
This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 1

The EasySOC Project: A Rich Catalog of Best
Practices for Developing Web Service Applications

Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, Alejandro Zunino, Marcelo Campo
ISISTAN Research Institute - UNICEN University

Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)
Tandil, Buenos Aires, Argentina.

Corresponding Author’s Email: mcrasso@conicet.gov.ar

Abstract—The Service-Oriented Computing (SOC) paradigm
has gained a lot of attention in the software industry since repre-
sents a novel way of architecting distributed applications. SOC is
mostly materialized via Web Services, which allows developers
to structure applications as building blocks exposing a clear,
public interface to their capabilities. Although conceptually and
technologically mature, SOC still lacks adequate development
support from a methodological point of view. We present the
EasySOC project, a catalog of guidelines to build service-oriented
applications and services. This catalog synthesizes best SOC
development practices that arise as a result of several years
of research in fundamental SOC-related topics, namely WSDL-
based technical specification, Web Service discovery and Web
Service outsourcing. In addition, we describe a plug-in forthe
Eclipse IDE that has been implemented to simplify the utilization
of the guidelines. We believe that both the practical natureof the
guidelines, the empirical evidence that supports them, andthe
availability of IDE support that enforces them may help software
practitioners to rapidly exploit our ideas for building rea l SOC
applications.

Keywords-Service-Oriented Computing, Service-oriented de-
velopment guidelines, Web Services, WSDL anti-patterns, Web
Service discovery, Web Service consumption

I. I NTRODUCTION

Service-Oriented Computing (SOC) [1] is a relatively new
computing paradigm that radically changed the way appli-
cations are architected, designed and implemented. SOC has
mainly evolved from component-based software engineering
by introducing a new kind of building block calledservice,
which represents functionality that is described, discovered
and remotely consumed by using standard protocols. Service-
oriented software systems started as a more flexible and cost-
effective alternative for developing Web-based applications,
but their usage eventually spread to gave birth to a wave of
contemporary infrastructures and notions including Service-
Oriented Grids and Software-As-A-Service [2].

The common technological choice for materializing the
SOC paradigm is Web Services, i.e. programs with well-
defined interfaces that can be published, discovered and
consumed by means of ubiquitous Web protocols [1] (e.g.
SOAP [3]). The canonical model underpinning Web Services
encompasses three basic elements: service providers, service
consumers and service registries (see Figure 1). A service
provider, such as a business or an organization, provides meta-
data for each service, including a description of its technical

contract in WSDL [4]. WSDL is an XML-based language that
allows providers to describe the functionality of their services
as a set of abstract operations with inputs and outputs, and to
specify the associated binding information so that consumers
can actually consume the offered operations.

To make their WSDL documents publicly available,
providers employ a specification for service registries, called
UDDI, whose central purpose is the representation of meta-
data about Web Services. Apart from the data model, UDDI
defines an inquiry API, in terms of WSDL, for discovering
services. Consumers use the inquiry API to find services that
match their functional needs, select one, and then consume
its operations by interpreting the corresponding WSDL de-
scription. Both the model and the API are built on Web
Service technologies, as the aim of WSDL and UDDI is to
offer standards to enable interoperability among applications
and services across the Web. As a consequence, for example,
an application implemented in a programming language can
talk to a Web Service developed in another language. Ideally,
such interoperability levels would allow consumers to switch
among different providers of the same functionality, according
to non functional requirements such as cost per service
consumption, response time or availability, without modifying
the applications involved.

(2) discover service(1
) p

ublis
h s

erv
ice

(3) consume service

Service

provider

Service WSDL

<?xml ...>

SOAP message over HTTP, SMTP, etc.

Service

consumer

Application

Service

registry

Figure 1: The Web Services model.

Unfortunately, the promises of Web Services of guarantee-
ing loose coupling among applications and services, providing
agility to respond to changes in requirements, offering trans-
parent distributed computing and lowering ongoing invest-
ments are still eclipsed by the high costs of outsourcing Web
Services of current approaches for service-enabling applica-
tions as well as the ineffectiveness of Web Service publication
systems. On one hand, unless appropriately specified by



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 2

providers, service meta-data can be counterproductive and
instead obscure the purpose of a service, thus hindering its
adoption. For example, a WSDL document without much
comment of its operations can make the associated Web
Service difficult to discover and understand. On the other
hand, service consumers often have to invest much effort into
providing code to invoke dicovered Web Services afterward.
Moreover, the outcome of the second task is software con-
taining service-aware code. Therefore, the software is more
difficult to test and to modify during its maintenance phase.

In this paper, we describe EasySOC, a set of provider and
consumer guidelines for avoiding these problems. Roughly,
these guidelines represent a compilation of best practicesfor
simplifying the activities illustrated by the arcs of Figure 1,
while improving the quality of the artifacts implementing
services and consumers’ applications. EasySOC is based on
previous research carried out by the authors in the subareasof
WSDL-based technical contract design and specification [5],
Web Service discovery [6] and service-oriented development
and programming [7, 8].

Complementary, the contribution of this paper is to provide
a uniform, conceptualized and synthesized view of these
findings to provide, on one hand, clear and precise hints
of how to adequately exploit the SOC paradigm and its
related technologies regardless their context of usage, i.e.
when implementing services or applications. At the same
time, another contribution is to delineate potential concrete
materializations of these hints into a software tool so as to
enforce the promoted best practices. With respect to the latter,
we have built a plug-in for the popular Eclipse IDE and
the Java language, thus we believe our ideas can be readily
employed in the software industry [9]. The software can be
downloaded from http://sites.google.com/site/easysoc.

