
Enhancing Agent Mobility Through Resource Access Policies
and Mobility Policies

Alejandro Zunino 1 , Cristian Mateos1 , Marcelo Campo1

1 CONICET - ISISTAN Research Institute
Fac. de Ciencias Exactas, Dpto. Computación y Sistemas

Universidad Nacional del Centro
Campus Univ. Paraje Arroyo Seco - Tandil - (B7001BBO)

Buenos Aires, Argentina

azunino@exa.unicen.edu.ar

Abstract. MoviLog is a novel programming language that aims at reducing the
effort of programming mobile agents. MoviLog is based on the concept of Re-
active Mobility by Failure (RMF), a mechanism that migrates a mobile agent
when it tries to access a resource that is not located at the current site. This
paper presents an extension of RMF that allows the programmer to adapt the
mechanisms used by RMF for deciding when and where to move an agent. Ex-
perimental results showing gains in network usage and performance with re-
spect to client/server and traditional mobility mechanisms are also reported.

1. Introduction

Mobile agents, autonomous software capable of migrating their execution between net-
work hosts in order to achieve their users’ goals, have been proposed as an alternative to
solve some of the problems of large distributed systems (Gray et al., 2001). Mobile agents
are different from non-mobile or stationary software in one very important aspect: mobile
agents arelocation aware, this is, mobile agents know the network topology and its re-
sources, and in order to take advantage of them, mobile agents move their execution from
host to host. As a consequence, mobile agents are able to choose, for example, whether
to remotely access to a non-local resource or migrate to the place where the resource is
located, depending on the cost of remotely interacting with the resource and the cost of
migrating to its location.

In recent years, mobile agents have shown advantages with respect to traditional
paradigms such as client/server. This motivated the development of many tools for pro-
gramming mobile agents (Nelson, 1999; Silva et al., 2001; Fuggetta et al., 1998; Thorn,
1997). Despite the advantages of mobile agents and the wide availability of tools, their
usage is still limited to small applications and academic prototypes (Kotz et al., 2002;
Fradet et al., 2000; Picco et al., 1997). In part, this is caused by the complexity of mobile
agent development with respect to non-mobile systems. Indeed, developers have to pro-
vide mobile agents with mechanisms to decide when and where to migrate. Therefore,
though agents location awareness may be very beneficial if properly used, it also adds
further complexity to their development (Picco et al., 1997; Silva et al., 2001).

MoviLog (Zunino et al., 2003; Amandi et al., 2005) is a programming language
whose goal is to reduce the effort of developing intelligent mobile agents. MoviLog is
based on the concept ofReactive Mobility by Failure(RMF). The idea behind RMF is to
assist mobile agents on making decisions onwhenandwhereto migrate. In order to retain

agents’ autonomy, RMF only interferes with their normal execution when it detects anm-
failure. An m-failure occurs when a mobile agent accesses to a specially declared resource
that is unavailable at the current site. In addition, RMF provides the same advantages as
traditional mobility, namely reduced network usage, better scalability, robustness, etc.

To sum up, MoviLog allows programmers to delegate decisions about when and
where to migrate an agent, but doing so implies that the programmers lose control of how
these decisions are made. In some cases this may lead to performance problems. Con-
sider, for example, a situation where a mobile agent located at a hosto needs a database
that is replicated at two hostsa andb. At this point, RMF moves the agent to one of
these hosts, for examplea. Now, let us suppose that the agent needs a small file located
at o, thus RMF migrates the agent fromo to a. Note that depending on the size and time
needed for migrating the agent it could be more convenient to transfer the file fromo to a
instead of migrating the agent.

Up to now MoviLog had problems with this type of situation because RMF was
not able to take into account application specific information that might lead to better
decisions. This paper describes an extension of MoviLog aimed at enhancing the perfor-
mance of mobility by allowing the programmer to tailor RMF. The idea of the extension is
that programmers should be able to specifypolicies, this is, the mechanisms that the algo-
rithms for automatizing mobility use for deciding. These policies help the automatic parts
of MoviLog in making decisions taking into account aspects such as agent size, network
load, CPU speed, etc., when deciding whether to migrate or not and where to migrate.

