©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

An Approach To Improve Code-first Web Services
Discoverability at Development Time

José Luis Ordiales Coscia, Marco Crasso, Cristian Mateos and Alejandro Zunino
ISISTAN Research Institute - CONICET
UNICEN, Tandil, Argentina
[mcrasso|cmateos|azunino]@conicet.gov.ar

ABSTRACT

Previous efforts towards simplifying Web, Service discovery have
shown that avoiding some well-known -WSDL specification anti-
patterns yield quite good results in making more discoverable ser-
vices. The anti-patterns, however, have been studied with contract-
first Web Services, a service construction methodology that is much
less popular in the software industry compared to code-first. We
study a number of source code refactorings that can be applied at
service development time to reduce the presence of anti-patterns in
code-first WSDL documents. The cornerstone of these refactorings
is a statistical correlation between common object-oriented (OO)
metrics and the anti-patterns computed by using a data-set of real
Web Services. We quantify the impact of the refactorings on Web
Service discovery and show that more clear WSDL documents are
generated and service discovery. is greatly improved.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services

Keywords

WEB SERVICES, CODE-FIRST, WSDL ANTI-PATTERNS,-OO
METRICS, WEB SERVICE DISCOVERY

1. INTRODUCTION

Web Service discovery plays a fundamental role in the develop-
ment of service-oriented applications. Upon developing a system
that invokes external Web Services, developers must first inspect
service registries to discover and retrieve the service descriptions
—~WSDL documents— associated with the functionality they need
to incorporate into the system. For the process of discovering and
understanding Web Services from their WSDL documents to be
effective, service providers must pay attention to the way WSDL
documents are specified [13]. This is desirable as discoverable and
understandable services potentially mean more client applications.
For paid Web Services, this means more incomes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 26-30, 2012, Riva del Garda (Trento), Italy.

Copyright 2011 ACM 978-1-60558-638-0/10/03 ...$15.00.

It has been shown that by considering a catalog of common anti-
patterns upon specifying WSDL documents, service discoverabil-
ity and clarity can be significantly improved [13]. A weak point
of this approach as well as related efforts [3] is that services must
be built in a contract-first manner [11], which means that WSDL
interface specifications for services comes before service imple-
mentations. This practice is not very popular in the software in-
dustry as it requires upfront effort and many resources (e.g. train-
ing developers in XML Schema). Alternatively, with code-first,
developers first implement a service and then generate its WSDL
document by automatically deriving it from the implemented code
via language-dependent tools like Axis Java2WSDL. However, this
simple WSDL construction procedure is also counterproductive.
Since developers do not have full control over their WSDL doc-
uments, anti-patterns can occur, which again places an unnecessary
burden on service-oriented application developers.

In this paper we propose an approach that aims at avoiding the
anti-patterns of [13] in code-first services. This approach bases on
applying some simple refactorings in the code implementing ser-
vices at development time. Refactorings are driven by some OO
metrics that were found to have a significant statistical correlation
with anti-patterns occurrence. In this sense, these metrics serve
as early indicators that warn developers about the potential occur-
rence of WSDL anti-patterns. Since the refactorings are very sim-
ple and are independent of the WSDL generation tool, we believe
our approach can be readily applicable in the industry. It is worth
mentioning that, although our approach is in principle platform-
independent, to limit the scope of our research, we focus on Web
Services implemented in Java. Interestingly, Java is a language
heavily employed for back-end Web development.

For evaluating the approach, we used a data-set of real public
Web Services. We empirically analyzed the effects of applying
our refactorings, which resulted in effective reduction of WSDL
anti-patterns. In addition, we quantified the indirect effect of refac-
torings on service discovery by basing on this data-set and WS-
QBE [5], an efficient Web Service registry infrastructure based
on machine learning and text mining techniques. We have found
that WSDL documents derived from service code that consider our
refactorings are more discoverable than those that do not.

The rest of the paper is as follows. The next section explains
the underpinnings of our approach. Section 3 reports a detailed
experimental evaluation. Section 4 presents concluding remarks.