The rest of the paper is structured as follows. The next
section focuses on discussing the aforementioned guidelines,
emphasizing on clarifying their scope and the usage scenarios
in which they are applicable. Later, Section III presents the
EasySOC Eclipse plug-in and its modules. Then, Section IV
surveys relevant related efforts. Finally, Section V concludes
the paper.

II. T HE EASYSOCPROJECT

Even when Web Service technologies are far more mature
and reliable than they were years ago, the definition of
guidelines for developing service-oriented software is still
an incipient research topic. Thus, the following paragraphs
present a catalog of identified best practices for SOC devel-
opment, which are related to the roles and activities that are
commonly performed by developers of both services and con-
sumers’ applications. Schematically, according to the model of
Figure 1, two distinctive roles are established: providersand
consumers. Providers are responsible for making a piece of
software publicly available as a Web Service, while ensuring
that such a service can be discovered and understood by
third-parties. Consumers are responsible for discoveringand
incorporating external services into their applications,or from

now on client applications. Sometimes the same actors can
play both roles, as occurs when developing services that need
of other services to accomplish the functionality they expose.

Depending on the role(s) played by a SOC developer, there
are three possible different development scenarios. TableI lists
these scenarios by relating them to the EasySOC guidelines
that developers are encouraged to pay attention to.

Table I: SOC usage scenarios and the EasySOC guidelines.

Scenario/Guidelines Guidelines
for service
publication

Guidelines
for service
discovery

Guidelines
for service

consumption

Developer only exposes
a functionality as a
service

Yes No No

Developer only
consumes services

No Yes Yes

Developer exposes as a
service a functionality
that consumes other
services

Yes Yes Yes

A. Guidelines for improving service descriptions

Many of the problems related to the efficiency of standard-
compliant approaches to service discovery stem from the
fact that the WSDL specification is incorrectly or partially
exploited by providers. Although the intuitive importance
of properly describing services, some practices that attempt
against the discoverability of services, such as poorly com-
menting offered operations or using unintelligible naming
conventions, are frequently found in publicly available WSDL
documents.

There is no silver bullet to guarantee that potential con-
sumers of a Web Service will effectively discover, understand
and access it. However, we have empirically shown that a
WSDL document can be improved to simultaneously address
these issues by following six steps [10] (we assume the reader
is familiar to the WSDL basics):

1) Separating the schema –i.e. XSD code– from the defi-
nitions of the offered operations.

2) Removing repeated WSDL and XSD code.
3) Putting error information within Fault messages and

only conveying operation results within Output ones.
4) Replacing WSDL element names with self-explanatory

names if they are cryptic.
5) Moving non-cohesive operations from their port-types

to a new port-type.
6) Properly commenting the operations.

The first step means moving complex data-type definitions
into a separated XSD document, and adding the corresponding
import sentence into the WSDL document. However, when
data-types are not going to be reused or are very simple, they
can be part of the WSDL document to make this latter self-
contained.

The second step deals with redundant code in both the
WSDL document and the schema. Repeated WSDL code



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 3

usually stem from port-types tied to a specific invocation
protocol, whereas redundant XSD is commonly a result from
data definitions bounded to a particular operation. Therefore,
repeated WSDL code can be removed by defining a protocol-
independent port-type. Similarly, to eliminate redundantXSD
code, repeated data-types should be abstracted into a single
one. This change must be consequently made visible in
operation messages by updating their data-types so as to
reference the newly derived types.

The third step encourages to separate error information
from output information or service invocation results. To do
this, error information should be removed from Output mes-
sages and placed on Fault ones, a special construct provided
by WSDL to specify errors and exceptions. Moreover, as many
Fault messages as kinds of errors exist should be defined for
the operations of the Web Service.

The fourth step aims to improve the representativeness of
WSDL element names by renaming non-explanatory ones.
Grammatically, the name of an operation should be in the
form <verb> “+” <noun>, because an operation is essentially
an action. Furthermore, message, message part and data-type
names should be a noun or a noun phrase because they
represent the objects on which the operation executes. Ad-
ditionally, the names should be written according to common
notations, and their length should be between 3-15 characters
because this facilitates both automatic analysis and human
reading, respectively. With respect to the former hint, the
name “theelementname” should be rewritten for example as
“theElementName” (camel casing).

The fifth step is to place operations in different port-types
based in their cohesion. To do this, the original port-type
should be divided into smaller and more cohesive port-types.
This step should be repeated while the new port-types are not
cohesive enough.

Finally, all operations must be well commented. An opera-
tion is said to be well commented when it has a concise and
explanatory comment, which describes the semantics of the
offered functionality. Moreover, as WSDL allows developers
to comment each part of a service description separately, then
a very good practice is to place every <documentation> tag in
the most restrictive ambit. For instance, if the comment refers
to a specific operation, it should be placed in that operation.

It is worth noting that, except for steps 4 and 6, the
other steps may require to modify service implementations.
Moreover, as a result of applying these guidelines, there will
be two versions of a revised service description. Despite being
out of the scope of this article, some version support technique
is necessary to allow service consumers that use the old
service version to continue using the service until they migrate
to the new version.

