This article idke ﬂ?helﬁﬁﬁtlmeth@iamﬁb@n@.r@emm,I(B?lmré&mnﬁpq}tixi;@m@h@aﬁmed ‘Gupaged SewaduliegustSeiendfrBligganents on Clouds".
IDAACS'2018- Voteptepbeisdy 7 deriBe fifi@8rmany. 2013. IEEE"
The published version is available at http://dx.doi.org/10.1109/IDAACS.2013.6663015

SI-based Scheduling of Scientific Experiments
on Clouds

Elina Pacini! , Cristian Mateos? , Carlos Garcia Garino
L ITIC, Universidad Nacional de Cuyo, Mendoza, Argentina, epacini @itu.uncu.edu.ar
2 ISISTAN-CONICET, Tandil, Buenos Aires, Argentina, cmateos@conicet.gov.ar
3 Facultad de Ingenieria, Universidad Nacional de Cuyo, Mendoza, Argentina, cgarcia@itu.uncu.edu.ar

1,3

Abstract — Scientists and engineers usually require huge
amounts of computing power for performing their experi-
ments. Precisely, Parameter Sweep Experiments (PSE) allow
these kind of users to perform simulations by running
the same scientific code with different input data, which
results in many CPU-intensive jobs and thus computing
environments such as Clouds must be used. We describe two
Cloud schedulers based on two popular swarm intelligence
(SI) techniques, namely ant colony optimization (ACO)
and particle swarm optimization (PSO), to allocate virtual
machines (VM) to physical Cloud resources. The main
performance metrics to study are the number of serviced
users by the Cloud —i.e., the number of Cloud users that
the scheduler is able to successfully serve— and the total
number of created VMs, in dynamic (non-batch) schedul-
ing scenarios. Simulated experiments performed by using
CloudSim and real PSE job data suggest that our schedulers,
through a weighted metric, perform competitively with
respect to the number of serviced users and achieve an
effective assignment of VMs compared to a scheduler based
on Genetic Algorithms.

Keywords — Parameter sweep experiments; Cloud comput-
ing; Scheduling; Ant colony optimization; Particle swarm
optimization; Genetic algorithms

I. INTRODUCTION

Scientists and engineers are nowadays' faced to the
need of computational power to satisfy the ever-increasing
resource intensive nature of their experiments. PSEs, for
example, consist of the repeated execution of the same
application code with different input parameters resulting
in different outputs. PSEs have the major advantage
of generating lists of independent jobs [1], since the
experiments are executed under multiple initial config-
urations many times. This makes these kinds of studies
embarrassingly parallel from a computational perspective.
Therefore, PSEs are suited for distributed/parallel com-
puting.

A computing paradigm that is gaining momentum is
Cloud Computing [2], which bases on the idea of pro-
viding an on demand computing infrastructure to end
users. Typically, users exploit Clouds by instantiating
one or more machine images to create virtual machines
running a desired operating system on top of several
physical machines. Since a Cloud can be considered as

a pool of virtualized computing resources, it allows the
dynamic scaling of applications by provisioning resources
via virtualization. The various VMs are distributed among
different physical resources or consolidated to the same
machine in order to increase resource utilization. To
perform this, scheduling the basic processing units on a
Cloud is an important issue and it is necessary to develop
efficient scheduling strategies to appropriately allocate the
VMs to physical resources. In this context, “scheduling”
refers to the way VMs are allocated to run on the available
computing resources, since there are typically many more
VMs running than physical resources. However, schedul-
ing is an NP-complete problem and therefore it is not
trivial from an algorithmic perspective.

Recently, swarm intelligence (SI) has received increas-
ing attention for this problem [3]. The concept refers to
the collective behavior that emerges from a swarm of
social insects [4]. Social insect colonies collectively solve
complex problems that are beyond the capabilities of each
individual insect, and the cooperation among them is self-
organized without any central supervision. Inspired by
these capabilities, researchers have proposed algorithms
for combinatorial optimization problems. Scheduling in
Clouds is also a combinatorial optimization problem,
and some schedulers in this line that exploit SI have
been proposed [5], however they have been superficially
evaluated.

