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Abstract. Scientists and engineers often require huge amounts of computing
power to execute their experiments. This work focuses on the federated Cloud
model, where custom virtual machines (VM) are launched in appropriate hosts
belonging to different providers to execute scientific experiments and minimize
response time. Here, scheduling is performed at three levels. First, at the bro-
ker level, datacenters are selected by their network latencies via three policies —
Lowest-Latency-Time-First, First-Latency-Time-First, and Latency-Time-In-Ro-
und—. Second, at the infrastructure level, two Cloud VM schedulers based on Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) for map-
ping VMs to appropriate datacenter hosts are implemented. Finally, at the VM
level, jobs are assigned for execution into the preallocated VMs. Simulated ex-
periments show that the combination of policies at the broker level with ACO and
PSO succeed in reducing the response time compared to using the broker level
policies combined with Genetic Algorithms.

1 Introduction

Scientific computing is a field that applies Computer Science to solve typical scientific
problems. A representative example of scientific experiments is parameter sweep exper-
iments (PSEs) [13]. Running PSEs involves managing many independent jobs, since the
experiments are executed under multiple initial configurations a large number of times,
to locate a particular point in the parameter space that satisfies certain user criteria. In-
deed, users relying on PSEs need a computing environment that deliverslarge amounts
of computational power over a long period of time. A kind of parallel environment that
has gained momentum is represented by Clouds [14].

Executing PSEs on Clouds is not free from the well-known scheduling problem,
i.e., it is necessary to develop efficient scheduling strategies to appropriately allocate
the jobs and reduce the associated computation time. Moreover, in federated Clouds [3]
it is necessary to properly manage physical resources, when they are part of geograph-
ically distributed datacenters. Therefore, for the efficient execution of jobs in federated
Clouds, scheduling should be performed at three levels. Firstly, at the broker level,
scheduling strategies are used for selecting datacenters taking into account issues such
as network interconnections or monetary cost of allocating VMs on hosts that compose



This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcA-a Garino: "Sl-based Scheduling of Parameter Sweep Experiments on Federated
Clouds". Proceedings of the First HPCLATAM - CLCAR Joint Conference (CARLA 2014), ValparaA-so, Chile. Communications in Computer Science.
Springer. In press. ISSN 1865-0929. 2014."

them. Secondly, at the infrastructure level, by using a VM scheduler, the VMs are allo-
cated on the available hosts belonging to the previously selected datacenters. Lastly, at
the VM level, by using job scheduling techniques, jobs are assigned for execution into
allocated virtual resources. However, scheduling is in general an NP-Complete [21]
problem and therefore it is not trivial from an algorithmic standpoint. Besides, in this
context, the necessity of scheduling algorithms spans the three levels.

In the last ten years, Swarm Intelligence (SI) has received increasing attention
among researchers. SI refers to the collective behavior that emerges from a swarm of
social insects [9]. Inspired by these capabilities, researchers have proposed algorithms
or theories for combinatorial optimization problems, where the most popular SI-based
strategies are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).
Moreover, job scheduling in Clouds is also a combinatorial optimization problem, and
schedulers in this line that exploit SI have been proposed.

Existing efforts which address SI have not being studied in the context of federated
Clouds. In this paper, unlike previous works of our own [16,18] where we proposed a
two-level scheduler for Clouds composed of a single datacenter, in this work we extend
the scheduler for operating in federated Clouds. To this end, the scheduler operates at
three levels. Firstly, by means of a policy that operates at the broker level, datacenters
are selected according to their network interconnections and latencies. Indeed, the net-
work latencies among datacenters can contribute to negatively affect the response time
delivered to the user. We consider three policies, Lowest-Latency-Time-First (LLTF),
First-Latency-Time-First (FLTF), and Latency-Time-In-Round (LTIR). Then, at the in-
frastructure level, we have explored ACO and PSO for allocating the VMs into the
physical resources of a datacenter. To allocate the VMs into hosts, each scheduler must
make a different number of “queries” to hosts to determine their availability upon each
VM allocation attempt. These queries are actually messages sent to hosts over the net-
work to obtain information regarding their availability. The number of queries to be per-
formed by each algorithm and the latencies of datacenters also influence the response
time to the user. Finally, at the VM level, PSE-jobs are assigned to the preallocated
VMs by using FIFO, as in [18]. Briefly,in this paper we include the broker level and
evaluate how decisions taken both atthe broker level and infrastructure level influence
the response time.