B. Guidelines for making effective queries

Queries play an important part in the process of service
discovery since service consumers may greatly benefit from
generating clear and explanatory descriptions of their needs.
This is because the underpinnings of UDDI-based registries

rely upon the descriptiveness of the keywords conveyed in
both publicly available service interfaces and queries.

We have empirically proved that the source code artifacts
of client applications may carry relevant information about
the functional descriptions of the potential services thatcan
be discovered and, in turn, consumed from within applica-
tions [6]. The idea is that developers should be focused on
building the logic of their applications, while using automatic
heuristics to pull out keywords standing for queries of the re-
quired services from the code implementing such applications.
In this line, best practices for building an application that
contains useful information about the services the application
needs comprise [6]:

1) Defining the expected interface of every application
component that is planned not to be implemented but
outsourced to a Web Service.

2) Revising the functional cohesion between the imple-
mented (i.e. internal) components that directly invoke,
and hence depend on the interfaces of, the components
defined in step 1.

3) Naming and commenting each defined interface and
internal component by using self-explanatory names and
comments, respectively.

The first step encourages developers to think of a third-party
service as any other regular component providing a clear
interface to its operations. The idea of defining a functional
interface before knowing the actual exposed interface of a
service that fulfills an expected functionality aligns withthe
Query-by-Exampleapproach to create queries. This approach
allows a discoverer to search for an entire piece of information
based on an example in the form of a selected part of
that information. This concept suggests that because of the
structure inherent to client applications and Web Service
descriptions in WSDL, the expected interface can be seen
as an example of what a consumer is looking for. This is
built on the fact that, via WSDL, publishers can describe
their services as object-oriented interfaces with methodsand
arguments. Therefore, in the context of client applications, the
defined interfaces stand forexamples.

The second step bases on an approach for automatically
augmenting the quantity of relevant information within queries
called Query Expansion, which relies on the expansion of
extracted examples by gathering information from the source
code representing internal components that directly inter-
act with the interfaces representing external services. The
reasoning that supports this mechanism is that expanding
queries based upon components with strongly-related and
highly-cohesive operations should not only preserve, but also
improve, the meaning of the original query. Therefore, the
second step deals with ensuring that defined interfaces are
strongly-related and highly-cohesive with those components
that depend on them.

The above two steps deal with identifying the source code
parts of an application that may contain relevant informa-
tion for generating queries and discovering Web Services
afterward. Also, a third step exists for checking that the



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 4

identified code parts actually have relevant information for
that purpose. Since automatic query generation heuristics
gather keywords from operation names and comments present
in source codes, developers should follow conventional best
practices for naming and commenting their code.

C. Guidelines for shielding applications from service specifics

Maintaining client applications can be a cumbersome task
when they are tied to specific providers and WSDL docu-
ments. The common approach to call a Web Service from
within an application is by interpreting its associated WSDL
document with the help of invocation frameworks such as
WSIF, CXF [11], or the .NET Web Services Description
Language Tool (WSDL.exe)1. These frameworks succeed in
hiding the details for invoking services, but they still fail
at isolating internal components from the interfaces of the
services. Consequently, applications result in a mix of pure
logic and sentences for consuming Web Services that depend
on their operation signatures and data-types. This approach
leads to client applications that are subordinated to third-
party service interfaces and must be modified and/or re-tested
every time a provider introduces changes. In addition, this
also hinders service replaceability, which means how easily a
service could be replaced with another functionality equivalent
service.

In this sense, we have shown that the maintenance of
service-oriented applications can be facilitated by following
certain programming practices when outsourcing services [8]:

1) Defining the expected interface of every component that
is planned to be outsourced.

2) Adapting the actual interface of a selected service to
the interface that was originally expected, i.e. the one
defined in the previous step.

3) Seamlessly injecting adaptation code into each internal
component that depends on the expected interface.

Step 1 provides a mean of shielding the internal components
of an application from details related to invocating third-
party services. To do this, a functionality that is planned to
be implemented by a third-party service should be program-
matically described as an abstract interface. Note that this
is the same requirement as the first step of Section II-B.
Accordingly, internal application components depending on
such an abstractly-described functionality consume the meth-
ods exposed by its associated interface, while adhering to
operation names and input/out data-types declared in it.

The second step takes place after a service has been
selected. During this step, developers should provide the logic
to transform the operation signatures of the actual interface
of the selected service to expected the interface defined
previously. For instance, if a service operation returns a list
of integers, but the interface defined at step 1 returns an
array of floats, the developer should code a service adapter
that performs the type conversion. By properly accomplishing

1.NET WSDL.exe, http://msdn.microsoft.com/en-us/library/7h3ystb6(v=
VS.71).aspx

steps 1 and 2, client components depend on neither specific
service implementations nor interfaces. Therefore, from the
perspective of the application logic, services that provide
equivalent functionality can be transparently interchangeable
at the expense of building specific adapters.

Finally, the third step is for separating the functional
code of an application from configuration aspects related
to binding a client component that depends on an interface
with the adapter component in charge of adapting it into a
selected service. A suitable form of doing this, in terms of
source code quality, involves delegating to a software layer
or container the administrative task of assembling interfaces,
internal components and services together.

In the following section we describe a software tool, imple-
mented as a plug-in for the Eclipse IDE, which enforces the
aforementioned guidelines for developing SOC applications
and Web Services written in Java.

III. T HE EASYSOC ECLIPSE PLUG-IN

The EasySOC Eclipse plug-in comprises three modules,
each one materializing the set of guidelines explained before.
Sections III-A through III-C discuss the design and imple-
mentation of these modules.