The paper is organized as follows. The next section introduces the concept of
RMF. Section 3 describes the extensions of RMF. Then, experimental results are reported
in Section 4. In Section 5 the most relevant related work are analyzed. Finally, concluding
remarks are presented in Section 6.

2. MoviLog and Reactive Mobility by Failure

Mobility can be eitherproactiveor reactiveaccording to whom triggers it:

• proactive: the time and destination for migrating are autonomously decided by the
migrating agent.

• reactive: migration is triggered by an entity external to the migrating agent.

Most existing mobile agent platforms support the former type of mobility only. On the
other hand, RMF (Zunino et al., 2005) combines both types to automatize decisions on
when and where to migrate mobile agents, thus reducing their development effort.

RMF is based on the assumption that mobility is orthogonal to the rest of capac-
ities that an agent may possess (Nwana, 1996): reasoning, reactivity, learning, mobility,
etc. RMF exploits the conceptual independence among agent capacities at the level of
implementation by separating agent functionality into two classes:stationaryandmobile
functionality. Stationary functionality is concerned with those actions executed by agents
at each site of a network. Mobile functionality is mainly concerned with making decisions
about when and where to move. RMF takes advantage of this separation by allowing the
programmer to focus his efforts on the stationary functionality.

Before going into further details we will first define several important concepts.
In the rest of the paper we will refer to mobile agents in MoviLog asBrainlets. The run-
time platform residing at each host that provides support for executing Brainlets will be
called aMARlet. A set of MARlets such as all of them know each other will be called
a logical network. A logical network groups MARlets belonging to the same application

or a number of closely related applications. In addition, MARlets are able to provide
resources such as databases, procedures or Web Services to Brainlets.

A Brainlet consists of a sequence of Prolog clauses and a possibly empty sequence
of protocols. As stated above, RMF is a mechanism that acts when anm-failure occurs.
An m-failure can be defined as the failure of a Prolog goal declared as a protocol. In other
words, protocols describe all those Prolog predicates whose failure may trigger mobility.
The failure of any other goal will not trigger mobility.

When a Brainlet produces anm-failure, the MARlet reactively migrates the Brain-
let to other MARlet with clauses with the same protocol as the one that failed. If more
than one MARlet possess clauses with that protocol, then the local MARlet builds and in-
crementally updates an itinerary to visit those MARlets. Once the Brainlet has migrated,
its execution is resumed at the destination. As a consequence mobility is transparent to
the Brainlet.

It is worth noting that the Brainlet does not decide neither the time to migrate nor
its destination. The migration is triggered by anm-failure, then the destination is dynami-
cally selected by the MARlet by communicating with its peers in the logical network. As
a result, even when the Brainlet knows nothing about mobility, RMF is able to determine
when and where to migrate the Brainlet. Indeed, the only data that a Brainlet is required
to specify about mobility are the predicates whose failure is to be treated as anm-failure.

The next subsections describe further details of RMF.

2.1. Brainlets

Brainlets are Prolog-based mobile agents that support proactive and reactive mobility. In
both cases, mobility is supported by astrongmigration mechanism. Bystrongwe mean
the ability of a mobile agent run-time system to allow migration of both the code and
the execution state of a mobile agent. In opposition,weakmigration is not capable of
transferring the execution state of a mobile agent and hence itforgetsthe point at where
it was executing before migrating. Despite the obvious shortcomings of the second type
of migration, it is widely supported by most mobile agent platforms because it can be
implemented in a simpler manner than strong migration. On the other hand, though strong
mobility is difficult to implement, their usage to program mobile agents is much simpler
than weak migration (Silva et al., 2001).

To sum up, Brainlets are mobile agents composed of the following parts:

• code: comprises a sequence of Prolog clauses implementing the agent behavior.
• data: consists of a sequence of Prolog clauses.
• execution state: is composed of one or more Prolog threads. Each thread com-

prises a program counter, variable bindings and choice points (for handling back-
tracking). Execution state is preserved on migration.