2. EARLY AVOIDING ANTI-PATTERNS

Most of the problems related to the efficiency of Web Service
discovery engines stem from the fact that WSDL documents are
poorly specified [13]. A poorly specified WSDL document is one
that lacks proper comments, or contains non-representative, unre-

Anti-pattern Occurs when

. Non explanatory names are used for denoting
Ambiguous names .
the main elements of a WSDL document

Empty messages are used in operations that do
Empty messages L.
not produce outputs nor receive inputs

The data-type definitions are not placed in
Enclosed data model
separate XSD documents

Low cohesive operations . .
i Port-types have weak semantic cohesion
in the same port-type

Different data-types for representing the same
Redundant data model i i
objects of the problem domain

A special data-type is used for representing
Whatever types i X
any object of the problem domain

Table 1: Main WSDL anti-patterns

lated or redundant keywords.- These practices, besides negatively
impacting on the retrieval effectiveness of service discovery en-
gines, hinder humans’ ability to reason about services functionality.

The study presented in [13] proposed the most comprehensive
WSDL anti-patterns catalog to date. By exploring a large data-set
of public WSDL documents, the authors abstracted away some re-
current practices that have been empirically proved as threats to
WSDL discoverability and clarity. For brevity, the most harmful
anti-patterns are listed in Table 1. Each identified anti-pattern has
associated a sound refactoring action. The proposed associated
solutions are based on refactoring actions for WSDL documents.
Given a WSDL document having anti-patterns, the provider can
methodically modify the document until all or-some anti-patterns
have been removed. As such, these solutions can be applied when
services are developed in a contract-first manner only.

2.1 Approach and research hypotheses

To prevent WSDL documents from incurring in the anti-patterns
presented in [13] when following the code-first method for building
services, we established several hypotheses by using an exploratory
approach to test the statistical correlation between OO metrics and
the anti-patterns. Particularly, we hypothesized that either cou-
pled classes, or weighted classes, or methods returning abstract or
void types, are associated with higher number of anti-pattern oc-
currences within generated WSDL documents. The rationale be-
hind our hypotheses is that typical code-first tools perform a map-
ping 7 : C — W, where the service front-end class is represented as
C = [M[IR]]*, while W = [O[IR]]* stands for the generated WSDL
document. The WSDL document W has a port-type for the service
implementation class having as many operations O as public meth-
ods M are defined in class C. Each operation of W is associated
with one input message I and one return message R, while each
message conveys an XSD type that stands for the parameters of
the corresponding class method. Code-first tools like WSDL.exe,
Java2WSDL, and gSOAP [17] are based on a mapping T for gen-
erating WSDL documents from C#, Java and C++, respectively,
though each tool implements 7 in a particular manner because of
the characteristics of these programming languages. Next we list
the hypotheses that after the statistical analysis proved to hold:

Hypothesis 1 (H): “The higher the number of classes directly re-
lated to the class implementing a service (CBO metric), the
more frequent the Enclosed data model anti-pattern occur-
rences.” CBO [4] counts how many methods or instance vari-

©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

ables defined by other classes are accessed by a given class.
Code-first tools typically include in resulting WSDL docu-
ments as many XSD definitions as objects are exchanged by
the methods of service classes. Then, increasing the number
of external objects accessed by service classes increases the
number of XSD data-type definitions.

Hypothesis 2 (H): “The higher the number of public methods of
a service class (WMC metric), the more frequent Low co-
hesive operations in the same port-type anti-pattern occur-
rences.” Since WMC [4] counts the methods of a class, a
greater number of methods increases the probability that any
pair of them are unrelated, i.e. having weak cohesion.

Hypothesis 3 (H3): “The higher the number of public methods of
a service class (WMC metric), the more frequent the Redun-
dant data models anti-pattern in the service.” The number
of message elements within a WSDL document built under
code-first tools, is equal to two times the number of oper-
ation elements. As each message may be associated with
a data-type, then the number of redundant data-type defini-
tions increases with the number of public methods, since this
in turn increases the number of operation elements.

Hypothesis 4 (Hy): “The higher the number of public methods of
a service class (WMC metric), the more frequent the Ambigu-
ous names anti-pattern occurrences.” Similarly to H3, an
increment in the number of methods lifts the number of non-
representative names within a WSDL document, since for
each method a code-first tool automatically generates in prin-
ciple five names (one for the operation, two for input/output
messages, and two for data-types).