A. WSDL discoverability Anti-Patterns Detector

The Anti-patterns Detector is the EasySOC module for
automatically checking whether the WSDL document describ-
ing the technical contract of a Web Service conforms to the
guidelines of Section II-A. The module receives this name
since its construction was driven by the catalog of WSDL
document discoverability anti-patterns that we introduced in
the study published in [10]. Besides measuring the impact of
each anti-pattern on service discovery, the study assessedthe
implications of anti-patterns on developers’ ability to make
sense of WSDL documents. The catalog consists of eight anti-
patterns and provides a name, a problem description, and a
sound refactoring procedure for each anti-pattern. Although
the results of the study motivate anti-patterns refactoring,
manually looking for an anti-pattern in WSDL documents
might be a time consuming and complex task. Thus, the Anti-
patterns Detector comprises heuristics to automatically detect
the anti-patterns in the aforementioned catalog.

Since those heuristics are based on the anti-pattern def-
inition, they can be classified according to the analysis re-
quired to detect the anti-patterns. In this sense, a taxonomy
comprising types of anti-patterns was derived [10]. Basically,
antipatterns can be divided into two categories: those thatcan
be detected by analyzing only the structure of a WSDL doc-
ument, and anti-patterns whose detection requires a semantic
analysis of the names and comments in the WSDL document.

The heuristics to detect the first kind of anti-patterns are
simple rules based on the commonest anti-pattern occurrence
form. Examples of such anti-patterns are redundant XML
code for defining both data-types and port-types, data-types
embedded in a WSDL document, and data-types that allow
transferring data of any type (Whatever typesin EasySOC



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 5

terminology). Moreover, the second problem difficults data-
type reuse, and the third one hinders understandability. The
rule that detects redundant port-types verifies that any pair of
port-types has the same number of operations and that they
are equally named. In this case, the heuristic does not verify
the similarity between the messages of the port-types because
they are likely to change in accord with the underlying binding
protocol.

As it was previously mentioned, detecting the remaining
anti-patterns requires analyzing the semantics of names and
comments. Basically, there are three problems that are de-
tected by the associated heuristics: two naming issues, namely
operations of different domains in the same port-type, and
fault information within standard output messages. Firstly, our
heuristic deals with names being too short or too long, using
a rule to check that each name has a length between 3-30
characters is provided. Moreover, our heuristic concerns name
structure, i.e. message part names should be nouns or noun
phrases, while operations should be named with a verb plus
a noun. This is verified by using a probabilistic context free
grammar parser. For example, Figure 2 depicts the parsing
trees of different message part names generated by the parser.
The first and second names do not present problems, whereas
the third name does because it starts with a verb.

ROOT

Simple declarative clause

(S)

Verb phrase

(VP)

Verb 3rd ps. sing.

(VBZ)

uses cache

ROOT

Noun phrase

(NP)

Noun

(NN)

name

Adjetive

(JJ)

first name

ROOT

name firstName usesCache

NP

NN NN

NP

Figure 2: Parsing trees of message part names.

Secondly, our heuristic for determining whether two op-
erations belong to the same domain is based on a text
classification technique, because the only “semantic” infor-
mation an operation of a WSDL document provides consists
of the names and comments of the operation. In particular,
the Rocchio’s TF-IDF classifier has been selected because
empirical studies show that it outperforms other classifiers
in the Web Services area [8]. Rocchio’s TF-IDF represents
textual information as vectors, in which each dimension stands
for a term and its magnitude is the weight of the term related
with the text. Having represented all the textual information
of a domain as vectors, the average vector, called centroid,
is built for representing the domain. Then, the domain of
an operation is deduced by representing it as a vector and
comparing it to each domain centroid. Finally, the domain
associated with the most similar average vector is returnedas
the domain of that operation.

Finally, our heuristic for detecting error information within
output messages checks whether an operation has no fault

Table II: Anti-pattern detection: Confusion matrixes.

Automatic detection results
per anti-pattern

Manual
detection
results

Negative Positive

Enclosed data model
Negative 116 6
Positive 0 270

Redundant port-types
Negative 161 4
Positive 0 227

Redundant data models
Negative 221 2
Positive 3 166

Whatever types
Negative 339 0
Positive 3 50

Lack of comments
Negative 135 0
Positive 0 257

Low cohesive operations in
the same port-type

Negative 272 10
Positive 78 32

Ambiguous names
Negative 67 0
Positive 9 316

Undercover fault information
within standard messages

Negative 351 3
Positive 4 34

message defined, and the comment or some name related
with the output contains one of the following words, which
are commonly related with error conditions while executing
a service:error, fault, fail, exception, overflow, mistakeand
misplay.

These heuristics have been experimentally validated with a
real-world data-set, showing an averaged accuracy of 98.5%.
The methodology followed in the evaluation first involved
manually analyzing each WSDL document to identify the
anti-patterns it has, peer-reviewing manual results afterwards
(at least three different people reviewed each WSDL docu-
ment), automatically analyzing WSDL documents based on
the proposed heuristics, and finally comparing both manual
and automatic results. Results were organized per anti-pattern,
and if a WSDL document has an anti-pattern it is classified as
“Positive”, otherwise it is classified as “Negative”. When the
manual classification for a WSDL document is equal to the
automatic one, it means that the heuristic accurately operates
for that WSDL document. Achieved results are shown in
Table II by using a confusion matrix. Each row of the
matrix represents the number of WSDL documents that were
automatically classified using the heuristic associated with a
particular anti-pattern. In addition, the columns of the matrix
show the results obtained manually, i.e. the number of WSDL
documents that actually had each anti-pattern.

