
MoviLog: A Platform for Prolog-Based Strong Mobile Agents on the WWW

Alejandro Zunino, Marcelo Campo, Cristian Mateos∗

ISISTAN Research Institute - UNICEN University
Campus Universitario (B7001BBO)

Tandil, Bs. As., Argentina
{azunino; mcampo; cmateos}@exa.unicen.edu.ar

Abstract

Despite the wide availability of Java-based mobile agent platforms, mobile agent development is still recognized for
being challenging and difficult. This is mainly caused by agents’ location awareness, which implies that developers
have to provide code for taking decisions about mobility, in addition to code implementing traditional stationary
behavior. In this article we describe MoviLog, a mobile agent platform for building Prolog-based mobile agents
called Brainlets. MoviLog implements a novel mobility mechanism, reactive mobility by failure (RMF), that is able
to automatically migrate Brainlets based on its resource needs. MoviLog has been implemented as an extension of
JavaLog, a multi-paradigm language that integrates Java and Prolog. The article also reports on experimental results
on the usage of MoviLog and comparisons with other platforms.

Keywords: intelligent agents, mobile code, agent-oriented programming

1 Introduction

The huge amount of information available on the
Internet became one of the main motivations for the
development of mobile agent technology. A mobile
agent is a computer program which represents a user
in a computer network and is capable of migrating
autonomously from host to host to perform some
computation on behalf of the user [15, 14]. Such a
capability is particularly interesting when an agent
makes sporadic use of a valuable shared resource.
But also, efficiency can be improved by moving
agents to a host to query a large database, as well as,
response time and availability would improve when
performing interactions over network links subject to
long delays or interruptions of services [7].

Intelligent agents have been traditionally considered

as systems possessing several dimensions of
attributes [10, 16, 6]. For example, [2] described
mobile intelligent agents in terms of a three
dimensional space defined by agency, intelligence
and mobility: agency is the degree of autonomy
and authority vested in the agent; intelligence is the
degree of reasoning and learning behavior; mobility is
the degree to which agents themselves travel through
the network.

Based on these views it is possible to consider a
mobile agent as composed of two separated and
orthogonal behaviors: stationary behavior and mobile
behavior; the first one is concerned with the tasks
performed by an agent on a specific place of the
network, and the second one is in charge of making
decisions about mobility.

Clearly, mobile agents, as autonomous entities fully

∗Also Comisión de Investigaciones Científicas (CIC)



aware of their location, have to be able to reason
why, when and where to migrate in order to
better use available network resources. Thus, in
addition to stationary behavior, whose development
is recognized for being challenging and highly
complex [24, 8], mobile agent developers have to
provide mechanisms to decide an agent’s itinerary.
Therefore, though agents’ location awareness may be
very beneficial, it also adds further complexity to the
development of distributed systems and intelligent
mobile agents, specially with respect to traditional
non-mobile applications [12, 18].

Nowadays, after years of positive experiences using
mobile agents in the academic world [14, 13], the
question is no longer how advantageous the paradigm
is, but how to fully exploit its advantages. Most
mobile agent applications provide a move operation
which is invoked when an agent wants to move to a
remote site. Recent platforms support more elaborate
abstractions that reduce the burden of programming
mobile agents. For example, Concordia [23] and
Ajanta [21] support itineraries and meetings among
agents. Despite these advances, the agent developer
is repeatedly faced with the three www-questions of
mobile agents: why, when and where to migrate.

This paper presents a new platform for mobile agents
named MoviLog that uses stationary intelligent
agents to assist the developer on managing mobility.
MoviLog aims at reducing the development effort
of mobile agents by automatizing decisions on why,
when and where to migrate in order to better use
available resources. MoviLog is an extension of
the JavaLog framework [1, 25] which implements an
extensible integration between Java and Prolog.

MoviLog provides mobility services enabling mobile
logic-based agents, called Brainlets, to migrate
between hosts using a strong mobility model. Besides
extending Prolog with operators to implement
proactive mobility, the main contribution of MoviLog
is the incorporation of the notion of reactive mobility
by failure (RMF). MRF acts when certain specially
declared predicate fails, transparently moving the
Brainlet to another host which has declared the same
predicate. This means that MoviLog considers a set
of web servers as a world-wide distributed database.

