous Web protools [3, 4℄. The model underpinning Web Servies enompasses threeelements: servie providers, servie requesters and servie registries. A servie provider reatesa Web Servie desription (ommonly in WSDL [5℄) and publishes it in a servie registry(usually UDDI [6℄). A servie requester uses the registry to �nd a Web Servie that mathes1

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

2 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliationshis needs, and then invokes its operations by using the orresponding WSDL desription.Partiularly, the aim of the WSDL and the UDDI standards is to provide interoperabilityamong lient appliations and servies aross the Web.Despite the important bene�ts Web Servies provide, namely loose oupling between in-terating lients and providers, and high levels of interoperability, they are still not as broadlyused as one may expet [7, 8℄. This is beause urrent approahes to Web Servie onsump-tion require developers to manually look for suitable servies and "glue" them in the lientside ode afterward. This pratie fores developers not only to invest e�ort into performingdisovery, but also to provide ode to interat with seleted Web Servies, whih leads toless maintainable software. Then, both the tasks of developing servie-oriented software andarrying out its maintenane beome harder.On one hand, ommon materializations of UDDI supply developers with keyword-basedsearh and ategory browsing of Web Servies only. Due to the ever inreasing number ofpublily available servies, �nding proper servies �i.e. those ful�lling the funtional expe-tations of the lient� through standard-based registries is like �nding a needle in a haystakfor a human disoverer [9℄. This, in turn, has a negative impat on the ost of developingservie-oriented software [10℄. On the other hand, the ommon approah to all Web Serviesfrom within the appliation ode is by interpreting its assoiated WSDL doument with thehelp of invoation frameworks suh as WSIF [11℄ or CXF [12℄. Though these frameworkso�er onvenient programming abstrations for aessing Web Servies, developers have toprovide the neessary boilerplate ode to invoke Web Servie operations [13℄. Consequently,appliations result in a mix of pure logi and funtionality for aessing Web Servies.A tehnique that has reently gained muh popularity for building maintainable softwareis Dependeny Injetion (DI) [14℄. With DI, a omponent an be inorporated (or injeted)into another omponent without a�eting the implementation of this latter. Empirially, ithas been shown that the software using DI tend to have lower oupling than the software notemploying DI [15℄, whih has a positive impat on maintainability.DI indeed allows developers to ahieve high quality designs [14, 16℄. Nevertheless, in theontext of Web Servie appliations, DI is underexploited. An example of a DI-based frame-work for building SOC appliations is Spring [14℄, whih allows programmers to non-invasivelybind their appliations to RMI objets, CORBA appliations and Web Servies. Like Spring,Web Servie frameworks follow a ontrat-�rst approah to servie onsumption: based onan input WSDL, i.e. the ontrat, they generate lient side software artifats (or stubs) fortransparently proxying the remote servie. Though this pratie allows designers to separatebusiness logi from the mehanisms for ommuniating with Web Servies, the appliationode remains subordinated to partiular Web Servie ontrats. Therefore, hanging servieproviders requires to hange the appliation logi as well, ompromising modi�ability andout-of-the-box testing and thus reduing the internal quality of the software. Besides, asthe ontrats of the Web Servies to be used ondition the way the appliation ode is imple-mented, programming an appliation must unavoidably ome after the neessary servies havebeen hosen. In other words, these tasks annot be arried out in parallel, thus potentiallyresulting in more ost to the whole development proess.We laim that DI an be further exploited to address the limitations of DI-based ontrat-�rst approahes to SOC development. We advoate for the use of DI along with a ode-�rst

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 3approah to servie onsumption: rather than having the appliation ode subordinated tothe ontrats of the Web Servies it aesses, we enourage developers to fous �rst on im-plementing and testing the funtional ode of their appliations, and then to inorporate theneessary Web Servies to �WS-enable� them. To this end, we ombine DI and the Adapterdesign pattern [17℄ to establish loose relationships between lients and servie providers, thusproviders an be swithed without a�eting the appliation logi. The approah also takesadvantage of the struture inherent to a DI appliation to e�iently look for required servies.Reently, several works have proposed to assist human disoverers in �nding proper serviesthrough standard-based registries by automatially improving the desriptiveness of disov-erers' queries [10, 18, 19℄. Unlike the approahes for semantially annotating soure ode andWeb Servies in an expliit manner [13℄, this alternative idea is to mine ertain informationthat is impliitly onveyed in software artifats [10, 18, 19℄. Naturally, suh �impliit seman-tis� annot ompletely replae the need for expliit semanti desriptions in the ontext ofsystems developed via automati Web Servie disovery suh as intelligent agents, in whihappliations onsume servies without human intervention [13℄. Nevertheless, as the bakboneof semanti approahes is desribing eah detail of available servies and queries using mahineinterpretable languages, in pratie this means gaining retrieval e�etiveness at the expenseof inrementing the ost for adopting SOC [7℄. Contrarily, [10℄ has experimentally shown thatthe ost of Web Servie disovery an be urbed by using the lient side interfae spei�ationof a omponent that is to be outsoured when querying Web Servie registries, but withoutthe neessity of sari�ing either of the aspets involved in the �retrieval e�etiveness versusost of adoption� trade-o�.In this sense, we propose to use the information present in the relationships between theimplemented DI-based appliation omponents to improve the desriptiveness of these queriesand thus promptly retrieving proper third-party servies. Intuitively, expanding queries basedupon omponents with strongly-related and highly-ohesive operations should enhane thedesriptiveness of servie queries. We have materialized these ideas as an Elipse plug-in thathelps in �servifying� DI-based appliations. This paper desribes the underlying developmentmodel materialized by this tool, and provides an evaluation of the model to assess the bene�tsof simultaneously using DI and following a ode-�rst approah to Web Servie onsumptionfor developing SOC appliations. Basially, we quanti�ed the impat of our model on WebServie disovery and the amount of system resoures (i.e. exeution time and memory)required to onsume servies under this model with respet to SOC tools not using DI andode-�rst servie onsumption. A major ontribution of this paper is an assessment of theimpat of using onventional DI and our re�ned DI for building Web Servie appliations.Essentially, the novel aspet of the paper is the provision of empirial evidene for softwarepratitioners on the upsides and downsides of relying DI for building suh kind of appliations,a study that has not been explored until now.The rest of the paper is organized as follows. The next setion overviews DI. After that,Setion 3 disusses the role of DI in the ontext of SOC appliations. Then, Setion 4desribes how DI an be exploited to ease the development of Web Servie appliations.Later, Setion 5 presents a detailed evaluation of our model. Setion 6 desribes relatedworks. Lastly, Setion 7 onludes the paper.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

4 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations2 Dependeny injetion: An overviewComponent-based development (CBD) is a branh of software engineering whose emphasis ison building appliations in whih funtionality is split into a number of logial omponentswith well-de�ned interfaes. Every omponent is designed to hide its assoiated implementa-tion, to not share state, and to ommuniate with other omponents via message exhange.In the end, appliation omponents only know eah other's interfaes, thus high levels of�exibility and reuse an be ahieved [20℄.A programming tehnique that has beome very popular in CBD is Dependeny Injetion(DI) [14℄. DI builds on the deoupling given by isolating omponents behind interfaes andfouses on delegating the responsibility for omponent reation and binding to a DI ontainer.Basially, when a omponent C1 aesses operations of another omponent C2 (i.e. C1 dependsupon C2), instead of expliitly reating and using an instane of C2 within the ode of C1, theidea is to implement C1 in suh a way it an be externally bound to a onrete implementationof C2. Preisely, a DI ontainer is the run-time entity that injets dependant omponentslike C1 into provider omponents like C2.In the following paragraphs we will illustrate DI through an example. First, let us sup-pose we have an ordinary Java appliation for listing books of a partiular author and topi(BookSearher) that ontats a remote data repository where book information is stored asFTP-aessible �les. Basially, the appliation opens a onnetion to the remote repository,transfers and parses the �le(s), and then iterates the results loally to display book informa-tion. The soure ode of the omponents implementing our appliation is:1 publi lass BookSearher implements . . . {2 BookRepository r ep o s i t o ry = null ;3 publi BookSearher (S t r ing repositoryURL , S t r ing username , S t r ing password){4 r ep o s i t o r y = new FTPBookRepository (repositoryURL) ;5 (FTPBookRepository) r e po s i t o ry . setUsername(username) ;6 (FTPBookRepository) r e po s i t o ry . setPassword (password) ;7 }8 publi void disp layBooks (S t r ing top i , S t r ing author){9 Lis t<Book> books = repo s i t o ry . getBooksByTopi (t op i) ;10 for (Enumeration<Book> elems=books . e lements () ; e lems . hasMoreElements () ;){11 Book book = elems . nextElement () ;12 S t r ing fullName = book . getAuthorFirstName () + " " + book . getAuthorLastName () ;13 i f (fullName . equa l s (author))14 System . out . p r i n t l n (book . g e tT i t l e ()) ;15 }16 }17 }18 publi interfae BookRepository {19 publi List<Book> getBooksByTopi (S t r ing top i) ;20 }21 publi lass FTPBookRepository implements BookRepository {22 publi St r ing repositoryURL , username , password = null ;23 publi FTPBookRepository (repositoryURL){24 this . repositoryURL = repositoryURL ;25 }26 // g e t t e r s / s e t t e r s for "username" and "password" go here27 publi List<Book> getBooksByTopi (S t r ing top i){28 t r a n s f e r F i l e (repositoryURL + "/" + top i + "/" + "books−2008. dat") ;29 t r a n s f e r F i l e (repositoryURL + "/" + top i + "/" + "books−2007. dat") ;30 . . .31 r e tu rn s parseAndJoinBookFiles () ;32 }33 proteted void t r a n s f e rF i l e (S t r ing f i leURL){34 // FTP−s p e i f i in s t ru t i ons35 }36 }