In the experiments, we used a data-set of 392 WSDL
documents [10]. Once each heuristic was applied on this data-
set, we built the confusion matrixes. Then, we assessed the
accuracy and false positive/negative rates for each matrix.
The accuracy of each heuristic was computed as the number
of classifications matching over the total of analyzed WSDL
documents. For instance, the accuracy of theRedundant data
model heuristic was 221+166

221+2+3+166 = 0.987. The heuristic for



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 6

detecting Low cohesive operations within the same port-
type anti-pattern achieved the lowest accuracy: 0.775. One
hypothesis that could explain this value relates to potential
errors introduced by the classifier, thus more experiments are
being conducted. Nevertheless, the average accuracy for all
the heuristics was 0.958.

The false positive rate is the proportion of WSDL doc-
uments that an heuristic has wrongly labeled as having the
corresponding anti-pattern. In opposition, the false negative
rate is the percentage of WSDL documents that an heuristic
has wrongly labeled as not having the corresponding anti-
pattern. A false negative rate equals to 1.0 means that a
detection heuristic has missed all anti-pattern occurrences.
Therefore, the lower the achieved values the better the detec-
tion effectiveness. The average false positive rate was 0.036,
and the average false negative rate was 0.052, which we
believe are encouraging.

B. Query Builder

The EasySOC Query Builder module gathers information
to build service queries from the source code of client appli-
cations. This module provides a graphical tool that guides
consumers through the generation of the queries. When a
consumer selects “Find services for...” by clicking on an
interface that stands for an external service to be outsourced
(see Figure 3 step 1), a wizard dialog starts. The wizard uses
the Eclipse JDT Search Engine2 for automatically discover-
ing the client-side classes that depend on the interface and
presents them to the user. Then, the user may select or discard
the resulting classes (Figure 3 step 2). Similarly, the wizard
presents a list of argument classes. This list is automatically
built by analyzing the interface to retrieve the class names
associated with each argument. If an argument is neither
primitive (e.g., int, long, double, etc.) nor provided within a
built-in Java library package (e.g., Vector, ArrayList, String,
etc.) it is included in the list of argument classes. Finally,
those manually selected classes along with the Java interface
are used as input for the text-mining process depicted in the
center of Figure 3. The module allows users to customize
queries and test the retrieval effectiveness when using different
classes as input, making query building interactive or semi-
automatic. Alternatively, by clicking on the “Finish” button,
the wizard selects all target classes on behalf of the consumer,
making query expansion fully automatic.

We evaluated the retrieval effectiveness of the Query
Builder by using the previous collection of 392 WSDL
documents to feed a service registry [6]. Moreover, under-
graduate students played the role of service consumers in
the context of the “Service-Oriented Computing”3 course of
the Systems Engineering BSc. program at the Faculty of
Exact Sciences (Department of Computer Science) of the
UNICEN. The students were assigned an exercise consisting
on deriving 30 queries, in which each query comprised a Java
interface describing the functional capabilities of a potential

2Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt
3http://www.exa.unicen.edu.ar/~cmateos/cos

Split combined words 

Extract class & 
operation names 

Extract
comments 

Remove stop-words 

Reduce words to stems 

Consumer

Select the "example"

 Expand the query

"Clean" the generated query
) Ask the registry

Show the results

1

2

3
4

5

Figure 3: Wizzard for generating service queries.

service. The header and the operations of each interface were
commented. For those operations with non-primitive data-
types as arguments, their corresponding classes were also
commented. Then, for each query, the students implemented
and commented the internal components that depended on the
interface. This methodology allowed us to separately evaluate
five combinations of different sources of terms associated
with an example, namely its “Interface”, “Documentation”,
“Arguments” and “Dependants”. Finally, a fifth alternativewas
used by combining all these four sources. In this context,
documentation does not refer to extra software artifacts but to
textual comments embedded within the classes.

To evaluate the discovery performance resulted from em-
ploying the different sources of terms, we used the Precision-
at-n, Recall-at-n, R-precision and Normalized Recall (NR)
information retrieval metrics. In this sense, the goal was
to evaluate our Query Builder in terms of the proportion
of relevant services in the retrieved list and their positions
relative to non-relevant ones. We applied each metric for the
30 queries by individually using each one of the combination
of sources (a total of 150 experiments per measure), and
then we averaged the results over the 30 queries. As some
of these metrics require to know the set of all services
in the collection that are relevant to a given query, we
exhaustively analyzed the data-set to determine the relevant
services for each query. An important characteristic regarding
the evaluation is the definition of “hit”, i.e. when a returned
WSDL document is actually relevant to the user. We judged a
WSDL document as being a hit or not depending on whether
its operations fulfilled the expectations previously specified
in the Java code. For example, if the consumer required a
Web Service for converting from Euros to Dollars, then a
retrieved Web Service for converting from Yens to Dollars
was not considered relevant, even though these services were
strongly related. In this particular case, only Web Services
for converting from Euros to Dollars were relevant. Note that
this definition of hit makes the validation of our discovery
mechanism very strict. Additionally, it is worth noting that
for any query there are, at most, 8 relevant services within
the data-set. Besides, there are 10 queries that have associated
only one relevant service.