The article is structured as follows. The next section
describes the main characteristics of the JavaLog

framework. Section 3 introduces the MoviLog
platform and examples of proactive and reactive
mobility. Section 4 presents some experimental
evaluations. Section 5 discusses the most relevant
related work. Finally, in Section 6 concluding
remarks are delineated and options for future work
are discussed.

2 The JavaLog Framework

JavaLog is multi-paradigm language that integrates
Java and Prolog implemented in Java [1]. The
JavaLog support is based on an extensible Prolog
interpreter designed as a framework. This
means that the basic Prolog engine can be
extended to accommodate different extensions,
as multi-threading or modal logic operators, for
example.

JavaLog defines the logic module as its basic
concept of manipulation. In this sense, both objects
and methods from the object-oriented paradigm are
considered as modules. The elements manipulated
by the logic paradigm are also mapped onto modules.
Logic modules are defined by sets of Prolog clauses.
JavaLog also provides two algebraic operators, union
and overriding union, to combine logic modules.

Each agent encapsulates a complex object called
brain. This object is an instance of an extended
Prolog interpreter implemented in Java which enables
developers to use objects within logic clauses, as well
as to embed logic modules within Java code. In
this way, each agent is an instance of a class that
can define part of its methods in Java and part in
Prolog. The definition of a class can include several
logic modules defined within methods as well as
referenced by instance variables. The brain object
also refers to logic modules sent by the object-agent
for working on them from that instant.

2.1 An Example

The following example involves customer agents
capable of selecting and buying different articles
based on users’ preferences. A CustomerAgent class
defines the behavior of customers whose preferences
are expressed through a logic module received as a



parameter. The CustomerAgent class is implemented
in the following way:

public class CustomerAgent {

pr ivate PlLogicModule p re f ;

public CustomerAgent ( PlLogicModule p re f ) {
th is . p re f = p re f ;

}

public boolean b u y A r t i c l e ( A r t i c l e a r t ) {
p re f . enable ( ) ; type = a r t . type ;
. . .
i f (?−preference ( ( # a r t # , [ # type #,# brand #,
#model #,# p r i ce # ] ) . )

buy ( a r t ) ; p re f . d i sab le ( ) ;
}

. . .
}

The example defines a variable named pref, which
references a logic module including user preferences.
When the agent needs to decide whether to buy a
given article, user preferences are analyzed. The
buyArticle method first enables the pref logic module
to be queried. In this way, the knowledge included in
that module is added to the agent knowledge. Then,
an embedded Prolog query is used to test whether
to buy the article. To evaluate ?-preference(#art#,
[#type#, #brand#, #model#, #price#]), pref clauses
are used. The query contains a Java variable enclosed
into #. This mark allows the programmer to use Java
objects inside Prolog clauses. In addition, send can
be used to send a message to a Java object from a
Prolog program. For instance, send(#art#, brand,
Brand) in Prolog is equivalent to Brand = art.brand()
in Java. Finally, the buyArticle method disables the
pref logic module. This operation deletes the logic
module from the active database of the agent.

In order to create a customer agent, a logic module
with the user preferences have to be provided,
enclosed between {{ and }} as follows:

CustomerAgent anAgent =
new CustomerAgent ( { {

preference ( car , [ f o rd , Model , Pr ice ] ) :−
Model > 1 9 9 8 , Pr ice < 200000.

preference ( motorcycle , [ yamaha , Model ,
Pr ice ] ) :− Model >= 1998 , Pr ice < 9000 .

} } ) ;

3 The MoviLog Platform

MoviLog is, essentially, an extension of the JavaLog
framework to support mobile agents on the web.
MoviLog implements a strong mobility model for a
special type of logic modules, called Brainlets. The
MoviLog inference engine is able to process several
concurrent threads and to restart the execution of an
incoming Brainlet at the point where it migrated,
either pro-actively or reactively, in the origin host.