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 5
BookSearcher

< < c r e a t e > > FTPBookRepository

<<interface>>

BookRepository
<<use>>

(a) Without using DI
<<interface>>

BookRepositoryBookSearcher
<<use>>

Application

FTPBookRepository

Assembler
DI container

setRepository < < c r e a t e > >(b) Using DIFig. 1. Class diagrams of the example appliationFigure 1 (a) shows the lass diagram orresponding to this ode. Note that BookSearher hasto setup an instane of FTPBookRepository (lines 4-6) by providing it with some initializationparameters, namely the loation of the repository (line 4) and authentiation information(lines 5-6). Though BookSearher is only interested in retrieving and then �ltering books, ithas to know implementation details of FTPBookRepository. As a onsequene, BookSearheris oupled both to the interfae of the book repository (BookRepository, lines 18-20) and itsonrete implementation (FTPBookRepository, lines 21-36).Now, if we want to use a di�erent mehanism for storing books suh as a database or a WebServie wrapping the data, we have to modify the ode of BookSearher, and perhaps retest it.Depending on the way book information is aessed, a di�erent set of on�guration parametersould be required (e.g. database loation, drivers, username and password for a databaserepository; URLs, ports and namespaes for a Web Servie repository). Consequently, Book-Searher must also inlude the neessary onstrutors/setters methods. All in all, the auseof these problems is that the implementation of the BookSearher omponent is not fullyabstrated away from the mehanism (ode and on�guration) for aessing the repository.Expanding this into a real system, we might have dozens if not hundreds of suh ases.The DI version of the listing omponent is shown next. Essentially, BookSearher now ex-poses a setRepository(BookRepository)method (lines 5-7) so that a DI ontainer an injet thepartiular retrieval omponent being useda (line 3). Note that BookSearher ontains instru-tions only for browsing and �ltering book information, and its soure ode neither dependson a onrete implementation of BookRepository nor inludes protool-spei� on�gurationparameters. The DI version of BookSearher is:1 // The omponent into whih an implementation of BookRepository i s in j e t ed2 publi lass BookSearher {3 BookRepository r ep o s i t o ry = null ;4 publi BookSearher (){}5 publi void s e tRepos i t o ry (BookRepository r e po s i t o ry){6 this . r epo s i t o r y = r epo s i t o r y ;7 }8 . . .9 }
aMost DI ontainers support two forms of injetion: setter injetion (omponents express dependenies bymeans of getters/setters) and onstrutor injetion (omponents speify dependenies via onstrutor argu-ments). We will use setter injetion throughout the rest of the paper.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

6 Empirially Assessing The Impat Of DI On The Development Of Web Servie AppliationsNow, we must assemble the BookSearher and FTPBookRepository omponents so that anoperative appliation is built (see Fig. 1 (b)). Partiularly, we have to indiate the DI ontainerto use an instane of FTPBookRepository when injeting a value into the repository �eld ofBookSearher. This is supported in most ontainers by on�guring a separate �le (usuallyXML), whih spei�es a onrete implementation and on�guration information for everyomponent of an appliation and their dependenies. In the rest of the artile, we will useSpring [14℄ as the DI ontainer. Then, the on�guration �le for our appliation is:<?xml version=" 1 .0 " enoding="UTF−8" ?><!DOCTYPE beans PUBLIC "−//SPRING//DTD BEAN//EN"" ht tp : //www. springframework . org /dtd/ spr ing−beans . dtd"><beans><bean id="mySearher" l a s s="BookSearher "><property name=" repo s i t o ry "><r e f l o a l="myRepository"/></property></bean><bean id="myRepository" l a s s="FTPBookRepository "/><onstrutor−arg va lue=" f t p : //nowhere . om:21/books"/><property name="username">myUsername</property><property name="password">myPassword</property></bean></beans>It an be seen from Fig. 1 (b) that after employing DI the dependenies to onrete lasseswithin our appliation were removed. Also, the on�guration parameters for these lasseswere moved from the ode to a separate �le, whih is proessed at runtime by an assemblingelement supplied by the DI ontainer. In summary, we have obtained a better design in termsof oupling and ohesion.3 The role of DI in SOC developmentSOC onepts have evolved from omponent-based notions to fae the hallenges of soft-ware development in heterogeneous distributed environments [21℄. A SOC appliation an beviewed as a omponent-based appliation that is reated by assembling two types of ompo-nents exposing a lear interfae to their apabilities, as illustrated in Fig. 2b:
• internal : omponents loally embedded into the appliation,
• external : omponents that are either statially or dynamially bound to a servie.When building a new appliation, a designer may deide to provide an implementation for anappliation omponent, or to reuse an existing implementation (i.e. a servie) instead. Thislatter pratie is known as outsouring [22℄.In this ontext, to outsoure a omponent C means to �ll the hole left by the missingfuntionality with the one o�ered by an existing Web Servie S. In the Web, there may bemany published servies that serve to this purpose. For example, if a omponent for providingurrent foreign exhange rates is needed, either ServieObjetsc or StrikeIrond servies ouldbe used. In this sense, an early problem is how to support e�etive and quik outsouringof Web Servies. Another problem is how to inorporate outsoured servies into the inter-nal omponents while ahieving good quality attributes in the resulting software. DI o�ersopportunities for simultaneously takling both of these problems.

bFor modeling omponents, we will use from now on the UML 2.0 notation
cServieObjets http://trial.servieobjets.om/e/CurrenyExhange.asmx?WSDL
dStrikeIron http://ws.strikeiron.om/ForeignExhangeRate?WSDL

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 7
Internal

component
External

component

BookSearcher BookRepository

<<dependency>>

SOC application

Client side The Web

Web
Services

outsourcing

IBookRepIBSearch

Fig. 2. Internal and external omponents in SOC appliationsTypially, looking for servies that ful�ll a ertain funtionality in a registry, suh as im-plementations of UDDI, is a time-onsuming task when the number of servies is large, whihis preisely the ase of massively distributed environments like the Web. As a onsequene,the ost of developing SOC appliations grows dramatially. However, a DI-enabled appli-ation ontains a lot of information that an be exploited to speed up this proess and urbits orresponding ost. For example, by analyzing the lient side interfae spei�ation ofthe omponent that is to be outsoured (i.e. the signature of the operations expeted by itsrelated internal omponent(s)) the searh spae ould be narrowed down so as to allow devel-opers to selet a servie from a wieldy list of andidates [10℄. Furthermore, results ould befurther re�ned by taking into aount information about the ontext in whih the omponentbeing outsoured is aessed, i.e. the internal omponent(s) from whih those operations areinvoked.DI also provides a �tting alternative to non-intrusively inorporate a Web Servie intothe soure ode of internal, dependant appliation omponents. Conretely, when an inter-nal omponent Ci aesses the funtionality of an external omponent Ce, DI allows Ci tobe unaware of the mehanisms to atually interat with the outsoured servie assoiatedwith Ce. Then, any internal omponent an invoke Web Servies just like if they were allingoperations on another internal omponent, whih makes servie onsumption more natural tothe programmer and frees the appliation logi from having ode tied to Web Servie APIsor frameworks. In fat, the Remoting module of Spring provides a number of built-in om-ponents that an be injeted into appliations to easily exhange data with remote servies.With this in mind, a developer thinks of a Web Servie as any other regular omponent pro-viding a lear interfae to its operations, thus dependenies to external servies by means oftheir interfaes an be established. In Spring, if a developer wants to all a Web Servie Swhose interfae is Is from within an internal omponent C, a dependeny between C and Sis established through Is, ausing a proxy to S that realizes Is to be transparently injetedinto C.4 DI4WS: Taking DI a step furtherWe observe that, to date, DI has not been fully exploited for building SOC appliations. Inthis sense, we introdue DI4WS, a development model for building Web Servie appliations.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

8 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations
Syntactic

Web Service
search engine/

registry

Incorporation of the service
instance into the application
(performed by DI4WS support tools;
see Section 4.2)

2

3

Candidate selection
(performed by the
developer)

DI−based SOC
application

Keys:

Web Service description
(WSDL document)

External component

Internal component

1.1 Query preparation

(text mining

component code)

1.2 Registry

inspectionComponent B

Component D

Component A

Component C

search
result =

1 Service discovery
(performed by DI4WS
support tools; see Section 4.1)

ICompB

ICompD

ICompC

ICompA

Fig. 3. Overview of DI4WSAn overview of DI4WS is shown in Fig. 3. DI4WS takes as input an inomplete DI appliation,where some of its onstituent omponents are implemented, and others are intended to beoutsoured to Web Servies. In the �gure, these two types of omponents are skethed withsolid and dashed lines, respetively. Based on the dependenies between the (implemented)internal and the (non-implemented) external omponents of the input appliation, a semi-automati proess is iteratively applied to quikly and seamlessly assoiate an individual WebServie with eah one of the external omponents.Eah iteration of this outsouring proess involves three steps: (1) �nding the list ofandidate servies, (2) seleting an individual servie from this list, and (3) injeting a repre-sentative of the seleted servie into the appliation to allow this latter to interat with theservie at runtime. DI4WS provides developers with a GUI that performs steps (1) and (3)automatially and semi-automatially, respetively, whereas step (2) is in harge of users.Overall, the disovery-seletion-injetion sequene is performed until all external omponentsof the input appliation have been assoiated with a Web Servie.As shown in Fig. 3, Step (1) onsists of two sub-steps, namely sub-step (1.1) �Querypreparation� and sub-step (1.2) �Registry inspetion�. The former deals with generatingmeaningful queries that desribe those omponents that are intended to be outsoured tothird-party servies. Sub-step (1.2) in Fig. 3 represents the task by whih a Web Serviesearh engine is asked for servies similar to the previously generated queries. This sub-stephas been designed to be aomplished with any servie disovery mehanism that takes asinput a keyword-based query and returns a ranked list of WSDL douments, aording to howsimilar to the query they are. The next setion desribes how this is done in the ontext of asyntati Web Servie searh engine alled WSQBE [10℄, whih was also employed to performthe experiments. After the developer selets a servie from this list (step (2)), DI4WS semi--automatially injets a speial proxy to all the servie at runtime. Step (1) is explained in