Hypothesis 5 (Hs): “The higher the number of method parame-
ters belonging to a service class that are declared as non-
concrete data-types (ATC metric), the more frequent the What-
ever types anti-pattern.” ATC (Abstract Type Count) is a
metric of our own that computes the number of method pa-
rameters that do not use concrete data-types, or use Java
generics with type variables instantiated with non-concrete
data-types. Some code-first tools map abstract data-types
and badly defined generics onto xsd:any constructors, which
is the root cause for the Whatever types anti-pattern.

Hypothesis 6 (Hg): “The higher the number of public methods of
a service class that do not receive input parameters (EPM
metric), the more frequent the Empty messages anti-pattern
occurrences.” ~We designed the Empty Parameters Meth-
ods (EPM) metric to count the number of methods in a class
that do not receive parameters. By increasing the number of
methods without parameters, the number of Empty messages
anti-pattern occurrences is increased, because code-first tools
map this kind of methods onto operations associated with one
input message element not conveying XML data.

The approach chosen for testing the hypotheses consists on gather-
ing OO metrics from open source Web Services, looking for anti-
patterns in their WSDL documents, and using correlation methods
to validate the usefulness of these metrics for anti-pattern predic-
tion. We gathered a data-set of around 90 different real services
that contained, for each service, its implementation code and its
WSDL document. Service implementations were collected via the
Merobase crawler and the Exemplar engine [9]. Merobase allows
users to harvest software components from sources such as Apache,
SourceForge and Java.net. Complementary, we collected projects

Anti-pattern/Metric WMC CBO ATC EPM
Ambiguous names 0.86 (Hy) 0.42 0.25 0.33
Empty messages 0.54 0.20 0.19 0.99 (Hs)
Enclosed data model 041 098 (H;) 0.12 0.16
Low cohesive operations 0.61 (H,) 0.38 0.12 0.39
in the same port-type
Redundant data models 0.79 (H3) 0.33 0.15 0.31
Whatever types 0.50 0.35 0.60 (Hs) 0.32

Table 2: Anti-patterns and OO metrics: Correlation

from Google Code. Some of the retrieved projects actually im-
plemented Web Services, whereas other projects contained coarse
granular software components, which were “servified” to further
enlarge the data-set. Overall, the data-set provided the means to
perform a significant evaluation since it came from real developers.

We automated metrics recollection and anti-patterns detection,
since the time needed to manually analyze each item of the data-set
was 2 days/developer and it is-an error prone task. For computing
OO0 metrics, we extended ckjm [14], a Java-based tool that com-
putes a sub-set of the Chidamber-Kemerer metrics [4].

For measuring the number of WSDL anti-patterns, we employed
a detection tool [12] that automatically checks whether a WSDL
document suffers from the anti-patterns of [13] or not. The tool
uses heuristics to return a list of anti-patterns occurrences within a
given WSDL document. Each heuristic is designed for detecting
one anti-pattern, and reported experiments show that the averaged
accuracy of the heuristics was 0.958 [12].

2.2 Empirical correlation between OO metrics
and anti-patterns occurrence

The commonest way of analyzing the empirical relation between
independent and dependent variables is by statistically testing ex-
perimental hypotheses [7]. We set the 6 anti-patterns described
above as the dependent variables, and some OO metrics as the in-
dependent variables. We used the Spearman’s rank correlation co-
efficient to establish the existing relations between the two kind of
variables. Table 2 shows the correlation results. The values in bold
are those coefficients that are statistically significant at the 5% level
(p-value < 0.05), which is the usual configuration [15].

It can be seen from Table 2 that there is a statistically signifi-
cant relation between the CBO metric and the number of occur-
rences of the Enclosed data model anti-pattern, with a correlation
factor of 0.98 and a p-value of 0. We conclude that the hypothe-
sis H is supported by our data, thus accepting its validity. This
occurs since code-first tools include in resulting WSDL documents
as many XSD definitions as user defined objects are used by the
service methods. Then, increasing the value of the CBO metric
leads to a higher number of occurrences of the anti-pattern.