In order to enable mobility across web sites, each
web server belonging to a MoviLog network must be
extended with a MARlet (Mobile Agent Resource).
A MARlet extends the Java servlets support by
encapsulating the MoviLog inference engine and
providing services to access it. In this way, a MARlet
represents a web dock for Brainlets. Additionally,
a MARlet is able to provide intelligent services
under request, such as adding and deleting logic
modules, activating and deactivating logic modules,
and performing logic queries. In this sense, a MARlet
can also be used to provide inferential services to
agents as well as legacy web applications.

From the mobility point of view, MoviLog
provides support to implement Brainlets with
typical pro-active capabilities, but more interesting
yet, it implements a mechanism for transparent
reactive mobility by failure. This mechanism
is supported by a number of stationary agents
distributed across the network called Protocol Name
Servers (PNS). These agents provide mechanisms
to automatically migrate Brainlets based on their
resource requirements. Further details on this will be
explained in Section 3.2.

3.1 Proactive Strong Mobility

The moveTo built-in predicate provided by MoviLog
permits a Brainlet to autonomously migrate to
another host. Before migration, MoviLog in the local
host serializes the Brainlet and its state - i.e. its
knowledge base and code, current goal to satisfy,
instantiated variables, choice points, etc. Then, it
sends the serialized form to its counterpart on the
destination host. Upon receipt of an agent, the
MoviLog platform in the remote host reconstructs



the Brainlet and the objects it refers to, and then
it resumes the execution of the agent. Eventually,
after performing some computations, the Brainlet
could return to the originating host calling the return
built-in predicate.

The following example presents a simple Brainlet for
e-commerce which has the goal of finding and buying
a given article in the network according to a user’s
preferences. The buy clause looks for offers available
in a number of sites, selects the best and calls a
generic predicate to buy the article (this process
is not relevant here). The lookForOffers predicate
implements the process of moving around through a
number of sites looking for the available offers for the
article (we assume that we get the first offer). If there
is no offer in the current site, the Brainlet goes to the
next one in the list and so on.

s i t e s ( [www. o f f e r s . com,
www. freemarket . com , . . . ] ) .

preference ( car , [ f o rd , Model , Pr ice ] ) :−
Model > 1998 ,
Pr ice < 60000.

preference ( t v , [ sony , Model , Pr ice ] ) :−
Model = 21 in ,
Pr ice < 1500 .

lookForOf fe rs (A , [ ] , _ , [ ] ) .
lookForOf fe rs (A , [ S |R ] , [ O|RO] ,

[O| Rof f ] ) :−
moveTo(S ) , a r t i c l e ( A , O f fe r , Email ) ,
O= (S, O f fe r , Email ) ,

lookForOf fe rs (A , R , RO, ROff ) .
lookForOf fe rs (A , [ S | R ] , [ O|RO ] , [ O| Rof f ] ) :−

l ookForOf fe rs (A , R , RO, ROff ) .

buy ( A r t ):−
s i t e s ( S i t es ) ,
lookForOf fe rs ( A r t , S i t es ,R, Of fe rs ) ,
se lec tBest ( Of fe rs , ( S ,O,E ) ) , moveTo (S ) ,
b u y _ a r t i c l e (O,E ) , re tu rn .

?− buy (# Ar t ) .

Although proactive mobility provides a powerful
tool to take advantage of network resources, in
the case of Prolog, it also adds extra complexity
due to its procedural nature. That is, mobile
Prolog programs cannot necessarily be built in the
declarative way as a normal Prolog program is,
forcing to implement solutions that depend on the

mobility aspect. Particularly, when the mobile
behavior depends on the failure or not of a given
predicate, solutions tend to be more complicated.
This fact led us to develop a complementary mobility
mechanism, called reactive mobility by failure.