Simulated experiments performed with job data extracted from a real-world PSE [6]
involving a viscoplastic problem suggest that the SI schedulers at the infrastructure
level, in combination with these policies at the broker level and FIFO at the VM level,
deliver competitive performance with respect to the response time. Experiments were
performed by using the CloudSim [2] simulator. To set the basis for comparison, and
since VM scheduling is highly challenging and heavily contributes to the overall perfor-
mance in Cloud scheduling [20], we used the same three policies at the broker level and
FIFO at the VM level in combination with a scheduler based on Genetic Algorithms
(GA) [1].

The rest of the paper is as follows. Section 2 gives some background necessary to
understand the concepts underpinning our scheduler. Section 3 surveys relevant related
works. Section 4 presents our proposal. Section 5 presents the experimental evaluation.
Section 6 concludes the paper and discusses future prospective extensions.
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2 Background

Clouds [14] are the current emerging trend in delivering IT services, and offer to end-
users a variety of services covering the entire computing stack. Scientists in general and
PSEs users in particular can completely customize their execution environment, thus
deploying the most appropriate setup for their experiments. Another related important
feature is the ability to scale up and down the computing infrastructure according to
PSEs resource requirements.

In the next subsections we describe the federated Cloud basics (Subsection 2.1),
and introduce the classical SI-based algorithms (Subsection 2.2), the core optimization
techniques of the schedulers implemented in this work at the infrastructure level.

2.1 Federated Clouds

Federated Clouds [15] consist of infrastructures with physical resources belonging to
different Cloud providers. A federated Cloud could involve different architectures and
levels of coupling among federated datacenters. Federated Clouds also make use of
brokers to meet the needs of their participating organizations. A broker is an entity
which keeps a queue of requests from a particular user that need to be provisioned by
a datacenter. In the context of this work, where a user runs PSEs, only one broker is
associated with that user.

Clouds allow the dynamic scaling of users applications by the provisioning of com-
puting resources via machine images, or VMs. In order to achieve good performance,
VMs have to fully utilize its services-and resources by adapting to the Cloud dynam-
ically. Proper allocation of resources must be guaranteed so as to improve resource
usefulness [15].

For running applications in-a Cloud, resources are scheduled at three levels (Fig-
ure 1): Broker level, Infrastructure level, and VM level. At the broker level, different
policies can be implemented in order to serve users. Some examples are policies consid-
ering the influence of network interconnections among Cloud datacenters or monetary
cost of hosts that compose them [1]. Furthermore, the scheduler at this level can decide
to deploy the VMs in a remote Cloud when there are insufficient physical resources in
the datacenter where the VM creation was issued. Secondly, once a datacenter/provider
has been selected by a broker, at the infrastructure level, the VMs are allocated into real
hardware through a VM scheduler. Finally, at the VM level, by using job scheduling
techniques, jobs are assigned for execution into virtual resources (the allocated VMs).
Figure 1 illustrates a Cloud where one or more users are connected via a network and
require the creation of a number of VMs for executing their experiments, i.e., a set of
jobs. As can be seen in the Figure 1, a broker is created for each user that connects to the
Cloud. Each broker knows who are the providers that are part of the federation through
network interconnections —the relation of each broker is colored with green and blue
dotted lines—. In addition, the Figure 1 illustrates how jobs sent by User N are executed
in the datacenter of Cloud Provider 2. At the right of this provider —inside the dotted
Cloud- the intra-datacenter scheduling activities are depicted, i.e., at the infrastructure
level and the VM level.
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Fig. 1: High-level view of a federated Cloud.

2.2 SI techniques for Cloud scheduling

Broadly, ST techniques [9] have shown to be useful in optimization problems. The ad-
vantage of these techniques derives from their ability to explore solutions in large search
spaces in a very efficient way. The most popular SI-based techniques are ACO and PSO.
ACO [9] arises from the way real ants-behave in nature, i.e., from the observation of ant
colonies when they search the shortest paths to reach a food source from their nest. In
nature, real ants move randomly from one place to another to search for food, and upon
finding food and returning to their nest each ant leaves a pheromone that lures other
working ants to the same course.- When more and more ants choose the same path, the
pheromone trail is reinforced and even more ants will further choose it. Over time the
shortest paths will be intensified by the pheromone faster since the ants will both reach
the food source and travel back to their nest at a faster rate.