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 9the next setion. Step (3) is desribed in Setion 4.2.
4.1 Step 1: Discovering Web ServicesSyntati approahes for Web Servie disovery evolved from previous researh on lassidoument retrieval. From an Information Retrieval (IR) viewpoint, the data within an in-formation system inlude two major ategories: douments and queries. The key problemsare how to state a query and how to identify douments that math the query [23℄. The or-nerstone of syntati approahes to doument retrieval is to use a ommon representation fordouments and queries, and to �nd out those with the most similar representations. Spatialrepresentations allow mapping douments onto vetors in a Vetor Spae Model (VSM) [24℄,while preserving the loality of similar ontent, so that similar douments are mapped ontonear vetors. Broadly, the VSM is an algebrai model for representing text douments in amultidimensional vetor spae, where eah dimension orresponds to a separate term, usuallysingle words. Therefore, by representing queries as vetors, disovering relevant doumentsoperates by omparing suh vetors.With respet to Web Servies, as both UDDI and WSDL standards are text-oriented,servie desriptions an be seen as douments and then smoothly mapped onto vetors [10℄.Keyword-based and natural language queries an be mapped onto spatial representations aswell. In both ases, a olletion of terms d = {term0, term1...termn} is mapped onto avetor ~d =< w0, w1...wn >, in whih eah omponent wi indiates how representative of thatdoument is an individual termi. There are di�erent term weighting shemes for determiningthe representativeness, or weight, of eah distint term [24℄. A weighting sheme alled TermFrequeny (TF) determines that a term is important for a doument if it ours often inthat doument, i.e. the higher the frequeny of the term within a doument, the higher itsimportane [23℄. TF-Inverse Doument Frequeny (IDF) is a ombined sheme that ratesas less important those terms that our simultaneously in many douments [23℄. In theend, WSDL douments and queries ontaining the same terms with similar weights will havesimilar spatial representations.An important onsideration when mapping a Web Servie desription onto the vetorspae is extrating terms from its assoiated WSDL doument. The olletion of terms gath-ered from a WSDL doument omprises port-type names, operation names, in/out param-eter names and omments [10, 18℄. Subsequently, extrated terms are preproessed to splitthem into ombined words (e.g. splitting �getBooksByTopi� leaves �get�, �Books�, �By� and�Topi�), and then remove non-relevant words (also known as stop-words), bridge synonymsand remove the ommoner morphologial and in�etional endings from words (also known asstemming) [10℄. Textual queries are frequently preproessed in a similar way as well beforemathing them with available servie representations. To illustrate how a VSM is built by asyntati Web Servie registry, suh as [10℄, below we present an example. Let us suppose wehave a servie for alulating the fatorial of any non-negative given integer, whose WSDLdoument is:<message name=" a l u l a t eFa to r i a lReque s t "><part name="originalNumber" type=" xsd : l ong "/></message><message name=" a l u l a t eFa to r i a lRe sponse "><part name=" f a t o r i a l " type=" xsd : l ong "/></message><portType name=" Fa t o r i a lCa l u l a to r">

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

10 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations<operat ion name=" a l u l a t eFa t o r i a l "><doumentation>Returns the f a t o r i a l a l u l a t o rf o r a g iven number</doumentation><input message=" tn s : a l u l a t eFa t o r i a lR equ e s t " name="number"/><output message=" tns : a l u l a t eFa to r i a lRe s pons e " name=" r e s u l t "/></ operat ion></portType>For larity reasons, the parts of the WSDL doument that de�ne onrete bindings totransport protools, endpoints and namespae delarations have been omitted. By pullingout terms from the names and omments of the port-types, operations, messages and data-types, the registry gathers the following bag of terms: �alulateFatorialRequest�, �original-Number�, �alulateFatorialResponse�, �fatorial�, �FatorialCalulator�, �alulateFatorial�,�Returns�, �the�, �fatorial�, �alulator�, �for�, �a�, �given�, �number�, �number� and �result�.Before building the vetor spae, the syntati registry proesses the olletion of terms to�lean� them up. First, the registry divides ombined words into single terms, e.g. splitting�alulateFatorialRequest� leaves �alulate�, �fatorial� and �request�. Seond, the registryremoves artiles, numbers, symbols, sentene onnetors and other words with a low level ofusefulness within the ontext of Web Servies, e.g. the word �request�. Finally, the registryapplies Porter's stemming algorithm [25℄ to eah single term. Now, the registry uses theresulting stems to represent the assoiated WSDL doument in the VSM aording to the TFweighting sheme. The resulting vetor is:
~v0 = (< factori, 4 >, < calcul, 3 >, < origin, 1 >)Now, let us suppose that a user wants to �nd servies relevant to the query: �alulatefatorial�. Then, the registry preproesses the query and assoiates to it the following vetor:

~q = (< factori, 1 >, < calcul, 1 >)Subsequently, the registry �nds vetors nearly loated to ~q by using a distane measuresuh as the osine similarity [23℄.Central to disovery in DI4WS is the idea of mining soure ode �les to extrat terms thatmay enhane the desriptiveness of a query, thus potentially inreasing the e�ieny of WebServie disovery. In fat, this soure ode is DI-enabled ode. Spei�ally, DI4WS employs atext mining proess omprising �ve ativities for mining relevant terms from the DI-enabledsoure ode that implements an appliation, as we explain below.As an illustration, let us suppose that the book searher appliation desribed in Setion 2now requires to outsoure a Web Servie for obtaining information about books overing atopi, instead of using an FTP repository. Figure 4 depits the detailed design of the appli-ation. Here, BookSearher implements the internal omponent and uses the BookRepositoryinterfae, whih represents the required external servie. Book information is modeled throughthe Book lass. The �gure also shows three tables, in whih eah ell ontains the outputgenerated by eah individual text mining ativity after proessing eah soure ode �le.As the reader an note, we followed good naming and doumentation praties for im-plementing the appliation. In partiular, eah lass of the �gure has been supplied withdoumentation in the form of a short natural language desription of its intended purpose.Furthermore, we used self-explanatory names for lasses, methods and properties. As shownin the olumns of the tables, the three initial ativities of our text mining proess enlarge the

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 11
<<External component>>

BookRepository

+getBooksByTopic(topic:String): List<Book>

Application logic

<<Internal component>>

BookSearcher
/** Retrieves books

 * of a given topic */

+repository: BookRepository

+displayBooks(topic, author)

<<dependency>>

<<Output data−type>>

Book
/** A written work or composition

 * that has been published */

+title: String

+authorFirstName: String

+authorLastName: String

+topic: String

/** Finds and displays books of a

 * particular topic */

<<uses>>

BookSearcher

repository

bookTopic

displayBooks

Looks for

books of

a particular

topic and

display

them

afterward

Book Searcher

repository book

Topic display

Books Looks

for books of a

particular topic

and display

them afterward

book

searcher

repository

book topic

display

books

looks books

topic display

book

searcher

repositori

book topic

displai book

look book

topic displai

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

BookRepository

getBooksByTopic

Retrieve

books

of a

given

topic

Book

Repository

get Books

By Topic

Retrieve

books of a

given topic

book

repository

 books

topic

retrieve

books

topic

book

repositori

book

topic

retriev

book

topic

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

Book

title

isbn

authorLastName

authorFirstName

topic

A written

work or

that has

been

published

Book title

isbn author

Last Name

author First

Name topic A

written work or

that has

been published

book title

isbn

author

author

topic

written

published

book titl

isbn

author

author

topic

written

publish

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

Fig. 4. Mining relevant terms from the book searher exampleolletion of extrated terms, and as the proess advanes, the resulting olletion of terms isre�ned. The union of the last olumn of these three tables suggests that the subsequent queryexpansion ativities quantitatively improved the resulting query by adding terms (stems tobe preise) belonging mostly to the book domain.Following good praties when building omponent-based software results in omponentswith strongly-related and highly-ohesive operations [26℄. Based on this, we assume that thelogi of a well-designed omponent ommonly belongs to a unique domain, whih is the samedomain of those omponents that diretly interat with it. For example, the omponent forproviding information about books might be useful for omponents belonging to the librarydomain, while it rarely might be useful for a omponent in the business domain. Clearly, thesoure ode �les of these omponents may onvey relevant information for �nding servies.Therefore, DI4WS expands queries by mining relevant terms from the soure ode �les ofboth the non-implemented omponents and the internal omponents that diretly depend onthem.Doumenting soure ode and using desriptive naming onventions are also onsideredgood development praties [27℄. DI4WS assumes that, throughout their projets, developersuse self-explanatory names for omponent properties, operations and arguments, and avoidusing meaningless names like �arg1� or �foo�. This assumption often holds, beause from adevelopers' point of view the hoie of meaningful identi�ers is as important as doument-ing ode [28℄. However, by blindly mining a soure ode �le, many irrelevant terms may beextrated (e.g. reserved words suh as �if�, �while�, �return�, et.), thus degrading the de-sriptiveness of a query. To overome this problem, DI4WS leans mined terms as explainednext.Under the assumption of good naming and doumenting praties, the interfaes desribingexternal omponents have meaningful terms. We have designed a text mining proess forpulling out relevant terms from the lient side soure ode. Although our tehniques maybe used with any programming language provided developers follow these good praties, wehave at present materialized it by using Java due to its high popularity. Generally speaking,the proess takes any Java lass or interfae as input and generates a olletion of extratedstems.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