Each bar in Figure 4 stands for the averaged metric re-
sults that were achieved using a particular query expansion



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 7

 65

 70

 75

 80

 85

 90

 95

 100

NR R-Precision Recall-at-10 Precision-at-1

A
v
e

ra
g

e
d

 M
e

a
s
u

re
s
 [

%
]

(m
o

re
 i
s
 b

e
tt

e
r)

Interface
Documentation

Arguments
Dependants

All

Figure 4: EasySOC Query Builder: Retrieval effectiveness.

alternative. Achieved results pointed out that by following
the conventional Query-By-Example approach to build queries
(the alternative named “Interface”) query-specific results were
ranked first. When using more general, elaborated queries via
the Query Expansion approach (e.g. the “All” alternative),the
chance of including a relevant service at the top of the list
decreased as the possibilities of including it before the 11th

positions increased. All in all, for this experiment our Query
Builder alleviated discovery by concentrating relevant services
within a window of 10 candidates.

C. Service Adapter

The Service Adapter module has been created to automat-
ically perform the steps 2 and 3 for the guidelines of Sec-
tion II-C. Once a consumer has selected a candidate service,
this module performs three different tasks to adapt service
interfaces and assemble internal components to it. The first
task builds a proxy for the service. Second, the module builds
anadapterto map the interface of the proxy onto the abstract
interface internal components expect. Third, the module indi-
cates a container how to assemble internal components and
adapters, which is done through Dependency Injection (DI),
a popular pattern for seamlessly wiring software components
together that is employed by many development frameworks.
Figure 5 summarizes the steps that are needed to proxy,
adapt, and inject services into applications or another service
implementation.

A proxy to 
the service

Internal
components

C'

C''

A service
adapter

component

C'

C''

As

Ps

Injected
component

Business

logic layer

Service

adapter

layer

Service 

invocation

layer

C'

C''

As

Ps

As

Automatic generation of

 a proxy to the service

Semi-automatic generation of 

a service adapter

Automatic generation of

DI container-specific configuration

1

2

3

Ps

Timeline

Figure 5: EasySOC steps for outsourcing services.

The current implementation of the Service Adapter module
uses the Axis2 Web Service library for building service
proxies, and Spring as the container supporting DI. Building

a proxy with Axis2 involves giving as input the interface
description of the target service (a WSDL document) to a
command line tool. To setup the DI container, the names
of dependant components and services must be written in
an XML file. For adapting external service interfaces to the
expected ones, we have designed an algorithm based on the
work published in [12].

Our algorithm takes two Java interfaces as input and returns
the Java code of a service adapter. To do this, it starts by de-
tecting to which operations of one interface should be mapped
the operations offered by the other. The algorithm assessesop-
eration similarity by comparing operation names, comments,
data-types and argument names. Data-type similarity is based
on a pre-defined similarity table that assigns similarity values
to pairs of simple data-types. The similarity between two
complex data-types is calculated in a recursive way. Once
a pair of operations has been determined, service adapter
code is generated. The algorithm adapts simple data-types by
taking advantage of type hierarchies and performing explicit
conversions, i.e. castings. Complex data-types are resolved
recursively as well. Clearly, not all available mismatchescan
be covered by the algorithm. Therefore, developers should
revise the generated code.

In order to quantify the source code quality resulting from
employing our plug-in, we conducted a comparison with
the more traditional way of consuming Web Services, in
which coding the application logic comes after discovering
and knowing the description of the external services to be
consumed. Basically, we used these two alternatives for devel-
oping a simple, personal agenda by outsourcing services from
a given data-set comprising several services offering similar
functionality but exposed by different providers.

After implementing the two variants, we randomly picked
one service already included in the applications and we
changed its provider. Then, we took metrics on the resulting
source codes to have an assessment of the benefits of the
EasySOC guidelines for software maintenance with respect
to the traditional approach. To this end, we employed the
well-known SLOC (Source Lines Of Code), Ce (Efferent Cou-
pling), CBO (Coupling Between Objects) and RFC (Response
For Class) software engineering metrics.

Table III: Personal agenda: Source code metrics.

Variant Id SLOC Ce CBO RFC

Initial Web Service
providers

Traditional T1 242 7 4.50 30.00

EasySOC E1 309 7 1.70 7.20

Alternative Web
Service providers

Traditional T2 246 10 4.67 22.67

EasySOC E2 327 10 2.00 7.45

Table III shows the resulting metrics values for the four im-
plementations of the personal agenda: traditional, EasySOC,
and two additional variants in which another provider for a
service was chosen from the Web Service data-set. For conve-
nience, we labeled each implementation with an identifier (id
column), which will be used through the rest of the paragraphs



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 8

of this section. To perform a fair comparison, a uniform
formatting standard for all source codes was employed, Java
import statements within compilation units were optimized,
and the same tool to generate the underlying Web Service
proxies was used.

From Table III, it can be seen that the variants using the
same set of service providers resulted in equivalent Ce values:
7 for T1 and E1, and 10 for T2 and E2. This means that
the variants generated via our plug-in (Ex), did not incur in
extra efferent couplings with respect to the traditional variants
(Tx). Moreover, if we do not consider the corresponding
service adapters, Ce for the EasySOC variants drops down to
zero, because relying on EasySOC effectively push the code
that depends on service descriptions out of the application
logic. Interestingly, the lower the Ce value is, the less the
dependency between the application code and the Web Service
descriptions is, which simplifies service replacement.