On the other hand, PSO [9] is a population-based technique that finds solution to
a problem in a search space by modeling and predicting insect social behavior in the
presence of objectives. In the algorithm the general term “particle” is used to represent
birds, bees or any other individuals who exhibit social behavior as group and interact
with each other. An example based on nature to illustrate the algorithm is as follows:
a group of bees flies over the countryside looking for flowers. Their goal is to find as
many flowers as possible. At the beginning, bees do not have knowledge of the field
and fly to random locations with random velocities looking for flowers. Each bee has
the capability of remember the places where it saw the most flowers, and moreover,
somehow knows the places where other bees have found a high density of flowers.
These two pieces of information —nostalgia and social knowledge— are used by the
bees to continually modify their trajectory, i.e., each bee alters its path between the two
directions to fly somewhere between the two points and find a greater density of flowers.
Occasionally, a bee may fly over a place with more flowers than any other place found



This is a preprint of the article: "E. Pacini, C. Mateos and C. GarcA-a Garino: "Sl-based Scheduling of Parameter Sweep Experiments on Federated
Clouds". Proceedings of the First HPCLATAM - CLCAR Joint Conference (CARLA 2014), ValparaA-so, Chile. Communications in Computer Science.
Springer. In press. ISSN 1865-0929. 2014."

previously by other bees in the swarm. If this happens the whole swarm is attracted
towards this new direction.

3 Related work

In this paper we address the scheduling of scientific application in federated Clouds in
order to minimize the response time considering the influence of the network latencies
among datacenters. Our approach differs from those presented in literature for federated
Cloud, where the authors have not considered SI-based strategies at the infrastructure
level. In previous works of our own [16,18] we have presented SI-based schedulers
focused on the infrastructure level. However, it is important to note that in these works
the schedulers operate at two levels for Clouds composed of a single datacenter. The
remaining works found in literature are focused on one level and do not evaluate the
three levels such as we propose in this work.

Among these works we can mention [5,10,20]. In [5] the authors summarize some
VM allocation policies based on linear programming for different Cloud federation ar-
chitectures. Then, in [10] scheduling strategies at the broker level based on different
optimization criteria (e.g., monetary cost optimization or performance optimization)
and different user constraints (e.g., budget, performance, VMs types) were proposed.
Moreover, in [20], the scheduler restricts the deployment of VMs according to some
placement constraints (e.g., Clouds to deploy the VMs) defined by the user.

Two works that deserve special attention are [1,4]. In [1], the authors used at the
broker level, a Dijkstra algorithm to select the datacenter with lower monetary cost,
and a GA for allocating the VMs at the infrastructure level. Although in this work
the authors target the broker and the infrastructure levels, the goal was to reduce the
monetary costs without considering the response time. For scientific applications in
general, the response time is very important [ 18]. Moreover, in [4] the authors proposed
an ACO scheduler based on load balancing to perform efficient distribution of jobs by
finding the best VM to execute jobs. The aim of this work was minimizing the makespan
and improve load balancing in the VMs. Makespan is the maximum execution time of
a set of jobs. To the best of our knowledge, this is the only work in literature in which
the authors have considered the use of SI for federated Clouds. However, it is important
to note that ACO was implemented at the VM level and not at the infrastructure level.

With respect to works which address the scheduling problem at the infrastructure
level —intra-datacenter— using SI-based strategies as we propose in this work, few efforts
have been found [17]. However, in these related works, it is important to note that SI
techniques are used to solve the job scheduling problem,i.e., determining how the jobs
are assigned to pre-allocated VMs, and few efforts have aimed to solve VM scheduling
problems to date [17]. It is worth noting that, from the related works found, most of them
have been proposed for Clouds taking into account only one of the scheduling levels
without considering SI for allocating VMs, or Clouds composed by a single datacenter
where only scheduling of jobs (and not VMs) is addressed. The next Section explains
our approach, which considers the three levels described in Subsection 2.1.
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4 Proposed Scheduler