12 Empirially Assessing The Impat Of DI On The Development Of Web Servie AppliationsIn a �rst ativity, we pull out the name of a omponent and the name of its operations.Simultaneously, we mine developers' omments from Javadoe elements. At this stage of thetext mining proess we have a olletion of words and ombined words, beause ommonlyused notation onventions suggest to merge words by means of upperase haraters, numbersor hyphens (e.g. getBooksByTopi, author_name). Then, in a third ativity we split allombined words. In a fourth ativity, we remove symbols and stop-words. Finally, we utilizePorter's stemming algorithm [25℄ for removing the ommoner morphologial and in�etionalendings from words, reduing English words to their stems. As a result, the output of thistext mining proess is a set of stems extrated from the spei�ation of a lass. Graphially,this proess is shown on the right side of Fig. 5.Under the assumption of strongly-related and highly-ohesive operations, the lasses de-sribing internal omponents (i.e. dependants) may ontain terms related to the domain ofthe external servie. Likewise, the lasses desribing arguments (inputs and outputs indis-tintly) of any operation o�ered by the potential servie, i.e. the external omponent, mayalso onvey relevant terms. For example, in the book searher example, the Book lass standsfor an output argument of the external omponent and ontains 7 relevant terms.To expand queries with relevant terms from argument lasses and dependant omponents,we must �rst identify them. One target lasses have been found, we feed them to the textmining proess. We have developed a plug-in for the Elipse SDK that provides a graphialtool to simplify as muh as possible the outsouring proess. The left side of Fig. 5 showssome sreen-shots of the plug-in. A wizard opens when a user selets �Find servies for...� byliking on a Java interfae from its soure ode. The wizard uses the Elipse JDT [29℄ SearhEngine for automatially seleting the omponents that depend on the interfae and presentingthem to the user. Then, the developer may selet or disard some of these lasses. Similarly,the wizard presents a list of argument lasses to the user. This list is automatially built byanalyzing the external omponent being outsoured and retrieving the lass names assoiatedwith eah argument of its operation(s), without taking into aount neither primitive typesnor lasses provided by Java. One the user has seleted target lasses, the wizard uses themalong with the aforementioned Java interfae as input for the text-mining proess. Finally, thewizard sends the generated query to a servie registry and presents the results as a andidatelist.Regardless of what soures of relevant terms we use or how we ombine them, the output ofthe text mining proess is always a olletion of stems. Intuitively, the more the preproessedomponents, the more the resulting stems. In other words, by ombining several term soureswe may augment the olletion of the stems that onstitutes a query. It is worth noting thatunder a non-DI or ontrat-�rst approah the lasses for modeling the external omponentand its arguments are ommonly absent until a andidate servie is seleted. On the otherhand, DI-based appliations onsists of omponents that are isolated behind publi interfaesthat, in the ontext of SOC, represent external servies. Then, a DI-based appliation ontainsmore soure ode �les for feeding the aforementioned text mining proess, whereas an ordinaryappliation ontains only lasses representing dependant omponents. In Setion 5 we willevaluate how the inlusion of this extra information �namely, the interfaes and their argumenttypes� impats on the auray of servie disovery.
eJavado is a tool for generating API doumentation from omments in soure ode.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 13

Discoverer

Split combined words

Extract class &
operation names

Extract
comments

Remove stop−words

Reduce words to stems

Fig. 5. The DI4WS Elipse plug-in: Query generation and servie seletionThe next setion fouses on desribing in detail how disovered servies, one seleted, areonsumed by appliations under DI4WS.
4.2 Step 3: Incorporating a candidate Web ServiceContrat-�rst Web Servie outsouring is based on the idea of adapting the lient side odeto the interfaes exposed by the servies an appliation aesses (i.e. the ontrated ones).Put di�erently, when an internal omponent C needs the funtionality of a Web Servie withinterfae Is, the ode of C will end up alling any of the methods delared in Is. As explainedbefore, this approah to servie onsumption an be employed in onjuntion with DI, beingSpring an example of a framework simultaneously providing both apabilities.Unfortunately, ontrat-�rst outsouring leads to a form of oupling through whih anappliation is tied to the ontrats (e.g. Is) of the partiular Web Servies it relies on. Inonsequene, hanging the provider for a servie requires to adapt the appliation to follow thenew Web Servie ontrat. At the implementation level, this means to rewrite the portions ofthe appliation ode that use the original servie interfae, whih inlude operation signaturesthat are likely to di�er from that of the new interfae. A di�erent operation signature mayimply di�erent operation names, or input and return data-types, whih must be handled byproviding ode expliitly.To overome this problem and still leverage the bene�ts of DI, DI4WS re�nes the idea ofWeb Servie injetion by introduing an intermediate layer that allows developers to seam-lessly use di�erent servies in their appliations. Roughly, instead of diretly injeting raw

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

14 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations
Internal

component
External

component

Adapter
injection (DI)Service

adapter

User−selected
Web Service

(client−side proxy)

Application
layer

Service
Adapter

layer

Proxy
layer

IAdapter
(=IExtComp) IProxy

IExtCompIIntComp

Fig. 6. Code-�rst, DI-based servie outsouring in DI4WS: Servie adaptersWeb Servie proxies into the appliation, whih demands to write the ode of internal om-ponents in suh a way it is ompatible with the servie ontrats, DI4WS injets servieadapters (see Fig. 6). A servie adapter is a speialized Web Servie proxy, designed throughthe Adapter pattern, whih is preisely responsible for adapting the interfae of an under-lying servie aording to the interfae (spei�ed by the developer at design time) of theorresponding external omponent. Servie adapters arry the neessary logi to transformthe method signatures of the lient side interfae to the atual interfae of the orrespondingWeb Servie seleted by the developer at step (2) of the DI4WS outsouring proess. Forinstane, if a Web Servie operation returns a list of integers, but the appliation expets a�oat array, a servie adapter would be responsible for performing the type onversion.Servie adapters support the notion of ode-�rst servie outsouring. As mentioned pre-viously, under ontrat-�rst the appliation ode is made ompatible with the interfaes ofthe Web Servies it uses. In opposition, under ode-�rst servie adapters aommodate theinterfaes of the outsoured servies to the interfaes expeted by the appliation, that is,the ones designed by the developer. In this way, hanging a servie does not a�et the logiof the appliation, as it only requires to ode another servie adapter for the new servie.Besides reduing ouplings, ode-�rst outsouring allows developers to design, implement andtest the ode of the internal omponents, and then fous on the outsouring of the externalomponents. This separation ontributes to improve the development proess itself, sinethese two groups of tasks an be performed independently by di�erent development teams.To illustrate these ideas, let us return to the example of the book searher appliationdisussed in Setion 2. The appliation was omposed of two omponents: an internal om-ponent (BookSearher) and an external omponent whose expeted operations were spei�edby a BookRepository interfae. After the developer hooses a Web Servie for this latter,DI4WS generates a lient side proxy to the servie, the orresponding servie adapter, andthe on�guration that is needed to injet the proxy and the servie adapter into the applia-tion. The resulting lasses for the appliation are shown in Fig. 7. In general terms, a servieadapter an be assoiated with many internal omponents, beause more than one internal

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 15
<<interface>>

BookRepositoryBookSearcher

Application

BookRepository_Adapter

Assembler
DI container

setRepository

< < c r e a t e > >

<<interface>>

BookRepository_Proxy

BookRepository_ProxyImpl

< < c r e a t e > >

setProxy

Runtime system Fig. 7. The DI4WS book searher appliation: lass diagramomponent may depend on the same external omponent.The proxy to a seleted Web Servie is reated based on the retrieved WSDL desription ofthe servie. Consequently, the proxy holds the logi to talk to the servie. The interfae of theproxy is exatly the same as the servie ontrat established by the provider, whih, under aode-�rst approah to outsouring, will not usually be truly ompliant to the servie ontratexpeted by the appliation (i.e. BookRepository). Currently, our plug-in automatially gener-ates proxies via the Web Tools Platform (WTP) [30℄, whih extends Elipse with failities fordeveloping Web and Java EE appliations. Eah servie adapter is partially generated by theplug-in as a lass skeleton that bridges the interfae of the lient side proxy to the servie (i.e.the servie ontrat) to the interfae expeted by the appliation. In our example, the servieadapter would automatially realize BookRepository, as it is injeted into BookSearher. Theode to map any all to methods from this skeleton lass to the proxy must be implementedby the developer. Although this task is arried out manually, the plug-in provides them withan editor for depiting whih parts of the ontrat must be adapted (Fig. 8) . For instane,let us assume that the interfae of the generated lient side proxy is:publi interfae BookRepository_Proxy {publi BookInfo [℄ doKeywordSearh(S t r ing top i) ;}Here, doKeywordSeah is an operation derived from the WSDL desription of the Web Ser-vie. In this way, the servie adapter must map individual alls to the getBooks operation(appliation-side ontrat) to a all to doKeywordSearh (server-side ontrat) on the proxy,thus the ode of the servie adapter would be:1 publi lass BookRepository_Adapter implements BookRepository {2 private BookRepository_Proxy proxy = null ;3 publi void setProxy (BookRepository_Proxy proxy){ this . proxy = proxy ; }4 publi BookRepository_Proxy getProxy (){ return proxy ; }5 publi List<Book> getBooksByTopi (S t r ing top i){6 // User−supp l i ed ode s t a r t s here7 Vetor<Book> adapterRes = new Vetor<Book>();8 BookInfo [℄ adapteeRes = getProxy () . doKeywordSearh(top i) ;9 for (int i =0; i<adapteeRes . l ength ; i++){10 adapterRes . addElement(reateBookInstaneFrom(adapteeRes [i ℄)) ;11 }