3.2 Reactive Mobility by Failure

The MoviLog platform provides a new mechanism
for mobility called reactive mobility by failure (RMF)
which aims at reducing the effort of developing
mobile agents by automatizing some decisions about
mobility. RMF is based on the assumption that
mobility is orthogonal to the rest of attributes that
an agent may possess (intelligence, agency, etc) [2].
Under this assumption it is possible to think of
a separation between these two functionalities or
concerns at the implementation level [5]. RFM
exploits this separation by allowing the programmer
to focus his efforts on the stationary functionality,
and delegating mobility issues on a distributed
multi-agent system that is part of the MoviLog
platform, as depicted in Fig 1.

RMF is a mechanism that, when a certain predicate
fails, transparently moves a Brainlet to another site
having definitions for such a predicate and continues
the normal execution trying to find a solution.
The implementation of this mechanism requires the
MoviLog inference engine to know where to send
the Brainlet. For this, MoviLog extends the normal
definition of a logic module with protocol sections,
which define predicates that can be shared across the
network.

Protocol definitions create the notion of a virtual
database distributed among several web sites. When
a Brainlet defines a given protocol predicate in a
MARlet hn, the MoviLog engine informs the PNS
agents, which in turn inform the rest of registered
MARlets that the new protocol is available in hn. In
this way, the database of a Brainlet can be defined as a
set D = {DL,DR}, where DL is the local database and
DR is a list of MARlets offering the same protocol
clause as the current goal g. Now, in order to probe g
the interpreter has to try with all the clauses c ∈ DL

such that the head of c unifies with g. If none of those
lead to probe g, then it is necessary to try to probe g
from one of the non-local clauses in DR. To achieve
this, MoviLog transfers the running Brainlet to one



Host 1

(iii) strong migration

ServerAgent

Host 2

Agent
DB(i) Requested access 

to a non-local resource

PNS agents PNS agents

(ii) move to CE2

non-local interactions
between mobility agents

Figure 1: Reactive Mobility by Failure

of the MARlets in DR by using the same mechanism
used for implementing proactive mobility. Once at
the remote site, the execution continues trying to
probe the goal. However, if the interpreter at the
remote MARlet fails to probe g, it continues with the
next MARlet in DR. When no more possibilities are
available, the Brainlet is moved to its origin.

The following code shows the implementation
of the customer agent combining both mobility
mechanisms. As can be noted, the solution using
RMF looks much like a regular Prolog program. This
solution collects, through backtracking, the matching
articles from the database until no more articles are
left. The article protocol makes the Brainlet to try
all the MARlets offering the same protocol before
returning to the origin to collect (by using findall) all
the offers in the local database of the Brainlet. Once
the best offer is selected, the Brainlet proactively
moves to the MARlet offering that article in order to
buy it. Certainly, this solution is simpler than the one
using just proactive mobility.

PROTOCOLS
a r t i c l e (A , O f fe r , Email ) .

CLAUSES
preference ( car , [ f o rd , Model , Pr ice ] ) :−
Model > 1 9 9 8 , Pr ice < 20000.

preference ( t v , [ sony , Model , Pr ice ] ) :−
Model = 21 in , Pr ice < 1000 .

lookForOf fe rs (A , [ O|RO ] , [ O| Rof f ] ) :−
a r t i c l e ( A , O f fe r , Email ) ,
t h i s S i t e ( Th i sS i t e ) ,
assert ( o f f e r ( Th i sS i t e , O f fe r , Email ) ) ,
f a i l .

lookForOf fe rs (A , _ , Of fe rs ) :− ! ,
f i n d a l l ( _ , o f f e r (S,O,E ) , Of fe rs ) .

buy ( A r t ) :− l ookForOf fe rs ( A r t ,R, Of fe rs ) ,
se lec tBest ( Of fe rs , o f f e r (S,O,E ) ) ,
moveTo (S ) , b u y _ a r t i c l e (O , E ) ,
re tu rn .

. . .
?− buy ( A r t ) .

It is worth noting that in the example the articles
offered by all the sites with a protocol article are
collected through RMF (when article fails at the
current MARlet the Brainlet is transparently moved).