The goal of our scheduler is to minimize the response time of a set of PSE jobs. Re-
sponse time is the period of time between a user makes a request to the Cloud and gets
the answer, i.e., the period of time in which a user requests a number of VMs to execute
its PSE, and the time in which all the entire PSE-jobs finish their execution. Concep-
tually, the scheduling problem to tackle down can be formulated as follows. A PSE is
formally defined as a set of N = 1, 2, ..., n independent jobs, where each job corresponds
to a particular value for a variable of the model being studied by the PSE. The jobs are
distributed and executed on the v VMs issued by the user. With the goal of minimizing
the response time, the need to implement strategies to select the appropriate datacenters
in which to place the VMs arises. For example, the most suitable datacenter might be
the one that provides the lowest communication latency to a broker when this latter asks
about the availability of physical resources. Latency is due to delays by packets mov-
ing over the various networks between the end user computer and the geographically
distributed Cloud datacenters. One way to mitigate the effects of such latencies is to
choose a datacenter which operates with a fast and efficient internal network and plenty
of capacity.

The proposed scheduler proceeds as follows. Firstly, at the broker level, a datacenter
is selected by a policy that takes into account network interconnections and/or network
latencies. Secondly, at the infrastructure level, by means of a VM scheduler, user VMs
are allocated in the physical resources (i.e., hosts) belonging to the selected datacenter
at the broker level. When there are no available hosts in the datacenter to allocate the
VMs, a new datacenter is selected at the broker level. Finally, at the VM level, a policy
for assigning user jobs-to allocated VMs is also used (currently we use FIFO).

4.1 Scheduler at the Broker level

The scheduler at the broker level is executed both to select the first datacenter to allo-
cate the VMs, which are managed by the scheduler implemented at the infrastructure
level, as well as each time such datacenter is not able to perform the allocation of VMs
anymore. At present, the policies implemented at this level are:

— Lowest-Latency-Time-First (LLTF), maintains a list of all network interconnected
datacenters sorted by their latencies. Each time a user requires a number the VMs
to execute their PSE, this policy is responsible for selecting first the datacenter with
the lowest latency in the list. Then, whenever a datacenter has no more physical
resources to allocate VMs, then the algorithm selects the next datacenter in the list.

— First-Latency-Time-First (FLTF) selects the first datacenter from a list sorted ran-
domly, containing all network interconnected datacenters to which a user can access
and allocate his VMs. When the selected datacenter has no more available physical
resources to allocate VMs, the algorithm selects the next datacenter in the list.

— Latency-Time-In-Round (LTIR) maintains a list of all network interconnected dat-
acenters that make up the Cloud, sorted by increasing latency, and assigns each VM
required by the user to a datacenter from the list in a circular order.
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4.2 Scheduler at the Infrastructure level

To implement the Infrastructure level policy, the SI algorithms proposed in [18] are
used. Below we describe these algorithms.

Scheduler based on Ant Colony Optimization In this algorithm, each ant works inde-
pendently and represents a VM “looking” for the best host to which it can be allocated.
When a VM is created in a datacenter, an ant is initialized and starts to work. A mas-
ter table containing information on the load of each host in the selected datacenter is
initialized. Subsequently, if an ant associated to the VM that is executing the algorithm
already exists, the ant is obtained from a pool of ants. If the VM does not exist in the
ant pool, then a new ant is created. To do this, first, a list of all suitable hosts belonging
to the selected datacenter in which can be allocated the VM is obtained.

Algorithm 1 ACO-based Cloud scheduler: Core logic

Procedure AntAlgorithm ()
Begin

step=1

initialize ()

While (step < maxSteps) do
currentLoad=getHostLoadInformation ()
AntHistory.add(currentLoad)
localLoadTable . update ()
if (currentLoad = 0.0)

break
else if (random() < mutationRate) then
nextHost=randomlyChooseNextStep ()
else
nextHost=chooseNextStep ()
end if
mutationRate=mutationRate —decayRate
step=step+1
moveTo(nextHost)
end while
deliverVMtoHost ()
End

Then, the working ant and its associated VM is added to the ant pool and the
ACO-specific logic starts to operate (see Algorithm 1). In each iteration, the ant col-
lects the load information of the host that is visiting and adds this information to its
private load history. The ant then updates a load information table of visited hosts
(localLoadTable.update()), which is maintained in each host. This table contains
information of the own load of an ant, as well as load information of other hosts of the
datacenter, which were added to the table when other ants visited the host. Here, load
refers to the total CPU utilization within a host and is calculated taking into account the
number of VMs that are executing at a given time in each physical host.