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

16 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations

Fig. 8. The DI4WS Elipse plug-in: Contrat adaptation12 return adapterRes ;13 // User−supp l i ed ode ends here14 }15 }The servie adapter implemented by BookRepository_Adapter only performs the translationof the invoked operation name and its return data-type (lines 8-11). However, the mappingtask may also involve onverting the input arguments of one or more adapter operations tothe parameters of the orresponding proxy operations. Besides mapping data-types, servieadapters are useful to inlude extra parameters when alling the operations of a servie thatotherwise would be ontained in the appliation ode, suh as username/password or liensinginformation. Another advantage of using servie adapters is that the ode related to handleexeptions when invoking servies remains isolated from the appliation logi.Finally, our plug-in generates the DI-related on�guration to wire the Web Servie proxy,the servie adapter and the internal omponent(s) using the servie together, so as to build aomplete appliation. A dialog lets developers to selet one or more dependant omponentsin whih the external servie will be injeted (Fig. 9, left). For instane, the servie providingbook details would be only injeted into the BookSearher omponent. Optionally, a seonddialog (Fig. 9, right) allows developers to set the lass name for the servie adapter and toestablish DI-ontainer settings (e.g. the loation of the Spring XML on�guration �le). Theresulting XML on�guration for the book listing appliation is:<?xml version=" 1 .0 " enoding="UTF−8" ?><!DOCTYPE beans PUBLIC "−//SPRING//DTD BEAN//EN"" ht tp : //www. springframework . org /dtd/ spr ing−beans . dtd"><beans><bean id="mySearher" l a s s="BookSearher "><property name=" repo s i t o ry "><r e f l o a l=" repository_Adapter "/></property></bean><bean id=" repository_Adapter " l a s s="BookRepository_Adapter "><property name="proxy"><r e f l o a l="repository_Adapter_Proxy"/></property>

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 17

Fig. 9. The DI4WS Elipse plug-in: Code generation and servie adapter injetion</bean><bean id="repository_Adapter_Proxy" l a s s="BookRepository_ProxyImpl "/></beans>The on�guration instruts the DI ontainer to injet an instane of the generated servieadapter into the orresponding dependant omponent (BookSearher), and also an instaneof the Web Servie proxy (BookRepository_ProxyImpl) into the servie adapter.
4.3 A case study: A personal agendaIn the next paragraphs we illustrate DI4WS for modeling more omplex appliations thanthe one explained up to now. Basially, we perform a qualitative omparison between theimplementation of a servie-oriented appliation based on ontrat-�rst servie outsouring, inwhih oding the appliation logi omes after knowing the ontrats of the external serviesto be onsumed, and DI4WS, whih promotes ode-�rst servie outsouring. Unlike theexperiments desribed in the next setion, the purpose of this setion is not to assess thee�etiveness and e�ieny of DI4WS for outsouring Web Servies, but provide some hintson how to design SOC appliations with DI4WS, and pereive its impliations in the resultingsoure ode.We separately followed ontrat-�rst and DI4WS approahes to develop a personal agendathat invoked Web Servies. The personal agenda was in harge of managing a user's ontatlist, arranging new meetings, and to notify these ontats of new planned meetings. Theontat list was modeled as a olletion of reords with information about individuals suhas name, urrent address (ity, state, ountry, zip ode, et.), telephones, email addresses,et. For implementing the two variants of the personal agenda, we simpli�ed the logi foroordinating the meeting by assuming that the partiipants being noti�ed always agree withthe arrangement provided by the requesting user.Below we list the tasks arried out by the personal agenda upon the reation of a new meet-ing. We assumed that the user of the personal agenda provides the date, time, partiipantsand loation of the meeting. Algorithmially, arranging a new meeting roughly involves:

• Getting a weather foreast for the meeting plae at the desired date and time.
• Obtaining the routes (or driving diretions) that eah ontat partiipating in the meet-ing ould employ to travel from their urrent address to the meeting plae.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

18 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations
• For eah partiipant of the meeting:

• Creating an email with an appropriate subjet, and a body inluding the weatherreport and the obtained route information.
• Spell heking the text of the email.
• Sending the email .The text in italis represents the funtionalities that were outsoured to Web Servies duringthe development of the two variants of the appliation. To bind these funtionalities toservies, we employed real-world Web Servies from the data-set desribed in Setion 5, whihwas also used for evaluating DI4WS. Figures 10 and 11 depit the omponent diagrams of theontrat-�rst and the DI4WS version of the appliation, respetively. As ontrat-�rst doesnot isolate the design of the appliation omponents that diretly onsume Web Servies (inour ase the PersonalAgenda omponent) from the interfae of these servies, the approahmakes suh omponents to depend on the server-side ontrats, this is, IWeatherByZipf,IIMapQuestServieg, ISpellChekerh and IHtmlEmaili.In opposition, when using DI4WS, the expeted interfaes for the outsoured Web Ser-vies are spei�ed at design time, whereas the bindings between these (lient-side) interfaesand the server-side ontrats are iteratively materialized at implementation time with theassistane of our plug-in. Partiularly, at design time the developer spei�es the interfaesof ContatManager and PersonalAgenda (internal appliation omponents) and the expetedinterfaes of the required Web Servies or external appliation omponents, this is, IForeast,IRouteInfo, ISpellCheking and IEmailSending. In addition, the omponents that diretlyinterat with Web Servies inlude the orresponding interfae to support DI, whih havebeen modeled in Figure 11 through the IGetSetAdapters interfae for PersonalAgenda. Thisinterfae is then aessed by the framework-level omponents that atually perform DI tolink PersonalAgenda with instanes of eah one of the four adapters. At implementation time,the developer must inlude the getter and setter methods spei�ed by the IGetSetAdaptersinterfae.All in all, the intermediate adapter omponents inluded by DI4WS allow for a bettersupport in terms of maintainability when hanging servie providers. To exemplify this idea,let us suppose we want to use a di�erent Web Servie for sending emails, this is, to haveanother implementation for EmailSenderServie (e.g. SendEmailServiej). As a onsequene,IHtmlEmail is no longer valid, whih impats on the implementation of the appliations.Partiularly, in the ontrat-�rst variant, this hange fores to modify in the implementationof PersonalAgenda the spei� ode that invokes operations de�ned in IHtmlEmail and theobjet models of operation arguments. On the other hand, as DI4WS e�etively pushes thesoure ode that depends on Web Servie ontrats out of the appliation logi via adapters,hanging the email servie only requires to rebuild its assoiated adapter and to implementthe orresponding parameter transformations within the adapter. This, in turn, has a positivee�et on the maintainability and testability of the internal omponents of the appliation.

fWeatherByZip http://www.innergears.om/WebServies/WeatherByZip.asmx
gIMapQuestServie http://www.xmethods.net/ve2/ViewListing.po?servieid=98418
hSpellCheker http://ws.dyne.om/spellheker/hek.asmx
iHtmlEmail http://ws.arossommuniations.om/Mail.asmx
jSendEmailServie http://seekda.om/providers/abysal.om/SendEmailServie

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 19
IWeatherByZip

Spell
Checker
Service

Route
Information

Service

Weather
Forecaster

Service

Email
Sender
Service

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

IIMapQuestservice ISpellChecker IHtmlEmail

Personal
Agenda

Contact
Manager

IContactManagement

IMeetingArrangement

IAddContact

IModifyContact

IRemoveContact

D
e

s
ig

n
/im

p
le

m
e

n
ta

tio
n

 tim
eFig. 10. Component diagram of the ontrat-�rst implementation of the personal agenda

IForecast

IWeatherByZip

Spell
Checker
Service

Route
Information

Service

Weather
Forecaster

Service

Email
Sender
Service

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

Weather
Forecaster

Adapter

<<adapter>>

IIMapQuestService ISpellChecker IHtmlEmail

Route
Information

Adapter

<<adapter>>

Spell
Checker
Adapter

<<adapter>>

Email
Sender
Adapter

<<adapter>>

Personal
Agenda

Contact
Manager

IContactManagement

IMeetingArrangement

IAddContact

IModifyContact

IRemoveContact

IGetSetAdapters

IRouteInfo ISpellChecking IEmailSending

D
e

s
ig

n
 tim

e
Im

p
le

m
e

n
ta

tio
n

 tim
eFig. 11. Component diagram of the DI4WS implementation of the personal agenda

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

20 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations5 EvaluationThis setion presents experiments that were arried out to provide empirial evidene aboutthe impat of DI4WS. We foused on evaluating the e�ets of employing DI on: (1) WebServie disovery and (2) runtime performane. Conretely, we ompared the e�etiveness ofdisovery with two variants of a syntati approah to Web Servie disovery when generatingqueries from appliations employing DI versus appliations not employing DI, aording tolassi IR metris. In addition, we assessed the overhead assoiated with supporting textmining and servie adapters in terms of exeution time and memory onsumption, respetively.For a detailed report on the performane of the employed servie registries, see [10℄.To ondut the tests we built several servie-oriented appliations by outsouring variousWeb Servies, from whih 30 queries were derived to be used as the evaluation-set. Eah querywas assoiated with at least two soure ode �les. One soure ode �le of eah query onsistedof the Java interfae standing for an injetable external omponent, i.e. a dependeny. Boththe header and the methods of eah dependeny inluded proper omments. For those de-pendeny methods that aepted user-de�ned data-types as arguments, their assoiated lass�les were properly ommented as well. The other soure ode �le represented the internalomponent that depended on the injetable one. Likewise, both the header and the methodsof eah dependant inluded omments. These sets of ode �les allowed us to evaluate twodi�erent types of term soures for querying the servie registry, namely those resulting frommining DI-based soure ode, and those extrated when mining non-DI ode.For the servie registry, we used two variants of the syntati servie disovery approahpresented in [10℄ by using TF and TF-IDF (see Setion 4.1), two well-known term weightingshemes [23℄, whih are extensively used by syntati approahes for servie disovery [9, 10℄.Then, we feed eah variant of the registry with a publily available olletion of 391 ategorizedreal-world Web Servie desriptions in WSDL. These WSDL douments were gathered fromrepositories on the Internet by Hess et al. [31℄. One the same data-set was published inthe two registry variants, DI-based and non-DI queries were used to retrieve servies fromthem. Note that using the same olletion of third-party WSDL douments for queryingthe registry with either DI-based ode or non-DI ode means that eah experiment is evenlyin�uened by the peuliarities of the employed olletion. For example, if the developer whopublished a servie used meaningless and poorly desriptive names for naming parameters andoperations within the orresponding WSDL doument, e.g. �arg0� or �foo�, then the retrievale�etiveness of both experiments �i.e. with DI-based and non-DI queries� will be harmed inthe same way. Then, the utilization of the same real-world WSDL douments enables for amore fair omparison in terms of retrieval e�etiveness.We used Reall-at-n, Normalized Reall (NR), R-preision and Preision-at-n measures toevaluate the proportion of relevant servies in the retrieved list and their positions relative tonon-relevant ones [23℄ (see Table 1 for a brief summary of them). As some of these measuresrequire to know exatly the set of all servies in the olletion relevant to a given query,we have exhaustively analyzed the evaluation-set to determine the relevant servies for eahquery. To do this, we judged whether the operations of a retrieved WSDL doument ful�lledthe expetations previously spei�ed in the Java ode or not. For example, if a dependantrequired a omponent for onverting from Euros to Dollars, then a retrieved omponent foronverting from Frans to Euros was non-relevant, even though these omponents belonged