 0

 50

 100

 150

 200

 250

 300

 350

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

S
L

O
C

(l
e

s
s
 i
s
 b

e
tt

e
r)

Variant

Service adapter code
Non-adapter code

Figure 6: Source Lines of Code (SLOC) of the different
applications.

Figure 6 shows the resulting SLOC. Changing the provider
for a random service caused the modified versions of the
application to incur in a little code overhead with respect to
the original versions. The non-adapter classes implemented
by E1 were not altered byE2 at all, whereas in the case of
the traditional approach, the incorporation of the new service
provider caused the modification of 17 lines fromT1 (more
than 7% of its code).

The variants coded under EasySOC had an SLOC greater
than that of the traditional variants. However, this difference
was caused by the code implementing service adapters. In
fact, the non-adapter code was smaller, cleaner and more
compact because, unlike its traditional counterpart, it did not
include statements for importing/instantiating proxy classes
and handling Web Service-specific exceptions. Additionally,
there are positive aspects concerning service adapters and
SLOC. A large percentage of the service adapter code was
generated automatically, which means programming effort
was not required. Besides, changing the provider for the target
service triggered the automatic generation of a new adapter
skeleton, kept the application logic unmodified, and more
importantly, allowed the programmer to focus on supporting
the alternative service description only in the newly gener-
ated adapter class. Conversely, replacing the same service
in T1 involved the modification of the classes from which
the service was accessed (i.e. statements calling methods or

data-types defined in the service interface), thus forcing the
programmer to modify more code. In addition, this practice
might have introduced more bugs into the already built and
tested application.

CBO and RFC metrics were also computed (Figure 7).
Particularly, high CBO is undesirable, because it negatively
affects modularity and prevents reuse. The larger the coupling
between classes, the higher the sensitivity of a single change
in other parts of the application, and therefore maintenance
is more difficult. Hence, inter-class coupling, and specially
couplings to classes representing (change-prone) servicede-
scriptions, should be kept to a minimum. Similarly, low RFC
implies better testability and debuggability. In concordance
with Ce, which resulted in greater values for the modified vari-
ants of the application, CBO for both the traditional approach
and EasySOC exhibited increased values when changing the
provider for a service. RFC, on the other hand, presented a
less uniform behavior.

 0

 1

 2

 3

 4

 5

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

C
B

O
(l
e
s
s
 i
s
 b

e
tt
e
r)

Variant

(a) CBO

 0

 5

 10

 15

 20

 25

 30

 35

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

R
F

C
(l
e
s
s
 i
s
 b

e
tt
e
r)

Variant

(b) RFC

Figure 7: Coupling Between Objects (CBO) and Response For
Class (RFC) of the different applications.

As quantified by Ce, EasySOC did not reduce the amount
of efferent couplings from the package implementing the
application logic. Naturally, the reason of this is that the
service descriptions to whichEx adhere are exactly the same
asTx. However, the EasySOC applications reduced the CBO
with respect to the traditional implementations, because the
access to the various services utilized by the application,
and therefore their associated data-types, is performed within
several cohesive compilation units (i.e. adapters) ratherthan
within few, more generic classes. This in turn improves
reusability and testability since application logic classes do
not directly depend on services.

As depicted in Figure 7 (b), this separation also helped in
achieving better average RFC. Moreover, although the plain
sum of the RFC values of theEx were greater compared
to Tx, the total RFC of the classes implementing application
logic (i.e. without taking into account adapter classes) were
both smaller. This suggests that the pure application logic
of E1 and E2 is easier to understand. In large projects, we
reasonably may expect that much of the source code of
EasySOC applications will be application logic instead of
service adapters. Therefore, preserving the understandability
of this kind of code is crucial.



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 9

IV. RELATED WORK

This work is somehow related to a number of preliminary
methodologies that have emerged to address the demand for
process guidance for SOC. These methodologies build upon
existing techniques, such as EA and BPM, but also agile
processes, such as XP and RUP [13]. However, it is out of the
scope of this work to provide a SOC methodology. Instead,
we aim at cataloging a set of proven best practices to design
and implement both client applications and Web Services. It
is worth to remark that the proposed guidelines have been
followed to produce SOC-based software by playing both
consumer and provider roles, thereby the collected empirical
evidence supports that the proposed guidelines are indeed best
practices. Additionally, another point of difference between
our work and efforts like [14] is that, at least to the best of
our knowledge, EasySOC is the first attempt towards a tool-
aidedstep-by-stepguide for materializing both Web Services
and client applications.

V. CONCLUSIONS

The software industry is embracing the Service-Oriented
Computing (SOC) paradigm as the premier approach for
achieving integration as well as interoperability in heteroge-
neous, distributed computing environments. However, SOC
presents many intrinsic challenges that both Web Service
providers and consumers must unavoidable face.

Historically, catalogs of best practices have been widely
recognized as a very valuable and helpful mean for software
practitioners to deal with common problems in many different
contexts. In this sense, this paper presented a set of concrete,
proven guidelines for avoiding recurrent problems when de-
veloping Web Services and client applications. The proposed
catalog is a set of 3 guidelines comprising 12 steps. One
guideline covers 6 steps that service providers should take
into consideration when exposing their services, in order to
allow potential consumers to effectively discover, understand
and access them. The other two guidelines cover aspects
that service consumers should consider when discovering
and consuming services. Regarding discovery, the proposed
guideline consists of 3 steps that should be followed to
easily build effective queries, which alleviates consumers’ task
by narrowing down the number of candidate services. With
respect to service consumption, following the 3 steps of the
associated guideline results in more maintainable code within
client applications, but also in those services that invokeother
services to accomplish their tasks.