• protocols: describe all those Prolog predicates whose failure may trigger mobility.

2.2. Protocols

A protocol is a declaration with the syntaxprotocol(functor, arity) that instructs
the RMF run-time to treat the failure of goals with the formfunctor(arg[1], ... ,
arg[arity]) asm-failures. Protocols are used for two reasons:

• from a Brainlet point of view: to let the programmer control the points of a Brain-
let code that may trigger reactive mobility.

• from a MARlet point of view: to describe clauses, or more generically the inter-
face for accessing resources, available in a logical network. RMF works when

Table 1: Three MARlets and their clauses

M1 M2 M3

hd(#123, eide, wd, 5400,
40, 72)
hd(#23, eide, maxtor,
7200, 40, 79)

hd(#78, scsi, ibm, 15000,

36.7, 187)

hd(#78, scsi, ibm, 15000,
36.7, 187)
hd(#33, eide, quantum,
7200, 20, 54)

hd(#45, eide, ibm, 5200,

30, 114)

hd(#22, scsi, seagate,
7200, 36, 210)

hd(#44, eide, panasonic,

7200, 30, 582)

anm-failure occurs by searching in the logical network for all the MARlets pro-
viding clauses with the same protocol as the goal thatm-failed. Protocols enable
MARlets to describe those clauses or resources that they provide.

A simple example will clarify the concepts introduced up to now. We will first show a
Prolog program. Then, we will define a protocol to show how the program becomes a
mobile agent. Let us consider the following Prolog program:

preferred(Id) :- hd(Id,eide,_,_,_,_).
preferred(Id) :- ...

?-findall(Id+Price,
(hd(Id, Type, Brand, RPM, MB, Price), preferred(Id)),
L).

findall searches the Prolog database for clauseshd with six arguments, representing
hard disks, satisfying a number of preferences given by a user. The result offindall is a
list L containing pairs (Id, Price), whereId is the serial number of the hard disk andPrice
is its price. The predicatepreferred(Id) evaluates totrue if the hard disk identified
by Id matches a number of preferences such as brand, capacity, speed and price.

In order to explain the execution of the program we will consider a Prolog database
containing three clauses (columnM1 of the table 1). If we execute the program with those
clauses we obtain a list [#123+72, #23+79], stating that the hard disks #123 and #23
whose prices are 72 and 79, respectively, match users’ preferences.

Now we will modify the program to use RMF for searching in the three MARlets
for hard disks. The idea is to trigger mobility uponm-failures of predicateshd and hence
forcing the program to visitM1, M2 andM3. The modified code is:

PROTOCOLS
protocol(hd, 6).

CLAUSES
preferred(Id) :- hd(Id,eide,_,_,_,_).
preferred(Id) :- ...
?-findall(Id+Price,

(hd(Id, Type, Brand, RPM, MB, Price), preferred(Id)),
L)

The code is divided into two sections:protocolsandclauses. The first section contains
protocol declarations. The second section contains the code and data of the Brainlet.

As in the previous example,findall searches for hard disks satisfying a number
of preferences. The code behaves the same as the first example up to the point when
findall tries to evaluatehd for the fourth time. In this case, the evaluation ofhd will
fail, but considering thathd has been declared as a protocol, anm-failure will occur and

hence RMF will find a MARlet providing clauseshd to migrate the Brainlet and to try to
reevaluate the goal there. As shown in table 1, there are two options, eitherM2 or M3.
Let us assume that RMF selectsM2. Then, after the migration of the Brainlet toM2,
findall continues searching hard disks until no more options are available. In this point
anm-failure will occur and RMF will selectM3. After finding hard disks atM3, hd will
fail again. In this case there will be no more options left for migrating the Brainlet. Then,
it will be returned1 to its origin (M1) by the MARletM3. Finally, the result offindall
will be [#123+72, #23+79, #33+54, #45+114, #44+582].