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 21Table 1. Information Retrieval measuresMeasure Desription FormulaReall-at-n Computes the proportion of retrieved relevantdouments (RetRel) within a result list of size=n,where R represents all relevant douments in theevaluation-set RetReln

RNormalizedReall (NR) Regards Reall and the position (ri) of eah relevantdoument (ith relevant doument) in the result list,where N is the size of the evaluation-set 1 −

∑
R

i=1
ri−

∑
R

i=1
i

R(N−R)R-preision Computes the preision at the R position in the ranking RetRelR

RPreision-at-n(with n=1,10) Computes preision at the �rst and tenth positions of theresult list RetReln

nto the same ategory or they were strongly related. In this partiular ase, only omponentsfor onverting from Euros to Dollars were onsidered relevant. Note that this de�nition of hitmakes the validation of our disovery mehanism very strit. Furthermore, it is worth notingthat for any query there were, at most, 8 relevant servies within the evaluation-set. Besides,there are 10 queries that had assoiated only one relevant servie.We omputed the aforementioned measures for the 30 queries aording to four senarios,this is, using DI-based ode and non-DI ode in onjuntion with either variants of the registry.First, we averaged the results when generating queries from the soure ode �les related todependenies, arguments and dependants, i.e. the set of �les assoiated with the DI-basedode. Seond, we tested using only the dependant soure ode �les as inputs of the querygeneration proess, i.e. the �les assoiated with the non-DI ode, and averaged the resultsfor the same measures. In a �rst round of tests, we omitted the natural language ommentspresent in the orresponding odes for the four previous senarios, this is, the tests werearried out with undoumented DI-based ode and undoumented non-DI ode. The reasonfor performing these tests was to evaluate whether the DI-based ode may be more bene�tedfrom good praties on ommenting soure ode than its non-DI ounterpart, sine DI-derivedqueries are generated by proessing more Java soure �les, whih in turn means inluding moreomments. Therefore, for the sake of fairness, we deided to ompare the impliations of usingDI versus not using it, when the ode is undoumented.Figure 12 shows the averaged results for eah omputed measure in groups of two barsfor eah servie variant. The left/right bar within eah group shows the ahieved values foreah onsidered measure when using non-DI/DI-based queries. Figure 12 shows that, for thisevaluation-set, all measures ahieved better results (higher values are better) when using DI-based ode with both the TF and TF-IDF variants of the servie registry, even though theomments in the soure �les were ignored when deriving the queries.Table 2 presents a summary of the ahieved results. Reall-at-10 results point out that,with DI-based ode, one relevant servie was ranked in a window of 10 retrieved servieson the 86.63%-90.56% of the ases, aording to eah variant of the registry. When usingnon-DI ode, on the other hand, these perentages fell down to 60.83%-64.63%. Similarly,Preision-at-1 results show that a relevant servie was ranked �rst on the 70% of the aseswhen using DI-based ode regardless of the variant of the registry. Instead, when using non-DI ode, a relevant servie was at the top of the result list on the 30%-40% of the ases. NR

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

22 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations
 0

 20

 40

 60

 80

 100

R-Precision NR Recall
-at-10

Precision
-at-1

Precision
-at-10

A
v
e

ra
g

e
d

 m
e

a
s
u

re
s
 (

%
)

(m
o

re
 i
s
 b

e
tt

e
r)

Using non-DI code
Using DI-based code

29 %

78 %

60 %

30 %

19 %

65 %

90 %

86 %

70 %

26 %(a) Using the �rst variant of the registry (TF) 0

 20

 40

 60

 80

 100

R-Precision NR Recall
-at-10

Precision
-at-1

Precision
-at-10

A
v
e

ra
g

e
d

 m
e

a
s
u

re
s
 (

%
)

(m
o

re
 i
s
 b

e
tt

e
r)

Using non-DI code
Using DI-based code

30 %

79 %

64 %

40 %

20 %

68 %

91 % 90 %

70 %

28 %(b) Using the seond variant of the registry (TF-IDF)Fig. 12. Average ahieved results (%) for Reall-at-10, NR, R-Preision, Preision-at-1 andPreision-at-10 measures, when using unommented soure odeTable 2: Summary of ahieved resultsDI-based Non-DIMeasure/Registry TF TF-IDF TF TF-IDFR-Preision 65.82% 68.24% 29.07 30.38%NR 90.07% 91.08% 78.54% 79.23%Reall-at-10 86.63% 90.56% 60.83% 64.63%Preision-at-1 70.00% 70.00% 30.00% 40.00%Preision-at-10 26.67% 28.00% 19.33% 20.00%and R-Preision show that both DI-based alternatives surpassed their non-DI ounterparts,whih means that more relevant servies are ranked before non-relevant ones when usingDI. Preision-at-10 results also present improvements when using DI-based ode with eitherregistry variant, whih means that more relevant servies are ranked before non-relevant onesin a result list of size 10. We have hosen this window size beause we want to balane thenumber of retrieved andidates and the number of relevant retrieved andidates. We believethat a developer an ertainly manually examine 10 Web Servie desriptions without muhe�ort. In onordane with related experiments that empirially evidene that users tend toselet higher ranked searh results [32℄, even a moderate improvement in this diretion has agreat impat on the disovery proess. For instane, the probability that a user aesses the�rst ranked result is 90%, whereas the probability for aessing the seond ranked one is, atmost, 60% [32℄. In this line, at least for these experiments, generating queries from DI-basedode has shown to improve the disovery proess. Moreover, the fat that the results relatedto DI-based ode surpass those ahieved by non-DI ode regardless the variant of the registryused, provides empirial evidene that suggests that the improvements are explained by theusage of DI rather than the inidene of the underlying disovery mehanism.

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 23
 0

 20

 40

 60

 80

 100

R-Precision NR Recall
-at-10

Precision
-at-1

Precision
-at-10

A
v
e

ra
g

e
d

 m
e

a
s
u

re
s
 (

%
)

(m
o

re
 i
s
 b

e
tt

e
r)

Using non-DI code
Using DI-based code

38 %

83 %

63 %

43 %

21 %

64 %

90 %

87 %

70 %

26 %(a) Using the �rst variant of the registry (TF) 0

 20

 40

 60

 80

 100

R-Precision NR Recall
-at-10

Precision
-at-1

Precision
-at-10

A
v
e

ra
g

e
d

 m
e

a
s
u

re
s
 (

%
)

(m
o

re
 i
s
 b

e
tt

e
r)

Using non-DI code
Using DI-based code

43 %

85 %

72 %

53 %

24 %

68 %

92 %

95 %

70 %

29 %(b) Using the seond variant of the registry (TF-IDF)Fig. 13. Average ahieved results (%) for Reall-at-10, NR, R-Preision, Preision-at-1 andPreision-at-10 measures, when using ommented soure odeAlternatively, to test the hypothesis about omments positively impating on the retrievale�etiveness, we realulated the previous senarios by taking into aount the ommentspresent in the soure ode �les. Figure 13 shows the averaged results for eah measure whenusing ommented non-DI and DI-based ode. Note that for all measures the ommented DI-based ode performed better than the ommented and undoumented non-DI alternatives,and also the undoumented DI-based alternative. These experiments empirially on�rmthat mining omments from the soure ode of DI appliations ontributes to further improvethe ahieved e�etiveness of disovery with eah variant of the underlying servie registry.These positive results stem from the fat that DI-based ode ontains more meaningfulterms than non-DI ones, therefore the former allows us to generate better queries. To illustratethis, let us return to the tables depited in Fig. 4. Here, the non-DI query would onsist ofthe 11 terms listed in the �fth olumn of the table assoiated with BookSearher, this is,the internal omponent. Instead, the DI-based query would omprise 26=11+7+8 termsresulting from the union of the �fth olumn of the three tables. Intuitively, inluding moreterms impats not only on the servie disovery e�etiveness, but also on the proessing timerequired to built and answer the orresponding queries. In other words, by inreasing theinput of the preproessor (i.e. mining only ommented dependant soure ode versus miningommented dependeny ode), we might expet the proessing time required by the disoveryproess to inrease.To quantify the performane of servie disovery, we measured the time required to buildand answer queries by using the DI-based and non-DI versions of the above appliations thathad their soure ode ommented. Tests were run on an Intel Core 2 Duo (1.83 GHz. perore) under JDK 1.6, and a servie registry running on an Intel Pentium D (working at 3 GHz.and 1 GB of RAM) using JDK 1.6, Tomat 5.5 and jUDDI 2.0r5 [33℄. Both mahines wereonneted through a 100 Mbps LAN. To mitigate the noise, we averaged the elapsed time for30 exeutions of the appliations. Results showed that, at least for these appliations andthe aforementioned evaluation-set, the time required to solve an individual query was in therange of 1.1-1.6 se and 1.3-2.1 se when performing queries based on dependant ode and