When an ant moves from one host to another it has two choices: moving to a random
host using a constant probability or mutation rate, or using the load table information
of the current host (chooseNextStep()). The mutation rate decreases with a decay
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rate factor as time passes, thus, the ant will be more dependent on load information
than to random choice. When an ant reads the information from a load table in a host,
the ant chooses the lightest loaded host in the table, i.e., each entry of the load infor-
mation table is evaluated and compared with the current load of the visited host. If the
load of the visited host is smaller than any other host provided in the load information
table, the ant chooses the host with the smallest load. This process is repeated until the
finishing criterion is met. The completion criterion is equal to a predefined number of
steps (maxSteps). Finally, the ant delivers its VM to the current host and finishes its
task. Since each step performed by an ant involves moving through the intra-datacenter
network, we have added a control to minimize the number of steps that an ant performs:
every time an ant visits a host that has not allocated VMs yet, the ant allocates its as-
sociated VM to it directly without performing further steps. Every time an ant sends a
message through the intra-datacenter network to obtain information regarding the avail-
ability of the hosts from the selected datacenter latencies are produced. The smaller the
number messages sent to the hosts through the network, the smaller the impact of the
latencies in the response time given to the user.

Every time an ant visits a host, it updates the host load information table with the
information of other hosts in the datacenter, but at the same time the ant collects the
information already provided by the table of that host, if any. The load information
table acts as a pheromone trail that an ant leaves while it is moving, to guide other ants
to choose better paths rather than wandering randomly in the Cloud. Entries of each
local table are the hosts that ants have visited on their way to deliver their VMs together
with their load information.

Scheduler based on Particle Swarm Optimization In this algorithm, each particle
works independently and represents a VM looking for the best host —in the selected
datacenter at the broker level- to which it can be allocated. Following the analogy from
the example of bees in Subsection 2.2, each VM is considered a bee and each host
represent locations in the field with different density of flowers. When a VM is created,
a particle is initialized in a random host, i.e., in a random place in the field. The density
of flowers of each host is determined by its load.

This definition helps to search in the load search space —in the field of flowers—
and try to minimize the load. The smaller the load on a host, the better the flower con-
centration. This means that the host has more available resources to allocate a VM. In
the algorithm (see Algorithm 2), every time a user requires a VM, a particle is initial-
ized in a random host of the selected datacenter (getInitialHost()). Each particle in
the search space takes a position according to the load of the host in which is initialized
through the calculateTotalLoadChostId) method. Load refers to the total CPU uti-
lization within a host and is calculated as well as ACO. The neighborhood of each par-
ticle is composed by the remaining hosts in a datacenter excluding the one in which the
particle is initialized. The neighborhood of that particle is obtained through getNeigh-
bors(hostId,neighborSize). Each one of the neighbors —hosts— that compose the
neighborhood are selected randomly. Moreover, the size of the particle neighborhood is
a parameter defined by the user.
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In each iteration of the algorithm, the particle moves to the neighbors of its current
host in search of a host with a lower load. The velocity of each particle is defined by
the load difference between the host to which the particle has been previously assigned
with respect to its other neighboring hosts. If any of the hosts in the neighborhood has
a lower load than the original host, then the particle is moved to the neighbor host with
a greater velocity. Taking into account that the particles move through hosts of their
neighborhood into a datacenter in search of a host with the lower load, the algorithm
reaches a local optimum quickly. Thus, each particle makes a move from their asso-
ciated host to one of its neighbors, which has the minimum load among all. If all its
neighbors are busier than the associated host itself, the particle is not moved from the
current host. Finally, the particle delivers its associated VM to the host with the lower
load among their neighbors and finishes its task.