The practical implications of each guideline have been cor-
roborated experimentally, which suggests that the guidelines
can be conceived as being best practices and can be readily
employed in the software industry. In particular, we have
assessed the impact of improving Web Service descriptions
according to the corresponding guideline, by employing three
registries simultaneously supporting service discovery and
human consumers, who had the final word on which service is
more appropriate. Results showed that improved descriptions
are easier to understand than their “raw” counterpart [10].

Similarly, the positive effect on service discovery of the
guideline for generating and expanding queries has been also
measured [6]. Also, the implications on clients’ maintenance
of the corresponding guidelines have been formally and ex-
perimentally shown in [7] and [8] respectively.

Clearly, building truly loose coupled client applications
using the corresponding guidelines imposes a radical shift
in the way such applications are developed. This means that
a company willing to employ EasySOC to start producing
service-oriented applications would have to invest much time
in training its development team, which results in a costly
start-up curve. The impact of EasySOC on the software
development process itself from an engineering point of view
has been empirically assessed in [9]. Concretely, we per-
formed further experiments to test the following hypothesis:
understanding pervasive design patterns (i.e. Adapter and
DI) and the “first build your application and then servify
it” philosophy are the only required intellectual activities to
start developing service-oriented applications with EasySOC,
which should sharpen the associated learning curve. The
hypothesis has been confirmed with 45 postgraduate and
undergraduate students of the Systems Engineering programat
the UNICEN during 2009. Results showed that they perceived
that the proposed approach is convenient and thus may be
easily adopted.

In the near future, we will conduct experiments with other
students and real development teams to further validate our
claims.

ACKNOWLEDGMENTS

We thank the SCCC’10 chair Dr. Sergio F. Ochoa and the
anonymous referees for their helpful comments to improve the
paper. We also acknowledge the financial support provided by
ANPCyT through grant PAE-PICT 2007-02311.

REFERENCES

[1] J. Erickson and K. Siau, “Web Service, Service-Oriented
Computing, and Service-Oriented Architecture: Separat-
ing hype from reality,”Journal of Database Manage-
ment, vol. 19, no. 3, pp. 42–54, 2008.

[2] M. Campbell-Kelly, “The rise, fall, and resurrection of
software as a service,”Communications of the ACM,
vol. 52, no. 5, pp. 28–30, 2009.

[3] W3C Consortium, “SOAP version 1.2 part 1: Messag-
ing framework.” W3C Recommendation, http://www.w3.
org/TR/soap12-part1, June 2007.

[4] T. Erl, SOA Principles of Service Design. Prentice Hall,
2007.

[5] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo,
“Revising WSDL documents: Why and how,”IEEE
Internet Computing, vol. 14, no. 5, pp. 30–38, 2010.

[6] M. Crasso, A. Zunino, and M. Campo, “Combining
query-by-example and query expansion for simplifying
Web Service discovery,”Information Systems Frontiers,
2009. To appear.



This article is a pre-print of the article "J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino and M. Campo: "The EasySOC Project: A Rich Catalog of Best 
Practices for Developing Web Service Applications". JCC - INFONOR 2010. pp. 33-42. IEEE. ISBN 978-1-4577-0073-6."
The published version is available at http://dx.doi.org/10.1109/SCCC.2010.12 10

[7] C. Mateos, M. Crasso, A. Zunino, and M. Campo, “Sepa-
ration of concerns in service-oriented applications based
on pervasive design patterns,” inWeb Technology Track
(WT) - 25th ACM Symposium on Applied Computing
(SAC ’10), pp. 2509–2513, ACM Press, 2010.

[8] M. Crasso, C. Mateos, A. Zunino, and M. Campo,
“EasySOC: Making Web Service outsourcing easier,”
Information Sciences, 2010. To appear.

[9] C. Mateos, M. Crasso, A. Zunino, and M. Campo, “An
evaluation on developer’s acceptance of EasySOC: A
development model for Service-Oriented Computing,”
in 11th Argentine Symposium on Software Engineering
(ASSE2010) - 39th JAIIO, SADIO, 2010.

[10] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo,
“Improving Web Service descriptions for effective ser-
vice discovery,” Science of Computer Programming,
vol. 75, no. 11, pp. 1001–1021, 2010.

[11] Apache Software Foundation, “Apache CXF: An Open
Source Service Framework.” http://cxf.apache.org, 2009.

[12] E. Stroulia and Y. Wang, “Structural and semantic
matching for assessing Web Service similarity,”Inter-
national Journal of Cooperative Information Systems,
vol. 14, no. 4, pp. 407–438, 2005.

[13] E. Ramollari, D. Dranidis, and A. Simons, “A survey
of service oriented development methodologies,” in2nd
European Young Researchers Workshop on Service Ori-
ented Computing (YR-SOC 2007), 2007.

[14] M. Papazoglou and W.-J. van den Heuvel, “Service-
oriented design and development methodology,”Inter-
national Journal of Web Engineering and Technology,
vol. 2, no. 4, pp. 412–442, 2006.