In this paper, we describe two schedulers, one based
on ant colony optimization (ACO) and another exploiting
particle swarm_optimization (PSO), to allocate VMs to
physical Cloud resources. Unlike previous work of our
own [3], the aim of this paper is to experiment in a
dynamic Cloud (non-batch) scenario in which multiple
users_connect to the Cloud at different times to execute
their PSEs. The main performance metrics to study are
the number of serviced users among all users that are
connected to the Cloud, and the total number of VMs
successfully handled by the scheduler. Simulated experi-
ments performed with job data extracted from a real-world
PSE [6] involving a viscoplastic problem suggest that the
proposed SI schedulers deliver competitive performance
with respect to the number of serviced users, i.e., the

This article is a presprint of the artiete?”E. Pacini, @Mateos and C. GarcA-a Garino: "Sl-bas %gu dulln of Scientific Experlments on

IDAACS'2013. Vol pp 699-704, r“n Germ 12013. IEEE" Ob SC mng te hnlques Joos are aSSlgneg ?OI‘ executlon
The published ver3yg) is available\gnttp://dx.doi \&l/10.1109/IDAACS.2013.6663014nto these virtual resources. Broadly, job scheduling is
/ LAN/WAN Pl

Job Scheduler

—
R
=) Logical, user-owned
) clusters (VMs)

/

|

VM Scheduler |

Physical
resources

=2
s 1
Figure 1. High-level view of a two levels Cloud scheduler

number of Cloud users that the scheduler is able to
successfully serve, and the VMs that can be created
and allocated. Experiments were performed by using the
CloudSim simulator [7].

Sections II and III give background necessary to un-
derstand the concepts underpinning our schedulers. Sec-
tion IV describe our schedulers. Section V presents the
evaluation of the schedulers. Section VI concludes the
paper and discuss future prospective extensions.

II. CLOUD INFRASTRUCTURES: OVERVIEW

A Cloud [2] is basically a dynamic pool of virtualized
computing resources. Virtualization refers to the capabil-
ity of a software system of emulating various operating
systems. Clouds allow the dynamic scaling of users
applications by the provision of computing resources
via VMs, which instantiate one machine image. VMs
can be distributed among different physical machines or
consolidated to the same machine to balance the load
or increase the CPU utilization. In addition, users can
customize the software installed in the VMs according to
their experimental needs.

In contrast to traditional job scheduling (e.g., on clus-
ters) wherein executing units are mapped directly to phys-
ical resources at one (middleware) level, on a virtualized
environment resources need to be scheduled at two levels
(see Figure 1). In the first level (bottom), one or more
virtual “Cloud infrastructures™ or logical clusters are cre-
ated and through a VM scheduler the VMs are allocated
into real hardware. In the second level (top), by using

a mechanism that maps jobs to appropriate resources
to execute, and the delivered efficiency directly affects
the performance of the whole distributed environment.
Furthermore, a Cloud can be dynamic, i.e., one or more
scientific users can unpredictably connect to the Cloud
via a network and require the creation of a number of
VMs for executing their experiments (a set of jobs).

Although the use of Cloud infrastructures helps sci-
entific users to run complex applications, job and VM
management is a key concern that must be addressed.
Particularly, in this work we focus on the problem of
more efficiently solve the allocation of VMs to physi-
cal resources in a dynamic, multi-user Cloud. However,
scheduling is in general NP-complete, and therefore ap-
proximation heuristics are necessary.

III. SWARM INTELLIGENCE

Since artificial life techniques have been effective in
combinational optimization problems, they result good
alternatives to achieve the goals proposed in this work.
SI represents a set of artificial life techniques that has
received increasing attention for solving this type of
problems [5]. The advantage of SI derives from their
ability to explore solutions in large search spaces in a
very efficient way. All in all, using SI techniques remains
an interesting approach to cope in practice with the NP-
completeness of job scheduling problems.

Particularly, the ACO algorithm [8] arise from the way
real ants behave in nature, i.e., from the observation of
ant colonies when they search the shortest paths to reach
a food source from their nest. In nature, real ants move
randomly from one place to another to search for food,
and upon finding food and returning to their nest each ant
leaves a pheromone that lures other working ants to the
same course. When more and more ants choose the same
path, the pheromone trail is reinforced and even more ants
will further choose it. This positive feedback eventually
leaves all the ants following few paths. Over time the
shortest paths will be intensified by the pheromone faster
since the ants will both reach the food source and travel
back to their nest at a faster rate.