3.2.1 Evaluation Algorithm

In this section we briefly describe the evaluation
algorithm used by MoviLog. RMF can be understood
by considering a classical Prolog interpreter with a
stack S, a database D, and a goal g. Each entry
of S contains a reference to the clause c being
evaluated, a reference to the term of c that is being
proved, a reference to the preceding clause and a
list of variables and their values in the preceding
clause to be able to backtrack. MoviLog extends this
structure by adding information about the distributed
evaluation mechanism. The idea is to keep a history
of visited MARlets and possibilities for satisfying a
given goal within a MARlet.

To better understand these ideas, let us give a more
precise description of the evaluation mechanism. Let
s = 〈c, ti,V,H,L〉 be an element of the stack, where
c = h : −t1, t2, . . . , tn is the clause being evaluated, ti
is the term of c being evaluated, V is a set of variable



substitutions (ex. X = 1,X = Z) and H = 〈Ht ,Hv,P〉,
where Ht is a list of MARlets not visited, Hv is a list
of MARlets visited and P is a list of candidate clauses
at a given MARlet that match the protocol clause of c;
and L is a list of clauses with the same name and arity
as ti (candidate clauses at the local database).

The interpreter has two states: call and redo. When
the interpreter is in state call, it tries to probe a goal.
On the other hand, in state redo it tries to search for
alternative ways of evaluating a goal after the failure
of a previous attempt. Given a goal ?− t1, t2, . . . , tn,
S = {} and state = call,

1: if state == call then
2: the interpreter pushes into the stack

〈t1, t2, . . . , tn, ti,V = {},〈Ht = 〈 〉 ,Hv = 〈 〉 ,
PHt = 〈 〉〉〉

3: for all i such that 1 ≤ i ≤ n do
4: if The MARlet is visited for the first time

then
5: the interpreter searches into the local

database for clauses with the same name
and arity as ti. This result is stored
into P (a list of clauses c j at the current
MARlet).

6: else
7: P is updated with the clauses available at

the current MARlet.
8: end if
9: Then, the more general unifier (MGU)

for ti and the head of c j is calculated. If
there is not such an unifier for a given c j,
then c j is removed from P. Otherwise, the
substitutions for ti and the head of c j are
stored into V . At this point, the algorithm
tries to probe c j by jumping to line 1. If
every ti is successfully proved, then the
algorithm returns true.

10: If there is not a clause c j such as there is
a more general unifier for ti and the head
of c j, the interpreter queries a PNS for a
list of MARlets offering the same protocol
clause as ti. This is stored into Ht . Then,
the Brainlet is moved to the first MARlet hd

in Ht . The current MARlet is removed
from Hv to avoid visit it again.

11: If Hv is empty then state = redo
12: end for
13: else
14: This point of the execution is reached when

the evaluation of a goal fails at the current
MARlet. The step 9 of the algorithm selected
a c j from the local database for proving ti.
This selection was the source of the failure.
Therefore, MoviLog simply restores the clause
by reversing the effects of applying the
substitutions in V , selects another clause c j,
sets state = call and jumps to line 4.

15: If there are no more choices left in P, this
implies that it is not possible to prove ti from
the local database. Therefore the top of the
stack is popped and the algorithm returns false.
This may require migrating the Brainlet to its
origin.

16: end if

3.2.2 Distributed Backtracking and Consistency
Issues

Mobile Prolog, and particularly, the RMF mobility
model generates several tradeoffs related the standard
Prolog execution semantics. Backtracking is one of
them. When a Brainlet moves around several places,
many backtracking points can be left untried, and the
question is how the backtracking mechanism should
proceed. The solution adopted by MoviLog at the
current version resides in the PNS agents. These
agents provide a sequential view of the multiple
choice points that is used by the routing mechanism
to go through the distributed execution tree.

Also the evaluation of MoviLog code in a distributed
manner may lead to inconsistencies. For example,
MARlets can enter or leave the system, may alter
their protocol clauses or modify their databases. At
this moment, MoviLog defines a policy that consists
on updating the local view of a Brainlet when
it arrives to a host. This involves automatically
querying the PNS agents to obtain a list of MARlets
implementing a given protocol clause and querying
the current MARlet in order to obtain a list of clauses
matching the protocol clause being evaluated.