Algorithm 2 PSO-based Cloud scheduler: Core logic

Procedure PSOallocationPolicy (vm, hostList)
Begin
particle = new Particle (vm, hostList)
initialHostld = particle. getlnitialHost ()
currentPositionLoad = particle.calculateTotalLoad (initialHostld)
neighbours = particle.getNeighbours(initialHostld , neighbourSize)
While (i-<-neighbours.size()) do
neighbourld = neighbours.get(i)
destPositionlboad = particle.calculateTotalLoad (neighbourld)
if (destPositionLoad == 0)
currentPositionLoad = destPositionLoad
destHostld = neighbours.get(i)
i=neighbours.size()

end if

if (currentPositionLoad — destPositionLoad > velocity)
velocity = currentPositionLoad — destPositionLoad
currentPositionLoad = destPositionLoad
destHostld = neighbours.get(i)

end if

i=i+l
end while
allocatedHost=hostList.get(destHostId)
if (!allocatedHost.allocateVM (vm)
PSOallocationPolicy (vm, hostList)
End

Since each move a particle performs involves traveling through the intra-datacenter
network, similarly to ACO, a control to minimize the number of moves that a particle
performs have been added: every time a particle moves from the associated host to a
neighbor host that has not allocated VMs yet, the particle allocates its associated VM to
it immediately. The smaller the number messages sent tothe hosts through the network
by a particle, the smaller the impact of the latency in the response time given to the user.

4.3 Scheduler at the VM level

Once the VMs have been allocated to physical resources at the Infrastructure level, the
job scheduler proceeds to assign the jobs to these VMs. This sub-algorithm uses two
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lists, one containing the jobs that have been sent by the user, i.e., a PSE, and the other
list contains all user VMs that are already allocated to a physical resource and hence
are ready to execute jobs. The algorithm iterates the list of all jobs, and then retrieves
jobs by a FIFO policy. Each time a job is obtained from the list, it is submitted to be
executed in a VM in a round robin fashion. Internally, the algorithm maintains a queue
for each VM that contains its list of jobs to be executed. The procedure is repeated until
all jobs have been submitted for execution. Due to their high CPU requirements, and the
fact that each VM requires only one PE, we assumed a 1-1 job-VM execution model,
i.e., jobs within a VM waiting queue are executed one at a time by competing for CPU
time with other jobs from other VMs in the same hosts. This is, a time-shared CPU
scheduling policy was used, since it is a good alternative for executing CPU-intensive
jobs in terms of fairness.

5 Evaluation

To assess the effectiveness of our proposal, we processed a real case study for solving
a well-known benchmark problem [6]. Details on the experimental methodology are
provided in Section 5.1. After that, we compared our proposal with a GA in terms of
the metric of interest in this paper, i.e., response time. The results are explained in
Subsection 5.2.

5.1 Experimental Methodology

A plane strain plate with-a central circular hole, see reference [6] and therein is studied.
The dimensions of the plate were 18 x 10 m, with R = 5 m. The 3D finite element mesh
used had 1,152 elements. To generate the PSE jobs, a material parameter —viscosity 77—
was selected as the variation parameter. Then, 25 different viscosity values for the 7 pa-
rameter were considered, namely x.10” Mpa, with x = 1,2,3,4,5,7 and y = 4,5,6,7,
plus 1.108 Mpa. Introductory details on viscoplastic theory and numerical implementa-
tion can be found in [6].

After establishing the problem parameters, we employed a single machine to run
the parameter sweep experiment by varying the viscosity parameter 77 as indicated and
measuring the execution time for the 25 different experiments, which resulted in 25 in-
put files with different input configurations and 25-output files. The tests were solved
using the SOGDE finite element solver software [7]. Once the execution times were
obtained from the real machine, we approximated for each experiment the number of
executed instructions by the following formula NI; = mipsCPU * T;, where NI, is the
number of million instructions to be executed by or associated to a job i, mipsCPU is
the processing power of the CPU of our real machine measured in MIPS, and 7 is the
time that took to run the job i on the real machine. For example, for a job taking 539
seconds to execute, the approximated number of instructions was 2,160,657 MI (Mil-
lion Instructions). By means of the generated job data, we instantiated the CloudSim
toolkit [2].

The experimental scenario consists of a Cloud composed of 5 datacenters. The net-
work topology is defined in the Boston university Representative Internet Topology
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gEnerator (BRITE) [8] format. BRITE is a file used by CloudSim which defines the
different nodes that compose a commonly-found federation (e.g., datacenters, brokers)
and the network connections among them. This file is then used to calculate latencies in
network traffic. Then, each datacenter is composed of 10 physical resources —or “host”
in CloudSim terminology—. The characteristics of hosts are 4,008 MIPS (processing
power), 4 GBytes (RAM), 400 GBytes (storage), 100 Mbps (bandwidth), and 4 CPUs.
Furthermore, each datacenter has an associated latency of 0.8, 1.5, 0.5, 0.15, 2.8 sec-
onds, respectively. These latencies have been assigned taking into account other works
proposed in the literature [12,19].