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

24 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations
 5

 5.5

 6

 6.5

 7

 7.5

 0 1 2 3 4 5 6 7

J
a
v
a
 h

e
a
p
 s

iz
e
 (

M
B

)
(l
e
s
s
 i
s
 b

e
tt
e
r)

Snapshot

DI4WS
Plain proxies

Spring remoting(a) Average alloated memory 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

A
llo

c
a
te

d
 m

e
m

o
ry

 (
M

B
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Snapshot

DI4WS
Plain proxies(b) Average memory overheadFig. 14. Proxying Web Servies: Memory onsumption as the number of invoked servies inreasesdependeny ode, respetively. This suggests that our tehniques for mining DI-based odemay ertainly be useful in pratie sine they do not inur in exessive performane overheads.Additionally, we measured the memory onsumption overhead, that was aused by theutilization of the DI and Adapters patterns. By employing these patterns, new indiretionsare introdued in an appliation, beause all the interations between loal omponents andoutsoured ones are done through the servie adapters. Then, we might expet the memoryonsumed by a DI4WS appliation to be greater than the memory required by a ontrat-�rstone. To measure memory onsumption under DI4WS, we developed a simple appliation thataessed 10 of the Web Servies of the evaluation-set, eah having 3 operations on average.Furthermore, we obtained three variants for the appliation depending on the way these WebServies were onsumed: plain proxies (generated with Elipse WTP 3.2.2), Spring remoting,and DI4WS (generated by running our plug-in under Elipse WTP 3.2.2). All tests were rununder JDK 1.6. To perform a fair omparison, in all ases, the appliation omponents wereoded by using DI and assembled via the Spring framework. To perform the measurements,we used jhat, an utility that omes with the JVM 1.6 and allows programmers to dump theentire objet graph of a running Java appliation.Figure 14 (a) shows the average amount of alloated memory for 30 runs of the appliations.As depited, we took memory snapshots upon initializing the JVM and the Spring run-times(i.e. when the appliation omponents and servies are wired together; snapshot 1) and afteralling 2, 4, 6, 8 and 10 Web Servies (snapshots 2 through 6). As illustrated in Fig. 14 (a),the variants initially alloated very di�erent amounts of RAM, beause they are subjet toquite di�erent DI on�gurations.The memory alloation urves of the three appliations behaved similarly. The variantusing Spring remoting inurred in an overhead in the range of 22-30% and 3-8% with respetto the variant using plain proxies and DI4WS, respetively. The ause of the overhead is that,unlike the other two alternatives, Spring remoting uses lass introspetion and aspeting toproxy Web Servies at run-time, whih results in more alloated objets. Figure 14 (b) showsthe memory overhead of the DI4WS implementation with respet to the variant using plainproxies, without taking into aount the alloated memory upon initializing the JVM. All in

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 25all, maintaining a servie adapter requires an average of 2% of extra memory ompared tomaintaining a plain proxy. Atually, this value is smaller, beause at run-time DI4WS adaptersshare many objets suh as fatories and internal strutures of the Spring framework, butwhose size is very di�ult to measure in a preise way. Nevertheless, we believe this overheadis aeptable sine DI4WS produes leaner ode, enables for looser oupling and simpli�esservie disovery.6 Related workCurrently, lightweight frameworks for developing omplex enterprise systems promote the useof DI as a way to improve the quality of their resulting designs, mainly in terms of extensibility,testability and reusability [34℄. Frameworks suh as PioContainer [35℄, Spring [36℄ andHiveMind [37℄ have beome highly popular among Web developers. Besides, the notionsbehind DI have been already bundled into existing methods and tools for modeling Webappliations, suh as FrameWeb [38℄. Despite the hype of DI, as far as we know, there is inthe literature one empirial assessment of the impat of DI on Web-based projets, one artileon the use of the pattern in Grid development, and one study of the adoption of DI by thesoftware industry.First, [15℄ analyzes 20 sets of Web-based projets, in whih there is, at least, one projetusing DI per set. The authors reollet and ompare lassi measures related to the type andstrength of relationships among the omponents of both DI and non-DI appliations. Theanalysis foused on quantifying how DI impats on software maintenane and onluded thatsoftware tend to have lower oupling when using DI.Seond, [39℄ presents a DI-based programming model to develop appliations for servie-oriented Grids [40℄. The authors qualitatively analyze the outomes of employing DI in suh adistributed environment by Grid-enabling two appliations by using and not using DI. Then,lassi maintainability metris are taken on the resulting odes. The experiment showed thatthe DI-based ode was lighter than the non-DI version, suggesting redued maintainabilityost and development e�ort.Finally, [16℄ presents a benhmark for determining whether the design of a software systemis apable of using DI or not. The benhmark is essentially based on two types of elements,namely operational de�nitions for the DI pattern and ode analysis tehniques for detetingits use. The benhmark is evaluated by using 34 open soure appliations, and onludesthat, surprisingly, there is not strong evidene that suggest a widespread use of DI.To sum up, at the time of writing this paper, there are empirial evidenes to suggest thatusing DI improves software maintainability through abstration and indiretion mehanisms.Nevertheless, intuitively, the more the indiretions, the higher the demands for memory andCPU. In this sense, experimental evidenes about the overhead imposed by using DI have notbeen rigorously analyzed until now. Moreover, in the ontext of SOC development, DI hasnot been ompletely exploited yet.In spite of the lak of studies about the pratial impliations of using DI in SOC, whihin fat aligns with the absene of studies on the osts and bene�ts of the adoption of theSOC paradigm itself [41℄, there are however a substantial body of work that to a lesser orgreater extent share some of the ideas of the approah to servie outsouring followed in thispaper. Spei�ally, the idea of seamless �injetion� of Web Servies into lient appliations is

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

26 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliationsalso promoted by the Web Servies Management Layer (WSML) [42℄. Coneptually, WSMLintrodues a software layer similar to the adapter layer of DI4WS that isolates appliationsfrom onrete servie providers by using aspet-oriented tehniques. Though the authors havemetiulously disussed and analyzed WSML, the soundness of the approah has not beenorroborated experimentally yet. [43℄ also uses aspet orientation to dynamially replae aninternal appliation method by a similar Web Servie operation. Unlike DI4WS, the approahaims at fully automating the tasks of disovery and onsumption of servies at run-time, whihhas historially reeived ritiism [44℄ as it is di�ult to perform Web Servie engagementwithout any user intervention through the urrent support provided by UDDI and WSDL.Moreover, the use of servie adapters or similar mehanisms to isolate appliation logifrom Web Servie onerns is explored in several works, partiularly for semi-automati gener-ation of servie representatives or proxies [45℄, oordination and ompensation of Web Servietransations [46℄, and non-invasive in-the-middle data transformations to interat with dataservies [47℄. Unlike these approahes, DI4WS takes advantage of both the impliit semantisof the internal omponents of the appliation logi and potential interfaes of the requiredexternal servies to generate adapter ode and to disover appropriate Web Servies. Withrespet to servie disovery, lose to our work is that of Dourdas et al. [19℄ and Blake etal. [18℄ who also investigated the automati building of queries from software artifats fordisovering servies. Basially, the former work relies on mining textual features from naturallanguage desriptions of servie requirements and using them to query a servie registry. Thelatter work is a personal software agent that gathers keywords from developers' IDE (e.g. thename of the projet, the developer's role, et.) for assisting developers in �nding servies.Essentially, approahes aimed at exploiting the impliit semantis of lient-side appliationsto assist developers in the proess of disovering servies represent an alternative to semantidisovery, whih has shown to be very di�ult to use in pratie [7℄. The main di�erene be-tween the aforementioned works and DI4WS is that sine this latter enourages developers tobuild their servie-oriented appliations by employing a well-known design pattern (i.e. DI),DI4WS an gather desriptive keywords from the appliation while exploiting the strutureof the pattern and best praties for naming and doumenting soure ode.7 ConlusionsIn this artile, we have studied the role of the Dependeny Injetion pattern in the ontext ofservie oriented appliations. Conretely, the study was onduted in the ontext of DI4WS,an approah for outsouring Web Servies based on the bene�ts for building maintainable,loosely-oupled omponents inherent to DI, and provides a development model for makingthe task of building SOC appliations easier.The utmost goal of DI4WS is to exploit the information present in the lient-side ode toease the task of disovering Web Servies, and at the same time let programmers to separatethe appliation logi from servie-spei� aspets to inrease the maintainability of the re-sulting software. Experiments suggest that DI4WS is bene�ial from a pratial perspetive,as it allows developers to quikly and seamlessly outsoure servies, with a minimal overheadin terms of system resoures. Despite these enouraging results, we will ondut more experi-ments to further validate DI4WS. Opportunities for future evaluation inlude using other WebServie olletions and more appliations. To this end, we are planning to employ a reently