4 Experimental Results

In this section we report the results obtained with
an application implemented by using MoviLog,
µCode [11] (a Java-based framework for mobile



agents) and Jinni [20] (a Prolog-based language with
support for strong mobility).

The application consists of a number of customer
agents that are able to select and buy articles offered
by sellers based on users’ preferences. Both,
customers and sellers reside in different hosts of a
network. In this example, customers are ordered to
buy books that has to satisfy a number of preferences
such as price, edition, author, subject, etc.

The implementation of the application with MoviLog
using RMF was straightforward (only 39 lines of
code). On the other hand, to develop the application
by using µCode we had to provide support for
representing and managing users’ preferences. As
a result the total size of the application was 22605
lines of Java source code. Finally, the Jinni
implementation was easier, although not as easy as
with MoviLog, due to the necessity of managing
agents’ code and data closure by hand. The size of
the source code in this case was 353 lines. It is worth
noting that MoviLog provides powerful abstractions
for rapidly developing intelligent and mobile agents.
On the other hand, the others platforms are more
general, thus their usage for building intelligent
agents require more effort.

We tested the implementations on three Pentium III
850 Mhz with 128 MB RAM, running Linux and
Sun JDK 1.3.1. To compare the performance of the
implementations we distributed a database containing
books in the three computers. We ran the agents
with a database of 1 KB, 600 KB and 1600 KB.
For each database we ran two test cases varying the
user’s preferences in order the verify the influence
of the number of matched books (state that an agent
has to move) on the total running time. On each
respective test case the user’s preferences matched
0 and 5 books (1 KB database), 3 and 1024 books
(600 KB database, 4004 books), and 2 and 1263
(1600 KB, 11135 books approx.). We ran each test
case 5 times and measured the running time. Fig. 2(b)
shows the average running time as a function of
the size of the database and the number of products
found.

On a second battery of tests we measured the network
traffic generated by the agents using the complete
database (1600 KB, 11135 books approx.) distributed
across three hosts. Fig. 2(a) shows the network traffic

measured in packets versus the number of books that
matched the user’s preferences.

From the figures we can conclude that MoviLog
and its RMF do not affect negatively neither
the performance nor the network traffic, while
considerably reducing the development effort. The
next section discusses previous work related to
MoviLog.

5 Related Work

At present, Java is the most commonly used
language for the development of mobile agent
applications. Aglets [9], µCode [11], Concordia [23],
AgentSpace [17] and Ajanta [21] are examples of
Java-based mobile agent systems. These systems
provide a weak mobility model, forcing a less
elegant and more difficult to maintain programming
style [18]. Recent works such as NOMADS [19] and
WASP [4] extended the Java Virtual Machine (JVM)
to support strong mobility. Despite the advantages
of strong mobility, these extended JVM do not share
some well known features of the standard JVM,
namely its ubiquity, portability and compatibility
across different platforms and operating systems.

The logic-programming paradigm represents
an appropriate alternative to manage agents
mental attitudes. Ciao Prolog [3], Jinni [20]
and Mozart/Oz [22] are some proposed logic
programming-based languages for multi-agent
systems development. Ciao Prolog is a logic
programming system that generates multi-platform
executables based on compilation to bytecode
allowing code mobility across platforms. Ciao
Prolog allows goals to be launched in separate
threads. These threads can be communicated and
synchronized by using the shared Prolog database.
It also defines a special kind of object, called
active, which can be used to implement distributed
knowledge bases in which updates to global facts are
automatically available to remote agents.