As shown in the example, protocols enable the programmer to delegate mobility
decisions on RMF. At the same time, the programmer can combine proactive mobility
with RMF as needed by using the predicatemoveTo(S) that migrates the Brainlet to
a MARlet whose name isS (see (Zunino et al., 2003) for further details on proactive
mobility on MoviLog).

Up to now we have described how RMF handles mobility automatically. The next
section is concerned with the extensions for tailoring RMF.

3. Resource Access Policies and Mobility Policies
Despite the positive results RMF has shown (Zunino et al., 2003), some problem may
arise due to the lack of information RMF has about the application being executed.

For example, consider a Brainlet that causes anm-failure thus RMF migrates it
to a remote MARlet. Once there, the Brainlet just solves the failure by using a clause
available at the MARlet database and returns to its origin. The problem here is that the
two migrations of the Brainlet are certainly more expensive in bandwidth and time than
the cost of copying the clause needed to solve the failure from the remote MARlet to the
origin.

A similar situation occurs when, after anm-failure, a clause is available at several
MARlets. The first problem RMF has to solve is where to migrate the executing Brainlet.
It may decide blindly thus the Brainlet may end up running on a heavily loaded MARlet,
or travel through several very slow network links, or worst, it may choose a site that
charges for CPU usage.

Despite RMF is a step in making mobility easy to use, delegating mobility deci-
sions on RMF may be too expensive in terms of performance in some cases. In order to
solve these problems we extended RMF to supportpolicies, these are, mechanisms pro-
vided by the programmer to adapt RMF to his requirements. Policies can be classified
into two types:

• resource access policies: in the previous example,m-failures always cause the
migration of the executing Brainlet. However,m-failures can be treated either by
copying clauses from other MARlets to the local one, or by remotely accessing
clauses stored at other MARlets of the network, depending on several factors such
as network traffic, resource usage, etc.

• mobility policies: when more than one MARlet offer the protocol of the goal
thatm-failed it may be necessary to visit some or all of them for reevaluating the
goal. In addition, the order for visiting these MARlets may be important. For
example, it may be convenient to visit the sites according to their speed, CPU load
or availability.

The next sections describe each type of policy in detail.

1After a successful evaluation of a predicate thatm-failed a Brainlet does not return to its origin. It
returns if it finishes its execution, fails (no more alternatives are available) or RMF decides so.

3.1. Resource Access Policies

The extended RMF is able to both migrate a Brainlet to a remote MARlet or transfer
clauses from a remote MARlet to where the Brainlet is hosted. This decision is made by
considering two factors:

• The type of resources: protocols describe an interface for accessing a resource.
The type of a resource determines whether the resource istransferableor non-
transferable, i.e. whether it can be migrated over the network or not. For exam-
ple, let us consider a protocol that describes a number of clauses that require a
local printer for executing. Obviously, these clauses cannot be easily transferred
because of their dependence on the non-transferable local printer.
Protocol declarations may include a third argument indicating that the resources
are transferable. Then, the programmer could associate amigration policyto these
resources.

• A resource access policy: is a user-defined mechanism used by RMF to determine
whether to migrate a Brainlet or fetch resources from remote MARlets. For ex-
ample, a simple policy is to migrate a Brainlet if the network traffic generated by
migrating the Brainlet is less than the approximated traffic for fetching clauses.

When anm-failure occurs on a protocol marked as transferable, RMF obtains and evaluate
the resource access policy associated with the protocol. From this evaluation RMF decide
whether to fetch clauses from remote MARlets or migrate the Brainlet.

In the example described in Section 2.2 we could use a resource access policy to
determine whether to migrate the agent or fetch all the clauseshd with six arguments from
a remote MARlet:

PROTOCOLS
protocol(hd, 6, transferable).
accessPolicy(hd, 6, (estTrM(A, D, T1),
estTrFAll(hd, 6, D, T2), T1 < T2)).