In practice, to optimize job scheduling problems, the
ACO algorithm has the advantage of being most of the
time easily visualized via graphical representations. For
example, graph designs are used to identify the prob-
lem, including jobs and executing physical resources or
machines (nodes) and scheduling decisions (arcs). Here,
each job can be carried out by an ant. Ants cooperatively
search for machines with available computing resources
and deliver the jobs to these machines. In our work,
moreover, each ant carries one VM.

On the other hand, the PSO algorithm [9] is an attempt
to mimic the behavior of natural processes from animals
such as birds and insects such as bees. The PSO algorithm

BVt o i Ak e e i DR St R S R
The pubIishenadshnugﬁheaﬂwmhtbﬂnmdmﬂmﬁ)@Ye@amﬁd%@s.iﬂ@seoﬁ§6301$1ave been adapted to be used in Clouds.

In the algorithm the general term “particle” is used to
represent birds, bees or any other individuals who exhibit
social and group behavior.

An example based on nature to illustrate the algorithm
is as follows: a group of bees flies over the countryside
looking for flowers. Their goal is to find as many flowers
as possible. At the beginning, bees do not have knowledge
of the field and fly to random locations with random
velocities looking for flowers. Each bee has the capability
of remembering the places where it saw the most flowers,
and moreover, somehow knows the places where other
bees have found a high density of flowers. These two
pieces of information —nostalgia and social knowledge—
are used by the bees to continually modify their trajectory,
i.e., each bee alters its path between the two directions
to fly somewhere between the two points and find a
greater density of flowers. Occasionally, a bee may fly
over a place with more flowers than any other place found
previously by other bees in the swarm. If this happens the
whole swarm is attracted towards this new direction.

When used to model job scheduling, a PSO algorithm
instantiation consists of particles, each maintaining one
potential solution to the entire problem. The design of
the representation of a particle is different for each type
of problem. An example of how to represent particles
when modeling the job scheduling problem is placing
the position of a particle in-a search space containing
n dimensions. Each dimension 7 is the job to schedule,
and the corresponding value (natural number) represents
the machine in which a job can be allocated. Furthermore,
the global best position will indicate the best possible
schedule. Again, in our work, particles represent VMs.

IV. PROPOSED SCHEDULERS: BRIEF DESCRIPTION

Conceptually, the scheduling problem 'in this paper
can be formulated as follows. A number of users-are
connected to the Cloud at different times to execute their
PSEs. To perform this, each user requests to the Cloud
the creation of v VMs. A PSE is formally defined as a
set of N = 1,2,...,n independent jobs, where each job
corresponds to a particular value for a variable of the
model being studied by the PSE. The jobs are distributed
and executed on the v VMs created by the corresponding
user. Since the total number of VMs required by all users
is greater than the number of Cloud physical resources
(i.e., hosts), a strategy that achieves a good use of these
physical resources must be implemented. This strategy is
implemented by means of a support that allocates user
VMs to hosts. Moreover, a strategy for assigning user
jobs to allocated VMs is also necessary (currently we use
FIFO).

To implement the VM allocation part of the scheduler,
AntZ and ParticleZ, the algorithms proposed in [10] to

Algorithm 1 ACO-based Cloud scheduler: Core logic

Procedure AntAlgorithm ()
Begin

step=1

initialize ()

While (step < maxSteps) do
currentLoad=getHostLoadInformation ()
AntHistory .add(currentLoad)
localLoadTable .update ()
if (currentLoad = 0.0)

break
else
if (random() < mutationRate) then
nextHost=randomlyChooseNextStep ()
else
nextHost=chooseNextStep ()
end if
mutationRate=mutationRate—decayRate
step=step+1
moveTo(nextHost)
end while
deliverVMtoHost ()
End

In our adapted ACO algorithm, each ant works
independently and represents a VM “looking” for the
best host to which it can be allocated. When a VM
is requested by a user, an ant is initialized. A master
table containing information on the load of each host
is initialized. Subsequently, if an ant associated to the
VM that is executing the algorithm already exists, the
ant is obtained from a pool of ants. If the VM does
not exist in the ant pool, then a new ant is created.
To do this, first, a list of all suitable hosts to which
the VM can be allocated is obtained. Each working
ant and its associated VM are added to the ant pool
and the ACO-specific mechanism starts to operate (see
Algorithm 1). In each iteration, the ant collects the
load information of the host that is visiting and adds
this information to-its private load history. The ant
then updates a load information table of visited hosts
(localLoadTable.update ()), which is maintained
in each host. This table contains information of other
hosts, which were added to the table when other ants
visited the host. The load is calculated on each host
taking into account the CPU utilization made by all
the VMs that are executing on each host, i.e., load =
numberO f ExecutingV M s /numberO f PEsInH ost,
where numberOfExecutingVMs is the number of VMs
that are executing in the host, and numberOfPEsInHost
is the total number of processing elements (cores) in the
host. This metric is useful for an ant to choose the least
loaded host to allocate its VM.