Jinni (Java INference engine and Networked
Interactor) [20] is based on a limited subset of
Prolog. Jinni supports strong mobility. However, the
language lacks adequate support for mobile agents
since its notion of code and data closure is limited



1 Kb 0 books
1 Kb 5 books

600 Kb 3 books

500 Kb 1024 books

1600 Kb 2 books

1600 Kb 1263 books

Books

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
et

w
or

k 
tr

af
fic

 [I
P

 p
ac

ke
ts

]

0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
MoviLog
Jinni
µCode

(a) Network Traffic

100 200 300 400 500 600 700 800 900 1000
Books

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
tim

e 
[m

s]

200 400 600 800 1000
0

100

200

300

400

MoviLog
Jinni
µCode

(b) Running Time

Figure 2: Performance Comparisons



to the currently executing goal. As a consequence,
programmers using Jinni have to manage code and
data closure by programming mechanisms for saving
and restoring an agent’s code and data.

Mozart [22] is a multi-paradigm language combining
objects, functions and constraint logic programming
based on a subset of Prolog. Though the language
provides some facilities such as distributed scope
and communication channels that are useful for
developing distributed applications, it only provides
rudimentary support for mobile agents. Despite
this shortcoming, Mozart offers a clean and easy
syntax for developing distributed applications with
little effort.

The main difference between MoviLog and other
platforms is RMF, which reduces development effort
by automatizing some decisions about mobility,
and its multi-paradigm syntax, which provides
mechanisms for developing intelligent agents with
knowledge representation and reasoning capabilities.
MoviLog reduces and simplifies the effort of mobile
agent development, while being as fast as any
Java-based platform.

6 Conclusions

This paper presented MoviLog, a multi-paradigm
language based on Prolog and Java, that supports
reactive mobility by failure. RMF simplifies mobile
agent development by automatizing decisions about
mobility. At the same time, mobile agents are
able to autonomously migrate by using proactive
strong mobility mechanisms. The result is a platform
that combines both reactive and proactive migration
to cope with the complexities of mobile agent
development.

We are working on defining the formal semantics
of the language and its relationship with traditional
Prolog semantics. Another line of research is the
integration of MoviLog with Web services and the
Semantic Web.

References

[1] Analía Amandi, Alejandro Zunino, and Ramiro
Iturregui. Multi-paradigm languages supporting
multi-agent development. In Francisco J. Garijo
and Magnus Boman, editors, Multi-Agent
System Engineering, volume 1647 of Lecture
Notes in Artificial Intelligence, pages 128–139,
Valencia, Spain, June 1999. Springer-Verlag.

[2] Jeffrey M. Bradshaw. Software Agents. AAAI
Press, Menlo Park, USA, 1997.

[3] Daniel Cabeza, Manuel Hermenegildo,
and Sacha Varma. The PiLLoW/CIAO
Library for Internet/WWW Programming
using Computational Logic Systems. In
P. Tarau, A. Davison, K. DeBosschere, and
M. Hermenegildo, editors, Proc. 1st Workshop
on Logic Programming Tools for INTERNET
Applications, 1996.

[4] Stefan Fünfrocken and Friedemann Mattern.
Mobile Agents as an Architectural Concept
for Internet-based Distributed Applications -
The WASP Project Approach. In Proceedings
of KiVS’99 (Kommunikation in Verteilten
Systemen), pages 32–43. Springer-Verlag, 1999.

[5] Alessandro Garcia, Christina Chavez, Otavio
Silva, Viviane Silva, and Carlos Lucena.
Promoting Advanced Separation of Concerns
in Intra-Agent and Inter-Agent Software
Engineering. In Workshop on Advanced
Separation of Concerns in Object-Oriented
Systems at OOPSLA’2001, October 2001.

[6] Michael R. Genesereth and Steven P. Ketchpel.
Software agents. Communications of the ACM,
37(7):48–53, 1994.

[7] Robert S. Gray, George Cybenko, David Kotz,
and Daniela Rus. Mobile agents: Motivations
and state of the art. In Jeffrey Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT
Press, 2001.

[8] Nicholas Jennings, Katia Sycara, and Michael
Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents
and Multi-Agent Systems, 1(1):7–38, 1998.



[9] Danny B. Lange and Mitsuru Oshima.
Programming and Deploying Mobile Agents
with Java Aglets. Addison-Wesley, Reading,
MA, USA, September 1998.