The hypothesis H; stated that the likelihood of non-cohesive op-
erations increases with the number of public methods, which sug-
gests a positive correlation between the WMC metric and the Low
cohesive operations in the same port-type anti-pattern. As shown
in Table 2, the correlation factor is the highest for this anti-pattern
(0.61) and is also highly significant (p-value = 0). This allows us to
accept the validity of the hypothesis H,. The correlation between
the two variables, on the other hand, tends to have an exponen-
tial nature. Let us consider the following example. Let S be a
Web Service with 3 unrelated methods M1, M, and M3. Therefore,

©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

WMC = 3 and Low cohesive operations in the same port-type = 3,
since we would have the pair of non-cohesive operations [M,M>],
[M1,M3] and [M3, M3). If we now add a fourth method My, the new
values would be WMC = 4 and Low cohesive operations in the
same port-type = 6. This is, as we increase the number of methods
in the Web Service, the number of occurrences of the anti-pattern
tends to increase exponentially.

The hypothesis Hz stated that the probability of the Redundant
data models anti-pattern increases with the number of public meth-
ods. The two variables present a highly significant (p-value = 0)
strong positive correlation factor of 0.79 (see Table 2). Then, the
hypothesis is supported by our data. Moreover, similarly to the re-
lation between the WMC metric and the Low cohesive operations
in the same port-type anti-pattern discussed before, the relation be-
tween the WMC metric and the Redundant data models anti-pattern
has an exponential tendency. This arises from the way code-first
tools generate WSDL documents. These tools define two message
elements for each operation: one for its input parameters and one
for its return type. As each message is associated with a data-type,
the probability that any pair of methods share the same number and
type of input parameters or the same return type increases expo-
nentially with the number of public methods.

The hypothesis Hy stated that the WMC metric was positively
correlated with the Ambiguous names anti-pattern. From the cor-
relation analysis shown in Table 2, it can be observed that there is
a statistically significant relation between the two variables, with a
correlation factor of 0.86 and a p-value of 0. This shows that the
hypothesis Hy is supported by our data, thus confirming its validity.
As the value of the WMC metric increases, so does the number of
operations and arguments, resulting in a higher probability that a
sub-set of them use non-representative.

The hypothesis Hs stated that an increment in the ATC metric
may increase the likelihood of the Whatever types anti-pattern oc-
currences, which suggests a positive correlation between the two.
As shown in Table 2, the two variables have a correlation factor of
0.60. This correlation is also highly significant, with a p-value of 0.
It can be noted that this correlation factor is the highest for this anti-
pattern. Therefore, we conclude that the validity of the hypothesis
is confirmed from this data. The correlation between the metric and
the anti-pattern stems from the use of generics and abstract types
in the service code. For example, let us suppose a service with a
single operation thatreceives a List and a String as input parameters
and returns a Hashmap as output parameter. The generated WSDL
document using the Java2WSDL tool would map both the List type
and the Hashmap type onto <anyType> constructors, resulting in
two occurrences of the Whatever types anti-pattern.

The hypothesis Hg stated that a greater number of methods with-
out input parameters increases the probability of the Empty mes-
sages anti-pattern, suggesting a positive correlation between the
EPM metric and the anti-pattern. From Table 2 it can be seen that
this is the case, as shown by the highly statistically significant re-
lation between the two variables (correlation factor of 0.99 with p-
value = 0). Then, we conclude that the hypothesis is supported by
our data. The high correlation factor between the two variables is,
once again, due to the way code-first tools generate WSDL docu-
ments. For those methods that do not receive any parameters, tools
still generate an operation element associated with one empty input
message element that is not intended to transport any XML data.