CLAUSES
preferred(Id) :- hd(Id,eide,_,_,_,_).
preferred(Id) :- ...
?-findall(Id+Price,

(hd(Id, Type, Brand, RPM, MB, Price), preferred(Id)),
L)

accessPolicy states that in case of anm-failure the Brainlet migrates if the network
traffic T1 required for migrating the agentA to MARlet D, denotedestTrM(A, D, T1),
is less than the estimated network trafficT2 required for fetching all the clauseshd from
MARlet D, denotedestTrFAll(hd, 6, D, T2). Otherwise, the clauses are fetched.

3.2. Mobility Policies

The goal of a mobility policy is to build an itinerary for a Brainlet when the protocol of
the goal thatm-failed is available at more that one MARlet of the logical network. The
idea is to try to probe the goal by using a depth first search strategy similar to the one used
by Prolog, but taking into account the location of the code. In other words, to probe the
goal ensuring completeness it may be necessary to visit more that one MARlet.

A mobility policy provides a mean for the programmer to specify decision mecha-
nisms for ordering a set of MARlets for building an itinerary. The basis of the mechanism
consists on associating amobility policywith each protocol. The policy is used for de-
termining the next destination for reevaluating a goal given a set of MARlets offering the

same protocol as the goal. For example, in a CPU bound application might be useful to
visit MARlets according to the CPU load at each site, other types of applications may use
a policy based on the network load.

For the previous example we could specify a policy for visiting MARlets accord-
ing to the speed of the network link between the current MARlet and the destination as
follows:

PROTOCOLS
protocol(hd, 6, transferable, shortestMoveTimePolicy2).
...

Examples of other policies are cpuLoadPolicy, freeMemoryPolicy, randomOrderPolicy.
In addition, the programmer can define new policies in Prolog or Java. It is worth noting
that both protocols and policies can be manipulated at run-time by the programmer.

4. Experimental Results

In order to validate the approach we have implemented a distributed algebraic expres-
sion solver using RMF, proactive mobility and a messages without mobility (traditional
client/server). The application consists of two types of Brainlets:

• server: a server is a Brainlet that provides services for solving simple arithmetic
operations such as +, -, /, or * thus they are not able to solve compound operations.
Each server is able to solve a single type of arithmetic operations. In addition, each
server is statically assigned to a specific host of the network, thus servers are not
allowed to migrate during their execution.

• client: a client is a Brainlet that knows nothing about solving simple arithmetic
operations, but it is able to split compound expressions into simpler operations by
applying associativity rules. For example:

2∗2
3−1

+10−7

can be rewritten as a number of binary operations: (((2*2)/(3-1))+10)-7. Then,
these binary operations can be solved by servers.
Since servers may reside in different sites than clients, and remote communica-
tions are not allowed (except in the no mobile solution), clients may migrate in
order to request the resolution of a binary operation. When two ore more servers
located at different sites are able to solve the same required operation, clients try
to balance the CPU load of these sites by migrating to the less loaded site.

Seven different tests were run on a 100 Mbps LAN with 4 Pentium II PCs using Java
1.4.2 and Windows 2000. For RMF we used a policy that migrates agents to sites with
low CPU load. Figure 1 shows the average running time and network traffic for 10 runs
of each test.

Proactive mobility performed poorly due to the unnecessary large number of mi-
grations and suboptimal itineraries. On the other hand, the performance of the stationary
solution was in the middle between RMF and proactive mobility. RMF performed remark-
ably well because it was able to greatly reduce the number of migrations and traffic with
respect to the other two implementations. It is worth noting that the stationary solution
has disadvantages when clients and servers interact often and are hosted at different sites.

2This policy uses IP ICMP echo requests to determine the network delay between two hosts.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e
[m

s]

Test

PM
RMF

Non−mobile

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7

N
et

w
or

k
tra

ffi
c

[IP
 p

ac
ke

ts
]

Test

PM
RMF

Non−mobile

Figure 1: Experimental results

In this cases mobility uses less network traffic because remote interactions are avoided by
migrating clients.

It is worth noting that the size of the agent implemented with RMF was 23%
smaller than the one implemented with proactive mobility. This shows the clear advantage
in terms of reduced programming effort that RMF has. Furthermore, less code implies that
migration is faster and less network bandwidth is used for migrating agents.