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 27published repository of real Web Serviesk to ondut ontrolled ase studies with severaldevelopment teams. This will allow us to further evaluate DI4WS as well as to use speializedsoftware metris to better assess the quality of the produed software and to onsider humanfators.Another line of future researh involves the provision of assistane to developers for odingservie adapters. Conretely, we are planning to extend the tehnique proposed in [45℄ topartially automate the task of bridging the signatures of the methods implemented by aservie adapter and the operations of its assoiated servie proxy. This tehnique will identifystrutural di�erenes between two interfaes (e.g. parameter types/ordering, missing/extraparameters, et.) and semi automatially generates bridging ode aordingly. Then, themismathes that require developer's input for their resolution ould be presented graphiallyto the user through our plug-in.As DI4WS uses a entralized, lient-server servie mathmaking and disovery shemethat may not be suitable for large SOC environments, we are working on salable solutions toaddress this issue. We are urrently developing parallel and distributed versions of our textmining algorithms on top of JGRIM [39℄, a middleware that supports e�ient exeution ofomponent-based Java appliations on omputational Grids.AknowledgementsWe thank the anonymous reviewers for their helpful omments and suggestions to improvethe quality of the paper.Referenes1. Mihael N. Huhns and Munindar P. Singh. Servie-oriented omputing: Key onepts and prini-ples. IEEE Internet Computing, 9(1):75�81, 2005.2. Martin Bihler and Kwei-Jay Lin. Servie-oriented omputing. IEEE Computer, 39(3):99�101,2006.3. Steven J. Vaughan-Nihols. Web Servies: Beyond the hype. Computer, 35(2):18�21, 2002.4. Franiso Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana. The nextstep in Web Servies. Communiations of the ACM, 46(10):29�34, 2003.5. W3C Consortium. WSDL version 2.0 part 1: Core language. W3C Candidate Reommendation,http://www.w3.org/TR/wsdl20, June 2007.6. OASIS Consortium. UDDI version 3.0.2. UDDI Spe Tehnial Committee Draft, http://uddi.org/pubs/uddi_v3.htm, Otober 2004.7. Rob MCool. Rethinking the Semanti Web. part I. IEEE Internet Computing, 9(6):88, 86�87,2005.8. Hongbing Wang, Joshua Zhexue Huang, Yuzhong Qu, and Junyuan Xie. Web Servies: Problemsand future diretions. Journal of Web Semantis, 1(3):309�320, 2004.9. John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and Athanasios Tsakalidis. Contem-porary Web Servie disovery mehanisms. Journal of Web Engineering, 5(3):265�290, 2006.10. Maro Crasso, Alejandro Zunino, and Marelo Campo. Easy Web Servie disovery: a Query-by-Example approah. Siene of Computer Programming, 71(2):144�164, 2008.11. Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski, and Sanjiva Weerawarana. WebServies Invoation Framework (WSIF). In Workshop on Objet-Oriented Web Servies (OOWS'01) - ACM Conferene on Objet-Oriented Programming, Systems, Languages and Appliations(OOPSLA '01), Tampa, Florida, USA, New York, NY, USA, 2001. ACM Press.
kThe QWS Dataset http://www.uoguelph.a/~qmahmoud/qws/index.html

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

28 Empirially Assessing The Impat Of DI On The Development Of Web Servie Appliations12. Apahe Software Foundation. Apahe CXF: An Open Soure Servie Framework. http://xf.apahe.org, 2009.13. Massimo Paolui and Katia Syara. Autonomous semanti Web Servies. IEEE Internet Com-puting, 7(5):34�41, 2003.14. Rod Johnson. J2EE development frameworks. Computer, 38(1):107�110, 2005.15. Ekaterina Razina and David Janzen. E�ets of Dependeny Injetion on maintainability. In11th IASTED International Conferene on Software Engineering and Appliations (SEA '07),Cambridge, MA, USA, Calgary, AB, Canada, 2007. ACTA Press.16. Hong Yul Yang, E. Tempero, and H. Melton. An empirial study into use of dependeny injetionin java. In Liang-Jie Zhang, editor, 19th Australian Conferene on Software Engineering (ASWEC'08), pages 239�247, Perth, WA, USA, Marh 2008. IEEE Computer Soiety.17. Erih Gamma, Rihard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements ofReusable Objet-Oriented Software. Addison-Wesley, Reading, MA, USA, 1995.18. M. Brian Blake, Daniel R. Kahan, and Mihael Fitzgerald Nowlan. Context-aware agents for user-oriented Web Servies disovery and exeution. Distributed and Parallel Databases, 21(1):39�58,2007.19. Nektarios Dourdas, Xiaohong Zhu, Neil Maiden, Sara Jones, and Konstantinos Zahos. Disoveringremote software servies that satisfy requirements: Patterns for query reformulation. In AdvanedInformation Systems Engineering, volume 4001 of Leture Notes in Computer Siene, pages 239�254. Springer-Verlag, 2006.20. Clemens Szyperski. Component Software: Beyond Objet-Oriented Programming. Addison-Wesley,Boston, MA, USA, 2002.21. Mike P. Papazoglou and Willem-Jan Heuvel. Servie Oriented Arhitetures: Approahes, teh-nologies and researh issues. The VLDB Journal, 16(3):389�415, 2007.22. Jak Green�eld, Keith Short, Steve Cook, and Stuart Kent. Software Fatories: Assembling Ap-pliations with Patterns, Models, Frameworks, and Tools. John Wiley & Sons, 2004.23. Robert R. Korfhage. Information Storage and Retrieval. John Wiley & Sons, New York, NY,USA, 1997.24. Gerad Salton, A. Wong, and C. S. Yang. A vetor spae model for automati indexing. Commu-niations of the ACM, 18(11):613�620, 1975.25. Martin F. Porter. An algorithm for su�x stripping. In Readings in Information Retrieval, pages313�316. Morgan-Kaufmann Publishers, San Franiso, CA, USA, 1997.26. Padmal Vitharana, Hemant Jain, and Fatemeh Zahedi. Strategy-based design of reusable businessomponents. IEEE Transations on Systems, Man, and Cybernetis, 34(4):460�474, November2004.27. Parag C. Pendharkar and James A. Rodger. An empirial study of fators impating the sizeof objet-oriented omponent ode doumentation. In 20th annual international Conferene onComputer Doumentation (SIGDOC '02), Toronto, Ontario, Canada, pages 152�156, New York,NY, USA, 2002. ACM Press.28. Diomidis Spinellis. The way we program. IEEE Software, 25(4):89�91, 2008.29. Elipse Foundation. Elipse Java Development Tools (JDT). http://www.elipse.org/jdt, 2009.30. Elipse Foundation. Web Tools Platform (WTP) Projet. http://www.elipse.org/webtools,2009.31. Andreas Heÿ, Eddie Johnston, and Niholas Kushmerik. ASSAM: A tool for semi-automatiallyannotating semanti Web Servies. In The Semanti Web - ISWC 2004, volume 3298 of LetureNotes in Computer Siene, pages 320�334. Springer-Verlag, 2004.32. Eugene Agihtein, Eri Brill, Susan Dumais, and Robert Ragno. Learning user interation modelsfor prediting web searh result preferenes. In 29th Annual International ACM SIGIR Confereneon Researh and Development in Information Retrieval (SIGIR '06), Seattle, Washington, USA,pages 3�10, New York, NY, USA, 2006. ACM Press.33. Apahe Software Foundation. jUDDI. http://ws.apahe.org/juddi, 2009.34. Rod Johnson and Juergen Hoeller. Expert One-on-One J2EE Development without EJB. John

This is a preprint of the article: Empirically Assessing the Impact of Dependency Injection on the Development of Web Service Applications. (M.
Crasso, C. Mateos, A. Zunino, M. Campo). Journal of Web Engineering. Rinton Press. ISSN 1540-9589. Vol. 9, Num. 1, pp 66-94. 2010. The final
publication is available at http://www.rintonpress.com/journals/jweonline.html

M. Crasso, C. Mateos, A. Zunino and M. Campo 29Wiley & Sons, 2004.35. PioContainer Committers. PioContainer. http://www.pioontainer.org, 2008.36. SpringSoure. The Spring Framework. http://www.springsoure.org, 2009.37. Apahe Software Foundation. HiveMind. http://hivemind.apahe.org, 2009.38. Vítor Estêv ao Silva Souza and Riardo de Almeida Falbo. FrameWeb: A framework-based designmethod for web engineering. In 2007 Euro Amerian Conferene on Telematis and InformationSystems (EATIS '07), Faro, Portugal, pages 1�8, New York, NY, USA, 2007. ACM Press.39. Cristian Mateos, Alejandro Zunino, and Marelo Campo. Grid-Enabling Appliations withJGRIM. International Journal of Grid and High Performane Computing, 1(3):52�72, 2009.40. Malolm Atkinson, David DeRoure, Alistair Dunlop, Geo�rey Fox, Peter Henderson, Tony Hey,Norman Paton, Steven Newhouse, Savas Parastatidis, Anne Trefethen, Paul Watson, and JimWebber. Web Servie Grids: An evolutionary approah. Conurreny and Computation: Pratieand Experiene, 17(2-4):377�389, 2005.41. John Erikson and Keng Siau. Web Servie, Servie-Oriented Computing, and Servie-OrientedArhiteture: Separating hype from reality. Journal of Database Management, 19(3):42�54, 2008.42. María Agustina Cibrán, Bart Verheeke, Wim Vanderperren, Davy Suvée, and Viviane Jonkers.Aspet-oriented programming for dynami Web Servie seletion, integration and management.World Wide Web, 10(3):211�242, 2007.43. Marisol Pérez Reséndiz and José Osar Olmedo Aguirre. Dynami invoation of Web Servies byusing aspet-oriented programming. 2nd International Conferene on Eletrial and EletronisEngineering, pages 48�51, 2005.44. Shuping Ran. A model for Web Servies disovery with QoS. SIGeom Exhanges, 4(1):1�10,2003.45. Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Franiso Curbera, and FabioCasati. Semi-automated adaptation of servie interations. In Proeedings of the 16th internationalonferene on World Wide Web (WWW '07), Ban�, Alberta, Canada, pages 993�1002, New York,NY, USA, 2007. ACM Press.46. Mihael Shäfer, Peter Dolog, and Wolfgang Nejdl. An environment for �exible advaned om-pensations of Web Servie transations. ACM Transations on the Web, 2(2):1�36, 2008.47. Ioana Manolesu, Maro Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali. Model-driven design and deployment of servie-enabled Web appliations. ACM Transations on InternetTehnology, 5(3):439�479, 2005.