3. EXPERIMENTAL RESULTS

The correlation among the WMC, CBO, ATC and EPM metrics
and the anti-patterns, which were found to be statistically signifi-
cant for the analyzed Web Service data-set suggest that, in practice,

Metric or anti-pattern Decrement

WMC 79.29%

Ambiguous names 0.00%

Low cohesive operations in the same port-type 86.66%
Redundant data models 47.26%

Table 3: First round of refactorings: Impact on WMC and its
correlated anti-patterns

an increment/decrement of the metric values taken on the code of
a Web Service directly affects anti-pattern occurrence in its code-
first generated WSDL. To quantify these effects, we carried out
some source code refactorings driven by these metrics on the data-
set (Section 3.1). Then, we measured the impact of performing
such refactorings on service discovery (Section 3.2).

3.1 Effects of early code refactorings on anti-
patterns occurrence

For representativeness, we modified the services that presented
all anti-patterns at the same time, which accounted for a 30% of the
data-set. In a first round, we focused on reducing WMC by employ-
ing the Fowler et al.’'s MOVE METHOD refactoring [8], i.e. splitting
the services having too many operations into two or more services
so that on average the metric in the refactored services represented
a 70% of the original value. Table 3 shows the impact on both
WMC and its related anti-patterns: Ambiguous names, Low cohe-
sive operations in the same port-type and Redundant data models.
On average, the two latter anti-patterns were reduced in 47.26%
and 86.66%, respectively. Ambiguous names anti-pattern occur-
rences were the same, because the refactoring was driven by WMC
and thus method and parameter names were not modified.

Unfortunately, the refactorings introduced a significant increase
of the average number of occurrences of the Enclosed data model
anti-pattern. The original Web Services had on average 6.84 oc-
currences versus the 20.56 average occurrences in the refactored
services, which is due to a limitation regarding complex data-type
reuse of the current implementation of Java2WSDL, the tool used
to generate WSDLs. For example, a service having 10 operations
whose signatures use the same class definition C produces only one
occurrence of the anti-pattern. But, after refactoring, if the ser-
vice is divided for example into 5 new services with 2 operations
each, the number of occurrences increases to five since we have
5 services with one occurrence each. This is, Java2WSDL has no
“global” sense of data-type models upon WSDL generation. Nev-
ertheless, this does not translate into an irremediable problem since
an alternative code refactoring to avoid this situation, which in fact
might reduce CBO, is to replace one or more user-provided classes
within a Web Service implementation with native data-types. This
practice would however produce a less precise and expressive class
(and potentially data) model, which attempts against the legibility
and clarity of the exposed data-types of services. Then, the desired
data-type duplicity/legiblity balance should be established.

Finally, the fall in the occurrences of the Redundant data models
anti-pattern after the refactoring is also due to the lack of sense
of global data-types, but of the anti-pattern detector, in this case. If
two services define the same data-type, the detector will not count it
as an anti-pattern occurrence. Instead, if a service has 2 operations
both using the defined data-type twice, the detector counts 2 anti-
pattern occurrences. However, after the refactoring, if the service
is divided in 2 new services with one operation having the same

©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

Metric or anti-pattern Decrement

WMC 79.29%

ATC 100.00%

Low cohesive operations in the same port-type 13.33%
Redundant data models 52.73%

‘Whatever types 21.09%

Table 4: Second round of refactoring: Impact on WMC and
ATC and their correlated anti-patterns

data-type each, the detector does not count the anti-pattern.

In a second round of refactorings, we focused on the ATC met-
ric, which computes the number of parameters in a class declared
as Object or collections that do not use Java generics. Usually, col-
lections cannot be automatically mapped onto concrete XSD data-
types by the generation tool for both the container and the contained
data-type in the final WSDL. A similar problem arises with param-
eters whose data-type is Object. Hence, we modified the services
obtained in the previous step to reduce ATC. Since ATC and WMC
are correlated to different anti-patterns, results are not affected by
the order in which the associated refactorings were performed.

The applied refactorings consisted in replacing arguments de-
clared as Object with a concrete data-type whenever possible. Also,
instead of replacing parameters declared as Vector, List, etc., with
their generic counterparts, which is known as INTRODUCE TYPE
PARAMETER [8], we decided to replace the former with array struc-
tures. Overall, by applying these modifications decreased the num-
ber of occurrences of the Whatever types anti-pattern. Note that
the anti-pattern could not be removed completely as the ATC met-
ric only operates at the service interface level. This means that if
an interface parameter declared as a concrete data-type X has in
turn instance variables/generics with non-concrete data-types, the
anti-pattern will nonetheless appear upon WSDL generation.