When an ant moves from one host to another it has
two choices: moving to a random host using a constant
probability or mutation rate, or using the load table
information of the current host (chooseNextStep ()).
The mutation rate decreases with a decay rate factor as

This article is.a pre-print of the article "E. Pacini ateos and C. Gar A-aGanno "Sl- basedScheduIln of Scientific nts.on Clouds'
IDAACS' 2013mp}0|;§§§‘§:s@9§1 |,@Igepmiﬁ] Mgoigop@E ependent on processing powe 1 Used 'L R REE oA e executmg

The pub||shddaavdrswfusnaaltable}mmmm//mmtmmgﬂmiae%ﬂﬂs\@meﬁmo15n the initial host, and hostTotalMips is the (hardware-

repeated until the finishing criterion is met. The comple-
tion criterion is equal to a predefined number of steps
(maxSteps). Finally, the ant delivers its VM to the current
host and finishes its task.

Every time an ant visits a host, it updates the host
load information table with the information of other hosts,
but at the same time the ant collects the information
already provided by the table of that host, if any. The
load information table acts as a pheromone trail that an
ant leaves while it is moving, to guide other ants to choose
better paths rather than wandering randomly in the Cloud.
Entries of each local table represent the hosts that ants
have visited on their way to deliver their VMs together
with load information.

Algorithm 2 PSO-based Cloud scheduler: Core logic

Procedure PSOallocationPolicy(vm, hostList)
Begin
particle = new Particle (vm, hostList)
initialHostld = particle. getInitialHost ()
currentPositionLoad = particle.calculateTotalLoad (
initialHostlId)
neighbours = particle.getNeighbours(initialHostId ,
neighbourSize)
While (i < neighbours.size()) do
neighbourld = neighbours.get(i)

destPositionLoad = particle.calculateTotalLoad (
neighbourld)
if (destPositionLoad == 0)
currentPositionLoad = destPositionLoad

destHostld = neighbours.get(i)
i=neighbours.size ()

end if
if (currentPositionLoad — destPositionLoad >
velocity)
velocity = currentPositionLoad —
destPositionLoad

currentPositionLoad = destPositionLoad
destHostld = neighbours.get(i)

end if

i++
end while
allocatedHost=hostList.get(destHostld)
if (allocatedHost.allocateVM (vm)
PSOallocationPolicy (vm, hostList)
End

Moreover, in our adapted PSO algorithm, all hosts
belonging to a Cloud are considered as a flock or a
swarm, and each host in the Cloud is a particle in
this flock. Following the analogy from the classical
PSO, the position of each host in the flock can be
determined by its load. This definition helps to search
in the load search space and try to minimize the load.
In our algorithm (see Algorithm 2), every time a user
requires a VM, this latter is initialized in a random host
(getInitialHost ()) and each host in the search
space takes a position according to its load through
the calculateTotalload (hostId) method. Load
refers to the total CPU utilization within a host and is
calculated as load = vmTotalMips/hostTotal Mips,
where vmTotalMips is an estimation of the amount of

given) total amount of processing power in the host. The
neighborhood of that particle is also obtained through
getNeighbors (hostId, neighborSize). Each
one of the neighbors that compose the neighborhood are
selected randomly as it is the technique that delivers the
best results according to our preliminary assessment. The
size of the particle neighborhood is a parameter defined
by the user.

In each iteration of the algorithm, the particle moves
through its neighbors in search of a hosts with a lower
load. The velocity of each particle is defined by the load
difference that a host has compared to its other neighbors
hosts. If any of the hosts in the neighborhood has a lower
load than the original host, then the VM is moved to
the neighbor host with a greater velocity. Taking into
account that the particles move through hosts of their
neighborhood in search of a host with the lower load, the
algorithm reaches a local optimum quickly. Thus, each
particle makes a move to one of its neighbors, which has
the minimum load among all. If all its neighbors are busier
than the host itself, the VM is not moved from the current
host. Finally, the particle delivers its associated VM to
the host with the lower load among their neighbors and
finishes its task.