The importance of these results are twofold. On the one hand, they show that by
using RMF, agents are smaller due to the simplification of the code for handling mobility.
On the other hand, the results suggest that agents using RMF are faster and use network
resources more efficiently than traditional proactive mobile agents. All in all, by extend-
ing RMF with policies we were able to obtain better results than proactive mobility and
no mobility.

5. Related Work

There are many tools for supporting mobile agent development (Tarau, 1998; Picco, 1998;
Johansen et al., 1995; Acharya et al., 1997; Thorn, 1997). However, most of them only
provide rudimentary mechanisms for handling mobility based on weak and proactive mi-
gration mechanisms. As a consequence, programmers are in charge of handling mobility,
this is, providing code for determining when and where to migrate an agent.

Some initial attempts to provide high level constructs for handling mobility are
Concordia (Wong et al., 1997), Aglets (Lange and Oshima, 1998) and Ajanta (Tripathi
et al., 2002)

Concordia was one of the firsts platforms to use itineraries. The idea is to provide
each agent with a list of sites to visit and a task to perform at each site. In this way, Con-
cordia uses a very simple approach for managing mobility and reducing programming
effort. On the other hand Concordia uses a weak migration mechanism thus the program-
mer has to adopt a rather difficult event driven approach for programming mobility (Silva
et al., 2001). The same applies to all of the three tools described as well as most Java-
based platforms for mobile agent development. In opposition, MoviLog uses a strong
mobility mechanism that is transparent and very easy to use.

Aglets introduced the concept of mobility patterns: recurring solutions that appear
multiple times in mobile systems. Aglets defines a number of predefined patterns and
provides implementations for these patterns. Examples of patterns are:

• meeting: several agents are required to meet at a specific host of a network in order
to exchange messages

• messenger: an agent carries a message from one agent to another.
• slave: a master agent delegates a task to a slave agent. The slave follows an

itinerary, executing a task in each site.

Despite the benefits in terms of development effort these patterns provide, the program-
mer is still in charge of handling most mobility decisions. Besides, the weak migration
mechanism used by Aglets has the same problems as Concordia.

Ajanta takes the concept of itineraries a step further by providing migration pat-
terns. A migration pattern is an abstract migration path for an agent. Examples are loop,
selection, split and join. Itineraries are composed of a number of migration patterns. At
each step of an itinerary an agent may move, perform a task, create or destroy other agents.
These constructs provide powerful tools for building mobile agent systems with complex
itineraries. However, these itineraries are statically defined instead of automatically as
RMF does. As a consequence, Ajanta has problems handling highly dynamic networks
as the Internet.

The main advantage of our approach is its capability for automatically handling
mobility while being more efficient than traditional proactive mobility. In addition, be-
cause programmers are not required to provide code to handle mobility, RMF requires less
code. As a consequence, agents are smaller, require less network bandwidth to migrate
and are easier to develop, understand and maintain.

6. Conclusions

In this paper we have described an extension of RMF aimed at enhancing mobility ef-
ficiency by allowing the developer to adapt the mechanisms used by RMF for deciding
when and where to migrate agents.

The approach has been implemented and compared with client/server and proac-
tive mobility by using a distributed algebraic expression solver. The results are very
encouraging since show important gains in performance and reduced network bandwidth.
More experiments are being conducted in order to confirm these results in other applica-
tions.

We are exploring an extension of RMF for handling remote invocations, in addi-
tion to mobility and fetching. In essence, the idea is that given anm-failure, RMF should
be able to do whatever is necessary to solve thatm-failure. In this context, there are three
alternatives: 1) move the Brainlet where the resource is located, 2) move the resource
where the Brainlet is located or 3) use some remote invocation mechanism for using the
resource. Note that 2) is only possible if the resource is transferable while 3) is possi-
ble if the resource accepts remote calls, for example, a shared printer, a Web server or
a database. From this research we have already obtained some interesting results in the
domain of Web Services (Mateos et al., 2005).