Finally, the Empty messages anti-pattern, which is associated
with the EPM metric, could not be removed since the anti-pattern
is caused by the way Java2WSDL builds WSDL messages. Unlike
WMC, ATC and to a lesser extent CBO, taking EPM into account
has to be completely done at the WSDL generation level. This con-
cretely means that the generation tool should not build an empty in-
put message for'class methods without parameters. Table 4 shows
the metrics and anti-patterns that were reduced after refactoring.

3.2 - Effects of early code refactorings on ser-
vice discovery

We measured the implications on discovery of early detecting
anti-patterns in service implementations via code refactorings to
avoid anti-patterns from target associated WSDL documents. In
other/'words, we analyzed whether placing effort on refactoring
service implementations actually rewards developers by improving
their services chances of being discovered or not.

The evaluation consisted of three steps. In a first step, code-
first WSDL documents were grouped into two categories. One
category called “Refactored” consisted of those WSDL documents
that were generated after applying the proposed refactorings to a
sub-set of the service implementations gathered from open source
projects. Another category (“Original”) had the original versions
of the improved WSDL documents. Second, we supplied a ser-
vice registry with both categories of WSDL documents. Third, we
queried the employed registry using one query per available service
operation in the published services. For each query we employed

the Precision-at-n metric to measure the position at either the orig-
inal or the refactored WSDL documents were retrieved. Precision-
at-n computes precision at different cut-off points. For example, if
the top 5 documents are all relevant to a query and the next 5 are all
non-relevant, we have a precision of 100% at a cut-off of 5 docu-
ments but a precision of 50% at a cut-off of 10 documents. Finally,
we averaged the results over the total number of queries.

The refactored documents were WSDL files whose implementa-
tions were modified to consider not some, but all the refactorings
discussed previously. The reason behind this decision was that,
even when some anti-patterns affect service discovery more than
others [13], they all negatively impact on WSDL discoverability.
Hence, the best results in terms of retrieval effectiveness are ob-
tained when removing all the anti-patterns, which means that all the
refactorings associated with correlated OO metrics have to be con-
sidered. In practice, modifying service implementations by taking
into account all the refactorings is not an expensive task since most
of them can be easily performed with the help of modern IDEs.

For the experiments, we used a publicly available registry im-
plementation of the approach to service discovery presented in [5].
This registry exploits relevant information contained in WSDL doc-
uments by combining text-mining and machine learning techniques
to remove redundant plus non-relevant data and build a vectorial
representation of each service, respectively. This is a classical
model borrowed from the Information Retrieval area, known as
Vector Space Model [5], which is widely employed for discovering
services, as reported in a recent survey of approaches to discover
services [6]. With this model, documents are seen as collection of
terms, whereas each dimension of the space corresponds to a sep-
arate term, thus documents having similar contents are represented
as vectors located near in the space. Accordingly, searching related
documents translates into searching nearest vectors. Any form of
textual based queries, ranging from single keywords to textual de-
scriptions of their needs, are mapped onto avector, and in turn those
vectors that are near to the query vector are marked as relevant [5].

For fairness we built the employed queries from the source code
of original service implementations. This assumption is analogous
to the Query-By-Example concept presented in [5], upon which
the registry is built. For example, the query for looking for op-
erations whose signature is: “getActiveWorkflows(userID:string)”
may be “get active workflows”. In fact, the employed registry
splits combined words within queries. Following this assumption,
463 queries were built, one per offered operation. We associated
two WSDL documents with each query, one document belonging
to the Original service category, while another from the Refactored
one. For the association we arbitrarily selected the WSDL docu-
ments containing the operation needed.