Lastly, once the VMs have been allocated to physical
resources by an SI technique (ACO or PSO), the scheduler
proceeds to assign the jobs to these VMs. This sub-
algorithm uses two lists, one containing the jobs that
have been sent by the user, i.e., a PSE, and the other
list contains all user VMs that are already allocated to a
physical resource and hence are ready to execute jobs. The
algorithm iterates the list of all jobs, and then retrieves
jobs through a FIFO policy. Each time a job is obtained
from the list it is submitted to be executed in a VM in
a round robin fashion. Internally, the algorithm maintains
a queue for each VM that contains its list of jobs to be
executed. The procedure is repeated until all jobs have
been submitted for execution using the allocated VMs.

V. EVALUATION

To assess the effectiveness of our schedulers in a non-
batch Cloud environment where multiple users dynami-
cally connect to execute their PSEs, we have processed
a real study case for solving a well-known benchmark
problem discussed in [6]. The problem involves studying
a plane strain plate with a central circular hole. The di-
mensions of the plate were 18 x 10 m, with R = 5 m. The
2D finite element mesh used had 1,152 elements. Unlike
previous studies of our own [11], in which a geometry
parameter —imperfection— was chosen to generate the PSE
jobs, in this case a material parameter —viscosity— was
selected as the variation parameter. Then, 25 different vis-
cosity values for the 1 parameter were considered, namely
2.10Y Mpa, withx = 1,2,3,4,5,7and y = 4, 5,6, 7, plus

This articl t | dC.G AG':'SI dShdI fS tifi Clouds
A BT A R TS S A SRS S LSS Puiins were
The publlsheth@erycand avaitabiecat] Hitpplenuen tagio f. thepbe ABGERINF6$63015et to the following values: chromosome size = 8, popu-

The experimental methodology involved two steps.
First, we executed the PSE experiments in a single
machine by varying the viscosity parameter 7 as in-
dicated and measuring the execution time for the 25
different experiments, which resulted in 25 input files
with different input configurations, and 25 output files.
The tests were solved using the SOGDE finite element
solver software [12]. Then, by means of the generated
job data, we instantiated the CloudSim simulation toolkit.
The experimental scenario consists of a datacenter with
10 physical resources with similar characteristics as the
real machine where the SOGDE runs were performed.
The characteristics are 4,008 MIPS (processing power),
4 GBytes (RAM), 400 GBytes ~(storage), 100 Mbps
(bandwidth), and 4 cores. Then, each user connecting to
the Cloud requests v VMs to execute their PSE. Each
VM has one virtual CPU of 4,008 MIPS, 512 Mbyte
of RAM, a machine image size of 100 Gbytes and a
bandwidth of 25 Mbps. For more details about the real
job data gathering and the CloudSim instantiation process
the reader is referred to [3].

To evaluate the performance in the simulated Cloud
we have modeled a dynamic Cloud scenario in which
new users connect to_the Cloud every 120 seconds, and
require the creation of 10 VMs each in which their PSEs
—a set of 100 jobs— run. The number of users who connect
to the Cloud varies as u = 10, 20, ..., 100, and since each
user executes one PSE —a set of 10 % 25 jobs—, the total
number of jobs to execute is increased as n = 100 * u
each time.

Moreover, our proposed SI algorithms are compared to
another alternative scheduler, which is closely related to
our work from an algorithmic standpoint. Particularly, we
used the genetic algorithm (GA) proposed in [13], which
has been previously evaluated via CloudSim as well. In
this algorithm, the population structure is represented as
the set of physical resources that compose a datacenter
and each chromosome is an individual in the population
that represents a part of the searching space. Each gene
(field in a chromosome) is a physical resource in the
Cloud, and the last field in this structure is the fitness field,
which indicate the suitability of the hosts in each chromo-
some. In addition, a second alternative scheduler in the
form of an ideal scheduler was used, which achieves the
best possible allocation of VMs to physical resources in
terms of the studied metrics. To allocate all the VMs, the
scheduler uses an exponential back-off retry strategy until
it is able to serve all users. The number of retries enough
to serve all users and create all requested VMs was 20.
This scheduler has been implemented in this way to obtain
the ideal values to which all its competitors should be
compared against, however it is clearly impactical in real
life situations.

lation size = 10 and number of iterations = 10. Moreover,
for each one of our SI schedulers, we have supplied the
ACO-specific parameters with values within the range of
values studied in [10]: mutation rate = 0.6, decay rate
= 0.1 and maximum steps = 8, and the PSO-specific
parameter neighbourhood size = 6.