Moreover, a user requests 100 VMs to execute its PSE. Each VM has one vir-
tual CPU of 4,008 MIPS, 512 Mbyte of RAM, a machine image size of 100 Gbytes
and a bandwidth of 25 Mbps. For further details about the job data gathering and the
CloudSim instantiation process, please refer to [13,18].

In this work, we evaluated the performance of the user PSE-jobs as we increased
the number of jobs to be performed from 1,000 to 10,000. This is, the base job set com-
prising 25 jobs that was obtained by varying the value of 1 was cloned to obtain larger
sets. Each job was determined by a length parameter or the number of instructions to
be executed by the job, which varied between 1,362,938 and 2,160,657 MI. Moreover,
another parameter was PEs, or the number of processing elements (cores) required to
perform each individual job. Each job required one PE since jobs are sequential (not
multi-threaded). Finally, the experiments had input files of 291,738 bytes and output
files of 5,662,310 bytes.

5.2 Performed experiments

In this subsection we report results obtained through our proposed three level sched-
uler. Particularly, at the infrastructure level we compare to another alternative scheduler
based on GA proposed in [1], which has been previously evaluated via CloudSim as
well. The population structure is represented as the set of physical resources that com-
pose a datacenter and each chromosome is an individual in the population that repre-
sents a part of the searching space. Each gene (field in a chromosome) is a physical
resource in a datacenter, and the last-field in this structure‘is the fitness field, which
indicate the suitability of the hosts in each chromosome:

In our experiments, the GA-specific parameters were set to the following values:
chromosome size = 8, population size = 10 and number of iterations =10. Moreover,
we have set the ACO-specific parameters to values within the range of values stud-
ied in [11]: mutation rate = 0.6, decay rate = 0.1 and maximum steps = 8, and the
PSO-specific parameter neighbourhood size = 8. Since the number of hosts that com-
pose each datacenter is equal to 10, a specific parameter values (i.e., maxSteps in ACO,
neighborhood in PSO and chromosome size in GA) equal to 8, means exploring a per-
centage of the 80% of the number of hosts for each datacenter.

Figure 2 compares the obtained results for all the considered scheduling algorithms
(ACO, PSO, GA) and each one the policies at the broker level (LLTF, FLTF, LTIR) in
subfigures a), b) and c), respectively. Graphically, it can be seen that the response time
presents a linear tendency in all cases. As shown in the subfigures included in Figure 2,
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Fig.2: Response time as the number of jobs increases

regardless of the policy used at the broker level, GA is the algorithm that produces the
greatest response time to the user with respect to ACO and PSO.

Since the GA algorithm contains a population size of 10 and chromosome sizes of
8, for each datacenter in which it tries to create the VMs, to calculate the fitness func-
tion, the algorithm sends one message for each host of the chromosome to know its
availability and obtain the chromosome containing the best fitness value. The number
of messages sent is equals to the number of host within each chromosome multiplied by
the population size. The number of messages to send through the network for each al-
gorithm directly impacts the response time to the-user. This is because for each message
sent to query about hosts availability, latencies from datacenters affect the answers.

The proposed ACO and PSO, however, make less use of network resources than GA,
being in some cases PSO the one which sends less network messages. The number of
messages to send by ACO depends of the maximum number of steps that an ant carries
out to allocate its associated VM. For example, when the maximum number of steps
is equals to 8, ACO sends a maximum of 8 messages per VM allocation. Moreover,
when ACO finds an idle host, it allocates the current VM and does not perform any
further step. This reduces the total number of network messages sent. On the other
hand, the number of network messages to send by PSO depends of the neighborhood
size, which is also equals to 8, i.e., PSO sends a maximum of 8 messages per VM
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allocation. Furthermore, like ACO, when PSO finds an idle host, it allocates the current
VM and does not make any further move. This also reduces the total number of network
messages sent, and therefore, the total latency that influences the user response time.