The Precision-at-n results were computed for each query with
nin [1,10]. This window size was chosen because we want a good
balance between the number of candidates and the number of rel-
evant candidates retrieved. Moreover, we believe that a developer
can easily examine 10 Web Service descriptions in a usual discov-
ery scenario. Therefore, by setting n = 10, the considered number
of relevant services in the result list is up to 10 candidates. Fig-
ure 1 depicts the averaged Precision-at-n results for the 463 queries
by smoothing these results using Bézier curves. Results show that
Refactored WSDL documents were ranked before their Original
counterparts. Having a higher Precision-at-/ means that a relevant
service was retrieved at the top of the result list. Precision-at-/
was 66.1% and 2.6% for Refactored and Original categories, re-
spectively. Then, the WSDL documents associated with services
whose implementations had been refactored, were ranked first in
the 66.1% of the cases. As emphasized in Figure 1, 93% of rel-

©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

06 - \ |
Precision-at-4 = 64%

05 B

(more is better)

04 | |

Average Precision-at-X [%]

03| |

02t / B

01t/ |
Refactored WSDL documents
‘Original WSDL dogumenls A

0/ L L L L
1 2 3 4 5 6 7 8 9 10

Position in the candidate list

Figure 1: Averaged Precision-at-n results.

05| T precison-at-d = 51% 1

04| 1

Average Precision-at-X [%]
(more is better)

03 | |

o2t]

01|/ |
Refactored WSDL documents
Original WSDL documents --------

O' L L L L
1 2 3 4 5 6 7 8 9 10

Position in the candidate list

Figure 2: Averaged Precision-at-n when also considering the
WSDL documents gathered by HeB et al [10].

evant Refactored documents were retrieved at the forth position,
in the worst case, whereas a fraction of 54% of relevant Original
WSDL documents were retrieved at the same position. Accord-
ingly, discoverers would have to analyze up to only 4 candidates
until finding a relevant service when employing Refactored WSDL
documents in 93% of the cases. Clearly, Refactored WSDL docu-
ments were better ranked compared to Original ones. These results
have a great impact on discoverability because users tend to select
higher ranked search results [1]. For instance, the probability that a
user accesses the first ranked result is 90%, whereas the probability
for accessing the next one is, at most, 60% [1].

The fact that only Original and Refactored versions of the same
WSDL documents coexist in a registry undoubtedly is unrealistic,
though it is-useful for comparison purposes. We have assessed the
implications of applying the proposed refactorings in a more realis-
tic scenario, by reproducing the same experiment with the data-set
of ca. 400 publicly available WSDL documents described in [10].
We published this data-set in our registry along with the Original
and Refactored groups of WSDL documents. Therefore, this ex-
periment was equal to the former except for the second step, which
has been modified to simulate a real world scenario.

Figure 2 depicts the averaged 463 Precision-at-n results. The
tendency of ranking Refactored WSDL documents first remained
the same, though Precision-at-n results fell by 2.85% and 7.02%
for the Refactored and Original categories, respectively. This in-
dicates that the discoverability of Original WSDL documents was

more affected by the noise introduced in the registry than the dis-
coverability of the Refactored ones. Figure 2 shows, for instance,
that 51% of the Original WSDL documents were ranked at the
fourth position at most, whereas for the first experiment this value
was 64%, i.e. a fall of 13 %. Regarding Refactored WSDL doc-
uments, the Precision-at-4 results fell only 3%. These results may
indicate that though more WSDL documents have been published
in the registry, Refactored ones are still more discoverable.

Both experiments provide empirical evidence showing that em-
ploying the proposed refactorings on service implementations im-
prove the discoverability of their WSDL documents. Due to the
approach to service discovery used, Precision-at-n results are data-
set and query-set specific, and cannot be generalized to other ex-
perimental conditions. However, as the proposed refactorings rely
on re-grouping operations for improving service internal cohesion,
remodeling data-types for making them representative of domain
objects, and following good naming conventions for making op-
erations and arguments names self-descriptive, it is reasonable to
expect some retrieval advantage when applying the refactorings,
versus not applying them. Thisis because the efficiency of most
approaches to Web Service discovery depends on the descriptive-
ness of published WSDL- documents [13].

4. CONCLUSIONS AND FUTURE WORK

WSDL documents play a crucial role in making Web Services
understandable and discoverable. Several WSDL specification bad
practices or WSDL anti-patterns have been documented in the lit-
erature, which actually attempt against this goal. Therefore, the
problem of how to correct, or even better, avoid such anti-patterns
when deriving WSDL documents-is of major importance.