Experiments have been performed with the aim of
measuring the trade-off between the number of serviced
users by the Cloud and the total number of created
VMs among all users. The basis for these metrics is
that the more the number of serviced users, the higher
the end-user throughput, and the greater the number of
created VMs, the greater the parallelism and therefore
the lower the flowtime [3]. The number of serviced
users increases every time the scheduler successfully
allocates any of the requested VMs. A user is considered
“serviced” if the scheduler can create at least one VM
for its required jobs. Based on these two metrics, we
derived a weighted metric, by which the results obtained
from the different algorithms have been normalized and
weighted with numerical weights. The normalized values
for each metric and each user group U connected to
the Cloud are computed as NormalValueU;=10,....100 =
11— (graasipaicly—vaueli —), where valueU represents
the obtained value for each one of the basic metrics —
serviced users and created VMs— and for each user group
connected to the Cloud, Max(valueU) and Min(valueU)
are the maximum and minimum values, respectively, for
each basic metric among all the algorithms —ACO, GA,
PSO, Ideal- and for each user group connected to the
Cloud. Moreover, the weighted metric is computed as:
WeightedMetricU;=10,..,100 = (wSU * NormalSU; + wV Ms
NormalVMsU;) where wSU 1is the importance given to
the number of serviced users by the Cloud (NormalSU)
and wVMs weighs the total number of created VMs
(NormalVMs). Based on these, and since both metrics
are important and they are to be balanced, we have
assigned the pair of weights (wSU, wVMs) equal to
(0.50, 0.50). The higher the value of the weighted metric,
the better the metric balance of an algorithm with respect
its competitors.

Results in Table T show that the proposed ACO and
PSO algorithms deliver the best balance with respect to
the number of serviced users, and the total number of
created VMs, for example with gains of w =
0.57% of ACO and PSO over GA in the most challenging
scenario. Moreover, the weighted metric values illustrate
that the performance between ACO and PSO is very close.
In the experiments, both ACO and PSO achieve to serve a
greater number of users than GA, but GA is the scheduler
that creates the greatest number of VMs, excluding the
ideal scheduler which is a factitious algorithm to show

the best values to reach.

This article is a pre-print of thebartlcl®IHGRAENIMETM&IEES 6hdsC. GarcA-a Garino: "S)-based Scheduli f Scientific Expefiments on Clouds'.
IDAACS’2013.\F/) .p’ i ; e u aﬂternatlve schedufers, we used Genetic Aqgorlthms and

The published versignriscavestisiéoahhipendx.dotétg/ 1L 09RDRACER2D13.666301%n Ideal assignment.

10 024 0.03 0.29 1
20 023 0.04 023 1
30 0.19 0.07 0.19 1
40 0.17 0.07 0.16 1
50 0.15 0.07 0.14 1
60 0.13 0.08 0.13 1
70 0.13 0.07 0.12 1
80 0.12 0.07 0.12 1
90 0.12 0.08 0.11 1
100 0.11 0.07 0.11 1

As suggested, a greater throughput in terms of serviced
users means more fairness in resource sharing, and a
greater number of created VMSs involves greater paral-
lelism, and therefore, a greater rate of jobs per unit time
can be executed. The results obtained so far are encourag-
ing because they indicate that using SI techniques helps in
better dealing with the throughput-response time trade-off
in scientific Clouds:

VI. CONCLUSIONS AND FUTURE WORKS

PSEs is a type of simulation popular among scientists
that involves running a large number of independent jobs,
each representing a different set of variable values in a
model. Moreover, these jobs must be efficiently processed
in the different computing resources of a parallel envi-
ronment such as the ones offered by a Cloud. Then, job
scheduling plays a fundamental role.

Recently, SI-inspired algorithms have received increas-
ing attention in the Cloud research community for dealing
with VM and job scheduling. SI refers to the collective
behaviour that emerges from a swarm of social insects.
Social insect colonies collectively solve complex prob-
lems through intelligent emergent behavior.