References

Acharya, A., Ranganathan, M., and Saltz, J. (1997). Sumatra: A Language for Resource-
aware Mobile Programs. In Vitek, J. and Tschudin, C., editors,Mobile Object Sys-
tems: Towards the Programmable Internet, volume 1222 ofLecture Notes in Com-
puter Science, pages 111–130. Springer-Verlag: Heidelberg, Germany.

Amandi, A., Campo, M., and Zunino, A. (2005). Javalog: A framework-based integration
of java and prolog for agent-oriented programming.Computer Languages, Systems
& Structures, 31(1):17–33.

Fradet, P., Issarny, V., and Rouvrais, S. (2000). Analyzing non-functional properties
of mobile agents. InProc. of Fundamental Approaches to Software Engineering,
FASE’00, Lecture Notes in Computer Science. Springer-Verlag.

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Understanding code mobility.IEEE
Transactions on Software Engineering, 24(5):342–361.

Gray, R. S., Cybenko, G., Kotz, D., and Rus, D. (2001). Mobile agents: Motivations and
state of the art. In Bradshaw, J., editor,Handbook of Agent Technology. AAAI/MIT
Press.

Johansen, D., van Renesse, R., and Schneider, F. B. (1995). An introduction to the
TACOMA distributed system. Technical Report 95-23, Department of Computer
Science, University of Tromsø, Tromsø, Norway.

Kotz, D., Gray, R., and Rus, D. (2002). Future directions for mobile agent research.IEEE
Distributed Systems Online, 3(8).

Lange, D. B. and Oshima, M. (1998).Programming and Deploying Mobile Agents with
Java Aglets. Addison-Wesley, Reading, MA, USA.

Mateos, C., Zunino, A., and Campo, M. (2005). Integrating intelligent mobile agents with
web services.International Journal of Web Services Research, 2(2).

Nelson, J. (1999).Programmong Mobile Objects With Java. Wiley.
Nwana, H. (1996). Software agents: An overview.Knowledge Engineering Review,

11(3):205–244.
Picco, G. (1998).µCode: A Lightweight and Flexible Mobile Code Toolkit. In Rother-

mel, K. and Hohl, F., editors,Proceedings of the 2nd International Workshop on
Mobile Agents, volume 1477 ofLecture Notes in Computer Science, pages 160–171.
Springer-Verlag: Heidelberg, Germany.

Picco, G. P., Carzaniga, A., and Vigna, G. (1997). Designing distributed applications with
mobile code paradigms. In Taylor, R., editor,Proceedings of the 19th International
Conference on Software Engineering, pages 22–32. ACM Press.

Silva, A., Romao, A., Deugo, D., and Mira da Silva, M. (2001). Towards a Reference
Model for Surveying Mobile Agent Systems.Autonomous Agents and Multi-Agent
Systems, 4(3):187–231.

Tarau, P. (1998). Jinni: a lightweight java-based logic engine for internet programming.
In Sagonas, K., editor,Proceedings of JICSLP’98 Implementation of LP languages
Workshop, Manchester, U.K. invited talk.

Thorn, T. (1997). Programming languages for mobile code.ACM Computing Surveys,
29(3):213–239.

Tripathi, A. R., Karnik, N. M., Ahmed, T., Singh, R. D., Prakash, A., Kakani, V., Vora,
M. K., and Pathak, M. (2002). Design of the Ajanta System for Mobile Agent Pro-
gramming.Journal of Systems and Software. to appear.

Wong, D., Paciorek, N., Walsh, T., DiCelie, J., Young, M., and Peet, B. (1997). Con-
cordia: An infrastructure for collaborating mobile agents. InFirst International
Workshop on Mobile Agents (MA’97), pages 86–97.

Zunino, A., Campo, M., and Mateos, C. (2003). MoviLog: A platform for prolog-based
strong mobile agents on the WWW.Inteligencia Artificial, Revista Iberoamericana
de I.A., 4(21):83–92. ISSN 1337-3601.

Zunino, A., Mateos, C., and Campo, M. (2005). Reactive mobility by failure: When fail
means move.Information Systems Frontiers. Special Issue on Mobile Computing
and Communications. to appear.