We have described an approach to minimize anti-patterns occur-
rence when using code-first. This is achieved by considering the
values of some OO metrics taken at the source code implementing
services which were found to be statistically correlated to WSDL
anti-patterns. By using a data-set of real Web Services, we inves-
tigated the effect of applying some metric-driven code refactorings
to the Web Services on the anti-patterns in the generated WSDLs.
We found that these refactorings not only improve WSDL clarity
but also allow for more efficient service discovery.

We are extending our work in several directions to generalize our
results. First, we will incorporate into our analysis other WSDL
generation tools, such as EasyWSDL and JBoss’ wsprovide. Sec-
ond, the relationships between the anti-patterns and other OO met-
rics, e.g. traditional metrics [16] or newer ones [2], could in turn
lead to explore the effects of others early refactorings on anti-pat-
terns and service discovery. Precisely, a third research line involves
performing experiments with other Web Service discovery engines
apart from WS-QBE. Lastly, as part of an independent project, an
I-commerce system that comprises around 40 code-first Web Ser-
vices is being developed. We will eventually consider these Web
Services to get a larger experimental date-set.

Acknowledgments

We acknowledge the financial support provided by ANPCyT through
grant PAE-PICT 2007-02311.

References

[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning
user interaction models for predicting Web search result pref-
erences. In 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval,
pages 3-10. ACM, 2006.

©ACM, (2012). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2012 ACM symposium on Applied computing, http://dx.doi.org/10.1145/2245276.2245400

[2] J. Al Dallal. Measuring the discriminative power of object-
oriented class cohesion metrics. IEEE Transactions on Soft-
ware Engineering, 2010. To appear.

[3

—

M. Blake and M. Nowlan. Taming Web Services from the
wild. IEEE Internet Computing, 12:62-69, September 2008.

[4

—

S. Chidamber and C. Kemerer. A metrics suite for object ori-
ented design. IEEE Transactions on Software Engineering,
20(6):476-493, 1994.

[5] M. Crasso, A. Zunino, and M. Campo. Query by example for
Web Services. In 2008 Web Technology Track (WT) - ACM
Symposium on Applied computing (SAC), pages 2376-2380.
ACM, 2008.

[6] M. Crasso, A. Zunino, and M. Campo. A survey of ap-
proaches to Web Service discovery in Service-Oriented Ar-
chitectures. Journal of Database Management, 22(1):103—
134, 2011.

[7] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., Boston, MA, USA,
2nd edition, 1998.

[8

—_—

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1 edition, July 1999.

[9] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,
and C. Cumby. A search engine for finding highly relevant
applications. In 32nd ACM/IEEE International Conference
on Software Engineering, pages 475-484. ACM, 2010.

[10] A.HeB, E. Johnston, and N. Kushmerick. ASSAM: A tool for
semi-automatically annotating semantic Web Services. In In-
ternational Semantic Web Conference, volume 3298 of LNCS,
pages 320-334. Springer, 2004.

[11] C.Mateos, M. Crasso, A. Zunino, and M. Campo. Separation
of concerns in Service-Oriented Applications based on per-
vasive design patterns. In 2010 Web Technology Track (WT)
- ACM Symposium on Applied computing (SAC), pages 849—
853. ACM; 2010.

[12] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo. Au-
tomatically detecting opportunities for Web Service descrip-
tions improvement. In Software Services for e-World, IFIP
Advances in Information and Communication Technology,
pages 139-150. Springer, 2010.

[13] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo. Im-
proving Web-Service descriptions for effective service dis-
covery. Science of Computer Programming, 75(11):1001-
1021, 2010.

[14] D. Spinellis. Tool writing: A forgotten art? IEEE Software,
22:9-11, 2005.

[15] S. Stigler. Fisher and the 5% level. Chance, 21:12-12, 2008.

[16] F. Tsui and O. Karam. Essentials of Software Engineering.
Prentice Hall, 2006.

[17] R. Van Engelen and K. Gallivan. The gsoap toolkit for
Web Services and Peer-to-Peer computing networks. In 2nd
IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 128-135. IEEE, 2002.