Existing efforts in this line do not address in general
dynamic (or online) environments where multiple users
connect to scientific Clouds to execute their PSEs and to
the best of our knowledge, no effort aimed at balancing
the number of serviced users in a Cloud and the number
of created VMs exists. Indeed, the greater the number of
serviced users, the better the throughput, and the more
the created VMs, the higher the achieved parallelism.
More parallelism means executing jobs faster, and hence
a more agile human processing of PSE job results. More
serviced users means a more fair assignment of Cloud
computing resources. Simulated experiments performed
with the well-established CloudSim toolkit and real PSE
job data show that our ACO and PSO schedulers provide
a good balance to the trade-off between the number of
serviced users and the total number of created VMs. As

In the near future, we plan to materialize the resulting
schedulers on top of a real Cloud platform, such as Emo-
tive Cloud (http://www.emotivecloud.net/) or OpenNebula
(http://opennebula.org/), which are designed for extensi-
bility. Second, we will consider other Cloud scenarios,
for example, with heterogeneous machines. We will also
evaluate how the variation of the parameters inherent
to each SI algorithm (e.g., the ones that control ant or
particle behaviour) affect their performance. Finally, we
will also evaluate network consumption.

REFERENCES

[1] C. Youn and T. Kaiser, “Management of a parameter sweep for
scientific applications on cluster environments,” Concurrency &
Computation: Practice & Experience, vol. 22, pp. 2381-2400,
2010.

R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging IT platforms: Vision, hype, and reality

for delivering computing as the 5th utility,” Future Generation

Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[3] C. Mateos, E. Pacini, and C. Garcia Garino, “An ACO-inspired
Algorithm for Minimizing Weighted Flowtime in Cloud-based Pa-
rameter Sweep Experiments,” Advances in Engineering Software,
vol. 56, pp. 38-50, 2013.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:

From Natural to Artificial Systems. Oxford University Press, 1999.

E. Pacini, C. Mateos, and C. Garcia Garino, “Schedulers based

on ant colony optimization for parameter sweep experiments in

distributed environments,” in Handbook of Research on Com-
putational Intelligence for Engineering, Science and Business

(Dr. Siddhartha Bhattacharyya, Dr. Paramartha Dutta, ed.), vol. I,

ch. 16, pp. 410-447, IGI Global, 2012. ISBN13: 9781466625181.

C. Garcia Garino, M. Ribero Vairo, S. Andia Fagés, A. Mirasso,

and J.-P. Ponthot, “Numerical simulation of finite strain viscoplas-

tic problems,” Journal of Computational and Applied Mathematics,

vol. 246, pp. 174-184, July 2013. ISSN: 0377-0427.

R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,

“CloudSim: A toolkit for modeling and simulation of Cloud

Computing environments and evaluation of resource provisioning

algorithms,” Software: Practice & Experience, vol. 41, no. 1,

pp. 23-50, 2011.

[8] M. Dorigo, Optimization, Learning and Natural Algorithms.

Phdthesis, Politecnico di Milano, Italy, Milano, Italy, 1992.

J. Kennedy -and R. Eberhart, “Particle Swarm Optimization,”

in IEEE ‘International Conference on Neural Networks, vol. 4,

pp. 1942-1948, IEEE Computer Society, 1995.

[10] S:Ludwigand A. Moallem, “Swarm intelligence approaches for
grid load balancing,” Journal of Grid Computing, vol. 9, no. 3,
pp- 279-301, 2011.

[11]-C. Careglio, D. Monge, E. Pacini, C. Mateos, A. Mirasso, and
C. Garcia Garino, “Sensibilidad de resultados del ensayo de trac-
cién simple frente a diferentes tamafios y tipos de imperfecciones,”
in Mecdnica Computacional (M. G. E. Dvorkin and M. Storti,
eds.), vol. XXIX, pp. 41814197, AMCA, 2010. ISSN 1666-6070.

[12] C.Garcia Garino, F. Gabaldén, and J. M. Goicolea, “Finite element
simulation of the simple tension test in metals,” Finite Elements
in Analysis and Design, vol. 42, no. 13, pp. 1187-1197, 2006.

[13] L.. Agostinho, G. Feliciano, L. Olivi, E. Cardozo, and
E. Guimaraes, “A Bio-inspired Approach to Provisioning of Virtual
Resources in Federated Clouds,” in Ninth International Confer-
ence on Dependable, Autonomic and Secure Computing (DASC),
DASC 11, (Washington, DC, USA), pp. 598-604, IEEE Computer
Socienty, 12-14 December 2011. ISBN: 978-0-7695-4612-4.

[2

—

[5

—_

[6

=

[7

—

9

—