[10] Hyacinth Nwana. Software agents: An
overview. Knowledge Engineering Review,
11(3):205–244, September 1996.

[11] Gian Pietro Picco. µCode: A Lightweight and
Flexible Mobile Code Toolkit. In K. Rothermel
and F. Hohl, editors, Proceedings of the 2nd
International Workshop on Mobile Agents,
volume 1477 of Lecture Notes in Computer
Science, pages 160–171. Springer-Verlag:
Heidelberg, Germany, 1998.

[12] Gian Pietro Picco, Antonio Carzaniga, and
Giovanni Vigna. Designing distributed
applications with mobile code paradigms.
In R. Taylor, editor, Proceedings of the
19th International Conference on Software
Engineering, pages 22–32. ACM Press, 1997.

[13] Kurt Rothermel and Fritz Hohl, editors. Second
International Workshop on Mobile Agents
(MA’98), volume 1477 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin
Germany, 1998.

[14] Kurt Rothermel and Radu Popescu-Zeletin,
editors. First International Workshop on Mobile
Agents (MA’97), volume 1219 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin
Germany, 1997.

[15] Daniela Rus, Robert S. Gray, and David
Kotz. Transportable information agents.
In International Conference on Autonomous
Agents, pages 228–236, February 1997.

[16] Yoav Shoham. An overview of agent-oriented
programming. In Jeffrey M. Bradshaw, editor,
Software Agents, chapter 13, pages 271–290.
AAAI Press / The MIT Press, 1997.

[17] Alberto Silva, Miguel Mira da Silva, and
José Delgado. An Overview of AgentSpace:
A Next generation Mobile Agent System.
In K. Rothermel and F. Hohl, editors,
Proceedings of the 2nd International Workshop
on Mobile Agents, volume 1477 of Lecture
Notes in Computer Science, pages 148–159.
Springer-Verlag: Heidelberg, Germany, 1998.

[18] Alberto Silva, Artur Romao, Dwight Deugo,
and Miguel Mira da Silva. Towards a Reference
Model for Surveying Mobile Agent Systems.
Autonomous Agents and Multi-Agent Systems,
4(3):187–231, September 2001.

[19] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R.
Breedy, Paul T. Groth, Gregory A. Hill, Renia
Jeffers, and Timothy S. Mitrovich. An
Overview of the NOMADS Mobile Agent
System. In 6th ECOOP Workshop on Mobile
Object Systems: Operating System Support,
Security and Programming Languages, 6 2000.

[20] Paul Tarau. Jinni: a lightweight java-based logic
engine for internet programming. In Kostis
Sagonas, editor, Proceedings of JICSLP’98
Implementation of LP languages Workshop,
Manchester, U.K., June 1998. invited talk.

[21] Anand R. Tripathi, Neeran M. Karnik, Tanvir
Ahmed, Ram D. Singh, Arvind Prakash, Vineet
Kakani, Manish K. Vora, and Mukta Pathak.
Design of the Ajanta System for Mobile
Agent Programming. Journal of Systems and
Software, 2002. to appear.

[22] Peter Van Roy and Seif Haridi. Mozart: A
programming system for agent applications.
In International Workshop on Distributed
and Internet Programming with Logic and
Constraint Languages, November 1999.
Part of International Conference on Logic
Programming (ICLP 99).

[23] David Wong, Noemi Paciorek, Tom Walsh, Joe
DiCelie, Mike Young, and Bill Peet. Concordia:
An infrastructure for collaborating mobile
agents. In Rothermel and Popescu-Zeletin [14],
pages 86–97.

[24] Michael Wooldridge and Nicholas Jennings.
Pitfalls of agent-oriented development. In
Katia P. Sycara and Michael Wooldridge,
editors, Proceedings of the 2nd International
Conference on Autonomous Agents
(AGENTS-98), pages 385–391, New York,
May 9–13 1998. ACM Press.

[25] Alejandro Zunino, Luis Berdún, and
Analía Amandi. Javalog: un lenguaje
para la programación de agentes. Revista
Iberoamericana de Inteligencia Artificial,
13:94–99, 2001.