Another observations from the subfigures included in Figure 2 are that when the
LLTF policy is used combined with PSO, ACO and GA, the response time decreases
with respect to FLTF and LTIR policies. This happens because most VMs are created
in datacenters with lower latencies. For example, when the LLTF policy is used and
the number of jobs to be executed is increased from 1,000 to 10,000 (subfigure 2a), the
response time varied between (71-661), (72-661), and (191-780) minutes, for PSO,
ACO and GA, respectively. On the other hand, when the FLTF policy is used at the
broker level (subfigure 2b), the response time for PSO, ACO, and GA, when the number
of jobs was increased from 1,000 to 10,000, varied between (79-668), (79-668), and
(367-962) minutes. Finally, when the LTIR policy is used, the response time rose from
(79- 668), (84—673), and (409-996) minutes, when the number of jobs was increased
from 1,000 to 10,000, and for PSO, ACO and GA, respectively.

As can be seen, the response times for ACO and PSO are close when FLTF and
LTIR are used at the broker level. The reason is because both algorithms reduce the
number of queries to the hosts when LTIR is used. This is because when ACO and PSO
find an idle host, they not make any further move, and due to the fact that LTIR explores
all datacenters (in a circular order for each VM to be allocated), it has more chance of
finding an underloaded hosts where to allocate the VMs. However, if the user requests
the execution of a larger number of VMs, the latencies of datacenters will have more
influence in the response time when LTIR is used instead of FLTF.

Finally, the gains of PSO and ACO with respect to GA, when LLTF is used at the
broker level varied between 15% and 62%. When FLTF was used, gains varied between
30% and 78%. Lastly, when LTIR was used, gains varied between 32% and 80%. As
can be seen, the greatest gains were obtained when LTIR was used at the broker level.
The is because, since GA sent a greater number of network messages to the hosts than
PSO and ACO, the inter-datacenter latencies had more influence on the response time.

6 Conclusions

One popular kind of scientific experiments are PSEs, which involve running many CPU-
intensive independent jobs. These jobs must be efficiently processed —i.e., scheduled—
in the different computing resources of a distributed environment such as the ones pro-
vided by Cloud. The growing popularity of Cloud environments has increased the at-
tention in the research of resource allocation mechanisms across datacenters. Federated
Clouds potentially provide plenty of resources to users, specially when the number of
VMs required by a user exceeds the maximum that can be provided by a single provider
or datacenter. Then, job/VM scheduling plays a fundamental role.

Recently, Sl-inspired algorithms have received increasing attention in the Cloud
research community for dealing with VM and job scheduling. In this work, we de-
scribed two schedulers —based on ACO and PSO- for the efficient allocation of VMs
in a datacenter combined with three strategies —LLTF, FLTF and LTIR- that consider
network information for selecting datacenters. Simulated experiments performed with
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CloudSim and real PSE job data suggest that our PSO and ACO schedulers provide
better response times to the user than GA. In addition, when PSO, ACO and GA are
combined with LLTF, the response time is the lowest for all of them w.r.t. FLTF and
LTIR, being LTIR the most influential on the response time.

We are extending this work in several directions. We will explore the ideas ex-
posed in this paper in the context of other bio-inspired techniques such as Artificial
Bee Colony (ABC), which is also extensively used to solve combinatorial optimization
problems. Another issue which deserves attention is to consider other Cloud scenar-
ios [15] with heterogeneous physical resources belonging to different Cloud providers.

Due to multi-tenancy, in Clouds it is necessary to provide distributed scheduling
mechanisms for allocating resources to a number of independent users’ VMs/jobs along
with time constraints. For this, we plan to implement a Cloud scheduler based on SI
techniques in order to fairly schedule users’ VMs/jobs based on different optimization
criteria (e.g:, cost, execution times, etc.).

Finally, another interesting issue consists of providing more elaborated dynamic op-
timization capabilities, enabling the dynamic reallocation (migration) of VMs from one
physical machine to another to meet a specific optimization criteria such as improving
the response time, reducing the number of physical resources in use for minimizing
energy consumption, or balancing the workload of all resources to avoid resources sat-
uration and performance slowdown. In addition, the user could also specify constraints
for the scheduler decisions such as hardware (amount of CPU, memory, bandwidth,
etc.), platform (type of hypervisor, operating system, etc.), location (geographical re-
strictions), among others:
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